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ABSTRACT Convolutional Neural Networks (CNNs) have become the de facto technique for image feature
extraction in recent years. However, their design and construction remains a complicated task. As more
developments are made in progressing the internal components of CNNs, the task of assembling them
effectively from core components becomes even more arduous. To overcome these barriers, we propose the
Swarm Optimized Block Architecture, combined with an enhanced adaptive particle swarm optimization
(PSO) algorithm for deep CNN model evolution. The enhanced PSO model employs adaptive acceleration
coefficients generated using several cosine annealing mechanisms to overcome stagnation. Specifically,
we propose a combined training and structure optimization process for deep CNN model generation, where
the proposed PSO model is utilized to explore a bespoke search space defined by a simplified block-based
structure. The proposed PSO model not only devises deep networks specifically for image classification,
but also builds and pre-trains models for transfer learning tasks. To significantly reduce the hardware and
computational cost of the search, the devised CNN model is optimized and trained simultaneously, using
a weight sharing mechanism and a final fine-tuning process. Our system compares favorably with related
research for optimized deep network generation. It achieves an error rate of 4.78% on the CIFAR-10 image
classification task, with 34 hours of combined optimization and training, and an error rate of 25.42% on the
CIFAR-100 image data set in 36 hours. All experiments were performed on a single NVIDIA GTX 1080Ti
consumer GPU.

INDEX TERMS Computer vision, convolutional neural networks, deep learning, evolutionary computation,
image classification, particle swarm optimization.

I. INTRODUCTION
Despite being a relatively mature concept, Convolutional
Neural Networks (CNNs) have proven to be incredibly effec-
tive feature extractors in recent computer vision research.
They were originally proposed and proven effective by
LeCun et al. [1] in 1989 for classifying handwritten numeri-
cal digits from a dataset now commonly known as MNIST,
but subsequently fell out of favour for a number of years.
Since then, CNNs have experienced a large resurgence in
popularity, particularly for challenging computer vision tasks
requiring effective feature extraction. This rise in popular-
ity has been motivated largely by the increases in perfor-
mance demonstrated by CNNs on challenging tasks such
as the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) [2]. The ILSVRC has been running annual com-
petitions since 2010, backed by the ImageNet dataset which
contains over 14 million images with various associated
metadata, organised to follow the paradigms of the popular

WordNet dataset [3]. Since 2015, all of the winners, and
a majority of the entrants, have each been some variation
of a deep CNN, with a newly proposed architecture being
the improving factor for a number of the entrants. Often
these new architectures are then used by subsequent works in
relevant sub-fields by exploiting the pre-trained networks as
essentially pre-created feature extractors and using transfer-
learning techniques to apply them to the new tasks. Since
this widespread adoption of deep convolutional networks
as the go-to technique for image feature extraction, it has
become necessary for many researchers to integrate these
pre-trained networks into their own models, where previ-
ously they would have used a hand-designed feature extractor
such as SIFT [4] or HOG [5]. Currently, the choice of pre-
trained network comes from the few existing, well-known
architectures that have been proposed and validated in deep
learning literature, but modifying these architectures to better
suit a particular task requires deep domain knowledge that
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is often unavailable to researchers or end-users in many
sub-fields.

In this research, we refer to the specific combination of
layers and parameters that make up the structure of a CNN as
the ‘architecture’ of the network. This combination of design
choices rapidly becomes larger as the intended depth of a net-
work increases. The architectures of the networks described
above have largely been designed by hand, using expert
knowledge in order to tweak parameters and hyperparameters
to achieve the best possible results. This has unfortunately
resulted in a high barrier-to-entry for the field, as this expert
knowledge must be acquired before one can design effective
networks. The process can be seen as a sort-of human-led
stochastic optimisation, whereby human agents iteratively
design and test new architectures, using knowledge gained
through previous experiments or from others’ experimental
results. When applying to sub-field tasks, transfer learning
implementations rely on existing pre-trained models due to
the time/hardware constraints, difficulty in designing and
training a newmodel, and the potential pitfalls in this process.
This does, however, mean that the pool of available net-
works is very small, as one must rely solely on the published
architectures. Therefore an automatic architecture optimisa-
tion process is required to allow these researchers to design
architectures specific to the task at hand without needing a
deep background knowledge in the area. The process must
also be fast and usable on commodity hardware, in order to
be available to those who need it the most.

In this work, we propose Swarm Optimised Block Archi-
tecture (SOBA), a system to perform evolutionary deep CNN
model generation using an enhanced Particle Swarm Optimi-
sation (PSO) model. The proposed model is able to conduct
concurrent architecture optimisation and end-to-end training
for the task of image classification. In other words, the pro-
posed method both optimises and trains model architectures
at the same time, allowing a ‘one-click’ approach to creating
an effective model from a block-based skeleton architecture.
Using this approach, we provide an effective way to optimise
the architecture of CNNs for image classification through the
formation of the optimisation problem within a constrained
search space. We employ a skeleton architecture that is used
as a minimal starting point by our optimisation system, which
loosely follows the VGG architecture [6]. A modified PSO
model with adaptive acceleration coefficients is used to per-
form the evolving deep CNN generation, with parameter
sharing used to alleviate the enormous computational cost
of fully training and evaluating each new architecture. The
newly proposed cosine annealing mechanisms for adaptive
search weight generation in the enhanced PSO model enable
the search to balance between local exploitation and global
exploration to carefully direct the architecture generation
around the additional constraints introduced by the parameter
sharing strategy. The nature of the search process in com-
bination with the training of the network blocks themselves
ensures that each block becomes much more robust, as it is
trained and optimised to its best performance level, regardless

of the structure of the rest of the network. Specifically,
each block will be trained using backpropagation indepen-
dent of the specific configurations of the other layers, with
the weights shared between different model configurations.
This strategy is contrary to hand-designed models which are
wholly trained with the same model configuration. Fig. 1 rep-
resents the proposed Swarm Optimised Block Architecture
(SOBA) model.

Fig. 1. The proposed Swarm Optimised Block Architecture where each
particle represents a full, discrete convolutional architecture for image
classification.

The research contributions are as follows:
1) We formulate the optimisation problem within a con-

strained search space through the creation of a bespoke
objective function.

2) We employ a continual training method using a weight
lookup table to alleviate the enormous computational
cost of fully training and evaluating each new architec-
ture.

3) An enhanced PSO model is proposed to perform the
minimisation of our objective function with accelera-
tion coefficients determined by a shifted cosine func-
tion to address the added constraints from our continual
training method.

4) We apply a combined optimisation and training strat-
egy to provide single-run, end-to-end optimisation with
a final fine-tuning step.

5) Evaluated on the CIFAR-10 and CIFAR-100 image
datasets, the proposed model shows superior classifi-
cation performance on consumer hardware in reason-
able time, over other related methods reported in the
literature.

The proposed SOBAmodel allows for fast, effective design
& training of simple VGG-style image classification models
up to a high level of accuracy through stochastic exploration
of a constrained euclidean search space, inspired by the sim-
ple and popular VGG architecture model. SOBA is designed
and tested using consumer-level hardware with reasonable
runtimes, providing an accessible method of architecture
optimisation with huge potential for other complex computer
vision tasks.

The rest of this paper is organised as follows. We discuss
the background theory and related work in Section II, and
present the proposed SOBA optimisation model for evolving
deep CNN generation with adaptive PSO and weight sharing
in Section III. We then provide system evaluation and exper-
imental results in Section IV. Finally, we provide concluding
remarks and discuss further directions in Section V.
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II. BACKGROUND & RELATED WORK
A. ARCHITECTURE OPTIMISATION
Evidenced by recent research [6]–[9], CNNs have become
exceedingly popular for solving computer vision problems
owing to their ability to learn task-specific filters to extract the
key information in an image. CNNs are usually comprised of
multiple layers of computation that function together to form
a network. When designing a CNN for classification, the typ-
ical goal is to embed the information found in the image into
a fixed length vector, which can then be passed through fully-
connected (linear) layers, or even another classifier, to finally
output class probabilities. This is performed by cascading
layers of convolutional operations with learned filters. There
are a number of design and parameter choices that can be
made for each layer, as well as for the connections between
the layers. The traditional approach is a purely hierarchical
model, where each layer feeds its output feature maps into
the next layer sequentially until the final layer is reached.
Recent works have, however, explored the possibility of con-
sidering the connections between the layers as a Directed
Acyclic Graph (DAG), whereby each layer can connect to
any number of subsequent layers. This approach is motivated
by the success of residual or skip-connections [9], which
proved effective at maintaining global features throughout
the network by directly passing earlier feature maps to later
layers in a hierarchical network. Besides the connections
between the layers in the network, each layer itself requires a
number of choices to be made pertaining to its parameters
and functionality. As previously mentioned, these choices
have traditionally been made based on prior knowledge and
intuition, with many combinations being thoroughly tested
before an optimal architecture is found. There has been a large
amount of recent interest in the task of designing architecture
search strategies to replace this human-led trial and error pro-
cess and provide an effective method to automatically design
optimal architectures and associated hyper-parameters. As
an example, Stanley and Miikulainen [10]–[12] explored
various methods for automating the process of designing neu-
ral network architectures. Their method, called NeuroEvo-
lution of Augmenting Topologies (NEAT), took the form of
a Genetic Algorithm (GA) which could ‘grow’ architectures
from a simple starting point. Stanley et al. [13] also explored
training neural networks via similar evolutionary methods,
although this has thus far not proved to outperform back-
propagation. There has been some recent work to extend
the NEAT methodology to build deep learning architectures,
as the size and complexity of CNN models present fur-
ther challenges [14]–[17]. More recently there have been a
number of experiments using reinforcement learning (RL)
for automated architecture design [18]–[22], although these
techniques have very recently been surpassed by relatively
more simple evolutionary methods [23]–[26].

Real et al. [25] demonstrate evolution of image classi-
fiers using relatively few constraints. They inherit weights
between evolutionary generations for more effective training

with less wasted processing time for re-training layers of
the same shape/depth in the architecture. Their model uses a
form of tournament selection whereby an initial population
of models is trained, then individual pairs are compared
and the weaker of the pair is terminated. On the contrary,
the fitter solution of the pair is selected for reproduction to
yield an offspring solution via a mutation operation. This
offspring model is then trained and evaluated and becomes
a member of the overall population and the above process is
repeated. Mutations are chosen from a population of eleven
hand-picked operations (such as Insert-convolution, Alter-
learning-rate, and Alter-filter-size) intended to mimic the
steps a human would take when attempting to improve the
architecture. Their work could also be extended to yield
‘‘hybrid evolutionary–hand-design methods’’ in the future.

Brock et al. [27] train a ‘hypernetwork’ model to gener-
ate weights for a given architecture, in order to effectively
evaluate an architecture’s validation performance. They can
then sample architectures to obtain validation performance
estimates using the weights generated by the hypernetwork.
Once a number of architectures are generated and sampled,
they take the architecture with the best estimated validation
performance and fully train it in the usual way, in order to test
its performance on the test set.

Zoph and Le [19] use a recurrent neural network (RNN)
as a controller network to generate potential network archi-
tectures. These architectures are trained for a large num-
ber of epochs and then evaluated on a validation set to
determine a score for the child architecture. The controller
architecture is trained using policy gradients, particularly the
REINFORCE algorithm [28]. Owing to the enormous cost
of training for evaluating each child architecture, an asyn-
chronous, distributed training process is used whereby many
child architectures are trained concurrently using multiple
workers. This approach is common for current architecture
optimisation works, although it does require huge resources
not commonly available to research teams.

Negrino and Gordon [29] propose a method that allows
researchers to describe search spaces, which can then
be effectively explored using a tree-search strategy. They
demonstrate the effectiveness of Monte Carlo tree search
(MCTS) and sequential model-based optimisation (SMBO)
over random search when traversing their defined search
spaces.

Baker et al. [18] use Q-Learning to maximise the overall
expected reward by modelling architecture optimisation as
a Markov Decision Process (MDP). Their agent iteratively
selects layers to add to the architecture, until it reaches a stop-
state. Initially the agent is allowed to sample architectures
with a random walk, giving the opportunity to explore the
search space before targeted optimisation. They allow the
agent to continue this random behaviour to a certain extent,
until the end of the process, producing a number of different
models which can then be evaluated as an ensemble in order
to improve final performance.
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Besides the above, Real et al. [30] perform the first con-
trolled comparison of reinforcement learning and evolution-
ary methods for architecture optimisation and found that
‘‘regularized evolution consistently produces models with
similar or higher accuracy across a variety of contexts without
need for re-tuning parameters’’.

Wang et al. [31] proposed a method using the PSO model
to optimise architecture, with an embedding scheme derived
from IP address allocation. Unfortunately, their proposed
system was unable to effectively deal with the issue of
function-evaluation cost, whereby each particle evaluation is
prohibitively time and resource expensive when performed
as a full training-evaluation process. They implemented early
evaluation, where each individual was partially trained on the
training dataset and then evaluated on the validation set for
each fitness function evaluation. This is effective at reducing
the time required for each function evaluation, but results in
unreliable fitness scores due to the fact that each architecture
has not been trained to its full extent when evaluating and it is
impossible to know when its performance will plateau. Their
work thus showed limited capabilities to be tested on any
datasets other than the decidedly small MNIST dataset. Their
system performed favourably in comparison with the other
methods, although it is notable that they did not compare
against any key deep learning architectures, or indeed any
systems proposed in recent years.

The drawbacks of the vast majority of these works are that
they focus on the optimisation of the architecture as a distinct
search problem, and separate it from the actual training of the
model for the specific task. This results in these methods hav-
ing two distinct steps, i.e. resource-heavy optimisation, fol-
lowed by lengthy training in order to generate the model with
themost promising performance. Thismotivates the proposed
work in this research to jointly optimise and train an identified
deep learningmodel to enhance both system performance and
computational efficiency. The proposed SOBA optimisation
model also employs aweight sharingmechanism to overcome
the function-evaluation cost issue encountered by [31] and
discussed above.

B. PARTICLE SWARM OPTIMISATION
Particle Swarm Optimisation (PSO) [32] is a stochastic opti-
misation technique that relies on a population X ofm individ-
uals, each with a specific position in the search space defined
by a fixed-length vector Rn. Each position in the search
space represents a distinct set of parameters to an objective
function f . The fitness of an individual particle represents
the result of evaluating the objective function f with the
position of the particle as parameters. The goal of PSO is
to minimise or maximise the objective evaluation by finding
the best overall particle position minx f (x) or maxx f (x). The
individual particles in the population are initialised with ran-
dom positions in the search space, usually by drawing their
values from a uniform distribution U , bounded by defined
upper (bu) and lower (bl) bounds. The particles are then itera-
tively evaluated and conduct the search process by following

personal and global best solutions in order to attain global
optimality. Specifically, as the particles are moved around the
search space, the best positions found so far, along with their
fitness scores, are stored for each individual particle. These
are referred to as the ‘local best’ solutions. The best solution
of the overall swarm is referred to as the ‘global best’ solution
and indicates the best set of parameters that the algorithm has
as-yet found for the objective function. (1) & (2) denote the
velocity and position updating operations for each particle
respectively.

V t
i = wV t−1

i + c1r1(Pi − X
t−1
i )+ c2r2(Pg − X

t−1
i ) (1)

X ti = X t−1i + V t
i (2)

where c1 and c2 denote acceleration coefficients, and r1
and r2 are random vectors drawn from U (0, 1) to introduce
stochasticity. Pi and Pg represent the personal and global
best solutions respectively, with w as the inertia weight. X t−1i
and V t−1

i represent the position and velocity of the particle i
from the previous (t − 1) iteration, respectively. The process
is repeated over a defined number of iterations, or until a
stop criterion is met. The pseudo-code of the PSO model is
provided in Fig. 2.

Fig. 2. The original PSO algorithm.

The velocities of the particles are updated by using three
components, i.e. the existing velocity, the distance between
the current position and the best position of this particle so
far (local best), and the distance between the current position
and the swarm leader (global best). Each of the three main
components thus described is weighted to control the effect
it has on the resulting velocity and position updates. These
search weights take the form of w, c1, and c2, where w
controls the impact of the previous velocity, c1 controls the
effect of the local best, and c2 controls the effect of the global
best. The standard PSOmodel employs pre-determined, fixed
search weights, thereby defining the magnitude of the effect
of the previous velocity, and the local and global bests on the
resultant velocity.

The ‘No Free Lunch’ theorems [33] suggest that ‘‘if an
algorithm performs well on a certain class of problems then
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Table 1. The structure of the convolutional architecture to be optimised when applied to CIFAR-10 and CIFAR-100.

it necessarily pays for that with degraded performance on the
set of all remaining problems’’. This is widely considered
to suggest that optimisation algorithms can be necessarily
tuned towards a specific problem, without the burden of being
required to prove their general (or average) performance over
the set of all problems. Following this paradigm, many works
[34], [35] successfully focus on improving the performance
of PSO for their own specific optimisation tasks by address-
ing their unique constraints through modification of the PSO
algorithm. For example, in order to overcome premature
convergence of the original PSO model, Mirjalili et al. [35]
proposed and tested a number of ‘adaptive’ acceleration
coefficients, whereby the acceleration coefficients become a
function of the current iteration and the overall number of
iterations, resulting in search weights that change throughout
the course of the optimisation process. Intuitively, they found
that allowing the individual and social behaviours of the
particles to change, as the optimisation process approaches
global optimality, results in improved overall performance
and convergence speed. Using adaptive search weight tech-
niques therefore allows for tailoring of the search behaviour
throughout the optimisation process, in comparison with
using fixed parameters.

III. METHODOLOGY
A huge variety of strategies could be employed for swarm-
based architecture optimisation. One intuitive strategy is to
traverse through a large number of distinctive key architecture
decisions, where each individual could represent a discrete
architecture by determining distinct filter sizes, dilation fac-
tors, strides, pooling kernel size, etc. for every layer in the
network. Our initial experiments with this approach used
an R5j+2k dimensional vector to represent each architecture
where the dimensionality of the search space was (2 × 84 ×
162 × 322 × 126)j × (2 × 4096)k . Here, j and k represent
the number of convolutional layers and the number of fully-
connected layers respectively. Using our standard values for
j& k of j = 7 and k = 2, this represents an approximate total
number of discrete, potential models of∼ 7.1× 1087. Such a
search space allowed for many configurations of architecture
but proved incredibly difficult to efficiently navigate owing to
its enormous size, especially compounded by the constraints
introduced by the interactions and conflictions between the
individual scalar control values in a position vector. Many
combinations of the scalar control values could result in phys-
ically impractical architectures, which proved impossible to
create given realistic hardware constraints. This approach
thus proved unworkable, even when heavily penalising these

failures inside the optimisation process, as the model would
often resort to creating the simplest possible (unconstrained)
architecture.

A. SEARCH SPACE/OBJECTIVE FUNCTION DESIGN
We started with the idea of a simplified version of the search
space described above, by looking at existing effective convo-
lutional network designs and distilling them down into their
core components. VGG-16 [6] is a popular CNN architecture
to start with when approaching a new computer vision task
owing to its simplicity, combined with its proven effective-
ness. We construct a restricted search space around the core
concept of the VGG family of networks by taking the con-
cept of downsampling the width and height of the network,
whilst simultaneously increasing the number of feature maps
created, and build a ‘skeleton’ of blocks where each block
endswith the proposed down/up-sampling operation.We then
have a model for the gradual decrease in spatial size and
increase in number of featuremaps as the network progresses,
which we hypothesise to be the key to the success of the
network. The decrease in spatial size from the downsampling
operations can also be seen as a gradual increase in receptive
field size of the filters, beyond the usual increases, as each
subsampling operation increases the receptive field of the
next convolutional layer by condensing the feature map. For
simplicity, for all convolutional operations we use a filter size
of (3× 3) with stride (1× 1) and padding (1× 1) to maintain
the feature map sizes between convolutional layers. For each
convolutional block, we produce a number of feature maps
equal to 2ε where ε takes the values [6, 7, 8, 9] for blocks
[0, 1, 2, 3] respectively. For the downsampling layers, we use
max pooling with kernel size (2× 2) and stride (2× 2). If we
were to scale up the experiments to larger images, we would
look to add additional subsampling layers to decrease the
spatial size of the feature maps, increase receptive field sizes,
and create more tuneable blocks in our architecture. The
skeleton architecture which is used as the starting point for
the deep CNN evolution can be seen in Fig. 3, with further
detail in Table 1.

Next, we define a method for mapping a vector of integers
to a full convolutional architecture by ‘stacking’ layers in
each block, according to the value in the specific index of
the architecture vector. In this way, we can explore an n
dimensional space, where n represents the number of tune-
able blocks in our architecture. We then frame the task of
generating the architecture of a model as a minimisation
of an objective function f (x) (defined in Fig. 4), where x
represents an abstraction of network architecture into a single
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Fig. 3. The skeleton architecture used in the proposed system.

point in the navigable multi-dimensional search space and
f (x) represents the error rate of the model when evaluated on
the validation set. This involves discovering the optimal value
of x which produces the minimal error rate when evaluated

using the fitness function, as shown by (3).

argmin
x

f (x) = {x | x ∈ S ∧ ∀y ∈ S : f (y) ≥ f (x)} (3)

where,

S ⊂ Nn
| ∀x ∈ S : 0 ≤ {x0, . . . , xn−1} < 10 (4)

in actual fact, we explore the search space using,

S ⊂ Rn
| ∀x ∈ S : 0 ≤ {x0, . . . , xn−1} < 10 (5)

and rely on the implicit integer-cast to function as a form
of regularisation by only allowing large, or multiple small,
movements to modify the structure, similar to the approach
taken by [25]. We do this by min-max scaling the position
values into our desired range and then converting into integers
representing the number of layers to add to each block. This
is simply performed by multiplying each position value by
the upper bound of the range, as we use the values 0 and 1 as
the lower and upper bounds for optimisation respectively. In
order to optimise the objective function, we use the previously
described evolutionary optimisation technique, i.e. the pro-
posed adaptive PSO model, to efficiently explore the search
space defined by our objective function.

B. ENHANCED PARTICLE SWARM OPTIMISATION
We propose an enhanced PSO model for optimal deep CNN
model generation. It considers each individual architecture
in the search space as a position in an n-dimensional space
where n represents the number of distinct blocks in our
skeleton architecture. Instead of using fixed acceleration
coefficients as in the original PSO model, adaptive search
parameters based on linear and non-linear functions are pro-
posed. Four new strategies have been applied for the coeffi-
cient generation: (1) linear functions with an equal crossover
in the centre, (2) cosine functions with an equal crossover in
the centre, (3) cosine functions with a later crossover, and
(4) cosine functions with no crossover. These strategies are
described in further detail in Section III-D.

We start by initialising a population of m individual
particles as random positions in the search space, where
each dimension in each particle is drawn from a uniform
distribution:

X = U(bl, bu) (6)

where bl and bu are the lower and upper boundaries of the
search space, respectively. We then initialise the velocities of
each of the particles:

Vi = U(vmin, vmax) (7)

where,

vmax = λ(bu − bl)

vmin = −vmax (8)

and we use a value of 0.2 for λ in all experiments based on
best practice.
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Fig. 4. The bespoke objective function to be optimised.

Once the swarm has been initialised, the optimisation pro-
cess can begin. It starts with updating the inertia weight
and both acceleration coefficients according to the specific
strategies chosen. Next, each particle Xi is processed with
the following steps. First, the velocity of the particle is
updated using the search weights and the distances between
the current position and the local and global best positions
as defined in (1). Using the velocity, the new position of
the particle is calculated based on the previous position as
illustrated in (2). The fitness of the particle is evaluated using
the objective function provided in Fig. 4. The fitness score of
Xi is compared against those of the previous personal best
position Pi and the global best solution, respectively. The
local best position is updated according to (9).

Pi =

{
Xi, if f (Xi) < f (Pi)
Pi, otherwise

(9)

Whilst the global best is similarly updated according to (10).

G =

argmin
Pi

f (Pi), if min
f (Pi)

< f (G)

G, otherwise
(10)

In practice, in order to avoid unnecessary overhead we store
the fitness values for each evaluation for the score compar-
isons, rather than re-calculating the fitness for each updated
particle position. This process then repeats over all particles,
and all iterations, until a certain stop criterion has been
met, i.e. the maximum number of iterations. Once the iter-
ations have completed, the final output of the system is the
global best position G and its fitness value f (G), represent-
ing the best arguments to minimise the objective function
(argmin x f (x)) and the fitness value respectively. As men-
tioned earlier, Section III-D outlines several linear and cosine
annealing mechanisms that are proposed for adaptive accel-
eration coefficient generation in the proposed PSO model
to enable the search to balance well between local exploita-
tion and global exploration. Fig. 5 demonstrates the pro-
posed, customised PSO, with Fig. 4 comprising our bespoke
objective function. In comparison with [31], we also employ

weight sharing strategies to overcome the function-evaluation
cost constraints, which are introduced below.

Fig. 5. The proposed PSO model with adaptive acceleration coefficients.

C. CONTINUAL TRAINING/PARAMETER SHARING
Due to the nature of our fitness function, evaluating fully
for each particle requires inhibitive amounts of time and
resources as each architecture must be trained and validated
to obtain a fitness score. We reconcile this constraint through
the use of early evaluation of the function on the validation
set, similar to the approach used by [31]. However, using
early evaluation solely does not provide a realistic view of
the performance of the particle, as an architecture may train
very successfully initially but later plateau before reaching
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an acceptable level of accuracy. In contrast to [31], we addi-
tionally use a form of parameter sharing, allowing new archi-
tectures to inherit the weights from previous particles when
performing their fitness function evaluations. This allows
the architectures to train alongside the optimisation process,
with each block keeping track of its own weights. In this
way, the fitness function evaluations are representative of the
performance of the individual particles at all stages of the
optimisation process, as their training progresses and perfor-
mance increases throughout. Real et al. [25] implemented
weight inheritance as a feature of the inheritance process of
their GA, allowing weights for layers with matching shapes
to be inherited, or not depending on the specific mutation.
We take this a step further by considering weight sharing
as a means of continually training all of the models jointly.
This continual training allows us to consider the optimisation
process as the bulk of the training of the final model, with
the fitness function evaluations becoming more accurate as
training progresses and the shared weights are trained. This
allows us to quickly navigate the search space, following the
path that leads to the greatest performance increases as we
go. We combine this approach with a previously mentioned
annealing strategy applied to the PSO search weights. These
adaptive search parameters in PSO enable the search to favour
local exploitation in early iterations and global exploration
in final iterations. In this way we ensure that we avoid pre-
maturely optimising to a local minimum before the possible
architectures have been trained for a reasonable number of
iterations. Without this strategy, it is likely that the large
improvements in error rate that can be seen with the first
few training iterations would result in a rapid clustering of all
of the particles into one area after following the global best
solution.

We jointly train the population of continually evolving
network architectures bymaintaining a lookup table of convo-
lutional filter parameters and fully-connected layer weights.
The lookup table consists of a simple key-value store, where
the key takes the form of a string concatenation of the integer
block number in the architecture, with the integer size of
the block (i.e. the number of layers in the block minus 1;
zero indicates a single layer) separated by a period. A key
thus takes the form ‘ψ.(ω − 1)’ where ψ is the specific
number of the block in the skeleton architecture, and ω is
the number of layers in the block. Each value in our key-
value store is itself a smaller key-value store, consisting of
two key-value pairs, i.e. the best performing parameters, and
the last used parameters, for each distinct block & size. This
allows us to check if a specific block has been constructed
to a certain size before, and inherit the weights of that block,
thereby gradually training the individual blocks as we explore
the architecture search space. Initially we experimented with
storing the best performing weights for each particle position
& block size (with the error-rate of the model as performance
indicator). This approach has the downside of limiting the
exploration of the model since it ensures that any training
run that does not increase performance by the end of the run

will be discarded, in favour of the original parameters. The
model is then limited in its exploration capability. To alleviate
this issue, we also store the last known weights of each block
number & size. We can then choose whether to continue with
the last known weights, or to select the best seen so far. We
control the selection of existing parameters through a weight
value β which controls how likely we are to select the best
weights over the last known weights by comparing with a
random value between 0 and 1. This process can be seen
in Fig. 6.

Fig. 6. The weighted parameter lookup function.

We experimented with a number of strategies for β. Ini-
tially we chose to always use the best weights that have been
seen before for each block when performing the inheritance
process. However, as previously described, this led to a cycle
of limited exploration, whereby a model would become stuck
repeatedly retraining parameters but never achieving a better
validation score, therefore discarding its progress. Next we
experimented with a fixed 50:50 chance of inheritance from
best or last, allowing for exploration but also promoting
superior results with an even chance. We found this approach
to perform better than just using the best results but we still
hypothesised that there would be a superior approach. We
then implemented an annealing schedule for β, in order to
allow the chance of inheriting from best, rather than last,
to gradually increase from 0% to 100%. This schedule can
be seen in (11).

β = 1+
cos(π (1− φ

8
))

2
(11)

where φ and 8 represent the current and total number of
fitness function evaluations respectively.8 can be calculated
by m + m × T , where m represents the swarm population
and T represents the number of iterations for the optimisa-
tion algorithm. Finally, we experimented with only using the
last values stored for each block, regardless of their fitness
value. Surprisingly, we found this approach to be the most
performant, which led to its subsequent use in all following
experiments. The four main techniques that were tested can
be seen in Fig. 7 and the experimental results can be seen in
Table 2. When storing the weights for a specific block in the
architecture, we transfer theweight tensors into RAM in order
to save the on-board GPU memory for larger batch sizes and
larger potential network architectures.

Once our optimisation process has concluded, we need to
finalise the model for testing. In related work, this is usually
performed by discarding any parameters learned during the
optimisation process, taking the best architecture discovered,
and training it completely from scratch. We use a different
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Fig. 7. The different weighting strategies for parameter lookup table
access (β for the lookup function) against the number of fitness function
evaluations (φ).

Table 2. Error Rates (%) for Different Weight Lookup β Strategies.

approach in order to combine the optimisation process with
the final model training, so as not to waste the training
progress thus far. We construct a fine-tuning dataset from the
previous training and validation sets by combining them into
one large training dataset.We then fine-tune the best perform-
ing model from the optimisation process on this dataset for
a small number of epochs in order to alleviate the effect of
any overfitting introduced by the optimisation process. Once
we have completed our fine-tuning on the larger training set,
we are able to test the model on the test set and report the
final results of the model without re-creating or re-training
the model after the optimisation process.

D. ADAPTIVE PSO SEARCH WEIGHTS
Using the process outlined above, we are able to effectively
explore our constructed search space in reasonable time
using the proposed PSO model. In the original PSO model,
the search weights for cognitive and social components are
fixed when updating the velocity of each particle, which is
then used to update the position. Specifically, the coefficients
are set to give fixed weightings to both the local and global
best solutions for each particle when performing the update.
Our continual training method means that initially, we expect
to see large gains no matter where a particle moves, owing to
the initial training of the networks up to a reasonable level
of performance. Because of this, it is desirable that each
particle can be allowed to explore its own space initially,
rather thanmove towards the global best. This will ensure that
the particles perform useful exploration in these initial stages,
by moving towards the area with the greatest improvements
around themselves.We can ensure that this happens by setting
the ratio between the local search weight and the global
search weight to a high value. This could be achieved by
setting the local search weight to a fixed, high value and

the global search weight to a fixed, low value. However,
later in the training process, we expect that the performance
gains from each iteration will slow down significantly, as the
networks come closer to achieving their optimal performance.
At this point, it is desirable that we obtain the best performing,
single network from the population of individuals. It follows
then, that rather than allowing the particles to explore around
their own space, it would be beneficial to exploit one of the
key functions of PSO, by allowing the particles’ positions
to trend towards the position of the best performing particle,
in the hopes that they can explore together around the position
and achieve even better performance. At this later iteration
stage, we would like the previously described ratio between
local and global search weights to reverse, promoting a high
ratio of global to local. This means that a fixed ratio for the
whole optimisation process is less than ideal, as this reversal
process cannot happen. In order to achieve the above, desired
outcome for the search weight strategy and overcome the pre-
mature convergence of the original PSO model, we explored
the concept of adaptive acceleration coefficients, where the
search weights can change depending on the current iteration
number.

Motivated by [35], several adaptive acceleration coeffi-
cient generation schemes are subsequently explored in this
research. Fig. 8 shows the explored mechanisms for coef-
ficient generation, i.e. (1) fixed acceleration coefficients in
Fig. 8(a), as the baseline where c1 = c2 = 0.9 and w =
0.6; (2) a linear AGPSO1 schedule borrowed from [35] (in
Fig. 8(b)), as another baseline; (3) a proposed linear crossover
function in Fig. 8(c); and (4)-(6) proposed nonlinear cosine
annealing schedules with equal, late, and no crossover in
Fig. 8(d), Fig. 8(e), and Fig. 8(f) respectively. The above
adaptive search strategies are employed with the goal of
allowing the particles to explore in their local search space
initially, so as not to prematurely head towards the global
best during the initial training stages. This could happen due
to the large increases in accuracy that are present in the ini-
tial training steps of a convolutional architecture, combined
with our continual training method. We found that maintain-
ing a reasonably high level of local exploration during the
optimisation process was effective to allow the particles to
efficiently cover the search space, as can be seen in Fig. 9
as well as Fig. 10 (with detailed explanation provided later
in this section). The proposed linear and nonlinear adap-
tive search weight functions are provided in (12) and (14),
respectively. Fig. 11 shows the pseudo-code for the overall
adaptive acceleration coefficient generation function, with
the accompanying graphs in Fig. 8. First of all, the proposed
linear coefficient generation function is defined in (12):

c1 = Q−
t
T
(Q− q)

c2 = q+
t
T
(Q− q) (12)

where t refers to the current iteration number, T refers to the
total number of iterations to be performed for the optimisation
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Fig. 8. PSO search weights by iteration. (a) Original PSO (fixed). (b) AGPSO1. (c) Linear. (d) Cosine Equal Crossover. (e) Cosine Late
Crossover. (f) Cosine No Crossover.

run, q refers to the lower bound for the search weight, and Q
refers to the upper bound for the search weight. A baseline
adaptive weight generation strategy of AGPSO1 from [35] is
defined below:

c1 = t
1
T
+ 1.25

c2 = t
−2.05
T
+ 2.55 (13)

Motivated by (13), in order to adapt the weights more gently
towards the extreme values, a smoother annealing schedule is
proposed in this research, based on the cosine function. (14)
denotes the proposed cosine search weights and variants:

c1 = q+
Q− q
2

cos(π (1−
t
T
))+ 1

c2 = q+
Q− q
2

cos(π
t
T
)+ 1 (14)

where the variants are created by choosing different values for
q and Q for c1 and c2. The Cosine Equal Crossover variant
(Fig. 8(d)) is created using q = 0.5, Q = 2.5 for both

c1 and c2. The Cosine Late Crossover variant (Fig. 8(e)) is
created using q = 1.5, Q = 2.5 for c1 and q = 0.5, Q = 2.5
for c2. The Cosine No Crossover variant (Fig. 8(f)) is created
using q = 2.0, Q = 2.5 for c1 and q = 0.5, Q = 2.5 for c2.
As mentioned above, Fig. 11 shows the pseudo-code of

the adaptive weight generation over iterations, which are then
used to update the velocities of the particles using (1).

With fixed search weights, the behaviour of particles with
respect to local or global exploration remains the same
throughout the optimisation process, favouring whichever
is given a higher weighting, or neither if they are equally
weighted. Using an annealing schedule allows us to intro-
duce different search behaviour trends on local and global
exploration that evolve over the course of the optimisation.
Specificallywe utilise this for the linear, AGPSO1, and cosine
schedules to initially favour local exploration around each
particle’s own best position, and gradually trend towards
focusing on global exploration, towards the best particle
position found so far. We do this to prevent our particles
from quickly abandoning their local search space in favour
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Fig. 9. Example particle movements over time (PCA for dimensionality
reduction to display particle positions on two axes). (a) All Particle
Positions. (b) Last Particle Positions. (c) Local Best Positions. (d) Last Local
Best Positions. (e) Global Best Positions. (f) Last Global Best Positions.

Table 3. Error rates (%) for different search weight strategies.

of pursuing the best position, and thereby all becoming stuck
in the same local minima. Fig. 10 demonstrates the effects
of the late crossover cosine search weight strategy on the
local bests of each particle and the overall global best. The
x and y axes represent the particle positions projected into
two-dimensional space using Principal Component Analysis
(PCA). The z axis represents the fitness value for the particle
after being evaluated on the validation set. Fig. 10(a) shows
how initially the particles explore their own space, improving
their fitness scores but not converging on a single location,
as well as how they begin to converge on the x and y axes later
as the search weights begin to favour following the global
best. This can also be seen in the positions of the local and
global bests in Fig. 10(b) and Fig. 10(c), which eventually
converge around a single point after gradually narrowing
focus and improving fitness scores.

The test results for the different strategies for adaptive
coefficient generation can be seen in Table 3.

Fig. 10. Example local and global best positions over time (PCA for
dimensionality reduction to display particle positions on two axes).
(a) Local best positions & their fitness scores by iteration for all
50 particles (point indicates start position). (b) All local & global best
positions & their fitness scores. (c) Global best positions & their fitness
scores.

E. HYPERPARAMETERS
Weuse the excellent PyTorch library [36] for all deep learning
implementation and training. Each particle fitness function
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Fig. 11. The function for the generation of adaptive PSO search weights.

evaluation involves creating a full CNN architecture from
the particle representation, training the CNN using stochastic
gradient descent with backpropagation, and evaluating the
CNN on the validation set to determine its fitness score.
Treating the CNN training as a ‘black box’ like this means
that our method could be generalised to other deep learning
tasks, where the fitness function could be modified to train
a different type of network without having to modify the
PSO system. We train each individual CNN model using
stochastic gradient descent (SGD)with a nesterovmomentum
factor [37], [38] of 0.9, and weight decay (L2 regularisation)
of 1e-4, on minibatches of size 256 for one epoch per fitness
function evaluation. The proposed PSO swarm optimisation
is performed using a population size of 50 individual particles
with a maximum number of iterations of 100.

1) LEARNING RATE
In this research, we also experimented with a number of
different approaches for the learning rate schedule in order to
find the best mechanism for our combined optimisation and
training process. We started with (1) simple scheduled learn-
ing rate decay at certain points in the optimisation/training
process using (15),

αφ =

{
γαφ−1, if φ = 50 or φ = 75
αφ−1, otherwise

(15)

where γ was set to 10−1 and the initial learning rate was also
set to 10−1. This approach was reasonably effective.

Motivated by [39] and [40], we experimented with (2)
cyclic learning rates, which proved effective owing to the fast
initial convergence, allowing the shared parameters to quickly
become effective. Huang et al. [39] use a cyclical learning
rate to repeatedly train a network to an acceptable level of
performance, then store a snapshot of the model in that state.
These snapshots are then combined into an ensemble model
in a manner similar to gradient boosting, to achieve enhanced
performance. They construct an ensemble by ‘snapshotting’
the parameter weights after each cycle of the learning rate,
although we found it effective to simply train our models
with shared parameters using the cyclic learning rate without
snapshotting. The cyclic learning rate that we used in our
experiments can be seen in (16).

αφ =
α0

2
(cos(

πmod(φ − 1, d8/Me)
d8/Me

)+ 1) (16)

whereM represents the number of cycles, which was set to 5
in our experiments.

Our final approach for the learning rate was to simply
use (3) cosine annealing to decrease the learning rate over
a defined interval, throughout the optimisation process. This
was performed using (17),

αφ = b+
a− b
2

cos(π
φ

8
)+ 1 (17)

where a and b represent the initial and final learning rate
values respectively, for the interval. We found this approach
works best for our combined optimisation and training pro-
cess, with values of 10−1 and 10−4 for a and b respectively.
Therefore, all of the following reported results use this strat-
egy. We also used this decay strategy for the fine-tuning
portion of the model training, using values of 10−4 and 10−7

for a and b respectively. A visualisation of the three different
learning rate schedules can be seen in Fig. 12.

2) FINE-TUNING
As previously mentioned, the usual method for evaluating
architecture optimisation systems is to separate out the opti-
misation process from the final model training process. Con-
trary to this approach, we evaluate our optimisation process
by integrating it into the training process for the final model
to be tested. Once the optimisation process has completed,
we then fine-tune the best performing model on a combined
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Table 4. Aggregate performance measures on the CIFAR-10 test set.

Fig. 12. Learning rate by iteration.

training set consisting of the training and validation sets
together for a small number of epochs. In this way the training
of the final network is embedded in the optimisation process,
meaning the architecture design and training are performed
as one task. By using this approach we couple the archi-
tecture design and training processes together and remove
some of the high barrier-to-entry for building CNNs for new
problems. The finetuning process is performed for 10 epochs
and uses SGD with a nesterov momentum factor of 0.9, and
weight decay (L2 regularisation) of 1e-4, on minibatches of
size 256 with a cosine annealing learning rate schedule over
an interval of a = 10−4 and b = 10−7.

IV. EVALUATION
The well known CIFAR-10 and CIFAR-100 datasets [7] are
used to evaluate the proposed SOBA model.

The CIFAR-10 dataset consists of 60,000 images equally
split over 10 classes (6,000 per class). The dataset divides into
50,000 training images and 10,000 test images. For our exper-
iments we further divided the 50,000 training images into
45,000 training and 5,000 validation, whereby the validation
set was used to generate the fitness scores for each function
evaluation in the optimisation process. Fig. 13(a) shows a
confusion plot generated from the pre-fine-tuning test on
the CIFAR-10 dataset, whilst (18) shows the raw confusion
matrix.

933 0 119 24 4 819 6 20 12 2
18 15 2 4 0 1 0 0 965 947
0 1 0 0 0 0 0 0 0 4
1 963 30 94 22 122 990 4 8 17
0 0 0 0 0 0 0 0 0 0
12 21 834 15 14 6 1 20 9 12
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
32 0 5 846 7 39 1 19 6 16
4 0 10 17 953 13 2 937 0 2


(18)

This test was not used to influence the fine-tuning in any way.
It was simply performed in order to demonstrate the effect
of fine-tuning on the classification performance. Fig. 13(b)
shows the confusion plot generated after fine-tuning, with
(19) showing the accompanying raw confusion matrix.

965 1 7 6 3 2 3 4 16 4
1 979 0 1 0 0 0 0 5 22
13 0 934 18 8 9 8 4 5 1
2 0 14 878 9 41 8 8 2 1
1 1 15 16 966 12 3 12 0 0
0 0 13 64 8 930 1 9 0 1
1 0 10 7 2 3 975 1 0 0
0 0 3 5 3 2 2 961 0 0
16 3 3 4 1 1 0 0 968 5
1 16 1 1 0 0 0 1 4 966


(19)

Table 4 shows aggregate statistics for the CIFAR-10 test runs
before the fine-tuning process and after. It is clear that the
fine-tuning process is effective in reversing the overfitting
on the training set and allows the model to generalise to
greatly improved performance on the test set. This fast, effec-
tive generalisation is owing to the robustness of the weights
learned through our combined optimisation and training pro-
cess, as each block in the architecture is trained to be globally
optimal for all potential surrounding configurations, rather
than one single, fragile configuration. It is also interesting to
note that after fine-tuning, the areas that the model seems to
struggle, namely the intersections of cat-dog, ship-airplane,
and truck-automobile, are areas that intuitively would also
prove difficult to a human classifying the images by hand.

The CIFAR-100 dataset consists of the same number of
images but split over 100 classes, each of which belongs
to one of twenty ‘superclasses’. Each class has 500 training
images and 100 testing images, resulting in the same training-
testing split as that of CIFAR-10 (50,000 vs 10,000 respec-
tively). As with CIFAR-10, we further split the training
images into 45,000 training and 5,000 validation for CIFAR-
100, and the validation images are used to generate the model
fitness after each optimisation function evaluation.

Fig. 14 shows some analysis of the lookup table follow-
ing the final access during the optimisation/training process.
Each line represents a different block in the architecture, with
the number of layers in the block displayed along the x axis.
The y axis shows the lowest error rate achieved by any particle
with that configuration of block in its architecture (although
the other blocks could be in any configuration). It is clear
from the CIFAR-10 experiment (Fig. 14(a)) that the system
tends to prefer more depth in the initial blocks, whilst the
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Fig. 13. Confusion plots for CIFAR-10 test results. (a) Pre-Finetuning.
(b) Post-Finetuning.

feature maps are larger and the receptive field is smaller, and
more shallow blocks later in the network, especially when it
comes to the fully connected layers. This becomes drastically
more pronounced in the CIFAR-100 experiment (Fig. 14(b))
when the number of output classes is increased by an order
of magnitude and the same pattern can still be seen.

We have also compared our model with related research as
illustrated in Table 5. The first section of the table contains
traditional, hand-crafted architectures, the second section
contains reinforcement learning (RL) techniques, the third
section contains evolutionary techniques, and the final section
contains our proposed model. In comparison with most of

Fig. 14. The best validation error rates achieved for each individual block
during the optimisation process, from the final lookup table. (a) CIFAR-10.
(b) CIFAR-100.

the existing studies, our proposed model achieves the best
trade-off between performance and computational efficiency.
As an example, [25], [26], and [19] used 200, 250, and
800 GPUs with 36, 264, and 672 processing hours respec-
tively, but in some cases the performance enhancement was
marginal. Whilst these works did allow for more variation in
the proposed architectures, they are also inaccessible to the
average user due to the enormous cost. They also require re-
training from scratch for the eventually discovered architec-
tures, whilst our method provides optimisation and training in
one process, quickly delivering an effective, trained network.
In addition, we also compare against hand-designed methods
[6], [9], [41], and [42], where our method creates archi-
tectures that are most similar to [6]. However, we achieve
much improved results using our combined optimisation and
training strategy and the enhanced PSOmodel to generate and
train the models. This improvement comes not only from the
optimised network topology itself, but also from the robust-
ness of the parameters in our network, as each block is trained
to its optimal performance regardless of the configuration
of the blocks surrounding it, ensuring that we do not train
to fragile local minima. Networks such as VGG-16 [6] are
likely to train to local minima as the structure of the network
never changes during the training process. The integration of
an overall optimisation process in SOBA ensures that even
as the structure of the network changes, we still strive for
the global minimum, thereby avoiding the local minima as
they disappear and reappear. This robustness of weights is
ideal for transfer learning as the network is already able to
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Table 5. Classification error rates (%) for the proposed SOBA model and other related studies.

deal very effectively with changes in surrounding structure,
so adding or removing layers will not disrupt the performance
greatly.

V. CONCLUSION
In this research we have presented an enhanced PSO model
with adaptive search weights and weight sharing for optimis-
ing the architecture of deep image classification networks.
Our model starts with a hand-crafted skeleton architecture
and quickly explores our constructed search space by con-
currently training multiple architectures, using a weighted
lookup table of trained parameters. This allows us to optimise
the architecture of CNNs quickly and effectively, without
having to fully train and validate each architecture from
scratch, which is prohibitively expensive. We demonstrate
results on CIFAR-10 and CIFAR-100, with comparison to
other recent architecture optimisation studies. As illustrated
in Table 5, our proposed model is among the top perform-
ers and has significantly lower computational and hardware
requirements than those of other methods, even with our
method of training and optimising all-in-one, with no sepa-
ration between the optimisation and training of the final test
architecture.

For future work, we intend to explore adding residual
connections [9] to the architecture search space, in order to
investigate the differences on the performance of the search
methods. We intend to expand our formulation of the search
space to treat the network structure as a Directed Acyclic
Graph, rather than a simple hierarchical structure. We also
intend to compare the performance of our enhanced PSO
method with other, similar optimisation techniques inside
our SOBA model on a wider variety of datasets, including
transfer learning tasks such as facial emotion recognition,
image description generation, and visual question generation.
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