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ABSTRACT Large-scale multiple-input multiple-output (LS-MIMO) technology constitutes a foundation
for next generation wireless communication systems. Detection techniques are a key issue for practical
applications of LS-MIMO. Selection-based list detection is an attractive approach for LS-MIMO systems
because of its massively parallelizable nature. In this paper, we propose an improved selection-based list
detection algorithm that exploits the channel hardening phenomenon, making it suitable for LS-MIMO.
We start by introducing a low latency approximate inversion technique for large dimensional complex
matrices, which can be used not only in selection-based list detection but also in many other LS-MIMO
detection algorithms. The proposed matrix inversion technique is integrated into linear as well as selection-
based list detection algorithms for lower latency and deeper parallelism. Then our analysis of the impact
of channel hardening on selection-based list detection motivates the use of an improved ordering scheme
for the successive interference cancellation sub-detector. Finally, we compare our improved selection-based
list detector with other two state-of-art low complexity LS-MIMO detection algorithms, namely, multistage
likelihood ascent search (LAS) and message passing detection (MPD). Computer simulations show that the
proposed selection-based list detector performs better than multistage LAS and has just a small fraction
of dB performance loss compared with MPD. Because of its good performance and parallelizable nature,
the proposed algorithm offers an attractive alternative for detection in practical LS-MIMO systems.

INDEX TERMS Large-scale MIMO, MIMO detection, channel hardening, multiple antenna systems.

I. INTRODUCTION
The sharp increase of multimedia data traffic in wireless
communications and the shortage of radio spectrum moti-
vate the need for novel technologies that can accommodate
this trend while providing high performance. Constituting
a principal technology for fifth generation (5G) wireless
communication systems, large-scale multiple-input multiple-
output (LS-MIMO) is a candidate for providing advantages
in spectral and energy efficiency, link reliability and sys-
tem robustness [1]–[3]. A principal application of LS-MIMO
is envisaged to be in multi-user (MU) base stations (BS)
for 5G wireless communications. The usual application of
LS-MIMO in wireless communication systems involves a
large number of transmit (Nt ) and receive (Nr ) antennas,
creating a channel that can be represented by a large Nr ×Nt
matrix. However, such a model can arise also when a small
number of antennas is used. For example [4] introduces a
unifiedmatrix representation (UMR) forMIMO systemswith
high order QAM, that transforms the original scheme into

a MIMO system with binary inputs at the expense of increas-
ing the size of the transmitted vector. The transformedMIMO
matrix could correspond to an LS-MIMO system. Even some
single antenna systems can be represented as LS-MIMO.
In [5] an OFDM system employing K subcarriers is repre-
sented in the frequency domain asK×K MIMO allowing the
derivation of a detection technique based on sphere decoding.
Since K , the number of subcarriers in OFDM, is usually very
large we essentially have an LS-MIMO system.

Although LS-MIMO technology can provide significant
benefits, issues still exist for its use in practical communi-
cation systems. One that is of paramount importance is the
design of high performance detectors for the uplink. Tech-
niques such as maximum likelihood detection (MLD) [6]
and the sphere decoder (SD) [7] have asymptotic complex-
ities that become prohibitively high when the number of
transmit antennas increases [6], [8], and hence are infea-
sible for practical LS-MIMO. Furthermore, the basic SD
algorithm is not amenable for parallel implementation [9].
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However, [9] presents some intersting modifications to SD,
employing lattice reduction techniques, that bridge the power
efficiency performance between SD and detection struc-
tures based on minimum mean squared error (MMSE) suc-
cessive interference cancellation (SIC), while allowing for
a parallel implementation. The complexity analysis in [9]
has been done through computer simulations for conven-
tional size MIMO schemes only. An improvement over
MMSE-SIC detection is presented in [10] where a ‘‘shadow
area’’ is employed to determine symbol reliability. When a
soft symbol estimate belongs to the shadow area it is cate-
gorized as unreliable and a candidate list is used to decide
which symbol was transmitted. Another list based detec-
tion method is presented in [11] where multiple feedforward
and decision feedback sections are used to form a list of
improved detection candidates. In recent years, several lower
complexity high performance detectors were proposed for
LS-MIMO systems, such as the block-iterative generalized
decision feedback equalizer (BI-GDFE) [12]–[14], likelihood
ascend search (LAS) [15]–[17], reactive tabu search (RTS)
[18], [19], message passing detectors (MPD) [20]–[22], low
complexity approximate MPD [23], Monte-Carlo sampling
algorithms [24], and element-based lattice reduction (ELR)
aided linear detectors [25].

Selection based list detection for LS-MIMO has the advan-
tage of massively parallelization [26]–[28], allowing for high
data throughput implementations. In general, selection based
list detection consists of three stages: channel partition, candi-
date list generation and final decision. At the channel partition
stage, the channel is partitioned into two subsets based on
a certain selection scheme. At the candidate list generation
stage, for the first channel subset, all the hypotheses of the
corresponding transmitted data sub-vectors are considered,
while for the second channel subset, the decisions of the sym-
bol sub-vector are obtained by a low complexity scheme such
as a linear detector (LD) or its SIC counterparts. Then the best
candidate in the list, using the minimum Euclidean distance
(MED) rule, is chosen as the final decision. In [26], a selection
based list algorithm called generalized parallel interference
cancellation (GPIC) was proposed, which performs channel
partition by considering the postprocessing signal to noise
ratio (SNR) using the zero forcing (ZF) criterion. In [27] it
is shown theoretically that the channel partition procedure is
crucial for good performance of selection based list detection
in conventional small MIMO. Radji and Leib [27] proposed
an improved scheme of GPIC, named Sel-MMSE-OSIC,
that exploits diversity maximization channel selection (DMS)
for channel partition and derived a sufficient condition to
achieve optimal asymptotic diversity. The scheme of [28]
uses a simpler incremental channel partition technique for
replacing DMS and employs a tree search algorithm for can-
didate list generation, reducing complexity compared with
Sel-MMSE-OSIC. More recently [29] presented a list based
MIMO detection technique in the spirit of [26]–[28] also
using the concept of patitioning the input signal vector
in order to reduce complexity. Unlike [26]–[28], however,

in [29] the patitioning could be in more than two groups.
These schemes can provide a performance close to MLD in
conventional small and medium size MIMO systems.

In this work we consider the adaptation of the schemes
from [27] and [28] to LS-MIMO applications, by using
approximate matrix inversion and exploiting the channel
hardening phenomenon at various detection stages. The
schemes in [27] and [28] are designed to provide optimal
diversity that is very large in LS-MIMO systems [6], and
realized at very high SNR. However, such asymptotic diver-
sity may never be achieved over practical SNR ranges in
LS-MIMO systems. A significant factor that contributes to
complexity in selection based list detection is the size of
the candidate list. In LS-MIMO systems it is important to
have good diversity over practical BER ranges (i.e. no less
than 10−7) while ensuring the size of the candidate list is
feasible for implementation.

Complex matrix inversion is widely used not only in selec-
tion based list detection, but also in other detection tech-
niques for LS-MIMO systems. However, even for conven-
tional MIMO systems complex matrix inversion is cumber-
some to implement [30], [31]. It is worth pointing out that
in practical implementation of detection algorithms, the mea-
sure of asymptotic complexity is not sufficient. Processing
latency (parallel time units), memory consumption, power
consumption and hardware cost are also important measures.
Generally speaking, exact matrix inversion schemes, such as
Gaussian Elimination (GE), Cholesky decomposition (CD)
and QR decomposition based algorithms, require O(Nt ) par-
allel time units [30] that might exceed the channel coherence
interval. In order to address this issue, the channel hardening
phenomenon [1], [32] can be used to approximate matrix
inversion based on L-term Neumann series expansion (SE)
for LS-MIMO detection [33], [34]. An interesting aspect of
channel hardening is that when the system loading factor
α = Nt

Nr
decreases, the orthogonality between the columns

of the channel matrix increases, making the diagonal compo-
nents of the associated Gram matrix stronger compared with
the off diagonal components (i.e. the Gram matrix becomes
closer to diagonal). Based on this quasi-diagonal structure
of the Gram matrix, the L-term SE approximation enables
parallel and efficient hardware implementations [33], [34].
Nevertheless, there are two major drawbacks of L-term
SE approximation that hinder its practical usage. Firstly,
the conventional L-term SE approximation converges to the
exact matrix inverse slowly (linearly). Secondly, the L-term
SE approximation is only valid when the system loading
factor satisfies a convergence condition [35], possing a limit
to spatial multiplexing gains.

In this paper, we first introduce a refined approximate
matrix inversion technique based on 2-term SE approxima-
tion and Newton Iteration [36]–[39], named K -step series
expansion Newton iteration approximation (K -SENIA). The
proposed technique converges faster (exponentially) than the
conventional L-term SE approximation. We further relax
the convergence constraint of K -SENIA by using matrix

71752 VOLUME 6, 2018



T. Chen, H. Leib: Selection-Based List Detection With Approximate Matrix Inversion for LS-MIMO Systems

inversion inflate updates (IU) [40], allowing for higher sys-
tem loading factors to be achieved. The K -SENIA technique
is integrated into linear as well as selection based list algo-
rithms, enabling deeper parallelization. Then we analyse the
impact of channel hardening on selection based list algo-
rithms. We show that when the dimension of the channel
matrix increases, the DMS rule and V-BLAST ordering for
SIC based on the postprocessing SINR of data substreams
become less effective. Furthermore, we find that in medium
size LS-MIMO systems (e.g. 128×32 and 128×96), ordering
has a larger impact on performance than channel partition.
Capitalizing on these results, we propose an improved selec-
tion based list algorithm by employing Type-L reliability
ordering [41] in SIC sub-detectors. Simulation results reveal
significant performance improvement of this approach.

The rest of the paper is organized as follows. Section II
introduces the system model as well as the K -SENIA/IU
scheme and their complexity/latency analysis. The impact
of channel hardening on selection based list detection in
LS-MIMO is analyzed in section III. Section IV presents the
improved selection based list detection technique. A com-
parison of the improved selection based list detection, multi-
stage LAS algorithm [15], [42], MPD [22], as well as other
schemes, is provided in section V. Section VI concludes this
paper.

II. LARGE-SCALE MIMO SYSTEMS AND APPROXIMATE
MATRIX INVERSION
A. SYSTEM MODEL AND THE CHANNELL HARDENING
PHENOMENON
Consider an uncoded complex LS-MIMOMU uplink system
with Nr BS antennas serving Nt single antenna users, and
system loading factor α = Nt

Nr
. Independent information

streams from each user, in form of bit sequences, are mapped
to complex symbols in groups of nc consecutive bits. The
complex symbols are statistically independent belonging to
a finite signal constellation alphabet A (e.g., BPSK, 4-QAM,
16-QAM, 64-QAM) of size |A| = M = 2nc with average
energy Es. Then the complex symbols are transmitted by
Nt antennas over a Rayleigh flat fading matrix channel. With
perfect synchronization between receiving and transmission
sides, the generic discrete time model for the MIMO system
is given by:

y = Hs+ n, (1)

where y ∈ CNr×1 is the received signal vector, and s ∈ CNt×1

is the transmitted symbol vector. Each component of s is inde-
pendently drawn from A with equal probability, satisfying
E[ssH ] = INtEs, where E[·] denotes the expectation opera-
tion, (·)H denotes the Hermitian transpose, and INt is the iden-
tity matrix of size Nt × Nt . Furthermore H ∈ CNr×Nt is the
Rayleigh fading channel matrix, and [H]ij is the component
of H on the ith row and jth column, representing the fading
coefficient from the jth transmit to the ith receive antenna.
The components ofH are independent identically distributed
(i.i.d) circularly symmetric complex Gaussian (CSCG) with

zero mean and unit variance, [H]ij ∼ CN (0, 1). Finally,
n ∈ CNr×1 is an additive white Gaussian noise (AWGN)
vector with i.i.d CSCG independent components of zeromean
and variance σ 2

o , satisfying E[nnH ] = INrσ
2
o . The average

symbol signal to noise ratio (SNR) is ρs =
Es
σ 2o
, and the

average SNR at each receive antenna is ρr =
NtEs
σ 2o

. The task
of a MIMO detector is to estimate s, based on the received
vector y and channel propagation matrix H.

Linear detectors (LD), known for their low complexity [6],
generate soft estimates of the transmitted vector s by applying
a linear transformation on y and then quantizing each com-
ponent of the soft estimate to the closest point in the symbol
constellation A. LetG ∈ CNt×Nr be the linear transformation
matrix, and ŝLD denote the output of the LD, then the LD is
given by

ŝLD = Q[Gy], (2)

where Q[·] denotes the quantization operator. Popular LDs
are zero forcing (ZF) and minimum mean square error
(MMSE) detectors [6] with matrices GZF = (HHH)−1HH

and GMMSE = (HHH + ρ−1s I)−1HH respectively. Succes-
sive interference cancellation (SIC), also known as nulling-
cancelling, may improve the error performance of an LD.
With SIC, the interference in the soft estimate produced by
the LD is cancelled from the received signal vector, thus
increasing the reliabilities of the remaining estimates. Since
MMSE-SIC techniques can achieve significant perfor-
mance gains over ZF-SIC [43], [44], in this work we
consider MMSE-SIC.

Next consider the channel hardening phenomenon. Based
on the Marčenko-Pastur law [45], when Nr ,Nt → ∞, with
α fixed, the empirical distribution of the eigenvalues of the
Gram matrix W = HHH converges to a fixed distribu-
tion. Following [46], let λmax(X) and λmin(X) denote the
largest and smallest eigenvalues of X respectively. When Nr ,
Nt →∞, we have

λmax(W)→ Nr (1+
√
α)2, λmin(W)→ Nr (1−

√
α)2,

(3)

that yields

λmax(
1

Nr (1+ α)
W) → (1+

2
√
α

1+ α
),

λmin(
1

Nr (1+ α)
W) → (1−

2
√
α

1+ α
). (4)

From (4), we see that the eigenvalues of INt −
1

Nr (1+α)
W =

INt−
1

Nr+Nt
W, lie approximately in the range of [−2

√
α

1+α ,
2
√
α

1+α ].

If α → 0, then [−2
√
α

1+α ,
2
√
α

1+α ] → [0, 0], and using the
eigendecomposition [47] of INt −

1
Nr+Nt

W, we have

lim
Nr ,Nt→∞,α→0

(INt −
1

Nr + Nt
W) = 0, (5)

where 0 is the zero matrix. Then from (5)

lim
Nr ,Nt→∞,α→0

W = (Nr + Nt )INt
Nr�Nt
= NrINt , (6)
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indicating that when Nr and Nt both grow to infinity and
α = Nt

Nr
→ 0, W converges to a diagonal matrix. The

diagonal dominance structure ofW allows exploitation of the
Neumann series expansion to approximate W−1 in various
MIMO detection schemes.

B. IMPROVED APPROXIMATE MATRIX INVERSION
EXPLOITING CHANNELL HARDENING
Next, we present an improved approximate matrix inversion
scheme, K -SENIA, based on conventional 2-term SE and
Newton iteration, that converges to the exact matrix invers
with exponential speed, and uses an inflate update (IU) tech-
nique to handle the cases where convergence conditions are
not satisfied.

1) NEUMANN SERIES EXPANSION AND nEWTON ITERATION
Consider invertible matricesA ∈ CN×N andX ∈ CN×N , that
satisfy limL→∞(I− X−1A)L = 0. Then we have [33]

(X−1A)−1 =
∞∑
n=0

(I− X−1A)n, (7)

and hence

A−1 =
∞∑
n=0

(I− X−1A)nX−1. (8)

The L-term SE approximation of A−1, denoted by Ã−1L ,
is given by

Ã−1L =
L−1∑
n=0

(I− X−1A)nX−1, (9)

and the approximation residual matrix of Ã−1L , is

R̃L = I− Ã−1L A = (I− X−1A)L . (10)

The Gram matrix can be decomposed asW = D+ E, where
D is diagonal with diagonal components that are those ofW,
and E is a zero diagonal matrix with the off diagonal com-
ponents of W. With A = W and X = D, in (9), the L-term
SE approximation of W−1 is

W̃−1L =
L−1∑
n=0

(−D−1E)nD−1. (11)

Based on (10), the L-term approximation residual matrix
of W̃−1L , denoted by R̃L , is given by

R̃L = (−D−1E)L . (12)

If Nr ,Nt → ∞, α → 0, W becomes diagonal as shown
in (6) and D−1E tends to 0. Then R̃L in (12) becomes 0,
so we can conclude that the performance of L-term
SE approximation improves when the system loading factor
α decreases or L increases [35]. Furthermore, the condition
for α ensuring asymptotic convergence of the SE approxi-
mation (i.e., limL→∞ W̃−1L = W−1) with high probability is
α < (

√
2 − 1)2 [35]. Consider the 2-term SE approximation

W̃−12 = D−1 − D−1ED−1 and notice that D−1 is a diagonal
matrix. Thus the computation of W̃−12 only requires scalar-
vector multiplications, with complexity in order of O(N 2

t ).
Newton iteration is a recursive matrix inverse approxi-

mation method [36]–[38], that converges fast, is massively
parallelizable, and has good numerical stability. Let Mk+1
denote the approximate matrix inverse computed by Newton
iteration at step k + 1. Then

Mk+1 = (2I−MkA)Mk , k = 0, 1, 2, . . . (13)

and the approximation residual matrix at step k + 1 is

Rk+1 = I−Mk+1A = (I−MkA)2 = R2
k . (14)

Therefore, the Newton iteration scheme converges with expo-
nential speed.

The conventional L-term SE approximation can be refined
by using the Newton iteration method. The more computa-
tionally simple approximation W̃−12 is used as the initial input
to Newton iteration, that is denoted by M̌0. Let M̌k denote
the refined output after the kth step Newton iteration. With
M̌k = W̃−1L from (11) and using (10) and (13) we have

M̌k+1 = (2I− M̌kW)M̌k = (I+ I− W̃−1L W)W̃−1L
= (I+ R̃L)W̃−1L . (15)

Then the use of (11) and (12) in (15) yields

M̌k+1=

L−1∑
n=0

(−D−1E)nD−1 +
2L−1∑
n=L

(−D−1E)nD−1 = W̃−12L .

(16)

From (15) and (16) we have W̃−12L = (I + R̃L)W̃−1L . With
L = 2k we have

W̃2k+1 = (I+ R̃2k )W̃
−1
2k (17)

and from (12)

R̃2k = (−D−1E)2
k
. (18)

Hence starting with W̃−12 and using the iterations (17) (18)
we can calculate an approximation to W̃−1. Hereinafter this
technique is termed as the K -term series expansion Newton
iterative approximation (K -SENIA), where K denotes the
number of Newton iterations.

2) ACHIEVING HIGHER SYSTEM LOADING FACTOR MATRIX
INVERSION INFLATE UPDATE (IU)
Similarly to conventional L-term SE approximation,
K -SENIA is only effective for LS-MIMO with α satisfying
the asymptotic convergence condition (if α < (

√
2 − 1)2

then limL→∞ W̃−1L =W−1 with high probability [35]). This
convergence condition is very strict and significantly limits
the spatial multiplexing gain. Next we propose a scheme that
combines a matrix inversion inflate update (IU) technique
with K -SENIA that relaxes this convergence constraint.

When the channel matrix is modified by adding a new
column, IU efficiently updates the inflated Gram matrix
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inverse from the previous inverse, rather than recomputing it
from scratch [40]. We extend the ZF-IU technique from [40]
toMMSE-IU. AssumeW−1 = (HHH+ρ−1INt )

−1 is already
computed. Then a new column hn is added to H, resulting
in the new inflated matrix He = [H,hn]. To find W−1e =

(HH
e He + ρ

−1INt+1)
−1, notice that

W−1e =
[
HHH+ ρ−1INt , HHhn
hHn H, hHn hn + ρ

−1

]−1
. (19)

Using the inverse of the partitioned matrix and Sherman-
Morrison formula [48], we have

W−1e =
[
F−111 , −cW−1HHhn
−chHn HW−1, c

]
, (20)

where

c = 1/(hHn hn + ρ
−1
− hHn HW−1HHhn), (21)

F−111 = W−1 + cW−1HHhnhHn HW−1. (22)

Therefore, each IU step calculating W̃−1e can be summa-
rized as:

t1 = HHhn,
t2 = W−1t1,
c = 1/(hHn hn + ρ

−1
− tH1 t2), t3 = −ct2,

F−111 = W−1 + ct2tH2 , W−1e =
[
F−111 , t3
tH3 , c

]
,

where only vector wise multiplication is required. The
combined scheme of K -SENIA and IU is termed as
K -SENIA-IU. Capitalizing on the fact that a good approx-
imation can be achieved by K -SENIA in MIMO sys-
tems with α satisfying the convergence condition [35], the
K -SENIA inverse for a sub-matrix composed of arbitrary Ni
columns from H, is firstly computed and fed to IU as the
initial input. Then the matrix inverse is updated using IU
by adding the remaining channel columns. To elaborate fur-
ther, assume a LS-MIMO MU system whose loading fac-
tor exceeds the asymptotic convergence constraint. First the
channel matrix H is partitioned into two sub channel matri-
ces Hini and Hrem. The matrix Hini ∈ CNr×Ni consists of
arbitrary Ni columns of H, where Ni

Nr
satisfies the conver-

gence condition [35], and Hrem ∈ CNr×(Nt−Ni) is composed
of the remaining columns from H. Then K -SENIA is used
to approximate (HH

iniHini + ρ−1INi )
−1, resulting in W̌−1Ni .

Finally IU is used recursively to update W̌−1Ni by adding the
remaining columns from Hrem, until W̌−1Nt is obtained. Let
W̌−1Ni+j denote the updated matrix inverse at the jth step with
j = 1, 2, . . . ,Nt − Ni. The K -SENIA-IU procedure is speci-
fied by Algorithm 1.

3) COMPLEXITY AND LATENCY ANALYSIS OF
K-SENIA, AND IU
Similarly to [15], complexity in this work is defined as the
number of complex arithmetic operations. The K -SENIA
scheme consists of two main parts. The first part is the

Algorithm 1 Pseudo Code of K-SENIA-IU
procedure K-SENIA-IU(H, ρr , Ni)

Partition H into Hini ∈ CNr×Ni and Hrem ∈

CNr×(Nt−Ni)

WNi ← HH
iniHini + ρ

−1
r INi

W̌−1Ni ← K -SENIA(WNi , k) F Compute W̌−1Ni via
K-SENIA

Hcurr ← Hini
for j← 1 to (Nt − Ni) do

W̌−1Ni+j← IU(W̌−1Ni+j−1) F update the matrix
inverse via IU

Hcurr ← [Hcurr ,hpi ] F Inflate Hcurr by adding
column hpi , which is extracted from Hrem

end for
return W̌−1Nt

end procedure

computation of W̃−12 , which only requires scalar-vector mul-
tiplication, with complexity that scales asO(N 2

t ). The second
part consists of k step Newton iterations, that each requires
twomatrix-matrixmultiplicationswith complexity that scales
as O(2N 3

t ). Therefore the overall complexity of K -SENIA
is of order O(2kN 3

t ), the same as exact matrix inversion.
Concerning processing latency, matrix-matrix multiplication
requiresO(log(Nt )) parallel time units [37] and the latency of
computing W̃−12 is negligible compared with matrix-matrix
multiplication [33]. Thus the processing latency of K -SENIA
scales as O(2k log(Nt )). With a 2k+1-term SE approxima-
tion, a 2k+1-term expansion is required. The 2k+1-term SE
approximation consists of two main parts. The first part is the
computation of W̃−12 , with complexity O(N 2

t ) and negligible
processing latency compared with matrix-matrix multipli-
cation. Secondly, W̃−1

2k+1
of (11) is updated by W̃−1

2k+1
=

(−D−1E)W̃−1
2k+1−1

+D−1, thus in total 2k+1−2matrix-matrix
multiplications are required. We conclude that K -SENIA
requires 2k matrix-matrix multiplications, while 2k+1-term
SE approximation requires 2k+1 − 2 matrix-matrix multipli-
cations. The complexity and latency gain of K -SENIA over
2k+1-term SE approximation are both 2k−1

k .
Consider IU of Algorithm 1, with the initial approximate

matrix invers W̌−1Ni ∈ CNi×Ni . To obtain W̌−1Nt there are
Nt − Ni IU steps, and at the jth step, with W̌−1Ni+j−1 ∈
C(Ni+j−1)×(Ni+j−1) to be updated, the computation complexi-
ties of t1, t2 and t3 scale as O(Nr (Ni + j − 1)), O((Ni + j −
1)2) and O(Ni + j − 1) respectively. Then the complexity
of computing c is of order O(Nr + Ni + j − 1). Finally,
the complexity of computing F−111 is of orderO((Ni+ j−1)2).
Therefore, the overall complexity required by the jth IU step
is of orderO(Nr (Ni+ j−1)). Concerning processing latency,
notice that IU only requires matrix-vector and vector-vector
multiplication, thus compared with K -SENIA the latency
of IU can be ignored. Then we consider the complexity
of K -SENIA-IU. The computation of W̌−1Ni by K -SENIA
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requires a complexity of order O(2kN 3
i ), and the complexity

of Nt − Ni steps of IU is of order O(NrN 2
t − NrN 2

i ) (the
complexity of the jth step is of order O(Nr (Ni + j − 1)), for
j = 1, 2, · · · ,Nt − Ni, the overall complexity is of order∑Nt−Ni

j=1 O(Nr (Ni + j − 1)) = O(NrN 2
t − NrN 2

i )). Thus
the overall complexity of K -SENIA-IU scales as O(NrN 2

t )
(O(NrN 2

t −NrN
2
i )+O(2kN 3

i ) = O(NrN 2
t + (2kNi−Nr )N

2
i ).

Since 2kNi is close to Nr , the overall complexity after simpli-
fication is of orderO(NrN 2

t )), the same as that of exact matrix
inversion.

From the analysis above, we can see that the process-
ing latency of K -SENIA scales as O(2k log(Nt )), that is
much lower than that of exact matrix inversion schemes
(O(Nt )) when Nt is large. In [33], it is shown that the
VLSI implementation of the matrix multiplication based
SE approximate matrix inversion can save hardware
resources compared with Cholesky decomposition based
exact matrix inversions. In addition, K -SENIA and IU only
require scalar-vector, matrix-vector and matrix-matrix mul-
tiplications, that can be implemented using generic, par-
allelizable and reusable Multiply-and-Accumulated (MAC)
structures, while QR decomposition based exact matrix
inversions require complicated data flow mechanism and
arithmetic operation units (e.g., square root, sin/cos func-
tions) [30]. Finally, [34] shows that hardware implementation
of SE approximate matrix inversion is more energy efficient
than that of QR decomposition based exact matrix inversions.

C. APPLICATIONS OF IMPROVED APPROXIMATE MATRIX
INVERSION TO LINEAR MMSE DETECTION
In order to assess the performance of the approximate
matrix inversion technique for detection in LS-MIMO, in this
section we consider a simple MMSE detector which is capa-
ble of achieving near-optimal performance in low loaded
(very small α) systems with low complexity O(NrN 2

t ) [15],
and hence considered for practical applications [2]. We start
by characterizing the approximation error in the estimated
transmitted symbol vector when exact matrix inversion is
replaced by K -SENIA resulting in MMSE-SENIA. For LDs
with approximatematrix inversions, at low SNR themultiuser
interference (MUI) and noise are the dominant factors influ-
encing performance [39], and obscuring the errors of approxi-
mate matrix inversion. Thus our analysis is carried out at high
SNR (ρr → ∞), where the approximation errors become
dominant. Assume the convergence condition is satisfied
(i.e, W−1 = W̃−1∞ ) and let W−1

4
denote the approximation

error matrix of K -SENIA

W−1
4
=W−1 − W̃−1

2k+1
, (23)

whereW−1 = W̃−1∞ . The use of (11) in (23) yields

W−1
4
=

∞∑
n=2k+1

(−D−1E)nD−1

= (−D−1E)2
k+1
∞∑
n=0

(−D−1E)nD−1

= (−D−1E)2
k+1

W−1. (24)

Let W = HHH + ρ−1s I denote the regularized Gram
matrix. The soft estimates of the original MMSE detector
and MMSE detector with K -SENIA, denoted by ŝMMSE and
ŝMMSE−SENIA respectively, are given by ŝMMSE = W−1HHy
and ŝMMSE−SENIA = W̃−1

2k+1
HHy. The mean square error

(MSE) ε of this approximation is defined as

ε = E(||ŝMMSE − ŝMMSE−SENIA||2), (25)

and at high SNR

ε∞ = EsE[||(D−1E)2
k+1
||
2
F ]. (26)

where || · ||F denotes the Frobenius norm.
Proof: see Appendix A.

The insights provided by (26) are twofold. Firstly, since
ε∞ > 0, the existence of an error floor in the BER-SNR
curves of MMSE-SENIA at high SNR is expected. Secondly,
the level of the error floor is determined by two factors:
the number of iteration of K -SENIA, and how close the
components in (D−1E)2

k+1
are to zero.

In Fig. 1, we present the BER performance of
MMSE-SENIAk , where k denotes the number of iterations,
in 128× 16 and 32× 4 16-QAMMIMO systems, where the
convergence condition are satisfied. For comparison, the per-
formances of a MMSE detector with exact matrix inversion,
referred to asMMSE-EMI and that of aMMSE detector using
a 3-term SE approximation, referred to as MMSE-SE3 are
also presented. We see from Fig. 1 that MMSE-SENIA
with k = 1, 2, 3 outperforms MMSE-SE3 significantly.
In the 128 × 16 MIMO system, at BER = 6.8 × 10−4,
the SNR gains provided by MMSE-SENIA with k = 1, 2, 3
over MMSE-SE3 are 2.3dB, 3.4dB and 3.5dB respectively.
Furthermore, the performance of MMSE-SENIA improves
rapidly with k and is almost indistinguishable for k = 2, 3
from that of MMSE-EMI. In the 128 × 16 MIMO system,
when BER ≥ 7.85 × 10−5, MMSE-SENIA with k = 2, 3
has indistinguishable performance from MMSE-EMI, and is
aproximately 0.6dB and 0.2dB worse than MMSE-EMI at
BER = 5.14 × 10−6. In the 32 × 4 MIMO system, MMSE-
SENIA with k = 2, 3 is indistinguishable from MMSE-EMI
when BER ≥ 1.32 × 10−4, and exhibits only 0.6dB and
0.2dB performance losses at BER= 1.24×10−5. In addition,
from Fig.1, we see the error floors when SNR ≥ 14dB for
MMSE-SE3 and MMSE-SENIA1, caused by the residual
estimation error of (26). With MMSE-SE3 the error floor
occurs at BER= 1.6×10−4, while with MMSE-SENIA1 the
error floor occurs at BER= 7×10−5. ForMMSE-SENIA2/3,
no error floors are observed for BER ≥ 10−6.
In Fig. 2, we present the BER performance of MMSE

detectors exploiting K -SENIA-IU in 128 × 32 and 32 × 10
16-QAM MIMO systems, where the system loading factor
α exceeds the convergence constraint. The MMSE detec-
tors employing K -SENIA-IU with size of initial approxi-
mate matrix inverse Ni and k iterations of K-SENIA, are
referred to as MMSE-SENIAk-IU (Nt = Ni + (Nt − Ni)).
We also consider MMSE-EMI, MMSE-SE3, MMSE-
SENIAk and MMSE that exploits SE3-IU, referred to as
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FIGURE 1. BER performance of MMSE-SENIA in (a) 128× 16 MIMO and
(b) 32× 4 16-QAM MIMO systems.

MMSE-SE3-IU (Nt = Ni + (Nt − Ni)), in which the
initial approximate matrix inverse is computed by 3-term SE.
We observe from Fig. 2 that because of higher system loading

FIGURE 2. BER performance of MMSE-SENIA-IU in (a) 128× 32 MIMO
and (b) 32× 10 16-QAM MIMO systems.

factors, MMSE-SE3 and MMSE-SENIA with k = 1, 3 fail
to converge to the exact matrix inverse, as demonstrated
by the BER not decreasing when ρs increases. However,
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MMSE-SENIA-IU with k = 3 can achieve almost indistin-
guishable performance from MMSE-EMI. In the 128 × 32
MIMO system, MMSE-SENIA3-IU performs indistinguish-
able from MMSE-EMI when BER ≥ 5.14 × 10−5 and
is 0.2dB worse at BER = 1.17 × 10−6. In the 32 × 10
MIMO system, when BER≥ 3.58×10−5, the performance of
MMSE-SENIA3-IU is indistinguishable from MMSE-EMI
and exhibits only 0.7dB loss at BER = 3.08 × 10−6. These
results demonstrate the capability of K-SENIA-IU to provide
good performance at BER ranges of practical interest in
higher loaded LS-MIMO systems. Next we show how such
approximatematrix inversion technique can be integrated into
selection list detection for LS-MIMO systems.

III. SELECTION BASED LIST DETECTION FOR
LARGE-SCALE MIMO
A. GENERAL STRUCTURE OF SELECTION BASED LIST
DETECTOR
At the receiver, a frame error (detection error) occurs if there
is at least one error in the estimated symbol vector. For the
MIMO system of (1) the optimal detector (in the sense of
lowest average detection error probability) whenH is known,
is the maximum likelihood detector (MLD), employing the
minimum Euclidean distance (MED) rule [6]

ŝML = arg min
ŝ∈ANt

||y−Hŝ||2, (27)

where || · || denotes the Euclidean norm. Consider an alter-
native representation of MLD in (27). Let H1 ∈ CNr×N

denote a sub-matrix composed of N columns from H, where
1 ≤ N ≤ Nt , and let s1 ∈ CN×1 denote the symbol sub-
vector whose components are transmitted over the channel
corresponding to H1. Similarly, let H2 ∈ CNr×(Nt−N ) denote
the sub-matrix composed of the remaining columns from H
and s2 ∈ C(Nt−N )×1 denote the symbol sub-vector whose
components are transmitted over the channel corresponding
to H2. Thus (1) can be rewritten as

y = H1s1 +H2s2 + n. (28)

Let ŝ1, ŝ2 denote the estimates of s1, s2. Let [ŝ11, ŝ
2
1, . . . ŝ

K
1 ],

K = MN denote all the possible values of ŝ1, and
[ŝ12, ŝ

2
2, . . . , ŝ

Q
2 ], Q = MNt−N denote all the possible values

of ŝ2. Then the ML solution of (27) can be rewritten as

(ŝML)T = [(ŝML1 )T , (ŝML2 )T ] where ŝML1 = ŝk̃1, ŝML2 = ŝq̃2,

(29)

and

[k̃, q̃] = arg min
k∈[1,2...K ]

min
q∈[1,2,...,Q]

||y−H1ŝk1 −H2ŝ
q
2||

2.

(30)

This equivalent representation of the MLD can be divided
into three steps. First consider all the possible sub-vector
hypotheses ŝk1 of s1, and obtain the residual observations

yk = y−H1ŝk1, k = 1, 2, . . . ,K . (31)

FIGURE 3. Block diagram of Selection Based List Detector with DMS
channel partition and V-BLAST-SIC sub-detection.

Then solve

x̂k2 = arg min
s̃2∈[ŝ12,ŝ

2
2...,ŝ

Q
2 ]
||yk −H2s̃2||2, k = 1, 2, . . . ,K

(32)

k̃ = arg min
k∈[1,2,...,K ]

||yk −H2x̂k2||
2, (33)

Finally we have ŝML1 = ŝk̃1, ŝ
ML
2 = x̂k̃2.

This selection based list detection technique [27] first gen-
erates a list of candidates for possible transmitted symbol
vectors estimates ŝk , k = 1, 2, · · · ,MN , then selects the
best candidate in the list using the MED rule as the final
decision. In Fig. 3 we illustrate the structure of this selec-
tion based list detection algorithm with DMS channel par-
tition and V-BLAST ordered MMSE-SIC (V-BLAST-SIC)
[49] sub-detector. The structure of Fig. 3, consists of three
parallelizable stages:

• Channel Partition: The sub-matrices H1 and H2 in (30)
are first obtained based on the channel partition rule.
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The DMS rule [50] chooses the subset of the columns
of H with the strongest weakest data substream
(in the sense of postprocessing SINR using MMSE
criterion [51]) and forms H2. Define the possible sub-
sets Hj

2, j = 1, 2, · · · ,Nu, where Nu =
(Nt
N

)
. The subset

chosen by DMS rule Hm
2 is given by

m = arg min
j=1,2,··· ,Nu

zj (34)

zj = max
k=1,2,··· ,Nt−N

[((Hj
2)
HHj

2 + ρsI)
−1]kk (35)

The parallel structure of this procedure is shown
in Fig. 3. In the first phase, the matrix inversions
in (35) are computed by the processing units (PU) of
matrix inversion (Mi) in parallel, in which the fast
K -SENIA-IU can be used instead of exact matrix inver-
sion. Then in the second phase, the subset is chosen
based on (34).

• Candidate list generation: Use (31) to obtain K residual
observations yk , then instead of performing an exhaus-
tive search in (32), V-BLAST-SIC [27] is employed to
obtain the estimates x̂k2, k = 1, 2, . . . ,K . As shown
in Fig. 3, interference cancellations and V-BLAST-SIC
are performed in parallel by the PU of interference
cancellation (IC) and PU of sub-detector (SUD) respec-
tively. The number of parallel pipelines required isMN .
The inverse (HH

2 H2+ρsI)−1 required by V-BLAST-SIC
is already computed at the channel partition stage.

• Final decison: Based on the MED decision rule of (33),
the Euclidean distance (ED) of all MN symbol vector
candidates in the list are computed by the PU of ED,
and the best candidate is selected as the final decision.

The sufficient condition for the selection based list algorithm
with DMS channel partition and V-BLAST-SIC sub-detector
to achieve optimal asymptotic diversity Nr is [27]

N = Nmin = d

√
(Nr − Nt )2

4
+ Nr −

(Nr − Nt )
2

− 1e,

(36)

where dxe denote the minimum integer no less than x.

B. IMPACT OF CHANNEL HARDENING ON CHANNEL
PARTITION AND V-BLAST ORDERING
The DMS and V-BLAST ordering rules both use the postpro-
cessing SINR ofMMSE criterion [51] as a reliability measure
of the symbol sub-datastreams. For the kth estimate ofMMSE
detection, the postprocessing SINR γk is [41], [52]

γk =
ρs

[(HHH+ ρ−1s I)−1]kk
− 1 =

1

1− hkR−1y hk
− 1,

(37)

where Ry = (HHH
+ ρ−1s I) is the autocorrelation matrix

of y. The V-BLAST-SIC algorithm [49] evaluates at each
layer the reliabilities of the symbol sub-datastreams in the
sense of postprocessing SINR, and detects the one with the

strongest postprocessing SINR. Then, the interference from
the detected symbol is cancelled from the received signal
vector. Let [A]k denote the kth row of A, the V-BLAST-SIC
procedure is given by Algorithm 2.

Algorithm 2 V-BLAST-SIC
procedure (H, y)

B(0)
= H, y(0) = y

for i = 1→ Nt do
φi = argmink=1,2,··· ,Nt−i+1[(W

−1)(i)]kk F find the
index of the sub-datastreamwith the strongest postprocess-
ing SINR, where (W−1)(i) = [(B(i−1))HB(i−1)

+ ρ−1s I]−1

gMMSE = [(W−1)(i)]φi (B
i−1)H F compute the

MMSE equalization vector
ŝφi = Q[gMMSEy(i−1)] F detect φith symbol
y(i) = y(i−1) − hφi ŝφi F cancel

the interference of the detected symbol from the received
signal vector, where hφi is the φ

ith column of H
update B(i) by removing hφi from B(i−1)

end for
end procedure

A fast recursive implementation of V-BLAST-SIC can be
found in [53]. Firstly, (W−1)(1) = [(HHH + ρ−1s I)]−1 is
computed, then at ith (i ≥ 2) layer, (W−1)(i) is updated from
(W−1)(i−1) instead of being recomputed from scratch, so that
only one matrix inversion is required in V-BLAST-SIC. The
complexity of this implementation scales as O((Nt )3).
Both DMS and V-BLAST ordering are effective if

the reliabilities of the symbol sub-datastreams are highly
diverse [50], [52]. In LS-MIMO, due to channel harden-
ing (6), the diagonal elements of ((Hj

2)
HHj

2+ρ
−1
s I)−1 in (35)

and ((B(i))HB(i)
+ ρ−1s I)−1 at each layer of V-BLAST-SIC

become equal. Therefore, with Nt ,Nr → ∞, α → 0,
the postprocessing SINR becomes ineffective as a reliability
measure, rendering DMS and V-BLAST ordering perform as
channel independent selection (CIS) and random ordering.

C. INTEGRATION OF K-SENIA/IU INTO SELECTION BASED
LIST DETECTION AND BER PERFORMANCE
Although DMS and V-BLAST ordering perform as CIS
and random ordering asymptotically (i.e. Nr ,Nt → ∞,

α → 0), when the system size is not extremely large such
orderings are still useful for performance improvement. Large
matrix inversion is heavily used in the DMS channel partition
stage, and the result is reused for candidate list generation
as (W−1)(1) in V-BLAST-SIC, where K -SENIA-IU can be
employed to replace exact matrix inversion. The advantages
of using K -SENIA-IU are twofold. As shown in section II-B,
the large processing latency of exact matrix inversion may
cause a delay exceeding the channel coherence time, while
K -SENIA-IU provides much lower latency due to deeper
parralelism in each PU-Mi in Fig. 3, and its hardware imple-
mentation is simpler.
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The computer simulation setup that has been used for
performance evaluation is detailed in Appendix B. We con-
sider the impact of channel hardening on selection based list
detection by comparing different channel partition schemes
(DMS and CIS), different matrix inversion schemes (exact
matrix inversion (Ei) and K -SENIA-IU (Ai)) and different
ordering strategies of SIC (V-BLAST-SIC and SIC with-
out ordering). The schemes considered are CIS-Ai-SIC,
CIS-Ai-VBLAST-SIC, DMS-Ai-SIC, DMS-Ai-VBLAST-
SIC and DMS-Ei-VBLAST-SIC.

In Fig. 4 we present results for 128 × 32 and 128 × 96
4QAM MIMO systems (i.e. system loading factor α =
0.25 and 0.75), where the number of antenna selected at
channel partition stage is N = 1, the number of iterations
of K -SENIA is 3 and the initial size of matrix inverse for
IU Nini is 16. It can be observed that both system configu-
rations of DMS-Ai-VBLAST-SIC have almost indistinguish-
able performance from DMS-Ei-VBLAST-SIC and no error
floor is observed for BER ≥ 10−6. This demonstrates the
suitability of K -SENIA-IU for selection based list detectors.
Then, by comparing CIS-Ai-SIC with DMS-Ai-SIC, and
CIS-Ai-VBLAST-SIC with DMS-Ai-VBLAST-SIC, we can
conclude that in LS-MIMO, when N is small, the channel
partition scheme has a very small impact on performance.
The ordering strategy, however, has a larger impact on per-
formance. For example, in Fig. 4(a), CIS-Ai-VBLAST-SIC
performs about 0.4dB better than CIS-Ai-SIC at
BER = 2.86 × 10−6, and in Fig. 4(b), the SNR gain of
CIS-Ai-VBLAST-SIC over CIS-Ai-SIC is about 1.1dB at
BER = 1.60 × 10−5. Therefore, hereinafter, we use CIS
for channel partition in large systems, so that the compu-
tational complexity required by the DMS of (34) and (35)
(i.e., the computation of Nu =

(Nt
N

)
matrix inver-

sions) can be avoided with negligible performance
loss.

In Fig. 5 we consider the effect of N on CIS-Ai-SIC
and CIS-Ai-VBLAST-SIC in a 128 × 96 4-QAM MIMO
system. We can see that in LS-MIMO with CIS-Ai-SIC and
CIS-Ai-VBLAST-SIC increasingN from 1 to 2 provides very
limited performance gains.

IV. SELECTION BASED LIST DETECTION WITH IMPROVED
OSIC SUB-DETECTION
A. IMPROVED ORDERING FOR SIC SUB-DETECTORS
From Section III we see that in LS-MIMO with selection
based list detection, the ordering scheme of sub-detectors
affects performance more significantly than the channel
partition strategy. We also see that V-BLAST ordering
becomes less effective due to channel hardening. Hence,
to improve performance we consider improved ordering (IO)
based on the simplified Maximum a Posterior (MAP) log
ratio of the decision bit and Gaussian approximation of
MMSE soft estimate s̃ = GMMSEy [41], namely Type-L
reliability. For modulation schemes with multiple bits per
symbol, the Type-L reliability of the kth decision symbol

FIGURE 4. BER performance of selection based list detections in
(a) 128× 32 MIMO and (b) 128× 96 4-QAM MIMO systems with N = 1.

is [41]

Lk = (1+ γk )(|<(s̃k )| + |=(s̃k )|), k = 1, 2, · · · ,Nt ,

(38)
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FIGURE 5. BER performance of CIS-Ai-SIC/VBLAST-SIC with different N in
a 128× 96 4-QAM MIMO system.

where <(·) and =(·) denote the real and imaginary parts.
Using (37) in (38) and removing the multiplicative constant
ρs yields

Lk ,
|<(s̃k )| + |=(s̃k )|

[(HHH+ ρ−1s I)−1]kk
, k = 1, 2, · · · ,Nt (39)

The Type-L reliability measure takes into account postpro-
cessing SINR and the magnitude of s̃k . The detection order
with improved ordering SIC (IO-SIC) is also influenced by
the residual observations yk of (31), and with IO-SIC as the
sub-detector it can provide more diverse candidate symbol
vectors in the list. Type-L reliabilities are formed for the
undetected symbol sub-datastreams and the most reliable
sub-datastream selected is quantized for hard decisions. The
procedure employing IO-SIC is summarized in Algorithm 3.

We can see from Algorithm 3, that at the ith layer
of IO-SIC, the soft estimates of undetected symbol sub-
datastreams are required in order to evaluate their Type-L
reliabilities, in which the computation of the estimate
(B(i−1))Hy(i−1) has a complexity that scales as O((Nt −
i + 1)2). Next, we show that this estimate can be updated
from the one of the previous layer with lower complexity.
To elaborate further, given the estimate at the ith layer

[(B(i−1))Hy(i−1)]T = [hH1 y
(i−1),hH2 y

(i−1), · · · ,hH
φi
y(i−1),

· · · ,hHNt−i+1y
(i−1)]T , (40)

where φi is the index of the most reliable sub-datastream that
is chosen to be detected at the ith layer, then at the i+1 layer,

Algorithm 3 IO-SIC
procedure (H, y)

B(0)
= H, y(0) = y

for i = 1→ Nt do
s̃(i) = (W−1)(i)(B(i−1))Hy(i−1) F Obtain the

soft estimates of the undetected symbol sub-datastreams,
where (W−1)(i) = (B(i−1))HB(i−1)

+ ρ−1s I
for j = 1→ Nt − i+ 1 do

Lj =
|<(s̃(i)k )|+|=(s̃(i)k )|
[(W(i))−1]kk

F compute Type-L
reliabilities of undetected symbol sub-datastreams

end for
φi = argmaxj=1,2,··· ,Nt−i+1 Lj F find the index of

the most reliable sub-datastream
ŝφi = Q[s̃(i)

φi
] F Quantize φith component of s̃(i)

y(i) = y(i−1) − hφi ŝφi F cancel
the interference of the detected symbol from the received
signal vector, where hφi is the φ

ith column of H
update B(i) by removing hφi from B(i−1)

end for
end procedure

using y(i) = yi−1 − hφi ŝφi , we have

(B(i))Hy(i) =



hH1 y
(i)

hH2 y
(i)

...

hH
φi−1y

(i)

hH
φi+1y

(i)

...

hHNt−iy
(i)



=



hH1 y
(i−1)

hH2 y
(i−1)

...

hH
φi−1y

(i−1)

hH
φi+1y

(i−1)

...

hHNt−iy
(i−1)


−



hH1 hφi ŝφi

hH2 hφi ŝφi
...

hH
φi−1hφi ŝφi

hH
φi+1hφi ŝφi

...

hHNt−ihφi ŝφi


(41)

where the first term of (41) can be obtained from (40),
and hHk hφi , k, φ

i
= 1, 2, · · · ,Nt in the second term are

the components of HHH which are already obtained for
computing W = HHH + ρ−1s I. Hence there is no extra
overhead for obtaining (41) and the complexity required for
computing (B(i))Hy(i) is that of a vector subtraction, that
scales asO(Nt − i+ 1). Similar to the fast implementation of
V-BLAST-SIC [53], in IO-SIC only (W−1)(1) at the first layer
is required to be computed. Then (W−1)(i) at i ≥ 2 layers
can be updated with low complexity, and (W−1)(1) can be
approximated by K -SENIA/IU.
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FIGURE 6. BER performance of IO-SIC for Nr = 128, Nt = 32, 64, 96 with
4-QAM in MIMO systems with N = 1.

B. BER PERFORMANCE OF IO-SIC IN LS-MIMO SYSTEMS
Next we present simulation results for BER performance of
selection based list detection with CIS channel partition and
IO-SIC sub-detection. The setup for computer simulations is
detailed in Appendix B. For comparison, selection based list
detection that uses V-BLAST-SIC for sub-detection is also
considered. Furthermore, we consider exact matrix inversion
(Ei) as well as K -SENIA/IU (Ai), and hence the schemes
considered in this subsection are referred to as CIS-(Ei/Ai)-
(IO/VBLAST)-SIC.

In Fig. 6 we present BER results for LS-MIMO 4-QAM
systems with fixed number of BS antennas Nr = 128 and
varying number of single antenna users Nt = 32, 64, 96,
corresponding to system loading factors α = 0.25, 0.5, 0.75.
The number of antennas selected at the channel partition stage
is N = 1, for K -SENIA-IU the number of iterations of
K -SENIA is 3, and the initial size of the matrix inversion
of IU is 16. It is observed that CIS-Ai-IO-SIC performs
indistinguishably from CIS-Ei-IO-SIC at BER ≥ 10−6 in all
the system configurations, demonstrating the effectiveness of
K -SENIA-IU in selection based list detections with IO-SIC.
Furthermore, in all the system configurations, CIS-Ei-IO-SIC
outperforms CIS-Ei-VBLAST-SIC and the performance gain
increases when the system loading factor increases. For
example, in the 128 × 32 system at BER = 1.14 ×
10−6 the performance gain achieved by CIS-Ei-IO-SIC over
CIS-Ai-VBLAST-SIC is about 0.4dB, in the 128×64 system
at BER = 7.57 × 10−6 CIS-Ei-IO-SIC is about 1dB better
than CIS-Ai-VBLAST-SIC, and in the 128 × 96 system
CIS-Ei-IO-SIC achieves about 2.5dB SNR gain over

FIGURE 7. BER performance of DMS-IO-SIC, MMSE-3LAS and MPD
(data for MMSE-3LAS and MPD collected from [42] and [22])
for 32× 32 4-QAM MIMO.

CIS-Ai-VBLAST-SIC at BER = 1.60 × 10−5. The perfor-
mance gain of selection based list detections with IO-SIC
over that with V-BLAST-SIC improves in the higher loaded
systems because the Type-L reliability measure converges to
the optimum MAP-based reliability measure with increasing
number of users [41].

V. PERFORMANCE AND COMPLEXITY COMPARISON
This section presents a comparison, including performance,
complexity and structure, between the proposed selection
based list algorithm of section III-C referred to as DMS/CIS-
IO-SIC, and two state-of-art LS-MIMO detection schemes,
namely multistage LAS algorithm [15], [42] and MPD [22].

A. BER PERFORMANCE COMPARISON
In Fig. 7 we present the results for DMS-IO-SIC with
different number of antennas selected at channel partition
stage (N = 1, 2, 3), multistage LAS algorithm named
MMSE-3LAS, and the MPD algorithm for a 32 × 32
4-QAM MIMO system. The reason of using DMS in such a
system is that in medium size MIMO, it is still more effective
than CIS. It can be observed that all DMS-IO-SIC config-
urations outperform MMSE-3LAS. For example, at BER =
1.05× 10−3, DMS-IO-SIC (N = 1, 2, 3) can achieve 0.4dB
0.65dB and 0.8dB SNR gain overMMSE-3LAS respectively,
and MPD is about 1.4dB worse than DMS-IO-SIC (N = 3)
at BER= 8.50×10−5. In such medium size MIMO systems,
there is a noticeable performance improvement for
DMS-IO-SIC when N increases. For example, at BER =
2.46×10−5, DMS-IO-SIC with N = 3 achieves about 0.7dB
SNR gain over that of N = 1.
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FIGURE 8. BER performance of CIS-IO-SIC and MPD (data for MPD
collected from [22]) for Nr = 128, Nt = 32, 64, 96 4-QAM MIMO.

In Fig. 8 we present the results of CIS-IO-SIC (N = 1, 2)
as well as MPD for Nr = 128 and Nt = 32, 64, 96 with
4-QAM. With all system configurations, for BER ≥ 10−5,
CIS-IO-SIC with N = 1 exhibits almost no performance loss
compared with CIS-IO-SIC with N = 2, while the list size
of the former is only 1

4 of the latter. For all the system con-
figurations considered, the performance loss of CIS-IO-SIC
N = 1, 2 compared with MPD is just a fraction of dB. For
example, in the 128 × 32 system, at BER = 4.60 × 10−5

CIS-IO-SIC is about 0.3dB worse than MPD, in the 128×64
system MPD is about 0.25dB better than CIS-IO-SIC at
BER = 3.0 × 10−5, and in the 128 × 96 system at BER =
2.0 × 10−5 CIS-IO-SIC is about 0.4dB worse than MPD.
In large size MIMO systems, a small list is enough to provide
a competitive performance for CIS-IO-SIC.

B. COMPLEXITY ISSUES AND COMPARISON
For selection based list detection, assume the number of
antenna selected at the channel partition stage is N . If CIS is
used, then there is no complexity overhead at the channel par-
tition stage. At the candidate list generation stage, computa-
tion of each residual yk in (31) requires a complexity of order
O(NrN ) for each sub-detector. Then consider each IO-SIC
sub-detector. As seen in Algorithm 3, at the first layer, com-
putation of (W−1)(1) is required, where the use of exactmatrix
inversion requires a complexity of order O((Nt − N )3) and
the use of K-SENIA-IU, based on the analysis in section II-B,
requires a complexity of orderO(Nr (Nt−N )2). Computation
of the initial soft estimate (B0)Hy0 requires a complexity of
orderO(Nr (Nt −N )). Then for the ith layer (i ≥ 2), (W−1)(i)

can be updated based on the fast implementation in [53],
which has a complexity that scales as O((Nt − N − i+ 1)2).
The update of the soft estimate (B(i−1))Hy(i−1) requires a
complexity of orderO(Nt −N − i+ 1), and obtaining s̃(i) has
a complexity of orderO((Nt −N − i+ 1)2). Finally the com-
putation of Type-L reliabilities has a complexity that scales
asO(Nt −N − i+1), and calculation of y(i) = y(i−1)−hφi ŝφi
has a complexity of order O(Nr ). Hence, the computational
complexity of obtaining one candidate symbol vector in the
list is of order

O((Nt − N )3)+
Nt−N∑
i=2

[O((Nt − N − i+ 1)2)]

= O((Nt − N )3) For Ei, (42)

O(Nr (Nt − N )2)+
Nt−N∑
i=2

[O((Nt − N − i+ 1)2)]

= O(Nr (Nt − N )2) For Ai. (43)

For generating a candidate list of size MN , the complexity
is O(MN (Nt − N )3) for Ei and O(MNNr (Nt − N )2) for Ai.
In the final decision step, each candidate yk − H2x̂k2 in (33)
is already computed at the SIC step, and only an Euclidean
norm is required with complexity O(Nr ), resulting in total
complexity ofO(MNNr ) for this step. In conclusion, the over-
all complexity of DMS-(Ei/Ai)-IO-SIC is O(MN (Nt − N )3)
and O(MNNr (Nt − N )2) respectively.
The multistage LAS algorithm aims at reducing a cost

function through multi-stage updates of an initial solution.
The MMSE-3LAS employs 1 to 3-symbol neighborhood
updates as steps in each stage, with initial solution generated
by a MMSE detector of complexity O(NrN 2

t ). The empirical
complexity of LAS searching based on simulation [42] is
O(N 2

t ). Therefore the overall complexity of multistage LAS
is O(N 3

t ).
The MPD algorithm is an iterative procedure that works

on a graphical model and updates all the sub-data streams
in each iteration. The establishment of the graphical model
requires the computation of HHy and HHH, with complex-
ities O(NrNt ) and O(NrN 2

t ) respectively. Then for a square
M -QAM constellations each iteration has a complexity of
O(
√
MN 2

t ), and with iteration time nI the total complexity
of the iterative update process is O(nI

√
MN 2

t ). Hence the
overall complexity of MPD scales as O(NrN 2

t ).
The complexity scaling results from this subsection

are summarized in Table 1. We include also the results
from [23] and [29] that are related to the techniques consid-
ered in our paper. As we can see from Table 1, Linear MMSE,
CIS-Ei-IO-SIC, CIS-Ai-IO-SIC, MMSE-3LAS and
MMSE-GAIL are comparable in complexity scaling with Nt
and Nr . The message passing techniques MPD and AMP-
LS scale slower with Nt and Nr . However these schemes
do not have structural parallelism properties that are inher-
ent in selection based list detection techniques such as
CIS-Ei-IO-SIC, CIS-Ai-IO-SIC and MMSE-GAIL. It could
be a useful endeavour to integrate selection based techniques
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TABLE 1. Complexity scalling comparison.

as in our paper or as in [29] (termed grouping there) into
message passing detection algorithms for inducing structural
parallelism.

VI. CONCLUSIONS
In this paper, we first propose a fast approximate matrix
inversion scheme K -SENIA/IU, which is suitable for inte-
gration into selection based list detectors for lower latency
and deeper parallelism, making it attractive for applications
in LS-MIMO systems. By studying the impacts of the chan-
nel hardening phenomenon on selection based list detection,
we found that when the size of the system increases, the
postprocessing SINR based DMS channel partition rule and
V-BLAST ordering become less effective. We also showed
that in LS-MIMO systems, ordering has a larger impact on
performance than channel partition. Based on this result,
we considered an improved ordering scheme for SIC sub-
detection, that takes into account both postprocessing SINR
and the received signal vector. Simulation results corroborate
that a significant performance gain can be achieved by selec-
tion based list detection with improved ordering-SIC over
the selection based list algorithm with V-BLAST-SIC. Then
we compare the selection based list algorithm employing
improved ordering with two state-of-art LS-MIMO detection
techniques, multistage LAS and MPD. Simulation results
show that the selection based list algorithm with improved
ordering performs better than multistage LAS and it is at
most a fraction of dB worse than MPD. In a medium size
system (32 × 32), with DMS-IO-SIC, increasing N from
1 to 3 results in an observable performance improvement.
However, in large size systems Nr = 128,Nt = 32, 64, 96,
DMS can be replaced by CIS and N can be chosen as 1 with
almost no performance loss while lowering complexity com-
pared with N = 2. The complexities of the proposed selec-
tion based list detection, linear MMSE, multistage LAS and
MMSE-GAIL have the same order of magnitude. The com-
plexity of MPD based algorithms is lower, however selection
based list algorithms, such as those proposed in this paper and
MMSE-GAIL of [29], have inherent parallelism properties
that can provide an implementation advantage. Therefore,
the proposed selection based list algorithm is a competitive
candidate for practical LS-MIMO detection. While in this
work we assume spatially uncorrelated channels that are
perfectly known at the receiver, the derived algorithms can be

applied also on spatially correlated channels, and also when
the channels are not perfectly known at the receiver. The
effects of such imperfections on performance could be a
subject for a folowing up study.

APPENDIX A
Given

ε = E(||ŝMMSE − ŝMMSE−SENIA||2) = E(||W−1
4

HHy||2),

then the use of (24) yields

ε = E(||(D−1E)2
k+1

W−1HHy||2). (44)

Let F = (D−1E)2
k+1

andG =W−1HH . With Tr(X) denoting
the trace of matrix X, then (44) can be rewritten as

ε = E(||FGy||2) = E[Tr(FGyyHGHFH )]

= Tr{E(FGyyHGHFH )}, (45)

and with (1) in (45) we have

ε = Tr{E[FG(Hs+ n)(sHHH
+ nH )GHFH ]}

= Tr{E[FGHssHHHGHFH ]+ E[FGnnHGHFH ]

+E[FGHsnHGHFH ]+ E[FGnsHHHGHFH ]}

= Tr{E[ssH ]E[FGHHHGHFH ]

+E[nnH ]E[FGGHFH ]}

= Tr{EsE[FGHHHGHFH ]+ σ 2
oE[FGGHFH ]}

= EsTr{E[FGHHHGHFH ]

+ ρ−1s E[FGGHFH ]} (46)

At high SNR (ρs → ∞) the second summand of (46)
vanishes, and limρs→∞ ε = EsTr{E[FGHHHGHFH ]}. Fur-
thermore, since

lim
ρs→∞

G = lim
ρs→∞

W−1HH

= lim
ρs→∞

(HHH+ ρ−1s I)−1HH
= (HHH)−1HH

(47)

we have

lim
ρs→∞

ε = EsE{Tr[FFH ]}

= EsE[||F||2F ] = EsE[||(D−1E)2
k+1
||
2
F ], (48)

where || · ||F denotes the Frobenius norm.

APPENDIX B
We simulated uncoded complex LS-MIMO uplink multiuser
systems, with rectangular M-QAM (4-QAM and 16-QAM)
modulation and Gray labeling. For each receive SNR level,
the BER was estimated based on a minimum of 105 inde-
pendent channel realizations and a minimum of 300 symbol
errors. In each channel realization, for each single antenna
user, nc = log2(M ) independent randomly generated bits
were mapped to a complex symbol. Then Nt complex sym-
bols were transmitted by single antenna users over randomly
generated Rayleigh block fading channels. Each component
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of the channel matrix was generated as a CSCG random vari-
able with zero mean and unit variance. The received signal
vector was contaminated by AWGN.

The software testbed was implemented in C, compiled
by a GCC compiler version 4.9.2 on a 64 bit Debian
(release 8.2) Linux system. The experiments were performed
on two desktop computers, one consisting of a quad core
Intel I5-4th generation CPU with 3.2GHz clock rate, and the
other consisting of a six core Intel I7-5th generation CPUwith
3.5GHz clock rate.
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