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ABSTRACT This paper focuses on the range migration (RM) and Doppler frequency migration corrections
of the long-time coherent integration, and a fast algorithm is proposed for maneuvering target detection
and motion parameters estimation under a low signal-to-noise ratio (SNR). By utilizing the autocorrelation
function with respect to the slow time, the newly defined extended keystone transform, scaled Fourier
transform, and fast Fourier transform (FFT), the proposed algorithm coherently integrates the target energy
into a peak in a three-dimensional (3-D) parameter space. Thereafter, the target’s radial velocity and
acceleration are estimated by the peak’s coordinate. After compensating off the RM and DFM via the
estimated motion parameters, the inverse FFT along the range frequency and azimuth FFT are used to realize
the coherent integration for the target detection. The cross term characteristic is also analyzed and shows the
applicability of the proposed algorithm in the scenario of multiple targets. Comparisons with representative
algorithms in the computational complexity, motion parameters estimation, and target detection are presented
in this paper, which leads us to conclude that the proposed algorithm can greatly reduce the computational
complexity with an acceptable integration SNR gain loss. Finally, the experiments with the simulated and
real measured radar data are conducted to verify the proposed algorithm.

INDEX TERMS Long-time coherent integration, maneuvering target, range migration, Doppler frequency
migration, extended keystone transform.

I. INTRODUCTION
Target detection and motion parameters estimation are main
applications of radar, which have received wide attention in
the past decades [1]–[3]. The conventional pulse compres-
sion and Doppler processing method [1] is usually used, and
achieves a good performance under the assumption that the
target moves with a constant velocity and stays in the same
range cell within the integration time. With the development
of science and technology, especially the stealth technology,
the target’s radar cross section (RCS) becomes lower and
lower. In order to improve the signal-to-noise ratio (SNR)
without any changes of radar systems, the long-time coherent

integration technique [4], [5] is developed. It can signifi-
cantly improve the radar detection and motion parameters
estimation under a low SNR. However, the long-time coher-
ent integration faces two challenges: 1) the target may not
remain within the same range cell during a long integration
time, i.e., the range migration (RM) happens; 2) the nonlinear
motions (i.e., acceleration, jerk, and so on) result in a time-
varying Doppler frequency, and when the Doppler frequency
change exceeds a Doppler resolution, the Doppler frequency
migration (DFM) happens. The RM and DFMmake the echo
energy smear in the range-Doppler domain [6]. Therefore,
the RM and DFM should be compensated for maneuvering
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target detection and motion parameters estimation under the
long-time coherent integration.

The keystone transform (KT)-based method [7]–[13] and
Radon transform (RT)-based method [14]–[18] are typical
methods for the RM correction. The KT can blindly correct
the linear RM induced by the target’s velocity via scaling
the slow time with the range frequency [7], [8]. The second-
order KT (SKT) [9], [10] is proposed to blindly eliminate the
range curvature (quadratic RM induced by the target’s accel-
eration). The Doppler KT [11] and generalized KT [12] are
improved versions of theKT,which are developed for specific
applications. The current studies of the KT-based method
mainly aim to resolve 1) the unknownDoppler ambiguity, and
2) the Doppler spectrum spanningmore than one pulse repeti-
tion frequency (PRF) band. TheRT-basedmethod corrects the
RM via the ergodic searching in the motion parameter space.
When the target’s motion parameters are matched by the
searching parameters, the RMwould be corrected. The Radon
Fourier transform (RFT) [14], generalized RFT (GRFT) [15],
Radon fractional Fourier transform (RFrFT) [16], Radon Lv’s
distribution (RLVD) [17] and Radon-linear canonical ambi-
guity function [18] all use the RT-based method to correct the
RM. The current studies of the RT-based method mainly aim
to resolve 1) the blind speed sidelobe (BSSL), and 2) the high
computational cost. Aiming at challenges of the KT-based
method and RT-based method, the adjacent cross correla-
tion function (ACCF) -based method [19]–[21] is developed.
Unfortunately, the ACCF operation has a high demand on
the input SNR. The scaled inverse Fourier transform (SIFT)-
based method [22] and frequency domain deramp KT -based
method [23] can balance the computational cost and anti-
noise performance. However, they are only applicable for the
target with a constant velocity.

The DFMof themaneuvering target is induced by the high-
order motion, i.e., acceleration. According to the Weierstrass
approximation principle [16], the echoes of the maneuvering
target along the azimuth can be approximated by the linear
frequency modulated (LFM) signal. Therefore, the parameter
estimation methods for the LFM signal can be used for the
DFM compensation [24]–[26]. The SKT-FRFT [27], second-
orderWigner-Ville distribution (SoWVD)-basedmethod [13]
and improved axis rotation fractional Fourier transform [28]
are all based on the parameter estimation methods for the
LFM signal. It is noted that, besides the DFM, the accelera-
tion also induces the quadratic RM. Therefore, the quadratic
RM and DFM usually need to be considered and compen-
sated simultaneously for the detection and motion parameters
estimation, especially in the radar with a large band-
width. The GRFT, RFrFT and RLVD are based on this
kind of principle to compensate the DFM. Unfortunately,
these algorithms need the three-dimensional (3-D) ergodic
searching.

To correct the RM and DFM with a lower computational
complexity, a novel algorithm basing on extended KT (EKT)
is proposed for the maneuvering target under a low SNR. This
algorithm firstly coherently integrates the target energy into

a peak in a 3-D parameter space and completes estimations
of the target’s radial velocity and acceleration. Thereafter,
compensating off the RM and DFM via the estimated motion
parameters, we use the inverse FFT (IFFT) along the range
frequency and azimuth FFT to realize the coherent integra-
tion for the target detection. The computational complexity,
motion parameters estimation and target detection perfor-
mance of the proposed method are analyzed and compared
with several typical algorithms. Mathematical conclusions
and numerical simulations demonstrate that the proposed
algorithm can greatly reduce the computational complexity
with an acceptable integration SNR gain loss. The real mea-
sured radar data is also conducted to verify the proposed
algorithm.

The rest of this paper is organized as follows. The sig-
nal model for the accelerating target is built in Section II.
In Section III, the proposed algorithm in single target
and multiple targets scenarios are discussed separately, and
several examples are presented. Section IV analyzes the per-
formances of the proposed algorithm including: the compu-
tational complexity, motion parameters estimation and target
detection performances, and comparisons are also performed.
Some experiments with the simulated and real data are carried
out to verify the proposed algorithm in Section V. Finally,
we draw the conclusion in Section VI.

II. SIGNAL MODEL FOR MANEUVERING TARGET
Suppose the radar transmits the LFM signal pulse [15], which
takes the form

st (t) = rect
(
t
Tp

)
exp

[
j
(
2π fct + πγ t2

)]
(1)

where t represents the fast time, i.e., the intra-pulse sam-

pling time. rect
(
t/Tp

)
=

{
1, |t| ≤ Tp/2
0, |t| > Tp/2

is a rectangular

pulse with the width Tp · fc denotes the carrier frequency.
γ = B/Tp is the frequency modulation rate and B is the signal
bandwidth.

Consider a monostatic radar, where the transmitter and
receiver are at the same location. Assume that K targets are
in the radar field of view. The received signals from K targets
can be modeled as

Sr (t, tn) =
K∑
k=1

ρ0k rect
(
t − τk
Tp

)
× exp

[
j2π fc (t − τk)+ jπγ (t − τk)2

]
(2)

where ρ0k denotes the kth target backscatter coefficient n is
the pulse number and tn represents the slow time i.e., the
inter-pulse sampling time. τk = 2rk (tn)/c is the time delay
of the kth target. c is the speed of the electromagnetic wave
and rk (tn) denotes the instantaneous slant range between the
radar platform and the kth target.
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After demodulation with the reference signal
exp (−j2π fct), the baseband echoes are of the form

Sr (t, tn) =
K∑
k=1

ρ0k rect

[
t − 2rk (tn)

/
c

Tp

]

× exp

{
−j2π

2rk (tn)
λ
+ jπγ

[
t −

2rk (tn)
c

]2}
(3)

where λ = c
/
fc denotes the wavelength.

Performing the pulse compression, we get

Sc (t, tn) =
K∑
k=1

ρcksinc

×

{
B
[
t −

2rk (tn)
c

]}
exp

[
−j2π

2rk (tn)
λ

]
(4)

where ρck denotes the kth target amplitude after the pulse
compression sinc (x) = sin (πx)

/
πx denotes the sinc

function.
According to theWeierstrass approximation principle [16],

rk (tn) can be approximated by a polynomial function with
respect to the slow timewithin a finite coherent time. Neglect-
ing the higher order motions than acceleration, rk (tn) can be
given as

rk (tn) = rk + vk tn + ak t2n
/
2 (5)

where rk ,vk , and ak denote the kth target’s initial range, radial
velocity and acceleration, respectively.

Substituting (5) into (4), we have

Sc (t, tn) =
K∑
k=1

ρcksinc

{
B

[
t −

2
(
rk + vk tn + ak t2n

/
2
)

c

]}

× exp

[
−j2π

2
(
rk + vk tn + ak t2n

/
2
)

λ

]
(6)

For the high-speed target, the Doppler ambiguity may
occur [14], [16], and therefore, the radial velocity of the kth
target can be rewritten as

vk = Mkvam + v0k (7)

whereMk denotes the kth target’s Doppler ambiguity integer
vam = λ · PRF

/
2 is the blind speed. v0k denotes the kth

target’s ambiguous velocity.
Upon inserting exp

(
−j4πMkvamtn

/
λ
)
= 1 and (7) into

(6), the echoes become

Sc (t, tn) =
K∑
k=1

ρcksinc

{
B

[
t −

2
(
rk + vk tn + ak t2n

/
2
)

c

]}

× exp
(
−j4π

v0k tn
λ

)
× exp

(
−j4π fc

rk + ak t2n
/
2

c

)
(8)

As shown in (8), the phase and envelop of the trans-
mitting signal are both modulated by the target’s motions.

The sinc function of (8) indicates that the target’s motions
lead to the envelope shift (i.e., RM). Although the Doppler
frequency induced by the target’s radial velocity is constant,
the target’s radial acceleration causes a linearly time-varying
Doppler frequency (i.e., linear DFM) as shown in the second
exponential term of (8). Therefore, to guarantee the coherent
integration, the RM and DFM corrections must be done.

III. MANEUVERING TARGET DETECTION AND MOTION
PARAMETERS ESTIMATION VIA THE
PROPOSED METHOD
In what follows, a novel method is proposed for maneuvering
target detection and motion parameters estimation, which can
correct the RM and DFM, and realize the coherent integration
Taking the Fourier transform (FT) of (8) with respect to the
fast time yields

S (fr , tn) =
K∑
k=1

ρk rect
(
fr
B

)
exp

(
−j4π

v0k tn
λ

)
× exp

(
−j4π fr

vk tn
c

)
× exp

[
−j4π (fc + fr )

rk + ak t2n
/
2

c

]
(9)

where ρck ≈ Bρk . fr is the range frequency.

A. SINGLE TARGET
For clarity, we first consider a single target in the scenario.
According to (9), the kth target’s echoes in the range fre-
quency and slow time domain take the form.

Sk (fr , tn) = ρk rect
(
fr
B

)
exp

(
−j4π

v0k tn
λ

)
× exp

(
−j4π fr

vk tn
c

)
× exp

[
−j2π

(
1+

fr
fc

)
2rk + ak t2n

λ

]
(10)

To estimate the target’s radial velocity and acceleration,
we firstly define a bilinear autocorrelation function

Rk (fr , tn, τn) = AFtn [Sk (fr , tn)]

= Sk (fr , tn + τn) S
†
k (fr , tn − τn) (11)

where τn denotes the lag time variable with respect to the slow
timeAFtn [·] denotes the autocorrelation along the tn axis. The
superscript † represents the complex conjugation.

Upon substituting (10) into (11), the auto term of the kth
target can be expressed as

Rk (fr , tn, τn) = ρ2k rect
(
fr
B

)
exp

(
−j8π

v0kτn
λ

)
× exp

(
−j8π fr

vkτn
c

)
× exp

[
−j8π

(
1+

fr
fc

)
akτntn
λ

]
(12)
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The observation of (12) shows that the third exponential
term includes the coupling among the range frequency fr ,
slow time tn, and lag time τn. If we directly perform the FT
on (12) with regard to tn, we would get

U ′k (fr , fd , τn) = FTtn [Rk (fr , tn, τn)]

= ρ1k rect
(
fr
B

)
exp

(
−j8π

v0kτn
λ

)
× exp

(
−j8π fr

vkτn
c

)
δ

×

[
fd +

4
(
1+ fr

/
fc
)
akτn

λ

]
(13)

where fd denotes the Doppler frequency with respect
to tn, and FTtn [·] denotes the FT operation along the
tn axis.
As can be seen from (13), since the FT operation can-

not decouple the coupling among fr , tn, and τn, the target
energy has been accumulated into the quadratic surface fd =
−4

(
1+ fr

/
fc
)
akτn

/
λ in the 3-D space. Clearly, it does not

benefit the further energy integration.
To eliminate the coupling between the range frequency and

slow time, the well-known KT rescales the slow time axis
in accordance with tm =

(
1+ fr

/
fc
)
tn. In [29], the scaled

Fourier transform (SFT) is proposed to remove the coupling
between τn and tn by performing the scaling tm = τntn.
However, if we perform the KT on (12), the coupling between
the slow time and lag time still left. Accordingly, if we
apply the scaling tm = τntn to (12), the new scaled slow
time variable tm and range frequency still couple with each
other.

Here, to remove the coupling among these three variables,
we borrow ideas of the KT and SFT to propose a novel
transform known as the EKT. The scaling formula of EKT
takes the form

tm = ξ
(
1+ fr

/
fc
)
τntn (14)

where tm denotes the scaled slow time variable. ξ is a zoom
factor, which is introduced to adjust the acceleration estima-
tion range. Note that the selection criterion of the zoom factor
should combine the estimation accuracy with the estimation
range. Usually, we base specific applications to set the zoom
factor [32].

Now, performing the EKT on (12), i.e., rescaling the slow
time variable based on (14), we have

Pk (fr , tm, τn) = ρ2k rect
(
fr
B

)
exp

(
−j8π

v0kτn
λ

)
× exp

(
−j8π fr

vkτn
c

)
exp

(
−j8π

ak tm
λξ

)
(15)

By comparing the third exponential term of (15) with that
of (12), we observe that the coupling has been removed by

the EKT operation. Thereafter, taking the FT of (15) along
the scaled slow time axis, we obtain

Uk (fr , fsd , τn) = FTtm [Pk (fr , tm, τn)]

= ρ1k rect
(
fr
B

)
exp

(
−j8π

v0kτn
λ

)
× exp

(
−j8π fr

vkτn
c

)
δ

(
fsd+

4ak
λξ

)
(16)

where fsd denotes the Doppler frequency with respect to tm.
The observation of (16) shows that the target energy has been
integrated into the plane fsd = −4ak

/
(λξ) in the 3-D space.

Therefore, the remaining operations are devoted to realizing
the energy accumulation along other two dimensions.

The coupling between the range frequency and lag time
variable in the second exponential term of (16) still influences
the energy integration. If we perform the inverse FT (IFT) on
(16) with respect to fr , it would yield

V ′k (t, fsd , τn) = IFTfr [Uk (fr , fsd , τn)]

= ρ2ksinc
[
B
(
t −

4vk
c
τn

)]
× exp

(
−j8π

v0kτn
λ

)
δ

(
fsd+

4ak
λξ

)
(17)

where IFTfr [·] denotes the IFT operation along the fr axis.
As can be seen from (17), the target energy peaks along

an inclined line t = 4vkτn
/
c in the cross section of

V ′k (t, fsd , τn) for fsd + 4ak
/
(λξ) = 0. Therefore, the direct

FT on (17) with respect to τn cannot realize the energy
integration in the lag time dimension. In (18), we apply
the SIFT [22] to eliminate the coupling between the range
frequency and lag time in the second exponential term of (16).

V k (ts, fsd , τn) =
∫
fr

Uk (fr , fsd , τn) exp (j2πζ tsτnfr ) dfr

= ρ2ksinc
[
B
(
ts −

4vk
ζc

)]
× exp

(
−j8π

v0kτn
λ

)
δ

(
fsd+

4ak
λξ

)
(18)

where ts denotes the scaled fast time. ζ is a zoom factor, which
is introduced to adjust the velocity estimation range.

In (18), the target energy has been integrated into the
intersection of two planes [fsd = −4ak

/
(λξ) and ts =

4vk
/
(ζc)] in the 3-D space. Thereafter, we can apply the FT

to accomplish the energy integration.

Zk
(
ts, fsd , fpd

)
= FFTτn [V k (ts, fsd , τn)]

= ρ3ksinc
[
B
(
ts −

4vk
ζc

)]
δ

(
fsd +

4ak
λξ

)
δ

(
fpd +

4v0k
λ

)
(19)

where fpd represents the pseudo Doppler frequency with
respect to τn.

In (19), we have accomplished the coherent target energy
integration along the slow time, range frequency and lag time
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FIGURE 1. Target energy distribution at different processing stages. (a) Target energy distribution in the range frequency and slow time domain.
(b) Target energy distribution after the slow time correlation. (c) Target energy distribution after the EKT and FT operations. (d) Target energy
distribution after the SIFT operation with respect to the range frequency. (e) Target energy distribution after performing the FT along the lag
time axis.

axes via the EKT, SIFT and FT operations. The target energy
peaks at the point

[
4vk

/
(ζc),−4ak

/
(λξ),−4v0k

/
λ
]
in the

3-D space. Via the peak detection, the kth target’s radial
velocity and acceleration can be estimated as

v̂k = ζcts
/
4 (20)

âk = −λξ fsd
/
4 (21)

The above procedures can be summarized as

Z
(
ts, fsd , fpd

)
= FTτn

{
SIFTfr

{
FTtm

[
EKTtn

[
AFtn (S (fr , tn))

]]}}
(22)

Note that variables in (22) have been indicated above and
readers can refer to (10)-(19). The target energy distribu-
tion at aforementioned processing stages can be qualitatively
described by FIGURE. 1. FIGURE. 1(a) shows the target
energy distribution in the range frequency and slow time
domain [Eq. (10)]. By performing the autocorrelation func-
tion defined in (11), the target energy spreads into a 3-D
space (range frequency, slow time, and lag time), as shown
in FIGURE. 1(b). FIGURE. 1(c) shows that the target energy
has been integrated into a plane after the EKT and FT oper-
ations. Thereafter, by performing the SIFT with respect to
the range frequency in FIGURE. 1(c), the target energy is
integrated into a line in FIGURE. 1(d). Finally, via the FT
operation along the lag time in FIGURE. 1(d), the target
energy is successively integrated into a point in the 3-D space,
as shown in FIGURE. 1(e).

With estimated motion parameters in (20) and (21),
we construct a compensations function as follows:

Y
(
fr , tn; v̂k , âk

)
= exp

(
j4π fr

v̂k tn
c

)
× exp

[
j4π (fc + fr )

âk t2n
/
2

c

]
. (23)

In (23), the first exponential term can compensate the
RM induced by the target’s radial velocity, and the second
exponential term can compensate the quadratic RM and DFM
induced by the target’s radial acceleration. By multiplying

(23) with (10), the RM and DFM of the kth target will be
compensated simultaneously. Then, the coherent integration
can be realized by using the range frequency IFT and azimuth
FT as follows:

S1 (t, fd )

= FTtn
{
IFTfr

[
Y
(
fr , tn; v̂k , âk

)
Sk (fr , tn)

]}
= ρ4ksinc

[
B
(
t −

2rk
c

)]
δ

(
fd +

2v0k
λ

)
exp

(
−
j4πrk
λ

)
(24)

where ρ4k is the amplitude after the coherent integra-
tion. Finally, the constant false alarm rate (CFAR) detec-
tion technique [1] is employed to accomplish target
detection.

An example is presented below to intuitively explain the
proposed method.
Example 1: Consider a single target locating at the 140th

range cell. Its radial velocity and acceleration are 945 m/s
and 60 m/s 2, respectively. The radar parameters are listed
in Table 1. The zoom factors ζ and ξ are set as 2 and 4,
respectively. According to radar parameters and zoom factors,
estimation precisions of the radial velocity and acceleration
are 15 m/s and 0.3 m/s2, respectively. Simulation results are
shown in FIGURE. 2.

TABLE 1. Radar parameters.

The cross section of U ′ (fr , fd , τn) in (13) for fr = 5 MHz
is shown in FIGURE. 2(a), where the target energy peaks
along the inclined line fd =−800 τn. In FIGURE. 2(b),
fd = −800τn in FIGURE. 2(a) is corrected into a
beeline fsd = −200 Hz due to the EKT operation.
FIGURE. 2(c) shows the cross section of V ′ (t, fsd , τn) in
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FIGURE 2. Simulation results of Example 1. (a) Cross section of U′
(
fr , fd , τn

)
for fr = 5 MHz. (b) Cross section of U

(
fr , fsd , τn

)
for fr = 5 MHz.

(c) Cross section of V′
(
t, fsd , τn

)
for fsd = −200 Hz. (d) Cross section of V

(
ts, fsd , τn

)
for fsd = −200 Hz. (e) Cross section of Z

(
ts, fsd , fpd

)
for

fpd + 4v0k /λ = 0. (f) Coherent integration result after the RM and DFM compensations.

(17) for fsd = −200 Hz. Via the decouple operation SCIFT,
the inclined line in FIGURE. 2(c) is corrected into a beeline
ts = 6.3 µs in FIGURE. 2(d). And then, by performing the
FT on V (ts, fsd , τn) along the lag time axis, the target energy
is integrated into a peak. FIGURE. 2(e) presents the cross
section of Z

(
ts, fsd , fpd

)
in (19) for fpd + 4v0k

/
λ = 0.

By using the peak detection technique, the target’s radial
velocity and acceleration are estimated as 945 m/s and
60 m/s2, respectively. Finally, we use these two estimations
to compensate the RM and DFM, and FIGURE. 3(f) shows
the result after the coherent integration.

Up to this point, we have analyzed the proposed coherent
detectionmethod in single target scenario. However, the cross
term would appear in multiple targets scenario due to the
bilinearity of the autocorrelation function defined in (11),
which may affect the peak detection. In the following sub-
section, the cross term will be analyzed.

B. MULTIPLE TARGETS
This subsection analyzes the cross term to illustrate that
the proposed algorithm is also applicable in the scenario of
multiple targets. The cross term can be expressed as

Zc
(
ts, fsd , fpd

)
=

K−1∑
x=1

K∑
y=x+1

Zc,x,y
(
ts, fsd , fpd

)
(25)

TABLE 2. Targets parameters.

where Zc,x,y
(
ts, fsd , fpd

)
denotes the cross term generated by

the xth and yth targets. K is the number of targets in the
scenario.

Without loss of generality, two targets, the xth and
yth targets, are considered. The cross term is derived in
Appendix A, which demonstrates that the cross term cannot
be accumulated as the auto term in the proposed algorithm.

In what follows, an example is given to illustrate the cross
term suppression of the proposed method.
Example 2: Three targets denoted by TA, TB and TC are

considered, and their motion parameters are listed in Table 2.
The radar parameters and the zoom factors are the same as
those inExample 1. FIGURE. 3 shows the simulation results.

FIGURE. 3(a) shows the cross section of U (fr , fsd , τn) for
fr =5 MHz. A beeline fsd =−150 Hz and four curves appear
in this plane. TA, TB and TC have the same radial acceler-
ation. Thus, three auto terms UA, UB and UC peak along
the same beeline. TB and TC have the same radial velocity.
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FIGURE 3. Simulation results of Example 2. (a) Cross section of U
(
fr , fsd , τn

)
for fr =5 MHz. (b) Cross section of V(

ts, fsd , τn
)

for fsd = -150 Hz. (c) Velocity and acceleration distribution. (d) Coherent integration result after the RM and DFM
compensations.

According to (53) in Appendix B, the cross term UB,C also
peaks along the beeline fsd =−150 Hz. Moreover, according
to (52) in Appendix B, UA,B and UA,C peaks along the
same curves. Clearly, UA,B and UA,C could not be further
accumulated.

FIGURE. 3(b) shows the cross section of V (ts, fsd , τn) for
fsd =−150 Hz. Two beelines ts = 6 µs and ts = 8 µs
appear in this plane. With the targets’ radial velocity listed
in Table 2, we can also calculate 4vA

/
(ζc) = 6 × 10−6 and

4vB
/
(ζc) = 4vC

/
(ζc) = 8 × 10−6. Moreover, four curves

correspond to the cross terms generated by TB and TC appear
in this cross section, which meets the analysis result in (56)
in Appendix B

FIGURE. 3(c) presents the cross section of the integration
result Z

(
ts, fsd , fpd

)
for fpd + 4v0k

/
λ = 0. Two pairs of

motion parameters (velocity: 900m/s, acceleration: 45 m/s2)
and (1200 m/s, 45 m/s2) can be estimated via the peak detec-
tion. Finally, the coherent integration can be achieved after
the RM and DFM compensations with estimated parame-
ters, as shown in FIGURE. 3(d). TB and TC are separated
in the range domain due to their different locations. It is
worthwhile noting that, if targets have different amplitudes
(strong and weak targets), the auto term of the weak target

may be submerged. Under such a situation, same as other
nonlinear methods, we need to employ the CLEAN technique
to complete the target detection [31].

The above experimental results conform to the theoretical
derivations, which leads us to conclude that the proposed
method is also applicable in the scenario of multiple targets.

C. IMPLEMENTATION OF THE PROPOSED METHOD
Based on analyses above, the implementation of the proposed
method is summarized in FIGURE. 4, which mainly consists
of five steps. The detailed procedures are given as follows.
Note that, here, we use the FFT and IFFT to separately speed
up the FT and IFT for the fast implementation of the proposed
method.
Step 1: Apply the down conversion, pulse compression,

and range FFT to the radar raw data.
Step 2: Calculate the bilinear autocorrelation function, and

then, employ the EKT, SIFT and FFT to realize coherent
energy integration.
Step 3: Conduct the peak detection to accomplish the

target’s radial velocity and acceleration estimation.
Step 4: Construct a compensation function to compensate

the RM and DFM, and then, perform range frequency IFFT
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FIGURE 4. Detailed processing steps of the proposed method.

and azimuth FFT to accomplish the coherent integration.
Conduct the CFAR detection to realize the target detection.
Step 5: Repeat Steps 3-4 until no target can be detected

in Step 4.

IV. PERFORMANCE ANALYSIS AND COMPARISONS
In this section, the proposed algorithm is compared with
several representative algorithms in terms of computational
complexity, motion parameters estimation and target detec-
tion performances. The moving target detection (MTD) and
RFT cannot work for the maneuvering target due to the
RM and DFM. In contrast, the proposed algorithm, GRFT
and SOWVD can compensate the RM and DFM. Compared
to the MTD and RFT, these three algorithms have obvious
advantages for the maneuvering target detection. Therefore,
here, we mainly compare the proposed algorithm with the
GRFT and SOWVD.

A. COMPUTATIONAL COMPLEXITY
Assume there are M range cells and N integration pulses in
the processing data. The searching times of the Doppler ambi-
guity integer and acceleration are Nam and Na, respectively.
The main steps of the proposed method include: the

autocorrelation function defined in (12) [with the computa-
tional cost of O(M2N )], the EKT, SIFT and FFT operations
performed on R(fr , tn, τn) [with the computational cost of
O(MN 2(log2 N+ log2M ))(the EKT and SIFT can be realized
by the chirp-z transform)], and the range frequency IFFT and
azimuth FFT operations to realize the coherent integration
[O(MN (log2 N + log2M ))]. Therefore, the overall compu-
tational complexity of the proposed method is in the order of
O[MN 2(log2 N + log2M )].

The GRFT compensates the RM and DFM via 3-D search-
ing of the initial range, radial velocity and acceleration. For
each searching grid, the computational complexity is in the
order of O(N ). Since the searching interval of the radial
velocity is the Doppler resolution, the searching times of
the radial velocity are NamN . Therefore, the computational
complexity of the GRFT is in the order of O(NamNaMN 2).
As for the SOWVD-based method, it first corrects the RM

via the KT andDoppler ambiguity integer searching, and then
employs the SOWVD to realize the DFM compensation. The
computational complexity of the SOWVD is in the order of
O(N 2 log2 N ) and the SOWVD-based method needs to repeat
the SOWVD operation NamM times. Therefore, the compu-
tational complexity of the SOWVD-based method is in the
order of O(NamN 2M log2 N ).

TABLE 3. Computational complexity.

FIGURE 5. Computational complexities of the GRFT, SOWVD-based
method and proposed method versus integration pulses.

The computational complexities of these three methods are
summarized in Table 3. Assume that the scope of target’s
velocity is [−2000 m/s, 2000 m/s], Na = N and M = 500.
Under different integration pulses (the other radar parameters
are the same as those in Table 1), FIGURE. 5 shows compu-
tational complexities of these three algorithms.

As shown in Table 3 and FIGURE. 5, the proposed method
has the lowest computational complexity among these three
methods. The GRFT has the highest computational com-
plexity due to the 3-D searching of the range, velocity and
acceleration. If we have some prior knowledge of target’s
motion parameters, the searching scope may be reduced and
the computational complexity of the GRFT may become
lower. The KT transform guarantees the higher efficiency
of the SOWVD-based method compared with the GRFT.
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FIGURE 6. RMSE of the estimated motion parameters and the input-output SNR performance. (a) RMSE of the estimated velocity. (b) RMSE of the
estimated acceleration. (c) Input-output SNR performances.

However, it still has a higher computational cost than the
proposed method.

B. MOTION PARAMETERS ESTIMATION PERFORMANCE
The estimation accuracies of target’s radial velocity and
acceleration affect the RM and DFM compensations, and fur-
ther impact the target detection. In this subsection, the motion
parameters estimation performance of the proposedmethod is
analyzed.

The radar parameters are set as follows: carrier frequency
fc =1 GHz, pulse width Tp =80 µs, bandwidth B=5 MHz,
sample frequency fs =5 MHz and PRF =200 Hz. 400 effec-
tive pulses are used. The complex white Gaussian noise
is added to the echoes and the input SNRs are [−45 dB:
1 dB:−25 dB]. 200 timesMonte Carlo trials are done for each
input SNR value. For convenience, a single target locating
at the 90th range cell is considered. Its radial velocity and
acceleration are 750 m/s and 12 m/s2, respectively.
FIGUREs. 6 (a) and (b) shows the root mean square

errors (RMSEs) of the estimated target’s radial velocity
and acceleration of the proposed method, GRFT, and the
SOWVD-based method. The RMSE is defined as σx =√∑100

i=1
(
x̂i − xi

)2/100, where x̂i denotes the estimated value

of the real value xi in the ith Monte Carlo trial. The input-
output SNR performances [6] of these three methods are also
shown in FIGURE. 6(c), where the ideal input-output SNR is
also shown for reference.

The GRFT is linear and uses the 3-D searching to realize
the coherent integration. As seen from FIGURE. 6, the GRFT
has the best RMSE versus input SNR. The proposed method
is based on a bilinear kernel function and suffers from about
6 dB SNR loss compared to the GRFT. The SOWVD-based
method has the worst RMSE versus input SNR. This is
because it is based on a fourth-order kernel function.

C. DETECTION PERFORMANCE
In this subsection, we employ the CFAR detection tech-
nique to evaluate the target detection performance of the

FIGURE 7. Detection probabilities of the GRFT, SOWVD-based method,
proposed method, RFT and MTD under different input SNRs.

proposed method. The radar parameters and target’s motion
parameters are the same as those in Subsection IV-B. The
input SNRs are [−45 dB:1 dB:−10 dB] and 200 times
Monte Carlo trials are conducted for each input SNR value.
FIGURE. 7 shows the detection probability under the
false alarm probability 10−6. The detection performances
of GRFT, SOWVD-based method, RFT and MTD are
shown for comparison. Note that the RFT and MTD are
used to demonstrate obvious advantages of other three
methods.

As seen from FIGURE .7, the detection performance of the
proposed algorithm is worse than that of the GRFT, while bet-
ter than that of the SOWVD-based method. Combining with
the computational complexity analysis in Subsection IV-A
and motion parameters estimation in Subsection IV-B,
we conclude that the proposed algorithm can greatly reduce
the computational complexity with an acceptable integration
SNR gain loss The RFT cannot remove the RM and DFM
induced by the target’s radial acceleration, and the MTD
has the serious RM and DFM. Therefore, their detection
performances are worse than those of other three algorithms,
as shown in FIGURE. 7.
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FIGURE 8. Verification of the proposed algorithm with the simulated radar data. (a) Target energy integration in the
velocity and acceleration domain via the proposed algorithm. (b) Coherent energy integration after the RM and DFM
compensations via the estimated motion parameters.

V. SIMULATION AND REAL DATA PROCESSING RESULT
In the last section, we demonstrate that the proposed algo-
rithm can significantly reduce the computational complexity
with an acceptable integration SNR gain loss In this section,
we only aim to demonstrate the effectiveness of the pro-
posedmethod for themaneuvering target detection via several
experiments with the simulated and real measured radar data.

A. VERIFICATION WITH SIMULATED RADAR DATA
The radar parameters used in this simulation are the same as
those in Section IV-B. Two targets are considered and their
motion parameters are listed in Table 4. Targets’ echoes are
contaminated with the complex zero-mean white Gaussian
noise and the SNR is also listed in Table 4. FIGURE. 8 shows
the simulation results.

TABLE 4. Targets parameters.

As seen from FIGURE. 8(a), by using the proposed
method, two peaks are accumulated in the velocity and
acceleration domain. With the peak detection technique
in FIGURE. 8(a), the radial velocities and accelerations of
these two targets are estimated as (−1140 m/s, 24 m/s2)
and (870 m/s, −15 m/s2), respectively. Thereafter, we com-
pensate off the RMs and DFMs via the estimated motion
parameters, and the coherent energy integration is realized
in FIGURE. 8(b). Finally, by the CFAR detection technique,
two targets can be easily detected.

B. VERIFICATION WITH REAL MEASURED RADAR DATA
In the following, the real measured data is used to verify
the effectiveness of the proposed method. Table 5 gives the

TABLE 5. Radar parameters.

radar parameters. The data has a total of 1400 effective pulses
and 300 range cells. We set both zoom factors ζ and ξ as
2 for the proposed method. Note that, in practice, we do not
know whether the real measured radar data has problems of
the RM and DFM or not. In this paper, we use the MTD and
RFT to demonstrate that the used real measured radar data has
problems of the RM and DFM. In addition, their comparisons
can also demonstrate that the proposed method can work well
in realistic applications. FIGURE. 9 shows the processing
results of the MTD, RFT and the proposed algorithm. For the
RFT, the scopes of the searching velocity and range cell are
[−500 m/s, 500 m/s] and [50,150], respectively.
FIGURE. 9(a) shows echoes in the range-azimuth domain

after the pulse compression. It is easily seen that the target
moves across several range cells within the integration time.

By using the proposed algorithm, FIGURE. 9(b) gives
the energy accumulation in the velocity and acceleration
domain. Via the peak detection technique, the target’s radial
velocity and acceleration are estimated as −184.6 m/s and
0.2679m/s2, respectively. Thereafter, we compensate the RM
and DFM with the estimated target’s motion parameters, and
FIGURE. 9(c) shows the coherent energy integration. To bet-
ter show the focusing performance, a zoomed-in figure of
the circled area is also presented in FIGURE. 9 (c). We can
clearly observe that the proposed method achieves a good
focusing performance in both the range andDoppler domains.

By performing the azimuth FFT on FIGURE. 9(a),
we get the integration result of the MTD in FIGURE. 9(d).
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FIGURE 9. Real measured radar data processing results. (a) Pulse compression result. (b) Velocity and acceleration distribution via the proposed
method. (c) Coherent integration results via the proposed method. (d)Integration result via MTD. (e) Integration results via RFT. (f) Zoomed-in plot
of the circled area in (e).

The MTD has a bad focusing performance because of exis-
tences of the RM and DFM. According to the peak values of
FIGUREs. 9(c) and (d), it is easy to obtain that the MTD
suffers from about 7 dB integration SNR loss compared with
the proposed method.

The integration result via the RFT is given in
FIGURE. 9(e), and a zoomed-in image of the circled
area is also shown in FIGURE. 9(f). As seen from
FIGUREs. 9(e) and (f), the RFT outperforms the MTD and
has about 3 dB integration SNR gain. This is because the RFT
has the ability to eliminate the linear RM.However, compared
with the proposed method, the RFT cannot eliminate the
DFM and quadratic RM, and has about 4 dB integration SNR
loss. Moreover, the RFT suffers from the BSSL effect as
shown in FIGURE. 9(e), which may lead to false alarms [30].

The real data processing results clearly demonstrate that:
1) the RM and DFM significantly influence the coherent
energy integration; 2) the proposed method can effectively
accomplish the maneuvering target detection and parameters
estimation

VI. CONCLUSIONS
In this paper, we have proposed a novel algorithm for maneu-
vering target detection and motion parameters estimation.
Basing on mathematical analyses and numerical simula-
tions, we demonstrate that, compared to several representa-
tive algorithms, the proposed algorithm can greatly reduce

the computational complexity with an acceptable integration
SNR gain loss. Further, we use the real measured radar data
to verify the effectiveness of the proposed algorithm.

APPENDIX A
The echoes of the xth and yth target after pulse compression
can be expressed as

Sx (fr , tn) = ρx rect
(
fr
B

)
exp

(
−j4π

v0x tn
λ

)
× exp

(
−j4π fr

vx tn
c

)
× exp

[
−j2π

(
1+

fr
fc

)
2rx + ax t2n

λ

]
(26)

Sy (fr , tn) = ρy rect
(
fr
B

)
exp

(
−j4π

v0ytn
λ

)
× exp

(
−j4π fr

vytn
c

)
× exp

[
−j2π

(
1+

fr
fc

)
2ry + ayt2n

λ

]
(27)

The cross term will thus be

Rx,y (fr , tn, τn) = Sx (fr , tn + τn)S∗y (fr , tn − τn)

+Sy (fr , tn + τn)S∗x (fr , tn − τn) (28)
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Let 1r = rx − ry, 1v = vx − vy, ∇v =
(
vx + vy

)/
2,

1v0 = v0x − v0y, ∇v0 =
(
v0x + v0y

)/
2, 1a = ax − ay,

and ∇a =
(
ax + ay

)/
2, and then performing the EKT on

Rx,y (fr , tn, τn), we get

Px,y (fr , tm, τn) = EKT
[
Rx,y (fr , tn, τn)

]
= P1,x,y (fr , tm, τn)

×
[
P2,x,y (fr , tm, τn)+ P3,x,y (fr , tm, τn)

]
(29)

where

P1,x,y (fr , tm, τn)

= ρxρyrect
(
fr
B

)
exp

(
−j8π

∇v0τn
λ

)
× exp

(
−j8π

∇v
c
τnfr

)
exp

[
−j2π

4∇atm
ξλ

]
(30)

P2,x,y (fr , tm, τn)

= exp
[
−j2π

(
1+

fr
fc

)
21r
λ

]
× exp

[
−j4π

(
1v0
λ
+ fr

1v
c

)
tm

ξ
(
1+ fr

/
fc
)
τn

]

× exp
[
−j2π

(
1+

fr
fc

)
1aτ 2n
λ

]
× exp

[
−j2π

1a
λ

t2m
ξ2
(
1+ fr

/
fc
)
τ 2n

]
(31)

P3,x,y (fr , tm, τn)

= P†
2,x,y (fr , tm, τn) (32)

Performing the FFT on (30) along tm axis, we have

U1,x,y (fr , fsd , τn) = ρu1rect
(
fr
B

)
exp

(
−j8π

∇v0τn
λ

)
× exp

(
−j8π

∇v
c
τnfr

)
δ

×

(
fsd +

4∇a
λξ

)
(33)

Thereafter, applying the SIFT to (33) along the range fre-
quency axis obtains

V1,x,y (ts, fsd , τn) = ρv1sinc
[
B
(
ts −

4∇v
ζc

)]
×δ

(
fsd +

4∇a
λξ

)
exp

(
−j8π

∇v0τn
λ

)
(34)

Finally, Taking the FFT of V1,x,y (ts, fsd , τn) with respect
to τn, we get

Z1,x,y
(
ts, fsd , fpd

)
= ρz1sinc

[
B
(
ts −

4∇v
ζc

)]
× δ

(
fsd +

4∇a
λξ

)
δ

(
fpd +

4∇v0
λ

)
(35)

In what follows, we will analyzed the cross terms in three
cases.
Case 1: 1a = 0 and 1v 6= 0.
The equation (31) will be of the form

P2,x,y (fr , tm, τn)

= exp
[
−j2π

(
1+

fr
fc

)
21r
λ

]
× exp

[
−j4π

(
1v0
λ
+ fr

1v
c

)
tm

ξ
(
1+ fr

/
fc
)
τn

]
(36)

Performing the FFT on (36) with respect to tm obtains

U2,x,y (fr , fsd , τn) = ρu2 exp
[
−j2π

(
1+

fr
fc

)
21r
λ

]
×δ

(
fsd +

2
(
1v0

/
λ+ fr1v

/
c
)

ξ
(
1+ fr

/
fc
)
τn

)
(37)

Similarly, we have

U3,x,y (fr , fsd , τn) = ρu3 exp
[
j2π

(
1+

fr
fc

)
21r
λ

]
× δ

(
fsd −

2
(
1v0

/
λ+ fr1v

/
c
)

ξ
(
1+ fr

/
fc
)
τn

)
(38)

According to the convolution theorem, we have

Ux,y (fr , fsd , τn)
= convfsd

{
U1,x,y (fr , fsd , τn) ,

×
[
U2,x,y (fr , fsd , τn)+ U3,x,y (fr , fsd , τn)

]}
= ρu1ρu2rect

(
fr
B

)
δ

[
fsd +

2
(
1v0

/
λ+ fr1v

/
c
)

ξ
(
1+ fr

/
fc
)
τn
+
4∇a
λξ

]
× exp

[
−j2π

(
1+

fr
fc

)
21r
λ

]
exp

(
−j8π

∇v0τn
λ

)
× exp

(
−j8π

∇v
c
τnfr

)
+ ρu1ρu3rect

(
fr
B

)
δ

[
fsd−

2
(
1v0

/
λ+fr1v

/
c
)

ξ
(
1+ fr

/
fc
)
τn
+
4∇a
λξ

]
× exp

[
j2π

(
1+

fr
fc

)
21r
λ

]
exp

(
−j8π

∇v0τn
λ

)
× exp

(
−j8π

∇v
c
τnfr

)
(39)

where convfsd {A,B} denotes the convolution operation in the
fsd domain. It can be seen from (39) that the cross term could
not be accumulated by the further operations (SIFT along the
range frequency axis and FFT along the lag time axis).
Case 2: 1a = 0, 1v = 0, and ∇r 6= 0.
(37) can be rewritten as

U2,x,y (fr , fsd , τn) = exp
(
−j2π

21r
λ

)
× exp

(
−j2π fr

21r
c

)
δ (fsd ) (40)
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Performing the SIFT on (40)

V2,x,y (ts, fsd , τn) = SIFTfr
[
U2,x,y (fr , fsd , τn)

]
= exp

(
−j2π

21r
λ

)
δ

(
ts−

21r
ζcτn

)
δ (fsd )

(41)

In the following, we discuss two cases according to the
value of ts.
Case 2.1: ts = 0.
With 1r 6= 0, (41) will be zeros, so we have

V2,x,y (ts, fsd , τn) = V3,x,y (ts, fsd , τn) = 0 (42)

Therefore, the cross term will be zero.
Case 2.2: ts 6= 0
According to the composition property of the delta

function, i.e.,

δ [f (t)] =
N∑
i=1

1
|f ′ (ti)|

δ (t − ti) (43)

where f ′ (·) denotes the first derivative, ti denotes the ith root
of f (t) = 0.

Thus, (41) can be rewritten as

V2,x,y (ts, fsd , τn) =
21r
ζct2s

δ

(
τn −

21r
ζcts

)
× exp

(
−j2π

21r
λ

)
δ (fsd ) (44)

Applying the FFT to (44) along the lag time axis, we
have

Z2,x,y
(
ts, fsd , fpd

)
=

21r
ζct2s

exp
(
−j2π

21r
λ

)
× exp

(
−j2π fpd

21r
ζcts

)
δ (fsd ) (45)

Similarly,

Z3,x,y
(
ts, fsd , fpd

)
=

21r
ζct2s

exp
(
j2π

21r
λ

)
× exp

(
j2π fpd

21r
ζcts

)
δ (fsd ) (46)

Therefore,

Z2,x,y
(
ts, fsd , fpd

)
+ Z3,x,y

(
ts, fsd , fpd

)
=

21r
ζct2s

cos
[
2π
(
21r
λ
+ fpd

21r
ζcts

)]
δ (fsd ) (47)

Case 2.2.1: ts = 4∇v
ζc

By substitution ts = 4∇v
ζc into (47), we have

Z2,x,y
(
ts, fsd , fpd

)
+ Z3,x,y

(
ts, fsd , fpd

)
=

ζc1r

8 (∇v)2
cos

[
2π
(
21r
λ
+ fpd

1r
2∇v

)]
δ (fsd ) (48)

According to the convolution theorem, we have

Zx,y
(
ts, fsd , fpd

)
= convts,fsd ,fpd

{
Z1,x,y

(
ts, fsd , fpd

)
,[

Z2,x,y
(
ts, fsd , fpd

)
+ Z3,x,y

(
ts, fsd , fpd

)]}
=

ζc1r

8 (∇v)2
sinc

[
B
(
ts −

4∇v
ζc

)]
δ

(
fsd +

4∇a
λξ

)
× cos

{
2π
[
21r
λ
+

(
fpd +

4∇v0
λ

)
1r
2∇v

]}
(49)

Observation of (49) shows that the cross term energy can
be accumulated in the ts and fsd domains. However, the cross
term energy still spreads in the fsd domain, which indicates
that the cross term cannot be accumulated in this case.
Case 2.2.2: ts 6= 4∇v

ζc
We have

Zx,y
(
ts, fsd , fpd

)
= convts,fsd ,fpd

{
Z1,x,y

(
ts, fsd , fpd

)[
Z2,x,y

(
ts, fsd , fpd

)
+ Z3,x,y

(
ts, fsd , fpd

)]}
=

21r

ζc
[
ts − 4∇v

/
(ζc)

]2 δ (fsd + 4∇a
λξ

)

× cos

{
2π

[
21r
λ
+

(
fpd+

4∇v0
λ

)
21r

ζc
(
ts − 4∇v

/
(ζc)

)]}
(50)

As can be seen from (50), the cross term energy cannot be
focused in ts and fpd domain.
Case 3: 1a 6= 0.
It is obvious that P2,x,y (fr , tm, τn) in (31) and P3,x,y

(fr , tm, τn) in (32) cannot be accumulated by the FFT oper-
ation along tm axis, so the cross term cannot be accumulated.

The above analyses shows that the cross term cannot accu-
mulate as the auto term.

APPENDIX B
According to (40), UA,B (fr , fsd , τn) satisfies∣∣UA,B (fr , fsd , τn)

∣∣
= δ

[
fsd +

4∇aA,B
λξ

−
2
(
1v0,A,B

/
λ+ fr1vA,B

/
c
)

ξ
(
1+ fr

/
fc
)
τn

]

+ δ

[
fsd +

4∇aA,B
λξ

+
2
(
1v0,A,B

/
λ+ fr1vA,B

/
c
)

ξ
(
1+ fr

/
fc
)
τn

]
(51)

Substituting ξ =4,fr = 5 MHz, v0A = −21.6 m/s, v0B =
−28.8 m/s, 1v0,A,B = 7.2m/s, 1vA,B = −300 m/s, and
∇aA,B = 45 m/s2 into (51), we have∣∣UA,B (5 MHz, fsd , τn)

∣∣ = δ (fsd + 150−
1900
201τn

)
+ δ

(
fsd + 150+

1900
201τn

)
(52)
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So the cross term generated by TA and TB distributes
along fsd = −150 + 1900

/
(201τn) Hz and fsd = −150 −

1900
/
(201τn) Hz in

∣∣UA,B (5 MHz, fsd , τn)
∣∣.

TB and TC have the same radial velocity and acceleration,
so the cross term generated by TA and TC peaks along the
same curves as the cross term generated by TA and TB.
According to convolution theorem, the cross term gener-

ated by TB and TC satisfies∣∣UB,C (fr , fsd , τn)
∣∣ = δ (fsd + 4∇aB,C

λξ

)
(53)

Thus, the cross term generated by TB and TC distributes
along fsd = −150 Hz in

∣∣UB,C (5 MHz, fsd , τn)
∣∣.

VB,C (ts, fsd , τn) can be expressed as

VB,C (ts, fsd , τn) = convts,fsd
{
V1,B,C (ts, fsd , τn) ,

×
[
V2,B,C (ts, fsd , τn)+ V3,B,C (ts, fsd , τn)

]}
(54)

where convts,fsd {A,B} denotes the convolution operation in ts
and fsd the domains.
After substituting (34) and (41) into (54), the cross terms

generated by TB and TC satisfies∣∣VB,C (ts, fsd , τn)
∣∣

= δ

(
ts −

4∇vB,C
ζc

−
21rB,C
ζcτn

)
δ

(
fsd +

4∇aB,C
λξ

)
+ δ

(
ts −

4∇vB,C
ζc

+
21rB,C
ζcτn

)
δ

(
fsd +

4∇aB,C
λξ

)
(55)

Substituting ξ =4, ζ =2, ∇vB,C =1200 m/s,
1rB,C =300 m, and ∇aB,C =45 m/s 2 into (55), we get∣∣VB,C (ts, fsd , τn)

∣∣
= δ

(
ts − 8× 10−6 −

10−6

τn

)
δ (fsd + 150)

+ δ

(
ts − 8× 10−6 +

10−6

τn

)
δ (fsd + 150) (56)

Therefore, the cross term peaks along ts = 8 + 1
/
τnµs,

and ts = 8− 1
/
τnµs in

∣∣VB,C (ts,−150Hz, τn)
∣∣.
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