
Received October 15, 2018, accepted November 8, 2018, date of publication November 14, 2018,
date of current version December 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2881414

ExTCKNN: Expanding Tree-Based Continuous
K Nearest Neighbor Query in Road
Networks With Traffic Rules
HONGJUN LI 1, (Member, IEEE), BIAO CAI1, SHAOJIE QIAO 2,
QING WANG3, AND YAN WANG4
1School of Information Science and Technology, Chengdu University of Technology, Chengdu 610059, China
2School of Cybersecurity, Chengdu University of Information Technology, Chengdu 610225, China
3School of Computer Sciences, Florida International University, Miami, FL 33199, USA
4School of Software, East China Jiaotong University, Nanchang 330013, China

Corresponding authors: Biao Cai (caibiao@cdut.edu.cn) and Shaojie Qiao (sjqiao@cuit.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61701049, Grant 61802035, and Grant
61772091, in part by the Sichuan Provincial Education Department Project under Grant 15ZB0070, in part by the Digital Media Science
Innovation Team of CDUT under Grant 10912-kytd201510, in part by the Sichuan Science and Technology Program under Grant
2018JY0448, in part by the Innovative Research Team Construction Plan in the Universities of Sichuan Province under Grant 18TD0027,
and in part by the National Natural Science Foundation of Guangxi under Grant 2018GXNSFDA138005.

ABSTRACT The existing continuous nearest neighbor query algorithms of moving objects in road networks
do not consider any traffic rule and assume that the speed of moving objects is constant and the topology
of road networks never change. However, in real road networks, the object’s speed and the road network’s
structure change frequently Hence, these would make the existing methods ineffective when applying to the
real-world road network environment To overcome the aforementioned disadvantages, we propose a Data
Modeling approach of Road Networks with traffic rules (called DMRNR) and design a novel Expanding
Tree-based Continuous k Nearest Neighbors algorithm (abbreviate for ExTCKNN) that can be well adopted
to the actual road network environment. The algorithm consists of three steps: 1) it obtains the query results
to store using DMRNR in the initial phase; 2) it maintains the data model of road networks by monitoring
the real-time change information; and 3) the results are generated according to the submitted query with the
updated data model and the latest state of moving objects The merit of the proposed algorithm lies in that
it queries the nearest neighbors by taking the movements of the moving object and the variety of the road
networks into consideration Extensive experiments are conducted and the experimental results demonstrate
a significant improvement of the proposed method when compared with conventional solutions.

INDEX TERMS Road networks, k nearest neighbor, continuous query, expanding tree data model of road
network

I. INTRODUCTION
With the rapid development of mobile computing, a large
number of applications based on moving objects have
emerged, such as spatial databases, geographic informa-
tion, intelligent transportation system [1], [30] and etc.
These applications require highly efficient spatio-temporal
query [1]–[5], [15], [16], [24], [25]. Among them, k-Nearest
Neighbor (kNN) query is a basic problem in the research
field of moving object database, and it has received extensive
attention from researchers [5], [8]. For example, the users
in the intelligent transportation system want to get the
query results: (1) The taxi driver wants to get the 5-nearest

passengers to take a taxi. (2) The marching driver needs the
3-nearest ambulances to get help.

Previous literature of kNN query focuses on the static
data. As the relevant applications proliferate, many extended
studies have emerged. Continuous k Nearest Neighbor query
(CkNN) [9]–[14], [19], [20], [30], [31] is one of the most
important extensions. It refers to the query that can continu-
ously return the latest k nearest neighbors of the given query
object in real time.

Some algorithms have been proposed for CkNN query
in road networks [1], [6]–[9], [17], but these methods
are designed to deal with continuous nearest neighbor

72594
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-6266-2857
https://orcid.org/0000-0002-4703-780X

H. Li et al.: ExTCKNN Query in Road Networks With Traffic Rules

queries of static objects, that is, the query object remains
stationary.

Mouratidis et al. [12] propose the Incremental Monitoring
Algorithm (IMA) to process CkNN query in mobile envi-
ronments with moving states; Huang et al. [13] propose a
Continuous kNNalgorithm, which can determine the kNN set
of the query object at each time point. Fan et al. [22] propose
an Object Candidate Processing (OCP) algorithm based on
themoving state of the object model. Shen et al. [30] design a
novel kNN search algorithm using V-Tree which can support
dynamical updates of moving objects by pruning large num-
bers of irrelevant vertices in the road network. Bok et al. [31]
propose a method to process the continuous k-NN query in
the grid environments efficiently.

Although some works focus on the CkNN in the road net-
works, it is hard to apply these approaches in the real-world
transportation networks due to the following three reasons.

(1) The traffic rules of road networks will greatly affect
the distance between objects, so it is very important to con-
sider traffic rules for kNN query in road network. However,
unfortunately, the existing approaches do not take the traffic
rules into consideration, so they cannot obtain correct query
results in the real-world road networks. Consider the follow-
ing example.

FIGURE 1. Road networks with traffic rules.

Example 1: As shown in Fig. 1, moving objects oi are
marked by black spots, the query point q is marked by a red
spot, and the arrows indicate the road directions. For each
road ei, the length is enclosed in the corresponding round
bracket.

According to the previous algorithms, for example, IMA
algorithm [12], the network distance is 10m from o1 to o2.
However, the network distance should be 70m according to
the traffic rules.

The proposed algorithm in this paper takes traffic rules into
account, including the directions of moving objects at road
intersections, the speed limitations of the roads, road rules
(i.e., one-way or two-way) and so on.

(2) The current approaches can only deal with the situation
when the moving objects keep unmoved or move at a uni-
form speed, and the network topology of the transportation
networks does not change as well. Unfortunately, in the real-
world road networks, the rate of the moving objects usually
varies continuously, the topology of the road network changes

dynamically due to traffic management and other factors. For
example, the traffic management departments will change
some two-way to one-way roads during rush hours.

(3) The natural discreteness of position updating makes
the kNN of query object unknown between two consecu-
tive update timestamps. It will make the existing algorithms
unable to return valid results between two consecutive update
timestamps [32].

To overcome the limitations of the aforementioned meth-
ods, we design a new Data Model of Road Network
with traffic Rules (DMRNR) for the real-world mobile
environment. By utilizing DMRNR model, an Expanding
Tree-based Continuous k Nearest Neighbor monitoring algo-
rithm (ExTCKNN) in the road network is proposed. A com-
parison between the ExTCKNN and existing studies is shown
in Table 1.

TABLE 1. Comparison with existing CkNN algorithms.

There are three essential phases in the proposed
ExTCKNN algorithm. First, ExTCKNN gets the initial near-
est neighbor set of the query object by expanding from
the query object in the initialization phase. Second, the
monitoring phase is proposed to maintain the expanding
tree by updating the corresponding moving objects, query
objects, and road. Finally, when a new query is submitted,
the algorithm returns the latest kNN objects of the query
object from the expanding tree in the query phase.

The main contributions of the paper are concluded as
follows:

(1) A new Data Model of Road Network with traffic Rules
(DMRNR) is proposed to store road network information and
query results. The rules of the road network and the updated
status of moving objects are considered in the model, which
achieves better performance in practice.

(2) A continuous k nearest neighbor monitoring algorithm
based on DMRNR model is proposed. It can process the
changes of mobile objects and road networks efficiently.

(3) The proposed algorithm is evaluated by an extensive
simulation. We also compare our results with those using the
existing solutions.

The rest of this paper is organized as follows. Section II
reviews related work in continuous kNN query. The descrip-
tions of the datamodel and preliminary symbols are presented
in Section III. Section IV shows the initial phase of our
proposed ExTCKNN algorithm. Section V introduces the
monitoring phase of the ExTCKNN algorithm. Section VI

VOLUME 6, 2018 72595

H. Li et al.: ExTCKNN Query in Road Networks With Traffic Rules

evaluates the performance of our proposed methods with a set
of simulation experiments in a real road network. Section VII
concludes the paper with a summary and directions for future
work.

II. RELATED WORK
Continuous kNN queries over moving objects in road
networks have been widely studied in the last few
years [23], [26], [27]. Chen [18] models the road network
by a Probabilistic Time-dependent Graph (PT-Graph), whose
roads are associated with uncertain delay functions. In addi-
tion, a query algorithm in the PT-Graph, called a Trip Planner
Query (TPQ), is proposed. The query retrieves trip plans that
traverse a set of query points in PT-Graph, having the min-
imum traveling time with high confidence. Zhao et al. [11]
propose an algorithm, called Voronoi CKNN (VCKNN),
by using the Voronoi diagram for CKNN. There is no need to
segment the query path in this approach. Hence, it improves
the overall performance. Liao et al. [29] tackle two prob-
lems in the query by using overlay graph-based indices:
(1) redundant calculations are produced because of the uncer-
tainty of the objects’ locations during the query process;
(2) the distribution of the moving objects has been neglected.
Two novel algorithms, Object-Last (OL) and Guide-Forest
(GF), are proposed to boost the performance of kNN queries
by revisiting the structure of the overlay graphs. The OL algo-
rithm reduces half of the searching space through optimizing
the overlay graph structure based on the objects’ distribution.
The GF algorithm adds the guidance information into the
overlay graph structure and searches on a heterogeneous
graph composed of both the original graph and the overlay
graph.

Many works focus on the continuous nearest neigh-
bor query of moving objects when the query object
keeps moving while the moving objects remain station-
ary. Delling et al. [17] propose partition-based shortest-path
algorithms to answer kNN queries such as which one is
the closest restaurant or the best post office to stop on the
way home. They also provide various trade-offs between
indexing effort and query time. The most flexible variant of
this algorithm allows the road network to change frequently.
Cho et al. [9] propose a unique continuous searching algo-
rithm (UNICONS) to improve the performance of CkNN
queries. The algorithm consists of the following steps: (1) the
path of the query object is divided into sub-paths according
to the intersection of the road network; (2) the kNN set of two
endpoints of each sub-path is calculated; (3) finally, kNN set
of the query object is obtained from the union of the kNN sets
of two endpoints on each sub-path. These algorithms assume
that only the query objects move continuously in the road
network. When all objects change their location over time,
the performance will decrease significantly.

Some works focus on studying the CkNN query when
the query objects and moving objects keep moving.
Huang et al. [13] propose a CkNN algorithm, to present the
distance between the query object and the moving object

as an equation. It divides the time interval into subintervals
which determine the changes of the kNN set of the query
object. Fan et al. [22] propose an Object Candidate Process-
ing (OCP) algorithm based on the moving state of the object
model. In the pruning phase, the algorithm prunes the objects
which cannot be the kNN query result within a given time
interval. In the refining phase, the subintervals of the given
time interval are determined where the certain kNN query
results are obtained. Shen et al. [30] propose a new index,
V-Tree, which has two salient features. V-Tree is a balanced
search tree and can support efficient kNN search. Addition-
ally, it can support dynamical updates of moving objects.
They also design a novel kNN search algorithm using the
borders to efficiently compute k nearest objects, which can
deal with kNN search on a large number of online queries
in road networks. Kyoungsoo et al. [31] propose a new con-
tinuous k-NN query processing method called Pattern Based
k-NN (PB-kNN) extending the basic kNN processing con-
cept proposed in [19] for efficiently sharing and transmitting
multimedia data in LBS. The proposed method utilizes the
Distance Relation Patterns (DRP) for processing a continuous
kNN query efficiently. DRP is a list of relative coordinates
sorted by the distance between a point in a cell and other
cells in ascending order so that they process a kNN query
by visiting the cells sequentially.

However, these existing CkNN algorithms in road net-
works have the following disadvantages. First, traffic rules
are not be considered. Second, the algorithms construct the
data model based on the assumption that the moving speed
and direction of objects and the topology of road networks
will not change during the movement. However, it is not
always the case in reality. Finally, the existing algorithms are
unable to return valid results between two consecutive update
timestamps because of the natural discreteness of position
updating.

To overcome the issues of the methods mentioned above,
an effective CkNN query algorithm is proposed in this study.
In the mobile environment all the objects (including query
objects) are continuously moving in the road network with
traffic rules and the algorithm performs well on CkNN query
processing

III. DATA MODEL OF ROAD NETWORKS WITH
TRAFFIC RULES (DMRNR)
A. kNN QUERY IN ROAD NETWORKS WITH
TRAFFIC RULES
Definition 1 (k Nearest Neighbor query, kNN) [25]: Given a
set of moving objects O and a query object q, a kNN query
returns a set O′ with k objects(O′ ⊆ O), so for any object
r ∈ O′, p ∈ (O-O′), O′ satisfies:

kNN(q) = {r ∈ O′|∀r ∈ O′,∀p ∈ (O− O′),

dist(q, r) ≤ dist(q, p)} (1)

where dist(q, p) represents the distance between two mov-
ing objects p and q. In the road network, dist(q, p) is the sum
of the road weights of the shortest path between p and q.

72596 VOLUME 6, 2018

H. Li et al.: ExTCKNN Query in Road Networks With Traffic Rules

In existing kNN query methods, the data model of road
networks is viewed as an undirected graph where dist(p, q) =
dist(q, p), which means that the distances from p to q and q
to p are identical. However, this is not applicable for moving
objects in the road networks due to the restrictions of traffic
rules, such as one-way or no sign of the left turn. Let us
consider another example.
Example 2: As observed in Fig. 1, the minimum distance

is 70m from o1 to o2 and 230m from o2 to o1 based the actual
traffic rules because the object o2 has to turn around at n1 to
reach o1. In other words, dist(o1, o2) 6= dist(o2, o1) may be
observed in road networks.

Therefore, the distances discussed in this study are those
from query object q to target objects o, which means only
dist(q,o) has been considered. Nevertheless, the proposed
method can be readily applied in cases of dist(o, q).
k NN query in road networks with traffic rules are defined

as follows:
Definition 2 (kNN Query in Road Networks With Traffic

Rules): Given road networks with traffic rules, a moving
object setO, and query object q, kNN query returns an object
setO′ ⊆ Owith k objects under traffic rules, so for any object
r ∈ O′ and p ∈ (O-O′), O′ satisfies Formula 2:

kNN(q) = {r ∈ O′|∀r ∈ O′,∀p ∈ (O− O′),

dist(q, r) ≤ dist(q, p)} (2)

where dist (q, p) refers to the network distance from query
object q to target object p based on traffic rules. Note that dist
(q, p) 6= dist (p, q).

B. MODEL OF ROAD NETWORKS
The proposed model of road networks could describe the
following characteristics:
• Moving pattern of the moving object: all objects in road
networks move freely based on traffic rules.

• Updating information regarding the moving object:
when there are some changes of objects (eg., the speed
or the road it is in), updated information that contains
object ID, previous location, current location, and speed
will be sent to the server.

• Status of road networks: dynamically updating topolog-
ical structure and weights of roads.

In this paper, roads, road intersections, moving objects, and
query information are modeled using four different models,
respectively.

1) ROAD MODEL
The model of road (Troad) is a six-element group (rid,
<ns, ne>,<wp,wn>,<spmax , snmax>, Sobj, e.IL). Herein, rid
refers to the ID of the road, ns and ne refer to the starting and
end points of the road respectively, wp and wn refer to road
weights in the positive and negative directions, respectively,
spmax and snmax refer to the upper limits of speed in positive
and negative directions, respectively, Sobj refers to the current
moving object set on this road, and e.IL refers to the list
of query objects q affected by this road ({<q, n, d>}), n is

either ns or ne, d is a number describing the affecting range
of road on query object q. For instance, d= 100 indicates that
all objects within 100m from n are included in the k nearest
neighbor set of q.
Example 3: If the length of the road is represented by

its weight, the model of road n1n2 in Fig. 1 is described as
follows:

(e1, <n1, n2>,<150m, 150m>,<15m/s, 12m/s>,

{o1, o2}, {<q, n2, 100m>})

2) ROAD INTERSECTION MODEL
In real road networks, the road intersection can reflect the
traffic rules for moving objects at this node. Hence, the model
of road intersection is defined as follows:

The model of road intersection (Tnode) is a two-tuples
(conid, rules). Herein, conid refers to the id of this intersec-
tion, rules refer to traffic rules set at this intersection, which
can be described by the four-tuples <RoadIDfrom, ENDfrom,
RoadIDto, ENDto>. In other words, rules can be defined by:

rules = {<RoadIDfrom,ENDfrom,RoadIDto,ENDto>, . . .}

RoadIDfrom and RoadIDto represent the id of roads that the
moving object is leaving and entering, respectively. ENDfrom
reflects whether the moving object left RoadIDfrom from the
endpoint ne: if yes, ENDfrom = 1; if no, ENDfrom = 0. ENDto
reflects whether themoving object enteredRoadIDto from the
endpoint ne: if yes, ENDto = 1; if no, ENDto = 0.
Example 4: The intersection n2 in Fig. 1 can be

described by:

s = (n2, {<e1, 1, e3, 0>,<e1, 1, e1, 1>,

<e2, 0, e1, 1>,<e2, 0, e3, 0>,<e3, 0, e2, 0>})

where the rule <e2, 0, e1, 1> reflects that objects can enter
the end point of e1 from the start point of e2, that is, the right
turn rule labeled 1 in Fig. 1.

3) MOVING OBJECTS MODEL
The model of moving object (Tobj) is a five-tuples (oid, ej, tu,
dist, vi). Herein, oid refers to the id of this moving object,
ej refers to the road where the object moves in, tu refers to
the time of the last update for this object, dist refers to the
distance from this object to ej. ns (the starting point of the
road it is located in at moment tu), vi refers to the speed of
this object at time tu. A positive speed means it is moving
from the starting point to the endpoint and a negative speed
means it is moving from the endpoint to the starting point.
Example 5: o1 and o2 in Fig. 1 can be described by the

following moving object model:

(o1, e1, 0, 110m, 12m/s), (o2, e1, 0, 120m,−10m/s)

4) MODEL OF QUERY OBJECT q
A query model (Tquery) is used for store the informa-
tion of query objects. Meanwhile, query objects also are
moving objects. Therefore, besides storage of information

VOLUME 6, 2018 72597

H. Li et al.: ExTCKNN Query in Road Networks With Traffic Rules

FIGURE 2. Road networks and kNN query.

about moving object for each q, it is also used for store the
current kNN set of q (represented by q.kNN), the distance to
the kith nearest neighbor of q (represented by q.kNN_dist)
and the query expanding tree (Tq). For example, in the road
network shown in Fig.2, the 4NN set of the query object q is
{p1, p2, p3, p4}, and the distances from q to them are 23, 32,
42, 50, respectively. The objects p5 and p6 do not belong to
the 4NN set of q.

FIGURE 3. Expanding tree.

Fig.3 shows the expanding tree corresponding to the
Fig.2 obtained in the initialization phase of the proposed
CkNN query algorithm. The expanding tree can be involved
in themonitoring phase of the query process to reduce the cost
of re-calculating k nearest neighbor. The establishment and
maintenance algorithms will be discussed in the next section.

Table 2 summarizes symbols and definitions involved in
this study.

IV. INITIALIZATION PHASE OF EXTCKNN
QUERY ALGORITHM
A. EXPANDING TREE
Based on the above models, we propose a novel Expanding
Tree-based CkNN query algorithm for the moving object in
road networks. The expanding tree of the query object is
defined as follows:
Definition 3: Expanding Tree (Tq) of query object q is a

tree structure that satisfies the following requirements:
• q is the root of this tree;

TABLE 2. Primary symbols.

• All inner nodes involved are network nodes that can be
reached from q;

• All leaf nodes involved are network nodes or the location
of the road that can be reached from q;

• The shortest network distance from q to any node is no
longer than the distance to the kth nearest neighbor of q
(q.kNN_dist);

• All successive nodes of any node involved can be
reached directly from this node, except for the leaf
nodes.

Fig. 3 shows the expanding tree of query object q obtained
based on road networks and 4NN query in Fig. 2. Herein,
the network distance from q to object p4 (q.kNN_dist) is 50.
As we can see, the red line is the leaf node of this tree and
the dashed line and nodes below this line (n3, n5, n6, n8,
n12) do not belong to this tree. The dashed line and those
nodes are presented to clarify the road where leaf nodes are.
Meanwhile, the red dots other than q (p1, p2, p3, p4) and p6
do not belong to this tree. They are presented to clarify the
location of the k nearest neighbors corresponding to q. The
number in the bracket close to the nodes refers to the shortest
network distance from q to this node. As shown in Fig. 3, leaf
nodes can either be intersections in road networks (e.g., n9
in Fig. 3) or a random location on roads (e.g., other leaf
nodes in Fig. 3 except n9). The leaf nodes below n11 refer
to the divided locations on Road n11n12 that are 10m away
from n11.

We can obtain the following lemma based on the definition
of the expanding tree:
Lemma 1: There are k and only k moving objects in the

expanding tree of the query object q and all moving objects
belong to the k nearest neighbor set of q (q.kNN).

Proof: Assume there are k ′ moving objects in the
expanding tree:

If k ′ > k , then there should be at least one moving object
o that satisfies dist(q, o) > q.kNN_dist. According to the
definition of the expanding tree, o is not supposed to be in
the expanding tree. Therefore, k ′ > k is invalid.

72598 VOLUME 6, 2018

H. Li et al.: ExTCKNN Query in Road Networks With Traffic Rules

If k ′ < k , then there must be at least one moving object o
in the kNN set of q that satisfies dist(q, o) ≤ q.kNN_dist and
o is outside the expanding tree. According to the definition
of the expanding tree, distance from q to leaf nodes in the
expanding tree is q.kNN_dist and distance from q to o outside
the expanding tree will be longer than q.kNN_dist. In other
words, dist(q, o) > q.kNN_dist . Hence, k ′ < k is not valid.
In summary, k ′ = k is the only possible case. Hence, there

are k and only k moving objects in the expanding tree of query
object q.

If o in the expanding tree does not belong to q.kNN, then
dist(q, o) > q.kNN_dist . According to the definition of the
expanding tree, this object should be outside the expanding
tree. Hence, all objects in the expanding tree are in the k
nearest neighbor set of q.
Additionally, the object moves continuously, and objects

in the expanding tree are most possibly viewed to be the
k nearest neighbor of q for the next query. This provides
knowledge for continuous monitoring of nearest neighbors.
Therefore, maintenance of expanding tree is required during
the monitoring phase so that the k nearest neighbor set of the
query object can be obtained by the expanding tree.

B. INITIALIZED k NEAREST NEIGHBOR RESULT
SET AND EXPANDING TREE
Upon the submission of a new kNN query request, the ini-
tialized results will be obtained by the proposed expanding
tree-based CkNN (ExTCKNN) algorithm. In the initializa-
tion phase, the ExTCKNN involves the Dijkstra-based algo-
rithm [28]. Starting from q, the road network is expanded
along moving directions of q and the expanding process
terminates when the distance from the network node to q
exceeds q.kNN_dist. Meanwhile, an expanding tree of q is
established, and the list of the affected roads in Troad is
updated.

Since part of the roads in the road network affects the
results of q, the proposed algorithm only stores part of the
road information that affects the query using partial_roads.
Additionally, during the expanding process, the current short-
est network distance from q to node ni is recorded as L(ni).
Meanwhile, the current shortest network distance from q to
the moving object oi encountered during the expanding pro-
cess is recorded using min heap Oencounter . It is worthwhile
to notice that, oi may not be in the expanding tree of q. For
instance, it may be located on the dashed line shown in Fig. 3.

The initialization phase of the ExTCKNN algorithm is
shown in Algorithm 1.

In this algorithm, the proposed road network model and
query object q are set as inputs. First, in lines 1-3, min heap
Hnode used for storage of road intersections and set of moving
objects (Oencounter) encountered during the expanding pro-
cess are initialized to be null and the root node of expanding
tree is defined as q. The shortest distances from q to all nodes
in the road network are set to ∞. Then, line 4 expands q
to the end point of the current road by calling Function1-1.
In lines 5-6, q.kNN_dist is updated based on the current k

nearest neighbor set of q. If k objects have been identified,
the k nearest neighbor set is confirmed, and the algorithm
terminates.

Algorithm 1 ExTCKNN_InitkNN(q)
Input: Troad , Tnode, Tobj, query object q
Output: query model Tquery, Oencounter
Steps:
1) partial_roads, Hnode, Oencounter←null;
2) Tq.root←q; q.kNN_dist←∞; q.kNN←null;
3) for each ni ∈ Tnode do {L(ni)←∞; V(ni)←false; }
4) ExtendQToNode(q); //Function1-1, expand q to

end point of the current road
5) if q.kNN.length= k then
6) { Update(q.kNN, q.kNN_dist); return;} //Update the

distance to the kth nearest neighbor
7) ExtendNodes(Hnode); // Functions 1-2 will be clarified

below
8) for each node n ∈ Tq do
9) if V(n) = false then
10) DeleteNodeFromT(Tq);
11) for each road ninj ∈partial_roads do
12) { Node splitnode = New Node(q.kNN_dist–L(ni));
13) Insert(Tq, ni, splitnode);
14) AddIL(ninj, q, ni, splitnode); }

Otherwise, line 7 expands nodes in Hnode by applying
Function1-2. Fig. 3 shows the final expanding tree, which
contains n3, n5, n6, n8, n12, and these nodes should be
deleted as they do not belong to the expanding tree (line 10).
In Lines 11-14, we obtain the split location of each road in
partial_roads and insert it into Tq as the leaf node, that is the
red-labeled roads in Fig. 3.

Function 1-1 ExtendQToNode(q) (Line 4 in Algorithm 1)

Input: query object q
Output: Tquery, Oencounter
Steps:
1) e←q.ej;
2) if q.vi >0 then v←e.ve;
3) else v←e.vs; AddIL(e, q, q, v);
4) Insert(partial_roads, q, v);
5) Insert(Tq, q, v); Insert(Hnode, v); L(v) ←d(q, v);
6) UpdateKNN(q.kNN,ObjectsInRoad(q, v), k);

Insert(Oencounter , ObjectsInRoad(q, v));

Function1-1 expands q to the end point of the road.
Lines 1-4 obtain node v along the moving direction of q
according to the speed of q and store the road qv into par-
tial_roads. Line 5 inserts v, whose parent node is q, into
the expanding tree and heap Hnode and record the shortest
network distance from q to v. Line 6 adds moving objects
on Road qv into the k nearest neighbor set of q until k objects
are in the set. Objects o on road qv are inserted to Oencounter
with the distance from q to o is as key.

VOLUME 6, 2018 72599

H. Li et al.: ExTCKNN Query in Road Networks With Traffic Rules

Function1-2 is used for expanding of nodes inHnode. Line 1
gets node nwith the minimum key inHnode. If the key of node
n is below q.kNN_dist, Lines 2-17 expand the tree from n.
Herein, Lines 4-5 identifies the road from n to its father node
in Tq and delete it from partial_roads because all sections of
this road affect query q. Lines 6-16 investigate all adjacent
nodes nadj of n(except its father node). Line 8 updates the
query results (q.kNN and q.kNN_dist, an update of q.kNN_dist
is only triggered in the presence of k objects in q.kNN) and
Oencounter based on information about moving objects on
Road nnadj.

Function 1-2 ExtendNodes(Hnode) (Line 7 in Algorithm 1)

Input:Expanded node set Hnode
Output:Tquery, Oencounter (Oencounter is min heap)
Steps:
1) n←ExtractMin(Hnode);
2) while n.key< q.kNN_dist do {
3) V (n)←true;
4) e ←road(FindFather(Tq, n), n); // Assume e is the road
from the father node of n in Tq to n.
5) AddIL(e,q,e.ns, e.ne); Delete(partial_roads, e);
6) for each adjacent node nadj of n do{
7) Insert(partial_roads, n, nadj);
8) UpdateKNN(q.kNN,ObjectsInRoad(n, nadj), k);

Insert(Oencounter , ObjectsInRoad(n, nadj));
Update(q.kNN, q.kNN_dist);

9) if V (nadj)=false then { // if nadj has not been detected
10) dist=L(n) + nnadj.w;
11) if FindNode(Hnode, nadj) = null || (FindNode
(Hnode, nadj)!=null && IsTurnAround(FindNode(Hnode,
nadj), nadj)) then { // Determine whether nadj should be
inserted into Hnode
12) Insert(Tq, n, nadj);
13) Insert(Hnode, nadj);L(nadj) =dist; }
14) else if dist < L(nadj) then {
15) UpdateFather(Tq, n, nadj); // Update father
node of nadjin expanding tree Tq to be n
16) L(nadj) =dist; UpdateKey(Hnode, nadj,dist);}
// Update key of nadjin Hnode to be dist } }
17) n←ExtractMin(Hnode); }

Lines 9-16 insert unexpanded node nadj into Hnode and Tq
and the key is the shortest network distance from q to this
node via n. As turning around is allowed on roads, n2 →
n1 → n2 could be observed in the expanding tree. Hence,
it should be determined whether it is a turning around case in
presence of nadj in the expanding tree. Specifically, it should
be determined whether nodes between the added nadj and the
to-be-added nadj are symmetric: if yes, nadj is added; if no,
nadj is abandoned. Line 11 is responsible for this process.
If nadj has been inserted into Hnode, its key is updated to
the current shortest network distance. The expanding process
terminates when the key (i.e., dist(q, n)) of node n extracted
by Line 17 from Hnode is no smaller than q.kNN_dist.

Function 1-2 is the maintenance phase of expanding tree
corresponding to query object q. Its time complexity is
O(n× m) by analysis of this function.
Lemma 2: Let n denote the number of nodes extended

in the expanding tree during the maintenance phase, and m
mean the average number of roads that are connected to each
node. Then the computational complexity to maintain the
expanding tree is O(n× m).

Proof: Lines 2-17 in Function1-2 is used to extend the
expanding tree, which consists of two layers of loops, because
the number of extended nodes is n, then the outer loop
executes n times, and the inner loop (lines 6-16) examines
the adjacent nodes of each extended node, so the inner loop
runs for m times, and each operation in the inner loop can
be done in constant time. Therefore, the time complexity of
the Function1-2 is O(n × m), that is, the time complexity to
maintain the expanding tree is O(n× m).
By analyzing Algorithm 1, we can get the time complexity

of the initialization phase of ExTCKNN as follows:
Lemma 3: The time complexity of the initialization phase

of ExTCKNN is the same to the time complexity to maintain
the expanding tree, and it is O(n× m);

Proof: the Function1-1(line 4) in Algorithm 1 can be
completed in a constant time, that is, the time complexity of
Function1-1 isO(1). The Function1-2(line 7) is used to main-
tain the expanding tree, and the time complexity is O(n×m).
Assume that there are n′ nodes in the expanding tree, then the
time complexity of the lines 8-10 isO(n′). If there arem′ road
in partial_roads, the time complexity of lines 11-14 isO(m′).
Therefore, the computational complexity of the algorithm1 is
O(1)+ O(n× m)+ O(n′)+ O(m′), that is O(n× m).
As shown in Fig. 2, the nodes n1, n2, n7, n11 are expanded

and V (n1), V (n2), V (n7), V (n11) are true after executing
Algorithm 1. Tq is established with a breadth priority and for
every node n in Hnode, L(n) is equivalent to n.key. The key
value of object o stored inOencounter is defined as the shortest
network distance from q to o. Although some objects in
Oencounter are not currently considered as k nearest neighbor
objects, it is possible to be included in the k nearest neighbor
set during the next update period through the continuous
monitoring process. They can accelerate the query process;
thus, Oencounter should be modified during the continuous
monitoring process.

V. k NEAREST NEIGHBOR MONITORING ALGORITHM
FOR MOVING OBJECT IN ROAD NETWORKS
After the initialization phase, k nearest neighbor set of query
object q is obtained, and continuous monitoring is applied in
this set during the query process. In the real-world cases, both
moving objects and roads may dynamically change, and the
processing method of updating of moving objects (except for
query object) is proposed as follows.

A. UPDATING OF MOVING OBJECT
Assume that the update information of a moving object
o includes oid(o.oid) and its latest location information

72600 VOLUME 6, 2018

H. Li et al.: ExTCKNN Query in Road Networks With Traffic Rules

(including the new road enew and the distance from starting
point of this road). The model of road networks should be
updated according to moving object updates.

1) UPDATE MISSION OF MOVING OBJECT
For moving object updates, the proposed data model of road
networks should be updated:
• Update road model (Troad): identify the road ej contain-
ing o according to o.oid and Tobj, delete o from the object
list of ej, and add it into that of enew;

• Update object model (Tobj): update the information of o
in Tobj according to its current location on enew.

• Update Oencounter and query model (Tquery): the update
of the query model is the key task and will be described
below.

2) PATTERNS OF MOVING OBJECT UPDATE
The updating phase of moving objects can be classified into
several patterns as given in Example 6:
Example 6: In Fig. 2, the 4NN of q that has been initialized

by Algorithm 1 is completely included in q’s expanding tree.
At the next updating operation, locations of p4, p5, p6 are
updated in three patterns.
• Pattern 1 (moving in and leaving the expanding tree):
p6 moves towards n12 but is still outside the expanding
tree;

• Pattern 2 (leaving the expanding tree): p4 moves towards
n5 and leaves the expanding tree;

• Pattern 3 (entering the expanding tree): p5 moves from
n13n1 to n1n2.

Pattern 1 includes the case that the moving object is in the
expanding tree before and after updates.

FIGURE 4. The situation of objects after 3 objects update.

Fig. 4 shows the object location after the update oper-
ation. Figures 4 and 5 indicate the changes of the q’s k
nearest neighbors when objects enter or exit. In other words,
Pattern 2 and 3 will induce changes to k nearest neighbor
results of q, while Pattern 1 will not.

3) PROCESSING OF MOVING OBJECT UPDATE
An object updates at a specific moment may involve all three
patterns. In these cases, the initial output Oencounter of k
nearest neighbor of query q should be maintained, besides
updating k nearest neighbor results of q.

a: Oencounter MAINTENANCE
Oencounter is responsible for storing moving objects encoun-
tered during the establishment of the expanding tree. The
roads that contain the objects of Oencounter affect the query
q (i.e., roads in e.IL that contains q). Therefore, we only
need to determine whether the updated objects are in these
road sets, which implies the maintenance is determined by
the fact whether e.IL of the road which the update objects are
in contains q. Two situations may be observed:

(1) The objects are in the affecting road set before and
after an update, o has been in Oencounter , and the expand-
ing tree contains partially, if not completely, the road
where updated o is in. Herein, the latest distance of the
object is determined based on the distance from this object
to its father node in the expanding tree and the key value of
its father node and heapOencounter is updated. An example
is the update of p6 in the above case.
(2) The objects enter or leave the affecting road set
after update (Pattern 2 and 3 in the above case). Herein,
the object is either inserted to or removed fromOencounter .

b: Tquery MAINTENANCE
Tquery maintenance depends on the relation between the
updated objects number of Pattern 2 (Numexit) and Pattern 3
(Numenter). Let Oexited and Oentered are the objects sets of
Pattern 2 and Pattern 3, respectively.

(1)WhenNumexit ≤Numenter, there are at least k moving
objects in the current expanding tree of q and, the distance
from q to these objects is no longer than q.kNN_dist.
So the latest k nearest neighbor of q are still in the
expanding tree. Herein, k nearest neighbor candidate set
of q is q.kNN+Oentered−Oexited and all objects in this set
are currently in Oencounter . Therefore, the following two
steps should be executed:
• Obtaining a kNN set: asOencounter is a minimum heap,
the first k objects in Oencounter are the latest k nearest
neighbor of query object q;

• Expanding tree compression: the expanding tree
should be updated because the distance from q to its
latest kth neighbor is no larger than q.kNN_dist, for
instance, the case mentioned above. The red labeled in
the expanding tree shown in Fig. 4 will move towards
the root to obtain the expanding tree in Fig. 5.

FIGURE 5. The expanding tree after 3 objects update.

VOLUME 6, 2018 72601

H. Li et al.: ExTCKNN Query in Road Networks With Traffic Rules

(2) When Numexit>Numenter, the number of the objects
in the expanding tree with distances no larger than
q.kNN_dist are less than k and all objects in q.kNN +
Oentered − Oexited are supposed to be in the expanding
tree. Also, these objects are supposed to be the k nearest
neighbors of q and in Oencounter . Therefore, two steps
should be executed as follows:
• Obtaining a kNN set: the first k objects extracted from
Oencounter are the latest k nearest neighbor of q.

• The expanding tree is further expanded: if the num-
ber of objects in Oencounter is below k , the expand-
ing tree is expanded by Function 1-2 to expand the
searching area. Herein, Hnode is initialized using the
red labeled nodes (i.e., leaf nodes in Tq) (see Fig. 3)
and obtain the latest expanding tree and Oencounter
accordingly. The cost for k nearest neighbor calcula-
tion is reduced as information of previous expanding
tree has been used. Notably, leaf nodes may move
toward the lower level of the expanding tree in this
case.

B. UPDATING OF THE QUERY OBJECT
1) UPDATING PATTERNS OF QUERY OBJECT
According to the new location of query object q (qnew),
updates can be classified as:
• Pattern 1: query object exits the expanding tree. It means
qnew is outside the expanding tree.

• Pattern 2: query object moves in the expanding tree.
It indicates qnew is in the expanding tree.

2) PROCESSING OF QUERY OBJECT EXITS EXPANDING TREE
Example 7: In Fig. 2, qmoves to n5n4. In this case, n5n4 is

outside the current expanding tree (see Fig. 3) and the latest
k nearest neighbor of q cannot be calculated based on the
current expanding tree and Oencounter . Instead, q is deleted
from e.IL of all roads in the expanding tree and, its k nearest
neighbor is re-initialized by calling Algorithm 1.

3) PROCESSING OF QUERY OBJECT MOVES
IN EXPANDING TREE
Example 8: In Fig. 2, qmoves to the road n1n7. In this case,

qnew is on the road n1n7 and, the latest k nearest neighbor of
qnew can still be calculated based on sub-trees with qnew as the
root. After the query object updated, the maintenance of the
road model, Oencounter and k nearest neighbor results, shall
be achieved by the ExTCKNN algorithm. The maintenance
process is as follows:

a: MODIFICATION OF ROAD MODEL (Troad)
The query object q should be deleted from e.IL of roads that
do not affect the query after q is updated. Herein, only those
roads that are not in sub-trees with qnew as the root (e.g., n1n2
and n1n11 in Fig. 3) shall be identified so that q is deleted
from e.IL of these roads.

b: MAINTENANCE OF Oencounter
First, objects that do not belong to sub-trees with qnew as the
root are deleted from Oencounter . Then, distances of objects
left in Oencounter are updated. Specifically, the updated dis-
tance equals to the previous distance minus displacement
distance of q.

c: MAINTENANCE OF THE QUERY MODEL (Tquery)
According to the expanding tree, all objects in sub-trees with
qnew as the root are still k nearest neighbors of qnew in this
case. After maintenance of Oencounter , updating information
of these objects are stored in Oencounter . Also, objects in
Oencounter that were not k nearest neighbors of q are highly
possible to become k nearest neighbors of qnew, and they are
superior to objects not in Oencounter . So the following steps
are executed:

(1) add first k objects in Oencounter into the updated k
nearest neighbor set;
(2) if objects in Oencounter are less than k , sub-trees with
qnew as the root are expanded by calling Function 1-2.
Herein, information of these sub-trees should be updated
at first: distances from qnew to nodes in the sub-tree are
modified and Hnode is initialized using leaf nodes of this
sub-tree. Further expanding based on that results in the
updated expanding tree.

C. UPDATING OF ROAD NETWORKS
1) ANALYSIS OF ROAD UPDATE PROCESSING
The update operation of road networks are mainly updates of
road weights. For instance, a road can be set as one-way by
defining the forbidden road weight as∞. Hence, this study
focuses on the update of road weights. Additionally, updating
ei will affect the query results only when these roads are in
the expanding tree.

2) PROCESSING OF ROAD WEIGHT UPDATES
The update operation of road weights in the expanding tree
can be classified into two categories:

a: DECREASING ROAD WEIGHT, SUCH AS n1n11 IN Fig. 2
This update may lead to cases where objects that do not
belong to the expanding tree (e.g., p6 on n11n12) enter the
expanding tree and replace other objects in k nearest neigh-
bors set. For objects in other subtrees in Tq (except for n1n11
and sub-trees with n11 as the root), both the shortest paths
and shortest distances from q to them may vary. However,
variations are only observed for objects on sub-trees with n
as root in Tq, where dist(q, n) > dist(q, n11). Hence, when the
weight of n1n11is reduced, the following steps are executed:

(1) delete sub-trees with n (dist(q,n)>dist(q,n11)) as root
from Tq, delete q from IL of roads contained in these sub-
trees, and delete affected objects in Oencounter ;
(2) update key of all objects and nodes on sub-tree
with n11 as the root and modify objects information in
Oencounter accordingly;

72602 VOLUME 6, 2018

H. Li et al.: ExTCKNN Query in Road Networks With Traffic Rules

(3) initializeHnode using leaf nodes of the current expand-
ing tree and expand the expanding tree by employing
Function 1-2.

b: INCREASING ROAD WEIGHT, SUCH AS n1n7 IN Fig. 2
Herein, the distance from q to o on n1n7 should be modified
as the current distance plus weight variations. The shortest
paths and distances from q to the object on roads in sub-tree
with n7 as the root will be affected as these objects can be
reached from q without passing through n1n7. Therefore,
sub-tree with n7 as the root in the expanding tree should be
deleted and, the expanding tree should be expanded by calling
Function 1-2.

D. CONTINUOUS k NEAREST NEIGHBOR MONITORING
ALGORITHM OF ExTCKNN
In real-world cases, the three pattern updates can be observed
at any update moment. Herein, So, Sr , Sq denote the updated
objects set, the updated roads set, and the updated query
objects set transmitted to the central server at a specific
update moment, respectively. The proposed nearest neighbor
monitoring algorithm for moving objects in road networks is
introduced as follows:

Assume two cases for transmission of moving object
update information in road networks: the moving object
moves from one road to another and speed of moving object
significantly varies. If the object o′ has no significant vari-
ations of moving speed, it is considered to move on the
previous road in o′.vi, which is close to the speed at the last
update moment (o′.tu) and variations of the object can be
calculated accordingly.

1) CONTINUOUS MONITORING ALGORITHM
Based on the description above, our proposed ExTCKNN
algorithm is shown in Algorithm 2.

Algorithm 2 ExTCKNN_Monitoring (t ′u, So, Sr , Sq)

Input: update time:t ′u, So, Sr , Sq.
Output: updated road network model
Steps:
1) Qaffected ← null; // Qaffected stores query objects

affected by this update
2) HandleObjUpdate(So, t ′u);
3) HandleQueryRemoveUpdate(Sq);
4) HandleOtherUpdate(Sr , Sq, So, Qaffected);
5) for each query q ∈ Qaffected do
6) q.kNN←ExtractObjects(Oencounter , k); // Extract k
objects from Oencounter
7) if q.kNN.length < k then
8) AdjustTree(q); // Further expand Tq

First, update the location of the object in Tobj (Line 2).
Then, check whether the query object q leaves Tq: if

yes, re-initiate and re-calculate k nearest neighbor of q
using Algorithm 1 (Line 3) without considering other update

information; if no, updates of roads affecting the query are
processed from those with reducing weights to those with
increasing weights. Then, an update of query object q is
processed as described in Section V.B, followed by a pruning
of the expanding tree. Finally, updates of moving objects are
processed as described in Section V.A (Line 4).

After the above steps, objects stored in q.kNN are the latest
k nearest neighbors of q if the distances from q to leaf nodes
of the expanding tree exceed q.kNN_dist. If the number of
objects in q.kNN is less than k , the expanding tree is further
expanded by Algorithm 1 (Lines 5-8).

Function 2-1 is employed to update Tobj. For an object
in So, if it moves from one road to another, this object is
deleted from the previous road and added to the current road.
Meanwhile, information about this object in Oencounter has
been modified accordingly (Lines 1-2). For the object o that
does not submit update information and is still in the previous
road, its moving distances between two update moments
are calculated using o.vi × (t ′u − o.tu), and its information
is updated accordingly. Meanwhile, it is possible for those
objects that do not submit update information enter the query
tree and become k nearest neighbors. Therefore, the expand-
ing tree and Oencounter should be updated. Herein, any object
entering roads in the expanding tree are added into Oencounter
(Lines 3-4).

Function 2-1 HandleObjUpdate(So, t ′u)

Input:updated object set So.
Output: updated road network model
Steps:
1) for each o ∈ So do
2) UpdateTobjAndTroad(Oencounter , o); // Update

information about O in Tobj and Troad
3) for each o ∈ (Tobj- So) do
4) UpdateTobj(o, t’u, Tq, Oencounter);

Function 2-2 handles the cases where the query object in
Sq has moved outside the expanding tree and re-calculate the
corresponding k nearest neighbors.

Function 2-2 HandleQueryRemoveUpdate(Sq)

Input: updated query object set Sq.
Output: updated road network model
Steps:
1) for each q ∈ Sq do
2) if q is not inside Tq then
3) { DeleteQueryFromTroadIL (q);
4) ExTCKNN_InitKNN(q); } // Delete q from the road
that affects it (IL) and re-calculate k nearest neighbor of q

Function 2-3 handles cases where the query object in
Sq is still in the expanding tree. Herein, Lines 1-4 han-
dle updated roads. Line 3 employs Function2-3-1 to delete
sub-tress according to variations of weights and maintain k

VOLUME 6, 2018 72603

H. Li et al.: ExTCKNN Query in Road Networks With Traffic Rules

nearest neighbor results of q and the data model (Lines 2-9 in
Function2-3-1). For updated query objects in Sq that are
still in road ninj of the expanding tree, Line 6 employs
Function2-3-1 to establish a new expanding tree (T ′q) based
on the new location (qnew) of q and delete Tq, while main-
taining other information (Lines 10-13 in Function2-3-1).
Lines 8-12 maintain query results after the moving object
updated. If an object belongs to k nearest neighbor set
of query object q and leave Tq after updated, this object
should be deleted from the k nearest neighbor set; otherwise
no changes. During the updating process mentioned above,
query objects affected by this updating pattern are recorded
using Qaffected .

Function 2-3 HandleOtherUpdate(Sr , Sq, So, Qaffected)

Input: So, Sr , Sq, and Qaffected .
Output: updated road network model
Steps:
1) for each road ninj ∈ Sr do
2) for each query q ∈ ninj.IL do
3) { DeleteSubTreeAndUpdateDS(q, ninj);
4) Qaffected ← Qaffected∪{q}; }
5) for each query q ∈ Sq && q ∈ ninj of Tq do // updated

query is still in Tq
6) {DeleteSubTreeAndUpdateDS(q, ninj);
7) Qaffected ← Qaffected∪{q}; }
8) for each o ∈ So do
9) for each query q and o ∈q.kNN do
10) if o outside Tq then
11) {DeleteObjectFromkNN(q.kNN, Oencounter , o);
12) Qaffected ← Qaffected∪{q}; }

E. k NEAREST NEIGHBOR QUERY OF ROAD NETWORKS
After processing by the ExTCKNN algorithm, the latest k
nearest neighbors of q have been stored in q.kNN. When a
query request is proposed, the current time t and query object
set {q} are used as parameters for the monitoring algorithm
of ExTCKNN to obtain the newest k nearest neighbor set of
q(q.kNN) and return the result directly.

VI. EXPERIMENT AND PERFORMANCE EVALUATION
In order to evaluate the effectiveness and validity of the pro-
posed algorithm, a series of experiments have been designed
and re-partitioning of time intervals in the CKNN algo-
rithm [13] and OCP algorithm [22] at each updating time is
achieved by modifying the proposed data model so that these
algorithms can be applied on the proposed data model. The
performance comparison of the proposed algorithm and the
CKNN and OCP algorithms demonstrates better efficiency
and viability of the proposed algorithm, and it is considered
to be applied to the real road networks.

Our ExTCKNN algorithm is implemented in Java and
all the experiments are conducted on a PC running

Function 2-3-1 DeleteSubTreeAndUpdateDS(Query q,
Road ninj)

Input: query object to be updated (q), road to be updated
(ninj).
Output: expanding tree (Tq) of q
Steps:
1) for each node n ∈ Tq do
2) if ninj.w decreasing then {
3) if n /∈SubTree(Tq, nj) && dist(q,n)>dist(q, nj) then
4) { DeleteSubTree(Tq,SubTree(n)); //Delete sub-trees

with n as root
5) DeleteObjectFromkNN(SubTree(n),q.kNN,

Oencounter); } }// Delete objects on sub-trees with n as
root in k nearest neighbor set of qand Oencounter

6) else if ninj.w increasing then {
7) if n ∈SubTree(Tq, nj)&&dist(q,n)>q.kNN_distthen
8) { DeleteSubTree(Tq,SubTree(n));
9) DeleteObjectFromkNN(SubTree(n),q.kNN,

Oencounter); } }
10) else{ // q is in expanding tree
11) T ′q.root←null; T ′q.root← qnew;
12) qnew.child← SubTree(Tq, nj); // nj is the updated

node below qnew
13) DeleteTree(Tq); }
14) DeleteQueryFromTroadIL (q);
15) UpdateDistance(Tq); // Update information about the

rest nodes in Tq
16) UpdatekNN(q.kNN, Oencounter); // Update distance from

q to the rest objects of q.kNN and Oencounter

Windows10 equipped with an Intel Dual E2620 V3 CPU
2.4GHz and 32GB memory.

A. EXPERIMENTAL DATASETS
In this study, the experimental dataset was generated using
the road network based moving object generator [21], which
uses practical road networks as inputs. The Oldenburg road
map was used in the study, and 10∼50k moving objects
were generated. Table 3 summarizes the characteristics of the
dataset.

TABLE 3. Parameters of datasets.

Based on the inputs mentioned above, the parameters of
the proposed data model of road networks are set as follows:
object speeds are in the range of−20∼20m/s (negative speed
indicates cases that objects move from end point to start

72604 VOLUME 6, 2018

H. Li et al.: ExTCKNN Query in Road Networks With Traffic Rules

TABLE 4. Parameters of data model in road network.

point), the initial locations of moving objects follow unified
distribution (or Gaussian distribution in the proposed algo-
rithm), the speed limits of roads are in the range of 0∼20 m/s,
rules of intersections in road networks are generated ran-
domly. A random 2% of moving objects are regarded as
query objects. At each update time, a random 2∼10% of
moving objects are updated and a random 2∼10% of query
objects are updated. The locations of updated moving objects
and updated query objects are determined based on traffic
rules and random walk at their current speeds. The initial
weights of roads correspond to their lengths, and a random
1∼5% of the road networks are changed by a random value
in (−10%)∼(-50%) and (10%)∼(50%) (negative changes
denote the weight reduction of the road) at each update
moment. A random 10% of varied roads are set to have
weights of∞ as certain roads will be set as one-way in cases
such as peak hours. At the same updating time, the moving
object set, the query object set, and the update road set shall
have at least one set that is not null. Table 4 summarizes the
parameters involved in our proposed model.

The effects of these parameters on algorithm performance
and accuracy of query results, which refers to the ratio
of moments that k nearest neighbor objects are accurately
extracted, are evaluated. Only one parameter is a variable in
each case (other parameters are set to be defaults) and the
average of 10 rounds is defined as the ultimate value. The
updating period is five-time units.

B. EFFECTS OF MOVING OBJECT NUMBER
Fig. 6(a) illustrates the effects of moving objects number
on the query time. As we can see, the execution time of
both CKNN and OCP algorithms increase while that of
ExTCKNN algorithm decreases as the number of moving
objects increases. With moving object number < 20k,
the moving object distribution is sparse and expanding tree
in the ExTCKNN algorithm is relatively large to obtain k
nearest neighbor. As a result, the performance of CKNN
and OCP algorithm is slightly better than ours’; with mov-
ing object number > 20k, the moving object distribution
is concentrated and expanding tree in the ExTCKNN algo-
rithm is relatively small (low maintenance cost and consider-
able candidate objects in Oencounter). Thus, the performance
of ExTCKNN algorithm is significantly better than that of
CKNN and OCP algorithm.

FIGURE 6. Effects of moving objects number. (a) Execution time.
(b) Accuracy.

FIGURE 7. Effects of updated moving objects number (a) Execution time.
(b) Accuracy.

Fig. 6 (b) shows the effects of moving objects number on
the accuracy of the results. As we can see, the information
of all moving objects is maintained in ExTCKNN algorithm.
Therefore, the latest k nearest neighbor is always stored in
q.kNN, and query results are perfectly accurate. In CKNN
and OCP algorithm, however, object motions are viewed as
constant speed, and no updates are processed, resulting in
poor accuracy. But the accuracy of OCP is better than that
of CKNN because the kNN set at each timestamp can be
entirely determined by OCP when the moving objects keep
fixed speed.

C. EFFECTS OF THE UPDATED MOVING OBJECT NUMBER
Fig. 7 illustrates the effects of the number of updated moving
objects on algorithm performance. As we can see in Fig. 7(a),

VOLUME 6, 2018 72605

H. Li et al.: ExTCKNN Query in Road Networks With Traffic Rules

efficiencies of all the three algorithms decrease as the number
of updated moving objects increases. In ExTCKNN, increas-
ing the number of updated moving objects facilitates the
expanding process of the expanding tree; in CKNN and OCP,
time intervals of the updated objects need to be re-partitioned.
Besides, the efficiency degradation is more severe for CKNN
algorithm in this case. The objects entering the expand-
ing tree and those exiting approached an equilibrium when
the number of updated moving objects saturates. Hence,
the maintenance cost of expanding tree in ExTCKNN algo-
rithm shows no significant variations. Overall, the execution
time of ExTCKNN is 30∼100% and 15%∼40% less than
that of CKNN and OCP algorithms, respectively. As shown in
Fig. 7(b), as the number of updated moving objects increases,
the accuracy of ExTCKNN stays at 100%, while that of
CKNN and OCP algorithms degrades significantly. The rea-
son is that the accuracy of time interval partitioning in these
two algorithms degraded while the number of updated mov-
ing objects grows.

D. EFFECTS OF UPDATED QUERY OBJECT NUMBER
Fig. 8 illustrates the effects of updated query objects num-
ber on algorithm performance. As shown in Fig. 8 (a),
the effects of updated query objects number on execution
time are significant for ExTCKNN algorithm. In most cases,
query object updates will induce regeneration or an expan-
sion of the expanding tree in ExTCKNN algorithm, result-
ing in reduced efficiency. However, the execution time of
ExTCKNN algorithm is still less than that of CKNN andOCP
algorithms. As shown in Fig. 8 (b), the accuracy of CKNN
algorithm degrades to 65% as the number of updated query

FIGURE 8. Effects of updated query objects number. (a) Execution time.
(b) Accuracy.

objects increases. During its updating, the query object is
not maintained by CKNN algorithm, resulting in reduced
accuracy. Moreover, the accuracy of CKNN algorithm further
degraded as the updating frequency increases. In contrast,
ExTCKNN algorithm maintains a high accuracy in all cases.
Meanwhile, the accuracy of OCP algorithm degrades to 90%
as the number of updated query objects increases. This can be
explained that the moving objects processed increase slowly
by their moving_State value, resulting in low accuracy.

E. EFFECTS OF UPDATED ROAD NUMBER
Fig. 9 illustrates the effects of the updated road number
on algorithm performance. As observed in Fig. 9 (a), road
update has a significant impact on the execution time of
these three algorithms. This can be attributed to the fact that
certain sub-trees in the expanding tree are deleted, and the
expanding tree is further expanded. This is particularly true
when the road weight is specified to ∞. For the CKNN
and OCP algorithm, a significant number of time intervals
shall be re-partitioned without previous information avail-
able. Meanwhile, the moving_State of all moving objects
shall be updated in OCP algorithm. As observed in Fig. 9 (b),
the accuracy of CKNN and OCP algorithms degrades signif-
icantly as the updated road number increases. One reason is
that these two algorithms can barely process cases with road
update. When the road weight is set to∞, partitioning of the
time intervals cannot be achieved by these algorithms.

FIGURE 9. Effects of updated roads number. (a) Execution time.
(b) Accuracy.

F. EFFECTS OF K ON ALGORITHM PERFORMANCE
Fig. 10 illustrates the effects of k on algorithm performance.
As shown in Fig. 10, the performances of these three algo-
rithms degrade as k increases, but it is more severe for both

72606 VOLUME 6, 2018

H. Li et al.: ExTCKNN Query in Road Networks With Traffic Rules

FIGURE 10. Effects of k.

CKNN and OCP algorithms. This can be attributed to the
increasing of expanding tree in the ExTCKNN algorithm
induced by increasing k . In this case, considerable candidate
objects have been stored in Oencounter so that the continuous
query can be accelerated. However, there is no similar mech-
anism to stimulate query in CKNN and OCP algorithms.

The experimental results demonstrate that ExTCKNN
algorithm is superior to OCP and it is optimized for CKNN
algorithm. The mechanism of expanding tree is reliable
and helpful for monitoring the continuous k nearest neigh-
bor queries in road networks and complex transportation
networks.

VII. CONCLUSIONS
The kNN query of moving objects in road networks has
been an active topic in recent years. Most previous studies
achieved kNN of moving object in road networks by simply
converting Euclidean distance to the road network distance
without considering practical conditions of road networks
(e.g., road rules).

Highlighted by the discussion above, we propose a data
model of road networks that combines practical road net-
works and a novel continuous k nearest neighbor monitor-
ing algorithm for road networks based on this model. The
proposed algorithm consists of three phases: the initial query
results and expanding tree are obtained in the initialization
phase, moving objects and road variations are processed in
the monitoring phase (the k nearest neighbor updating is
accelerated based on the information about expanding tree),
and the latest k nearest neighbor of query object is obtained in
the query phase based on its latest location. Extensive exper-
iments have demonstrated that the proposed algorithm is a
viable and effective query algorithm that is applicable in road
networks and it exhibits great advantages on effectiveness and
accuracy beyond the state-of-the-arts.

One important future extension of this work can be directed
toward distributing the computation load at the expanding
tree to multiple servers. Since the tree structure divides the
network space into the non-overlapping region and our algo-
rithm are simple to be implemented. Another extension may
include the expansion of the proposedmethod to cases involv-
ing constraints-based nearest neighbor monitoring of road
networks.

REFERENCES
[1] Y. Huang, F. Bastani, R. Jin, and X. S. Wang, ‘‘Large scale real-

time ridesharing with service guarantee on road networks,’’ in Proc.
40th Int. Conf. Very Large Databases (VLDB), Hangzhou, China, 2014,
pp. 2017–2028.

[2] J. M. Lee, ‘‘Fast k-nearest neighbor searching in static objects,’’ Wireless
Pers. Commun., vol. 93, no. 1, pp. 147–160, Mar. 2017.

[3] S. Alamri, D. Taniar, andM. Safar, ‘‘A taxonomy for moving object queries
in spatial databases,’’ Future Generat. Comput. Syst., vol. 37, pp. 232–242,
Jul. 2014.

[4] K.-W. Lee, D.-W. Choi, and C.-W. Chung, ‘‘DART+: Direction-aware
bichromatic reverse k nearest neighbor query processing in spatial
databases,’’ J. Intell. Inf. Syst., vol. 43, no. 2, pp. 349–377, Oct. 2014.

[5] H.-J. Cho, S. J. Kwon, and T.-S. Chung, ‘‘A safe exit algorithm for
continuous nearest neighbor monitoring in road networks,’’ Mobile Inf.
Syst., vol. 9, no. 1, pp. 37–53, Jan. 2013.

[6] Y. Jing, L. Hu, W.-S. Ku, and C. Shahabi, ‘‘Authentication of k nearest
neighbor query on road networks,’’ IEEE Trans. Knowl. Data Eng., vol. 26,
no. 6, pp. 1494–1506, Jun. 2014.

[7] H. Al-Khalidi, Z. Abbas, and M. Safar, ‘‘Approximate range query pro-
cessing in spatial network databases,’’ Multimedia Syst., vol. 19, no. 2,
pp. 151–161, Mar. 2013.

[8] S. Wang, M. A. Cheema, and X. Lin, ‘‘Efficiently monitoring reverse
k-nearest neighbors in spatial networks,’’ Comput. J., vol. 58, no. 1,
pp. 40–56, Jan. 2015.

[9] H.-J. Cho and C.-W. Chung, ‘‘An efficient and scalable approach to CNN
queries in a road network,’’ in Proc. 31st Int. Conf. Very Large Data
Bases (VLDB), Trondheim, Norway, 2005, pp. 865–876.

[10] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou, ‘‘Conceptual parti-
tioning: An efficient method for continuous nearest neighbor monitoring,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data, Baltimore, MD, USA,
2005, pp. 634–645.

[11] G. Zhao et al., ‘‘Voronoi-based continuous k nearest neighbor search
in mobile navigation,’’ IEEE Trans. Ind. Electron., vol. 58, no. 6,
pp. 2247–2257, Jun. 2011.

[12] K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis, ‘‘Continuous
nearest neighbor monitoring in road networks,’’ in Proc. 32nd Int. Conf.
Very Large Data Bases (VLDB), Seoul, South Korea, 2006, pp. 43–54.

[13] Y.-K. Huang, Z.-W. Chen, and C. Lee, ‘‘Continuous K -nearest neighbor
query over moving objects in road networks,’’ in Proc. 10th Int. Conf. Web-
Age Inf. Manage., Suzhou, China, 2009, pp. 27–38.

[14] M. Hasan, M. A. Cheema, W. Qu, and X. Lin, ‘‘Efficient algorithms to
monitor continuous constrained k nearest neighbor queries,’’ in Proc. 15th
Int. Conf. Database Syst. Adv. Appl. (DASFAA), Tsukuba, Japan, 2010,
pp. 233–249.

[15] Y. Gotoh, ‘‘A simple routing method for reverse k-nearest neighbor queries
in spatial networks,’’ in Proc. 17th Int. Conf. Netw.-Based Inf. Syst. (NBiS),
Salerno, Italy, Sep. 2014, pp. 615–620.

[16] H. Zhang, C. Reardon, and L. E. Parker, ‘‘Real-time multiple human
perception with color-depth cameras on a mobile robot,’’ IEEE Trans.
Cybern., vol. 43, no. 5, pp. 1429–1441, Oct. 2013.

[17] D. Delling and R. F. Werneck, ‘‘Customizable point-of-interest queries
in road networks,’’ IEEE Trans. Knowl. Data Eng., vol. 27, no. 3,
pp. 686–698, Mar. 2015.

[18] X. Lian and L. Chen, ‘‘Trip planner over probabilistic time-dependent road
networks,’’ IEEE Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 2058–2071,
Aug. 2014.

[19] S. M. Yuen, Y. Tao, X. Xiao, J. Pei, and D. Zhang, ‘‘Superseding nearest
neighbor search on uncertain spatial databases,’’ IEEE Trans. Knowl. Data
Eng., vol. 22, no. 7, pp. 1041–1055, Jul. 2010.

[20] J. Bao, C.-Y. Chow, M. F. Mokbel, and W.-S. Ku, ‘‘Efficient evaluation of
k-range nearest neighbor queries in road networks,’’ inProc. 11th Int. Conf.
Mobile Data Manage., Kansas City, MO, USA, May 2010, pp. 115–124.

[21] T. Brinkhoff, ‘‘A framework for generating network-based moving
objects,’’ GeoInformatica, vol. 6, no. 2, pp. 153–180, Jun. 2002.

[22] P. Fan, G. Li, and L. Yuan, ‘‘Continuous K -nearest neighbor processing
based on speed and direction of moving objects in a road network,’’
Telecommun. Syst., vol. 55, no. 3, pp. 403–419, Mar. 2014.

[23] K.-T. Yang and G.-M. Chiu, ‘‘Monitoring continuous all κ-nearest neigh-
bor query in mobile network environments,’’ Pervas. Mobile Comput.,
vol. 39, pp. 231–248, Aug. 2017.

[24] A. Eldawy et al., ‘‘Sphinx: Distributed execution of interactive SQL
queries on big spatial data,’’ in Proc. 23rd SIGSPATIAL Int. Conf. Adv.
Geograph. Inf. Syst., Bellevue, WA, USA, 2015, pp. 78–81.

VOLUME 6, 2018 72607

H. Li et al.: ExTCKNN Query in Road Networks With Traffic Rules

[25] A. Eldawy and M. F. Mokbel, ‘‘The era of big spatial data: A survey,’’
Found. Trends Databases, vol. 6, nos. 3–4, pp. 163–273, Dec. 2016.

[26] J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel, ‘‘LARS:
A location-aware recommender system,’’ in Proc. 28th Int. Conf. Data
Eng. (ICDE), Washington, DC, USA, Apr. 2012, pp. 450–461.

[27] L. Guo, J. Shao, H. H. Aung, and K.-L. Tan, ‘‘Efficient continuous top-k
spatial keyword queries on road networks,’’Geoinformatica, vol. 19, no. 1,
pp. 29–60, Jan. 2015.

[28] E. W. Dijkstra, ‘‘A note on two problems in connexion with graphs,’’
Numer. Math., vol. 1, no. 1, pp. 269–271,1959.

[29] B. Liao, L. Hou U, M. L. Yiu, and Z. Gong, ‘‘Beyond millisecond latency
kNN search on commodity machine,’’ IEEE Trans. Knowl. Data Eng.,
vol. 27, no. 10, pp. 2618–2631, Oct. 2015.

[30] B. Shen et al., ‘‘V-tree: Efficient kNN search on moving objects with
road-network constraints,’’ in Proc. 33rd Int. Conf. Data Eng. (ICDE),
San Diego. CA, USA, Apr. 2017, pp. 609–620.

[31] K. Bok, Y. Park, and J. Yoo, ‘‘An efficient continuous k-nearest neigh-
bor query processing scheme for multimedia data sharing and trans-
mission in location based services,’’ Multimedia Tools Appl., 2018, doi:
10.1007/s11042-018-6433-3.

[32] J. Bao, B. Wang, X. Yang, and H. Zhu, ‘‘Nearest neighbor query in road
networks,’’ (in Chinese), Ruan Jian Xue Bao/J. Softw., vol. 29, no. 3,
pp. 642–662, Mar. 2018.

HONGJUN LI received the B.S. degree in com-
puter science from Sichuan Normal University
in 2000 and the M.S. and Ph.D. degrees from
the School of Computer Science, Sichuan Univer-
sity, in 2007 and 2011, respectively. He is cur-
rently a Lecturer with the School of Information
Science and Technology, Chengdu University of
Technology, Chengdu, China. His research inter-
ests include spatial data mining, spatial query pro-
cessing, and social computing.

BIAO CAI received the B.S. degree in computer
application technology from Sichuan Normal Uni-
versity in 2003 and the M.S. degree in computer
application technology from China West Normal
University, China, in 2006, and the Ph.D. degree
from the School of Computer Science, Sichuan
University, in 2009. He has been with the Chengdu
University of Technology since 2009, where he is
currently an Associate Professor with the Digital
Media Department. His research interests include

social media mining, artificial intelligence, and complex networks.

SHAOJIE QIAO received the B.S. and Ph.D.
degrees from SichuanUniversity, Chengdu, China,
in 2004 and 2009, respectively. From 2007 to
2008, he was a Visiting Scholar with the School
of Computing, National University of Singapore.
He is currently a Professor with the School of
Cybersecurity, Chengdu University of Information
Technology, Chengdu, China. He has led several
research projects in the areas of database and data
mining. He has authoredmore than 40 high-quality

papers and co-authored more than 90 papers. His research interests include
complex networks and trajectory data mining.

QING WANG received the B.S. degree in
computer science from Zhengzhou University
in 2009 and the M.S. degree in computer sci-
ence from Xidian University in 2013. She is cur-
rently pursuing the Ph.D. degree with the School
of Computer Science, Florida International Uni-
versity. Her research interests include interactive
recommender systems, multi-armed bandit, and
large-scale data mining.

YAN WANG received the Ph.D. degree from the
School of Computer Science, Fudan University,
China, in 2015, and the B.S. and M.S. degrees
from the School of Computer Science, Nanchang
University, China, in 2003 and 2006, respec-
tively. She is currently an Associate Professor
with the School of Software, East China Jiaotong
University, Nanchang, China. Her research inter-
ests include erasure codes and distributed storage
systems.

72608 VOLUME 6, 2018

	INTRODUCTION
	RELATED WORK
	DATA MODEL OF ROAD NETWORKS WITH TRAFFIC RULES (DMRNR)
	kNN QUERY IN ROAD NETWORKS WITH TRAFFIC RULES
	MODEL OF ROAD NETWORKS
	ROAD MODEL
	ROAD INTERSECTION MODEL
	MOVING OBJECTS MODEL
	MODEL OF QUERY OBJECT q

	INITIALIZATION PHASE OF EXTCKNN QUERY ALGORITHM
	EXPANDING TREE
	INITIALIZED k NEAREST NEIGHBOR RESULT SET AND EXPANDING TREE

	k NEAREST NEIGHBOR MONITORING ALGORITHM FOR MOVING OBJECT IN ROAD NETWORKS
	UPDATING OF MOVING OBJECT
	UPDATE MISSION OF MOVING OBJECT
	PATTERNS OF MOVING OBJECT UPDATE
	PROCESSING OF MOVING OBJECT UPDATE

	UPDATING OF THE QUERY OBJECT
	UPDATING PATTERNS OF QUERY OBJECT
	PROCESSING OF QUERY OBJECT EXITS EXPANDING TREE
	PROCESSING OF QUERY OBJECT MOVES IN EXPANDING TREE

	UPDATING OF ROAD NETWORKS
	ANALYSIS OF ROAD UPDATE PROCESSING
	PROCESSING OF ROAD WEIGHT UPDATES

	CONTINUOUS k NEAREST NEIGHBOR MONITORING ALGORITHM OF ExTCKNN
	CONTINUOUS MONITORING ALGORITHM

	k NEAREST NEIGHBOR QUERY OF ROAD NETWORKS

	EXPERIMENT AND PERFORMANCE EVALUATION
	EXPERIMENTAL DATASETS
	EFFECTS OF MOVING OBJECT NUMBER
	EFFECTS OF THE UPDATED MOVING OBJECT NUMBER
	EFFECTS OF UPDATED QUERY OBJECT NUMBER
	EFFECTS OF UPDATED ROAD NUMBER
	EFFECTS OF K ON ALGORITHM PERFORMANCE

	CONCLUSIONS
	REFERENCES
	Biographies
	HONGJUN LI
	BIAO CAI
	SHAOJIE QIAO
	QING WANG
	YAN WANG

