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ABSTRACT 1t is vital to accurately predict solar activity, in order to decrease the plausible damage of
electronic equipment in the event of a large high-intensity solar eruption. Recently, we have proposed brain
emotional learning-based fuzzy inference system (BELFIS) as a tool for the forecasting of chaotic systems.
The structure of BELFIS is designed based on the neural structure of fear conditioning. The function of
BELFIS is implemented by assigning adaptive networks to the components of the BELFIS structure. This
paper especially focuses on the performance evaluation of BELFIS as a predictor by forecasting solar cycles
16-24. The performance of BELFIS is compared with other computational models used for this purpose,

in particular with the adaptive neuro-fuzzy inference system.

INDEX TERMS Adaptive neuro-fuzzy inference system, brain emotional learning-based fuzzy inference
system, computational intelligence models, solar activity forecasting, solar cycles.

I. INTRODUCTION

Space weather phenomenon, such as solar wind from a coro-
nal mass ejection, can create powerful geomagnetic storms
within the Earth’s magnetosphere. This sometimes causes
harmful effects on electronic and communication systems on
earth. For example, geomagnetic storms can interfere or dis-
rupt satellites in low Earth orbit, power grid, radar systems,
air traffic control systems, high-frequency communications
and global positioning systems (GPS) [1]-[7].

Solar activity is a quasi-periodic space weather phe-
nomenon that causes fluctuating ultraviolet and X-ray emis-
sions. Each solar cycle lasts approximately between 8 to
11 years. According to the National Oceanic and Atmo-
spheric Administration’s (NOAA) Space Weather Predic-
tion Center, “monitoring and forecasting solar outbursts in
time to reduce its effect on space-based technologies have
become a national priority” [2]. The prediction of solar
activity includes forecasting different aspects of solar cycles
such as solar minima and maxima, cycle period, and cycle
amplitude. According to [5], the solar activity forecasting
methods aim at predicting “‘the amplitude of an upcoming
solar maximum no later than right after the start of the
given solar cycle” [5]. The forecasting methods also have
a goal to provide accurate results for long term prediction
(several years ahead) of solar activity; however achieving
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such a long term prediction is hard. As a result, many
proposed forecasting methods, including the method given
in this paper, are compared based on their performance
with much shorter prediction time (few months). A com-
mon way to predict solar activity is through the use of
statistical-based methods, which encompass a wide variety
of methods, such as: linear methods, nonlinear autoregressive
methods, linear prediction filter, and computational intelli-
gence models [5], [6]. Moreover, different indices, such as:
sunspot numbers, sunspot areas, the 10.7 cm Solar Flux,
and geomagnetic activities have been utilized to measure
solar activities [1], [3], [4]. Amongst these, a well-known
index is the sunspot numbers, which counts the ‘dark regions’
(‘sunspots’) [7] on the sun’s surface. The number of sunspots
can be calculated according to a formulation called the
Wolf Number [7], which estimates the number of sunspots
based on the number of sunspot groups and the number of
individual sunspots. Computational Intelligence (CI) models
(e.g., neural networks (NNs), neuro-fuzzy methods (NFs) and
emotion-based data-driven methods [8]-[19]) have also been
examined to predict sunspot time series and to forecast its
peaks. NNs and NFs have shown reasonable capabilities to
capture the chaotic and nonlinear behavior of solar cycles,
but they suffer from high time and model complexity [10].
The former depends on the optimization method, the number
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of training samples, and the dimension of each sample. The
latter depends on the number of learning parameters. Note
that time and model complexity are worsened when trying
to predict future values of a time series with a large number
of data samples and high dimensions. It has been observed
that in the case when only a small number of data samples
are available, the above CI models suffer from under-fitting
issues and fail to predict the long-term activity of chaotic
systems such as solar activity [10]. Recently, some techniques
have been introduced to increase the prediction accuracy of
NNs and NFs in both short-term and long-term perspectives.
One of these recent efforts includes the use of pre-processing
techniques, e.g., spectral techniques, such as Single Spectrum
Analysis (SSA) [8], [10]. Another technique is to modify
NFs (e.g., adaptive neuro-fuzzy system (ANFIS)) to improve
the capability to perform long-term prediction of chaotic
systems accurately. For example, a model that is called the
Emotional Learning Fuzzy Inference System (ELFIS) [11],
was proposed to decrease the complexity of (ANFIS) and
to increase the prediction accuracy of ANFIS by adding an
‘emotional cue’ [11].

In this paper, we evaluate the performance of the recently
proposed Brain Emotional Learning Based Fuzzy Inference
System (BELFIS) by examining it as solar cycle predictor
for both long term and short term prediction of solar activity.
It has been observed that BELFIS, which is a modification of
ANFIS, shows better results than ANFIS. BELFIS is based
on the neural structure of fear conditioning [20] and the
principles of the amygdala-orbitofrontal cortex system [21].
The modifications are described in detail in [18] and [19].
After this introduction, the rest of this paper is organized as
follows. Section II briefly illustrates the structural and func-
tional aspects, along with the learning algorithm of BELFIS.
Section III evaluates the performance of BELFIS as evi-
denced in forecasting solar activity. Section IV discusses
notable conclusions.

Il. BRAIN EMOTIONAL LEARNING BASED FUZZY
INFERENCE SYSTEM

BELFIS is a variation of brain emotional learning inspired
models (BELiMs) [32] which is a new class of computational
intelligence. The outline structure of BEIiMs has been devel-
oped by a combination of the neural structure underlying fear
conditioning and the amygdala-orbitofrontal cortex system.
While, the internal structure of a BELiM, as well as its
function have been implemented by the structure and function
of adaptive networks [15].

The first effort to form a BELiM was presented in a
paper, which is entitled ‘““Modifying Brain Emotional Learn-
ing Model for Adaptive Prediction of Chaotic Systems with
Limited Data Training Samples” [28]. The model was tested
as a time series prediction model and exhibited better perfor-
mance than traditional machine learning models (MLs) such
as ANFIS and ANNs.

Another preliminary try to design a BELiM was named
“RRFBEL” (Reinforcement recurrent fuzzy rule-based sys-
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tem based on brain emotional learning). It was tested as both
short-term and long-term prediction model of time series
and its results mostly outperformed the obtained results from
traditional MLs.

Another effort of designing a BELiM, was a forecasting
model of solar activity, which was introduced in [29].

One of the first versions of BELiMs is BELRFS (brain
emotional learning recurrent fuzzy system), which was intro-
duced in a research paper entitled as ‘“Neuro-fuzzy mod-
els, BELRFS and LoLiMoT, for prediction of chaotic time
series” [30] and its extended version in [31]. The studies
thoroughly explained BELRFS, explained how the model
could be utilized as a time series prediction model, and
compared its obtained results with powerful MLs such as
ANFIS.

BELFIS is another variation of BELiMs which was firstly
pointed in [33]. BELFIS was examined as a prediction
model for forecasting solar activity [33] and geomagnetic
storms [18]. A modified version of BELFIS was introduced
in [34]. It was examined to predict a time series of auroral
electrojet (AE) Index. The collected results from the model
showed such a modification could not improve the perfor-
mance of the first version of BELFIS.

Brain Emotional Learning Prediction  Models
(BELPM) [17], [35] is a simple variation of BELiMs. The
general structure of BELPM was similar to the general
structure of BELiMs. However, some parts of BELPM such
as the ORBI and the AMYG have been implemented by
assigning a weighted k-nearest neighbor adaptive network.
BELPM was employed to predict geomagnetic storms using
the Disturbance Storm Time (Dst) index and its obtained
results have outperformed the results of the adaptive neuro-
fuzzy inference system. The above studies have verified
that BELiMs are useful models as time series prediction
models [36].

The next section will explain how the external and internal
structure of a BELiM can be designed.

A. THE STRUCTURE OF BELFIS

The emotional theory that forms the basis of BELFIS is the
fear conditioning theory, proposed by LeDoux [20]. The fear
conditioning theory describes the neural structure of fear
conditioning and emphasizes the role of the amygdala and
its internal nuclei such as the lateral (LA) nucleus, basal (B)
nucleus and central (CE) nucleus in processing emotional
stimuli and providing emotional reactions. Fig. 1 displays the
circuits and parts (thalamus, sensory cortex, and orbitofrontal
cortex) that are involved in making the association between
emotional stimulus and emotional response.

The brain regions and circuits in Fig. 1 are the basis
of the structure of BELFIS, as depicted in Fig. 2. The
model structure includes four main components: TH (Thala-
mus), CX (sensory CorteX), AMYG (AMY Gdala) and ORBI
(ORBItofrontal cortex). A detailed description of each part is
given in [19].
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FIGURE 1. A schematic view of the brain regions that have a role in
emotional processing.
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FIGURE 2. (a). The outlined structure of BELFIS consists of four main
parts, TH, CX, ORBI and AMYG. Apart from CX, these parts are divided into
two sub-parts. The connections between the different parts are shown as
black arrows, while the connections between two sub-parts are
presented with gray arrows. (b) A schematic of the connection between
different adaptive networks of BELFIS.

B. THE FUNCTION OF BELFIS

Jang et al. [22] defined adaptive networks that could be rep-
resented as a feedforward or a recurrently connected network
of adaptive nodes. A good example of adaptive networks
is adaptive network neuro-fuzzy inference system (ANFIS).
At the training phase, BELFIS receives a pair {i,r}, provides
an output, rr and adjusts different parameters. The func-
tion of the BELFIS is implemented by assigning two types
of adaptive networks,? simple adaptive network (SAN) and
adaptive neuro fuzzy inference system (ANFIS) to differ-
ent components of the structure of BELFIS as represented
in Fig. 2 (a). As Fig. 2 (b) describes TH is the first part
of the BELFIS that receives i = iy, i and consists of

SThe concept of adaptive networks and different types of adaptive mech-
anisms have been defined in [19].
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two subparts, MAX_MIN (maximum_minimum) and AGG
(aggregation). MAX_MIN consists of two simple adaptive
networks (SAN). The outputs of the MAX_MIN are denoted
as [max (i) , min(Z)]. The AGG has the role in transforming
input vector i to the CX that is responsible to provide s as
a vector and send it to AMYG. The AMYG is divided into
two parts: the BL (corresponding to the basal and lateral
parts of the amygdala) and the CM (corresponding to the
accessory basal and cortico-medial region of the amygdala).
BL receives thMAX-MIN and s and provides the primary output
r, as BL sends the primary response, r, to CM in AMYG. The
function of CM can be implemented by assigning an ANFIS
that provides ry. RBI also has a connection to AMYG and
consists of MO (Medial part of the Orbitofrontal cortex) and
LO (Lateral part of the Orbitofrontal cortex). MO receives
s and provides the primary output r, that is sent to CM. The
function of BELFIS has been defined based on the function of
ANFIS. Moreover, BELFIS is based on ANFIS that has been
considered as a universal approximator by proving Stone-
Weierstrass theorem. Thus, it can be concluded that BELFIS
is also a universal approximator.

C. THE LEARNING ASPECT OF BELFIS

In general, BELFIS utilizes a hybrid learning algorithm to
adjust the parameters. The hybrid learning algorithm is a
combination of Steepest Descent (SD) and Least Square Esti-
mator (LSE). To adjust the nonlinear parameters of BL, CM
in AMYG and MO in ORBI, an SD based algorithm is used.
The LSE is also used to update the consequent parameters
and linear learning parameters. The above aspects of BELFIS
have been demonstrated in detail in [19].

IIl. SOLAR ACTIVITY FORECASTING

Various prediction methods, including CI models, have been
utilized to forecast the solar activity [8]-[19]. One well-
known indicator of solar activity is the sunspot index, which
has been recorded since 1747 [23]. In addition, yearly,
monthly and daily sunspot numbers can be downloaded from
WDC-SILO and be utilized to reconstruct the Sun Spot
Number (SSN) time series [23]. This section assesses the
performance of BELFIS by use of two such error measures:
normalized mean square error (NMSE) [10] and root mean
square error (RMSE) [10]. We examine BELFIS to predict
different solar cycles and compare its performance with that
of ANFIS. The main goal of this comparison is to show that
BELFIS is a powerful method for predicting chaotic systems,
and the study uses solar cycle 16 to 24 for that purpose.
A comparison is also conducted with some NN and NF based
methods.

A. SOLAR CYCLES 16, 17, 18

The first experiment section is related to solar cycles 16,
17 and 18, which have peaks in 1928, 1937 and 1948,
respectively. Here, BELFIS and ANFIS are compared by
predicting these cycles, and subsequently, the result is also
compared with NN and NF based methods. The NN models
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TABLE 1. Comparison of CI models for solar cycle 16 to 18.

Learning Type of CI Specification NMSE
Method model
BELFIS NF 16 rules 0.098
ANFIS NF 4 rules 0.111
Not
LogF-NN[8] NN identified 0.112
Not
WNet[8] NN ‘dentified 0.086
Not
DRNNJ8] NN identified 0.091
Not
MLP[11] NN dentified 0.140
Not
RBF[11] NN dentified 0.118
Not
LLNF[11] NF identified 0.070

of this subsection include: WNet (Weight Elimination Feed
Forward), a MLP (Multi-Layer Perceptron) with a modi-
fied cost function [8], DRNN (Dynamic Recurrent Neural
Network) [1] and LogF-NN (gamma Feedback Neural Net-
work) [8] and RBF (Radial Basis Function) [11]. Further-
more, the results obtained from BELFIS are compared with
the results of a neuro-fuzzy method, called LLNF (Local
linear neuro-fuzzy) [11]. The training data set is chosen from
1700 to 1920 and the test set is chosen from 1920 to 1955.
BELFIS and ANFIS are applied to predict one year ahead of
yearly SSN time series, which is a time series with yearly
numbers of sunspots. It can be seen that BELFIS is more
accurate than the majority of the other CI models, as pre-
sented in Table 1. In the study analysis, the obtained error
of BELFIS is close to the obtained error of LLNF, which is
the most accurate CI model of Table 1. Another interesting
point is that the total number of rules in BELFIS is 4 times
the number of rules in ANFIS. It might be assumed that
increasing the number of rules in ANFIS might decrease the
obtained NMSE, however, on attempting to increase the num-
ber of rules in ANFIS and in particularly this case, the results
have become worse. Figure 3 depicts the predicted values
of BELFIS by the gray dashed curve. It is interesting that
BELFIS has a reasonable performance to predict the peaks
of solar cycles 17 and 18.

B. SOLAR CYCLE 19

Solar cycle 19 started in February 1954 and ended in
October 1964. The maximum monthly smoothed sunspot
number is 201.3. The maximum peak for non-smoothed
sunspot number is equal to 253.8 and it occurred in
March 1957. In this experiment BELFIS is trained with the
use of the non-smoothed monthly sunspot numbers from
1700 to 1950. Subsequently, it is tested to predict one month
ahead of the monthly SSN time series from 1950 to 1965.
This experiment has focused on estimating the peak of solar
cycle 19. Table 2 compares the specification, predicted peak
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FIGURE 3. Predicted values of the yearly sunspot number for solar cycles
16-18 using BELFIS (gray dashed curve).

TABLE 2. Comparison of different methods to predict solar cycle 19.

.Learning Specification Predicted NMSE
Method Peaks
BELFIS 16 fuzzy rules 261.25 0.0995
ANFIS 8 fuzzy rules 204.91 0.1042
ELFIS[11] 3 fuzzy rules  Not identified 0.1386
RBF[11] 7 neurons Not identified 0.1314

and the NMSE of BELFIS, ANFIS, RBF and ELFIS. It indi-
cates that BELFIS is the most accurate model among the
methods. It predicts the peak as 261.25, which is close to the
observed peak in 1957. Also, it should be noted that in [11],
the predicted peaks of ELFIS and RBF have not been stated
and are therefore not included in Table 2. Moreover, in this
experiment the model complexity of BELFIS is higher in
comparison with the other three methods. However, the study
shows that BELFIS decomposes the learning parameters for
several sets and adjusts each set of the parameters separately,
i.e., a divide-and-conquer method to find the optimal values
of learning parameters.

C. SOLAR CYCLES 20, 21 AND 22

Solar cycles 20, 21 and 22 have peaks in 1968, 1979 and 1989,
respectively. This subsection presents the obtained results
when BELFIS and ANFIS are applied to predict solar cycles
20, 21 and 22 (the yearly SSN time series from 1965 to 1997).
The methods have been trained with the yearly SSN time
series from 1700 to 1965. Table 3 presents NMSE and RMSE
from BELFIS, ANFIS and an NN-based model in the form
of a MLP with one input layer (six neurons), one hidden
layer (12 neurons) and one output layer (one neuron) [12].
Table 3 also lists the number of rules of BELFIS and ANFIS
and the number of neurons of the NN, as well as two error
indices, NMSE and RMSE. Additionally, it can be observed
that the RMSE obtained from BELFIS is slightly lower than
the two other methods. Figure 4 presents how BELFIS pre-
dicts these three solar cycles. It is notable that BELFIS is
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FIGURE 4. Predicted values of the monthly sunspot number for solar
cycle 20-22 using BELFIS (gray dashed lines).

TABLE 3. Comparison of different methods for predicting solar
cycles 20-22.

Learning Specification NMSE RMSE
Method

BELFIS 28 rules 0.1240 18.87
ANFIS 16 rules 0.1485 19.00
NN [28] 6-12-1 Not identified  22.6

successful in predicting the solar cycles in terms of the time
of occurrence of solar maximum. It can be also observed that
BELFIS can correctly predict peaks one year ahead for years
1979 and 1989. However, the analysis shows that it is not
good at predicting the start of the cycle for years 1977 and
1987.

D. SOLAR CYCLE 23

Solar cycle 23 is well-known for being the longest
(12.6 years). The starting time of this cycle was May 1996 and
it ended in January 2008. The maximum of the smoothed
sunspot number occurred in March 2000 and was 120.8.
The aim of this experiment is to provide a careful per-
formance comparison between BELFIS and three powerful
NNs [24]-[26]. This is achieved by predicting the sunspot
numbers one-month ahead. The smoothed monthly sunspot
numbers® from November 1834 to June 2000 is used, the
first 1000 samples are considered as the training data set
and the next 1000 samples are used for evaluation. The three
NN-based models used for comparison are Hybrid NARX-
Elman Recurrent Neural Network [24], the Functional
Weights Wavelet Neural Network-based state-dependent
Auto-Regressive (FWWNN-AR) model [25] and an evolving

6To calculate the smoothed monthly number, an averaging of monthly
mean values over the 13 months is calculated.
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TABLE 4. Comparison of different methods of predicting solar cycle
23 using smoothed monthly sunspot numbers.

Prediction Specification NMSE  The embedding
Model of time
BELFIS 38 7.6e-4 4
ANFIS 8 7.7e-4 4
NARX-
Elman[24] 5-7-5-5 3-1 5.23e-4 5
ERNN[26] Not identified  2.8e-3 Not identified
FWWNNI[25] 4-2 5.90e-4  Not identified
200 T T T T T , !
--#-- Predicted Values by ANFIS
1807 == Predicted Values by BELFIS |
g” 60 = Observed Values till 2015
]
8140/ 1
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=120 J
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FIGURE 5. Predicted values for solar cycle 24 using BELFIS and ANFIS.

neural network (ERNN) [26]. The NARX-Elman model is a
hybrid NN that combines a four-layer Elman network with
a two-layer NARX neural network. Table 4 presents the
specification, the NMSE of each model and the embedded
dimension of the SSN time series that has been predicted
by each method. The most accurate model is NARX-Elman;
however, the NMSE performance of BELFIS is close to
NARX. It should be noted that in [24], NARX-Elman is
combined with a pre-processing method; however, no pre-
processing has been used for BELFIS. Also, most likely,
using a pre-processing method such as SSA would result in a
decreased NMSE for BELFIS too.

E. SOLAR CYCLE 24

Solar cycle 24, the current cycle, started on January 101
2008. It is different from other cycles because of the deep
solar minimum before its start, its small solar maximum, and
its two solar peaks. Hence, the prediction of this solar cycle
has captured excessive attention. For this specific cycle, four
examples have been used to evaluate BELFIS. In the first
example, yearly SSN time series from 1700 to 2008 is used as
the training data samples. The trained models (BELFIS and
ANFIS) have then been used to recursively predict sunspot
numbers from 2009 to 2019. Recursive prediction means that
the predicted value in each step is fed to reconstruct the future
values of time series sample. Figure 5 depicts the predictions
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TABLE 5. Comparison of different methods for predicting solar cycle
24 with non-smoothed monthly sunspot numbers.

Learning Prediction Predicted peaks NMSE
method  horizon (first, second )

BELFIS  One month 91.51,92.69 0.168

BELFIS  Three months 79.53,98.68 0.249

ANFIS  One month 93.32,95.15 0.164

ANFIS Three months 79.88,95.68 0.251

TABLE 6. Comparison of different methods for predicting solar cycle
24 with smoothed monthly sunspot numbers.

Learning Prediction Predicted NMSE
method horizon peaks
(months)
BELFIS One 88.40 4.7e-3
BELFIS Five 89.48 5.2e-2
BELFIS Ten 98.61 1.8e-1
ANFIS One 88.41 4.9e-3
ANFIS Five 90.74 6.7e-2
ANFIS Ten 99.7 4.6e-1
180 T T
=== Observed Values
160} — == Predicted Values by BELFIS l,
140}
o 120F
]
E 100
z
g sof
B g0l
40}
20¢
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(b)

FIGURE 6. Predicted non-smoothed monthly SSN time series of solar
cycle 24 using BELFIS. (a). Predicted one-month ahead. (b). Predicted
three-month ahead.

Apr 2001

May 1996

of two models and it is interesting to note that BELFIS and
ANFIS have similar performance in predicting solar cycle 24.

In the second experiment, the non-smoothed monthly
sunspot numbers from 1700 until April 1996 are used to train
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TABLE 7. Comparison between BELFIS and two NNs for predicting solar
cycle 24.

Learning  Data Samples Predicted Time,
Method Time, Peaks Reference
Monthly SSN 2015, this
BELFIS Train:1976-2004 2012, 67.13  paper
Test: 2004-2012
Yearly SSN 2015
BELFIS Train:1882-2009 2013, 67.7 this ’a or
Test: 2009-2018 pap
Monthly SSN
Neural Train:1976-2004 2006, [26]
Network Test: 2004-2012 2009, 145
Yearly SSN
Neural Train:1882-2009 2013, 65 2011, [27]
network

Test: 2009-2018

the BELFIS and ANFIS. Then, the capability of these models
to predict one and three months ahead of SSN time series
is investigated. The test data set comprises non-smoothed
monthly sunspot numbers from May 1996 to February 2015,
parts of solar cycle 23 and solar cycle 24. As mentioned pre-
viously, during solar cycle 24, there are two peaks; for non-
smoothed monthly sunspot number the peaks are 96.7 and
102.3. The NMSEs obtained and the predicted values of the
first and second peaks of solar cycle 24 are listed in Table 5.
It shows that BELFIS and ANFIS provide similar results in
terms of NMSE.

Figure 6. (a) describes the one month ahead predicted
values by BELFIS, while Figure 6. (b) shows the three months
ahead predicted values by BELFIS versus the real values of
monthly sunspot numbers. In the third example, BELFIS and
ANFIS are applied to predict one, five and ten months ahead.
The training data and the test data set have been selected
from 1700 until May 2007 and June 2007 to September 2014,
respectively. The prediction horizon, the predicted second
peaks (the observed value of the second peak is 87.6) and
the NMSEs of BELFIS and ANFIS are listed in Table 6.
Figure 7 shows the change in NMSE of BELFIS and ANFIS
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TABLE 8. Presentation of the BELFIS’ s Absolute error.
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Solar Prediction Observed, Absolute
Cycle  horizon predicted error
Peaks

#16 One year 77.80, 77.98 0.183
#17 One year 114.4,115.2 0.798
#18 One year 129.4,151.6 37.2
#19 One month 253.8,261.25 7.45
#20 One year 105.90, 115.62  9.72
#21 One year 155.40, 145.14  10.25
#22 One year 157.60, 143.43  14.61
#23 One month  120.80, 122.48 1.68
#24 One year 64.90, 96.24 31.30

with an increase in the horizon of prediction. As can be seen,
an increase in the horizon of prediction causes a resultant
increase in the NMSE for both methods; however, the NMSEs
for BELFIS are less than the NMSEs for ANFIS. The fourth
example of this subsection is proposed to compare the per-
formance of BELFIS and two NN that have been applied to
predict solar cycle 24. Table 7 presents the training and test
data samples, the predicted peaks & time of occurrence and
the time of the studies. It can be seen that BELFIS is more
successful than the other methods as listed in Table 7.

This section presented different examples to exten-
sively examine BELFIS by predicting different solar cycles.
Table 8 reports the obtained value for peaks of solar cycles
16-24. Tt also lists the obtained absolute errors to predict
peaks. The maximum error is related to solar cycle 18, and
the minimum error is related to solar cycle 16. The results
obtained verify that BELFIS has the capability to predict solar
activity, as an example of chaotic time series.

IV. CONCLUSION

This paper briefly explained BELFIS and showed how the
structure of BELFIS is formed on the basis of the neural struc-
ture of fear conditioning. The modular structure of BELFIS
is different from other modular CI models in the sense that
its structure has been copied from the neural structure of
fear conditioning. The learning parameters of BELFIS are
divided into separate sets. Each set has its learning algorithms
and its learning rules. In general, BELFIS has been devel-
oped to improve on ANFIS in chaotic time series prediction.
To verify the above claim, we applied BELFIS to predict
nine solar cycles (solar cycles 16 to 24) and, subsequently,
compared its performance with ANFIS and several NN and
NF based methods. In all of the examples, BELFIS showed
more accurate results than ANFIS. In addition, on compari-
son with other NNs and NF methods, BELFIS provided rea-
sonable performance, which verifies that BELFIS is a valid CI
model for space weather prediction. BELFIS aims to address
the model and time complexity issues. The good results of
BELFIS in predicting non-smoothed sunspot numbers indi-
cate that BELFIS is a model with low noise sensitivity.
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