
Received October 1, 2018, accepted October 18, 2018, date of publication November 13, 2018,
date of current version December 18, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2881070

A Web Second-Order Vulnerabilities
Detection Method
MIAO LIU AND BIN WANG
School of Computer Science and Educational Software, Guangzhou University, Guangzhou 510006, China

Corresponding author: Miao Liu (liumiao@gzhu.edu.cn)

This work was supported by Guangzhou Municipal Universities under Project 1201620342.

ABSTRACT Second-order vulnerabilities are more subtle and more destructive than the first-order vul-
nerabilities. After researching and analyzing the principles of web penetration testing and second-order
attack principles, this paper proposes a method to detect web second-order security vulnerabilities. The
method detects web second-order security vulnerabilities through two crawl scans. It crawls the website
URL for the first time, sends anchor points, crawls URLs of the storage anchor point for the second time,
and detects second-order web security vulnerabilities specifically for these suspicious URLs. The approach
greatly reduces the time complexity of detecting second-order web security vulnerabilities and makes up for
the lack of methods to detect web security second-order vulnerabilities.

INDEX TERMS Web security, second-order attacks, penetration testing, second-order vulnerability
detection.

I. INTRODUCTION
With the rapid development of the Internet, web applications
provide people with more and more functions, corresponding
web vulnerabilities are gradually increasing. Many websites
harbor malware because of web vulnerabilities. According
to the Symantec’s 2018 Internet Security Threat Report,
Symantec WebPulse URL classification and reputation anal-
ysis service scanned 1.07 billion URLs per day in 2017,
the number of malicious URLs grew by 2.8 percent, with
7.8 percent (1 in 13) of all URLs identified as malicious.
The number of URLs resulting from bot-related traffic, such
as that used for command and control, grew by 62.3 per-
cent, accounting for 14.7 percent of all malicious URLs
in 2017 [1].

Security incidents due to web vulnerabilities have also
occurred frequently, such as the large-scale Internet incidents
in the United States in 2016, Jingdong 12G user data leakage
incidents, Intercontinental hotels Group (IHG) credit card
data breaches in 2017, and WannaCry file extortion incidents
on a global scale. These web security incidents are shocking,
but these are only the tip of the iceberg of many web security
incidents. Web security has an important impact on people’s
daily lives and needs constant attention.

We know that regular web security vulnerabilities are
almost always triggered by the user’s input. SQL (Struc-
tured Query Language) injection vulnerability is that user
input causes SQL statements to be executed incorrectly.
XSS (Cross Site Scripting) vulnerability is that user input

causes page parsing error. User input leads to error OS
command execution is RCE (Remote Command Execution)
vulnerability. We refer to these categories of vulnerabilities
that cause web application errors by one time input as web
first-order security vulnerabilities, and corresponding two
times inputs triggered vulnerabilities are collectively referred
to as web second-order security vulnerabilities. An attacker
exploits a first-order vulnerability to input attack vectors and
immediately gets attack results from responses of web appli-
cations. Second-order web security vulnerabilities are hidden
deeper and not easily detected, because second-order web
attacks belong to multi-step attacks, and are accomplished
by combining two step inputs [2]. Attackers exploit second-
order vulnerabilities to attack in two steps. The first step is
to input attack vectors in some injection points, web appli-
cations respond normally and store tainted data in databases,
sessions or source code files. The second step is to access
tainted data or input attack vectors in different points, and
then attackers get attack results from responses this time.

II. RELATED WORKS
The second-order code injection attack was proposed in [3]
in 2004, and relevant research results were few in the fol-
lowing years. In 2010, Bau [4] from Stanford University
compared mainstream penetration testing tools by experi-
ments, and one of the results showed that detection rate
of the second-order SQL vulnerability was zero. Common
vulnerability scanning tools only involve the analysis of

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

70983

https://orcid.org/0000-0003-2259-9782

M. Liu, B. Wang: Web Second-Order Vulnerabilities Detection Method

one step attack, cannot complete the analysis of multiple
associated steps attacks, and so cannot find effective attack
paths [5]. Later, Korscheck [6] proposed a strategy based
on iStar, a workflow-based detector created by Daimler. The
strategy is to separate the penetration test from the attack
phase, so that the detector can perceive the behavior of the
web application and analyze unexpected web application
behavior. The method improved storage XSS detection rate.
Rocha and Souto [7] developed ETSSDetector, a generic
and modular web vulnerability scanner that automatically
analyzes web applications to find XSS vulnerabilities. The
scanner includes an Extraction component, a Qualification
component, a Test component, an Analysis component, and
a Database. Extraction component is responsible to identify,
collect and analyze the necessary information to evaluate the
web application. Qualification component makes the analysis
of the pages of the web application being tested identifying
each vulnerable point. The Test component is responsible to
inject and execute XSS attacks that will be assigned to each
vulnerable point. Analysis component performs the detection
of XSS attacks through the analysis of the results from previ-
ous modules. All information collected during ETSSDetec-
tor execution are stored in a database like links, forms and
parameters. Finally, experiments show that ETSSDetector is
presented as a good alternative to assist information security
professionals in the fight against the vulnerabilities that are
presented in web systems. The scanner uses a traditional
crawl detection algorithm, and it is inefficient when dealing
with large websites [8].

The use of white-box testing methods to detect web
security second-order vulnerabilities began in 2014. In [9],
a source code analysis tool named RIPS was used for seman-
tic analysis, combined with database storage status detection
of web security second-order vulnerabilities. Johannes Dahse
and Thorsten Holz tested some popular web applications at
the time and detected 159 second-order security breaches.
Yan [10] also proposed an approach to analyse source code to
find the suspicious data columns, and then test the suspicious
data columns by dynamic methods. This approach uses static
analysis to understand the internal information of the web
application, narrows the scope of detection and then fills
the gap of the high false positive rate of static analysis by
dynamic testing. Li et al. [11] proposed a detection method
combined with static smut analysis and fuzz testing, and
the method could detect some second-order SQL injection
vulnerability. Marashdih and Zaaba [12] proposes a method
which begins from Pixy tool to analyze the source code, in a
way to draw the Control Flow Graph (CFG) and to find the
whole paths of the PHP source code. Two different experi-
ments were conducted and experimental results showed that
the method can effectively remove the XSS vulnerability
from source code. Reference [13] proposed a static analysis
method for detecting second-order DoS vulnerabilities in web
applications, and implemented the analysis in a tool called
Torpedo.

Hu [14] established a defense resistance and remedymodel
of SQL injection attack, and the related code is imple-
mented. By applying the program on actual projects, it is
proved that the proposed approach is able to protect the
network from SQL injection. Le et al. [15] proposed a
series of new second-order SQL attack techniques. They
are blind second-order SQL injection, second-order SQL
injection attacks operating systems and client second-order
SQL injection. The author didn’t propose any corresponding
second-order vulnerability detection method. Reference [16]
proposed a middleware plus proxy server model to defend
against second-order SQL injection attacks. The model pro-
tected second-order SQL injection by intercepting random
standard SQL additions, deletions, and other keywords in
middleware and proxy servers, and didn’tmention how to find
second-order SQL injection vulnerabilities.

III. SECOND-ORDER VULNERABILITIES DETECTION
A. SECOND-ORDER VULNERABILITIES ATTACK PRINCIPLE
Web second-order attacks must have two time attack inputs or
access. The first attack input does not cause web application
vulnerabilities to be triggered, then the second attack input
causes the web application to produce an error, or attackers
access tainted data in the second step. Before the second
attack input is entered, the web application must have a web
security vulnerability, such as SQL injection, stored XSS,
RCE or LFI (Local File Include). Otherwise, the second
attack input will not cause the web application to perform
incorrectly. The reason is that only two inputs join together
to form a effective attack vector. The state diagram of web
application is illustrated in Fig. 1.

FIGURE 1. Web application state transition diagram.

The attacker submits some well-conceived attack inputs in
the HTTP request. The web application server stores some
or all of inputs. The attacker sends the second attack input,
web first-order vulnerability status changes, and results in
incorrect execution. Second-order attacks require two steps
to achieve attack effects, and so second-order vulnerabilities
have strong concealment.

For example, a code segment of PHP that simulates users
posting blogs is as follows.

<?php
if(isset($_POST["blog"]))
{
$content=mysql_real_escape_string($_POST["content"]);
$owner = $_SESSION["username"];
if($content != "")
{

70984 VOLUME 6, 2018

M. Liu, B. Wang: Web Second-Order Vulnerabilities Detection Method

$sql = "INSERT INTO blog (date, content, owner)
VALUES (now(),’". $content . "’,’". $owner . "’)";

$recordset = mysql_query($sql);
if(!$recordset)
{
die("Error: " . mysql_error(). "
");

}
$message = "message has

added!";
}

}
echo " ". $message;
?>
The code uses the mysql_real_escape_string function to

prevent SQL injection attacks on the blog content. The next
step is to store the content to the database, and the code seg-
ment has no problem. If the user enters some dangerous SQL
injection characters, these characters will not cause the blog
program to execute incorrectly, and these special characters
can also be output to some web pages in the application.

Then the following code segment is a popular statistic for
the content published by a user.

<?php
$id=$_GET[’id’];
$secsql="SELECT content FROM blog WHERE

id=’$id’";
$st=mysql_query($secsql);
$cont=mysql_fetch_row($st);
$finsql="SELECT ∗ FROM blog WHERE content=

’$ cont[0]’";
$st2=mysql_query($finsql);
echo mysql_num_rows($st2);
?>
The code segment first accepts an id parameter to query

popular degree of the content posted by the user’s blog.
We assume that the id parameter is an anti-SQL injected
parameter. The code first extracts the contents of the id, and
then queries the number of the same content in the blog table.
The code seems to be safe. However, there is a potential threat
that the statistical code will be executed incorrectly when
the information stored in the database is a dangerous SQL
injection attack string, such as ‘‘; drop table blog;- -’’. If the
injected code is executed, the blog table will be deleted.

The second-order vulnerability does not appear at all when
the user submits normal content. Only special SQL injection
attack strings can trigger it, if they are stored in the database
before. Therefore, ordinary tools can hardly detect these
second-order vulnerabilities.

B. SECOND-ORDER VULNERABILITY
DETECTION PRINCIPLE
If common black box detection tools are extended accord-
ing to first-order vulnerabilities detection approach to detect
second-order web security vulnerabilities, there will be
few vulnerabilities to be detected. The experimental results
of [4] and [15] showed this problem.

If you use black box testing for web security second-order
vulnerabilities, the first problem to face is time complexity.
The ordinary black box detection tool first performs a com-
prehensive scan of the web application to obtain a URL table,
and then conducts various first-order vulnerability tests on
each URL in this table. If we modified these tools in order to
detect web security second-order vulnerabilities, the general
process is as follows:

1) Crawl the testing web application to get a list of URLs;
2) Send an attack input to each URL in the URL table;
3) Crawl the testing web application again to get a new

URL table;
4) Perform various vulnerability tests on the new URL

table.
The above steps seem to be no problem, but it has two

important deficiencies. The first deficiency is that in the sec-
ond step, due to types of vulnerabilities are not known, vari-
ous attack inputs need to be sent, making the number of URLs
in the third step much larger. The second deficiency is that the
new table has no relationship with attack inputs in the second
step, so that the fourth step of the vulnerabilities test requires
a comprehensive vulnerabilities testing. It is necessary to
consider all combinations of two tables. As a result, the above
process will take a great deal of time.

C. A WEB SECOND-ORDER VULNERABILITY
DETECTION ALGORITHM
According to the storage characteristics of web security
second-order vulnerabilities, this paper presents a black box
second-order vulnerability detection algorithm. The algo-
rithm flow chart is shown in Fig. 2.

The algorithm detects web second-order vulnerabilities
through two time crawls. The algorithm greatly reduces the
number of URLs that detect suspicious web second-order vul-
nerabilities by using special strings and numeric ‘‘anchors’’,
and also establishes relationship between the URL of the
first time crawling and URLs of suspicious web second-order
vulnerabilities.

As illustrated in Figure 2, the algorithm crawls the target
site first, and stores the URL of the entire site in a table A. The
next step is to read the contents of table A, and sends a request
for the string ‘‘SecCheckBy’’+ n (n is the storage order of the
URL in table A) to every URL. Then the algorithm crawls
the target website again, this time only accesses the URL of
the web page content containing the string ‘‘SecCheckBy’’
and stores into the table B.

The core part of the algorithm is reading contents of
table B.When reading aURL record ordered as ‘‘k’’, the algo-
rithm gets the contents of the URL and takes the number
behind the string ‘‘SecCheckBy’’ as ‘‘n’’. According to ‘‘n’’,
the algorithm finds the URL of the order n in table A. Then
the algorithm sends a series of attack vectors to this URL,
and then perform regular first-order vulnerability detection
on the ’k’th URL in table B. If there is a detection result,
the vulnerability information will be stored in the database,
otherwise the next record in table B will be read until

VOLUME 6, 2018 70985

M. Liu, B. Wang: Web Second-Order Vulnerabilities Detection Method

FIGURE 2. Flowchart of second-order vulnerability detection algorithm.

table B is finished. The last step is summarizing the detecting
results.

From the above algorithm description, we can see that the
detection number of the algorithm is directly proportional to
the number of records in table B. The number of detecting for
each type of web security second-order vulnerability equals
to the record number of table B. If the record number of table
B is m and the type number of second-order vulnerabilities to
be detected is t, the total number of detecting is (t ∗m).

Reviewing the process of detection by using common pen-
etration testing tools, assuming that the number of total site
URLs crawled in the first step is n, and then the number of
new total site URLs scanned in the third step is n+c, where
c is the number of new added URLs that the web application
responds to attack inputs in the second step. Because the two
obtained global URL tables are not related, it is necessary
to consider all combination cases of the two tables. In this
way, the detection number of every type of web security
second-order vulnerability is n∗(n+c), and the total number
of detecting is (t∗n∗(n+c)). Comparing the algorithm pro-
posed, because the record set in the table B is subset of all
new global url record set,and it also means that m is less than

or equals to n+c, the detection algorithm is better than the
above process.

IV. DESIGN OF THE SYSTEM
The system adopts a B/S architecture so that users can easily
perform second-order vulnerability detection on web applica-
tions through browsers. In addition, the system adopts mod-
ular design method to facilitate subsequent expansion. The
overall architecture of the system is shown in Fig. 3.

FIGURE 3. The overall architecture of system.

FIGURE 4. Web security second-order vulnerability detection system
process.

The management engine controls the crawler module and
the second-order vulnerability detection module. The crawler
module crawls the URLs of the web application and stores
them into the back-end database. The second-order vulner-
ability detection module detects the web application and
stores vulnerability information to the back-end database.
The reporting module reads vulnerability information and
displays them in the browser.

The system process is illustrated in Fig. 4.
The flow chart of the second-order vulnerability detection

module is shown in Fig. 5.
According to the algorithm, the second-order vulnerability

detection module obtains two input URLs A and B. URL A is
the first step attacking URL, and the URLB is the URLwhich
stores the attacking vector of the first step. Rule matching is
performed on the contents of the two URLs to determine the
most likely second-order vulnerability information, then the
corresponding second-order vulnerability detection module
is invoked for detection, and finally the result information of
the vulnerability is output to the database.

70986 VOLUME 6, 2018

M. Liu, B. Wang: Web Second-Order Vulnerabilities Detection Method

FIGURE 5. Flowchart of the second-order vulnerability detection module.

FIGURE 6. Testing result.

V. EXPERIMENT ANALYSIS
There are two environments that need to be set up in
this experiment. One is the testing web application, which
includes three web second-order vulnerabilities, and they are
one second-order SQL injection vulnerability, one second-
order XSS vulnerability, and one second-order RCE vulner-
ability. The other is the Python web environment, mainly to
run web second-order vulnerability detection system. Both
environments are built on the Win7 OS. The testing result is
shown in Fig. 6.

Using scanning tools such as ZAP, three web security
second-order vulnerabilities have not been detected. The
overall result shows that this black box web second-order
vulnerability detection method is feasible.

VI. CONCLUSION
Web vulnerabilities make attackers more versatile and pose
serious threats to web security. There are usually two ways to
detect web vulnerabilities: manual detection and automated
detection. Detecting vulnerabilities manually is becoming
more and more difficult as the scale of source code grows.
The tools used for automatic detection are all based on basic
characteristics of first-order vulnerabilities, and second-order
vulnerabilities are rarely considered. Second-order vulner-
abilities are more subtle and destructive than first-order
vulnerabilities.

In this paper, we design a web second-order vulnerabilities
detection algorithm by utilizing storage characteristics of

theirs, and carry out experimental verification. The experi-
mental results show that the algorithm can effectively detect
web second-order vulnerabilities. In the future, the web
second-order vulnerabilities detection system based on the
algorithm will be further improved, and we will add more
kinds and quantities of attack vectors, so that it can detect
more types of web second-order security vulnerabilities,
reduce false alarm rate, and improve the detection effect of
web second-order security vulnerabilities.

REFERENCES
[1] Symantec Corporation. (2018). ISTRInternet Security. Threat

Report. Volume. 23. [Online]. Available: https://www.symantec.com/
security-center/threat-report

[2] P. Parrend, J. Navarro, F. Guigou, A. Deruyver, and P. Collet, ‘‘Founda-
tions and applications of artificial Intelligence for zero-day and multi-
step attack detection,’’ J. Inf. Secur., vol. 2018, no. 4, pp. 1–21, 2018,
doi: 10.1186/s13635-018-0074-y.

[3] G. Ollmann, ‘‘Second-order code injection attacks,’’ NGS Insight
Secur. Res., Manchester, U.K., Tech. Rep., 2004. [Online]. Available:
https://www.nccgroup.trust/uk/our-research/second-order-code-injection-
attacks/

[4] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, ‘‘State of the art: Auto-
mated black-box Web application vulnerability testing,’’ in Proc. IEEE
Symp. Secur. Privacy, Berkeley, CA, USA, May 2010, pp. 332–345,
doi: 10.1109/SP.2010.27.

[5] S. Nagpure and S. Kurkure, ‘‘Vulnerability assessment and pene-
tration testing of Web application,’’ in Proc. Int. Conf. Comput.,
Commun., Control Autom. (ICCUBEA), Pune, India, 2017, pp. 1–6,
doi: 10.1109/ICCUBEA.2017.8463920.

[6] C. Korscheck, ‘‘Automatic detection of second-order cross-
site scripting vulnerabilities,’’ Wilhelm Schickard Inst., Univ.
Tübingen, Tübingen, Germany, Tech. Rep. 2010. [Online]. Available:
http://www.vipread.com/library/item/121

[7] T. S. Rocha and E. Souto, ‘‘ETSSDetector: A tool to automatically
detect cross-site scripting vulnerabilities,’’ in Proc. IEEE 13th Int. Symp.
Netw. Comput. Appl., Cambridge, MA, USA, Aug. 2014, pp. 306–309,
doi: 10.1109/NCA.2014.53.

[8] H. Zhao, ‘‘Research on detection algorithm ofWEB crawler,’’ Int. J. Secur.
Appl., vol. 9, no. 10, pp. 137–146, 2015, doi: 10.14257/ijsia.2015.9.10.12.

[9] J. Dahse and T. Holz, ‘‘Static detection of second-order vulnerabilities in
Web applications,’’ in Proc. USENIX Secur. Symp., 2014, pp. 989–1003,
[Online]. Available: https://www.usenix.org/system/files/conference/
usenixsecurity14/sec14-paper-dahse.pdf

[10] L. Yan, X. Li, R. Feng, Z. Feng, and J. Hu, ‘‘Detection method of the
second-order SQL injection in Web applications,’’ in Structured Object-
Oriented Formal Language and Method. SOFL+MSVL (Lecture Notes
in Computer Science), vol. 8332, S. Liu and Z. Duan, Eds. Cham,
Switzerland: Springer, 2014, doi: 10.1007/978-3-319-04915-1_11.

[11] X. Li, W. Zhang, and L. Zheng, ‘‘Vulnerability detection using
second-order SQL injection combining dynamic and static analysis,’’ J.
Huaqiao Univ. (Natural Sci.), vol. 4, no. 4, pp. 600–605, 2018, doi:
10.11830/ISSN.1000-5013.201606110.

[12] A. W. Marashdih and Z. F. Zaaba, ‘‘Detection and removing cross
site scripting vulnerability in PHP Web application,’’ in Proc. Int.
Conf. Promising Electron. Technol. (ICPET), Deir El-Balah, UAE, 2017,
pp. 26–31, doi: 10.1109/ICPET.2017.11.

[13] O. Olivo, I. Dillig, and C. Lin, ‘‘Detecting and exploiting second order
denial-of-service vulnerabilities in web applications,’’ in Proc. 22nd
ACM SIGSAC Conf. Comput. Commun. Secur., 2015, pp. 616–628,
doi: 10.1145/2810103.2813680.

[14] H. Hu, ‘‘Research on the technology of detecting the SQL injection attack
and non-intrusive prevention in WEB system,’’ in Proc. AIP Conf., 2017,
p. 020205, doi: 1839.020205.10.1063/1.4982570.

[15] D. Le, X. Li, and S. Gong ‘‘Research on second-order SQL injection
techniques,’’ J. Commun., vol. S1, no. Z1, pp. 85–93, Nov. 2015, doi:
10.11959/j.issn.1000-436x.2015285.

[16] C. Ping, ‘‘A second-order SQL injection detection method,’’
in Proc. IEEE 2nd Inf. Technol., Netw., Electron. Autom. Control
Conf. (ITNEC), Chengdu, China, Dec. 2017, pp. 1792–1796, doi: 10.1109/
ITNEC.2017.8285104.

VOLUME 6, 2018 70987

http://dx.doi.org/10.1186/s13635-018-0074-y
http://dx.doi.org/10.1109/SP.2010.27
http://dx.doi.org/10.1109/ICCUBEA.2017.8463920
http://dx.doi.org/10.1109/NCA.2014.53
http://dx.doi.org/10.14257/ijsia.2015.9.10.12
http://dx.doi.org/10.1007/978-3-319-04915-1_11
http://dx.doi.org/10.11830/ISSN.1000-5013.201606110
http://dx.doi.org/10.1109/ICPET.2017.11
http://dx.doi.org/10.1145/2810103.2813680
http://dx.doi.org/1839.020205.10.1063/1.4982570
http://dx.doi.org/10.11959/j.issn.1000-436x.2015285
http://dx.doi.org/10.1109/ITNEC.2017.8285104
http://dx.doi.org/10.1109/ITNEC.2017.8285104

M. Liu, B. Wang: Web Second-Order Vulnerabilities Detection Method

MIAO LIU received the B.Sc. and M.Sc. degrees
in computer science from Information Engineer-
ing University, China, and the Ph.D. degree
in computer application technologies from the
South China University of Technology, China,
in 1987, 1991, and 2007, respectively.

He is currently an Associate Professor with
the Computer Science Department, Guangzhou
University, Guangzhou, China. He has authored
or co-authored over 30 technical papers. His

major research interests are network security, artificial intelligence, and
e-commerce.

BIN WANG received the B.S. degree in computer
science and technology from Zhoukou Normal
University, China, in 2010, and the M.S. degree in
computer technology from Guangzhou University,
China, in 2018.

He was a Laboratory Assistant with the
South China Institute of Software Engineering,
Guangzhou University, from 2011 to 2015. He is
currently a Software Engineer in a software devel-
opment company in China. His current research

interests include web security and security applications.

70988 VOLUME 6, 2018

	INTRODUCTION
	RELATED WORKS
	SECOND-ORDER VULNERABILITIES DETECTION
	SECOND-ORDER VULNERABILITIES ATTACK PRINCIPLE
	SECOND-ORDER VULNERABILITY DETECTION PRINCIPLE
	A WEB SECOND-ORDER VULNERABILITY DETECTION ALGORITHM

	DESIGN OF THE SYSTEM
	EXPERIMENT ANALYSIS
	CONCLUSION
	REFERENCES
	Biographies
	MIAO LIU
	BIN WANG

