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ABSTRACT An experience of finding a vacant parking slot can be very stressful in densely populated
areas, especially in peak hours. Such parking process takes a long time, wastes significant gasoline, and
emits extra vehicle exhaust that harms the environment. Smart parking, aiming to assist drivers in finding
desirable parking slots more efficiently through information and communication technologies such as vehicle
ad hoc networks (VANETS), has received extensive attention recently. Current VANETSs-based parking
slot allocations cannot provide a fully satisfactory solution, because vehicle communication devices—on-
board units—and roadside units lack computational capabilities to perform humanized and accurate service
provisioning, such as real-time parking slots information and probabilistic prediction on future parking
slots. Therefore, we, in this paper, propose a fog computing-based smart parking architecture to improve
smart parking in real time. Fog nodes deployed at parking lots, cooperating with each other, enable real-
time parking slot information provisioning as well as parking requests processing. The cloud center can
further enhance smart parking capability by enforcing global optimization on parking requests allocation.
The experimental results of our approaches show higher efficiency compared with other parking strategies.
The proposed fog computing-based smart parking can lower the average parking cost and minimize gasoline

wastes and vehicle exhaust emission.

INDEX TERMS Parking slot, smart, VANETS, fog computing, architecture, real time.

I. INTRODUCTION
Parking problems have attracted more and more attention
in the past few years, as the number of motor vehicles is
explosively increasing. An experience of finding a vacant
parking slot can be very stressful in densely populated area
(e.g., Beijing). Often, drivers need to keep circling around the
underground parking lot, or wait at the entrance to the ground
parking lot, until a slot is available. The time consuming
parking process results in a series of issues such as severe
gasoline wastes and vehicle exhaust emissions that harms the
environment.

Several countermeasures have been taken to overcome the
parking problems. Smart parking systems, aiming to assist in

finding vacant parking slots when vehicles enter the parking
lot, have been developed and applied in many parking lots.
For instance, they usually provide vehicles with real-time
parking slots information and direction signs for vacant park-
ing slots. To this end, large quantities of sensors are required
for data collecting and accurate service provisioning, which,
however, requires enormous expenditures. Nevertheless, few
of these parking systems provide services for outside vehicles
which are looking for parking spaces along the road. For
instance, when there is no parking slot available and numbers
of vehicles are waiting for parking outside, the parking lot
does not provide efficient mechanism to notify the approach-
ing vehicles in vicinity of the parking slot status. As a result,
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more and more vehicles are jammed at the parking lot,
causing great inconvenience to drivers and severe gasoline
wastes. However, from the economic viewpoint, the owners
of the parking lots have little incentive to improve parking
lot efficiency; they would prefer keeping vehicles waiting in
queue rather than having the parking slots idle.

In this context, Vehicle Ad Hoc Networks (VANETS),
which could interconnect vehicles and roadside units (RSUs)
through IEEE 802.11p, are considered as a suitable choice for
smart parking [1]. VANETS, usually consisting of RSUs and
vehicles mounted communication devices, e.g., the on-board
units (OBUs), can enable efficient information collecting and
sharing among vehicles. On one hand, vehicles in VANETS
can receive the parking lot information from other vehicles
and RSUs; On the other hand, vehicles need to act as relay
nodes disseminating the information to other vehicles.

However, a few challenges still exist in VANET-based
smart parking systems. First, vehicles lack incentives to share
parking information with other partners, especially for those
with urgent parking demands. Secondly, energy consumption
caused by serving as relay nodes is also a big concern when
parking slot information is continuously disseminated among
vehicles. Thirdly, ad hoc style information collecting and
sharing cannot support timely information dissemination and
update, which is very critical for smart parking systems. Last
but not least, RSUs, responsible for caching and relaying the
parking slots information to the vehicles nearby, are unlikely
to achieve ubiquitous coverage due to costly installation,
deployment and maintenance. As an immobile infrastructure
located at a traffic dense area such as road side, intersections,
and near parking lots for information dissemination, current
RSUs do not have powerful computational capabilities. Thus,
for humanized and accurate service provisioning, e.g., real-
time parking slots information and probabilistic prediction on
future parking slots, VANETSs-based parking slot allocation
strategies cannot provide a fully satisfactory solution.

The fog computing paradigm, also known as the edge
computing and considered as one of key enablers of IoT
and big data applications [2], brings computation and storage
resources to the edge of network, enabling it to run the highly
demanding applications while meeting strict latency require-
ments. Therefore, to overcome the aforementioned shortcom-
ings of VANET-based smart parking systems, we propose a
fog computing based smart parking strategy in this paper.
Specifically, a few fog nodes with computation and storage
resources are deployed near parking lots to collect and share
information andhelp vehicles make parking decisions. More-
over, different fog nodes can collaborate with each other to
derive a comprehensive parking information of the area to
facilitate collaborative decision making. Besides, a remote
cloud center with much more powerful processing capabil-
ity can further optimize the efficiency of the smart park-
ing system. Via fog computing, the traffic data and parking
slots information can be processed at the edge of network
in a real time fashion to alleviate the parking problems and
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even reduce vehicle exhaust emissions and environmental
pollution.

The contribution of this paper is threefold, as follows:

1. We propose a parking slot allocation strategy and a
four-layer architecture, applying fog computing into
VANETS to provision real-time parking slot informa-
tion. With fog computing, vehicles are receiving nodes,
no longer responsible for information dissemination;
information dissemination and multi-hop communica-
tion are accomplished by fog nodes.

2. The proposed strategy considers the comprehensive
factors which can affect the decision marking, includ-
ing walking costs, driving costs, waiting costs and
more. Meanwhile, it gives drives options to choose
their own preferences— some drivers may follow their
own parking preferences while ignoring the sugges-
tions from fog computing and cloud computing.

3. Extensive simulations are conducted to evaluate the
efficiency and effectiveness of fog computing based
smart parking strategies. The experimental results have
proven that the smart parking strategies are outstanding
compared to other parking strategies. To great extent,
the fog computing based smart parking can efficiently
reduce the parking costs for each vehicle with parking
needs, and further reduce the gasoline wastes and vehi-
cle exhaust emissions.

The remainder of the paper is organized as follows.
Section II surveys some related works. Section III presents
the application scenario and system architecture which com-
bines fog computing and VANETS to provide customized and
humanized parking services. Section IV formulates the park-
ing problems based on fog computing. Section V proposes
an efficient parking slot allocation scheme, followed by the
experimental evaluation and analysis in Section VI. Finally,
Section VII provides conclusions and directions of the future
work.

Il. RELATED WORKS

Smart parking aims to assist drivers in finding desirable
parking slots more efficiently via ICTs, IoT, mobile inter-
net, cloud computing and so on. Currently, there are sev-
eral efforts which survey and investigate the smart parking
solutions [3]-[8]. As a subarea of smart city [9]-[14], smart
parking and smart transportation have also received extensive
attention recently. Lin et al. [3] have presented a smart park-
ing ecosystem and classified the current works by different
functionalities and problematic focuses. For instance, they
proposed three macro-themes based on the different parking
solutions, i.e., information collection, system deployment,
and service dissemination. VANETS enable the dissemination
of parking lot information among vehicles. Vehicles with
parking demands may choose to compete for only one park-
ing space, resulting in an unsatisfying solution in the smart
parking system. Delot et al. [7] have proposed a reservation
protocol which can allocate parking spaces in VANETSs and
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avoid the competition among vehicles. This approach for-
wards the parking spaces to specified vehicles to avoid the
competition. However, how to select the vehicles to send the
parking lot status is very crucial, this is because a fair park-
ing space allocation should take into account several factors
such as the parking time, the distance between vehicles and
parking lot, and more. Faheem et al. [8] have introduced an
agent into smart parking systems, which is responsible for
collecting dynamic and complex traffic data. They also spec-
ified how to interact between vehicles and parking systems.
A smart parking system named SPARK based on VANET is
presented by Lu et al. [1] for large parking lots.

The data collected by IoT devices and sensors have
increased explosively, which leads to response latency when
parking requests are processed. Thus, the vehicle may miss a
more appropriate parking lot when receiving the parking lot
status. To support the computational demands and reduce the
response time, fog computing has been introduced to smart
transportation [2], [15]-[17]. The fog computing provides
computing, networking and storage so that the advantages of
cloud computing can be extended to the edge of networking,
which is much closer to the IoT sensors.

To cope with the increasing demands for both com-
munication and computation from vehicular applications,
Hou et al. [18] conceived the idea of vehicular fog comput-
ing (VFC) for communication and computation. They utilize
moving and parked vehicles as the infrastructure which lever-
ages a collaborative multitude to perform communication
and computation. They study the relationships among com-
munication ability, connectivity, and mobility of vehicles.
Xiao and Zhu [19] propose similar concept of vehicular fog
computing. They turn the connected vehicles into mobile fog
nodes and offer cost-effective and on-demand fog computing
for vehicular applications.

To maintain the reliability of the real-time streaming and
adapt to the change of mobile device behaviors and the
computing resources, Huang and Xu [20] have illustrated
a distributed scheme for real-time streaming via vehicular
cloud-fog networks. They allocated the streaming from fogs
and clouds in advance, and thus the time can be reduced.
To relieve traffic congestion, reduce air pollution and improve
driving comfort level, Kim et al. have considered the parking
problem from the viewpoint of IoT [21], and have adopted
fog computing and roadside to find vacant parking spaces.
Matching theory is applied to solving the parking problem.
A navigation and reservation based parking proposal sys-
tem is developed in [22], with the purpose of relieve the
parking problems. The involved method is to use the IoT
technology to send data. They use genetic algorithms to
find vacant parking spaces which is near to the current
location.

Some researchers are dedicated to optimizing the parking
space searching. For instance, Song and Mou [26] modeled
the process of parking space searching as a game from the
perspective of game theory and try to find a stable strategy.
This approach however is of high computational complexity.
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To improve location accuracy in indoor parking,
Balzano and Vitale [15] have proposed an alternative local-
ization technique, which combines wireless radio signal
strength-to-distance evaluation, vehicle communications, and
DGP algorithm to find vacant parking spaces.

To process the explosively increasing data in the connected
vehicles, Zhang et al. [27] leverage the notion of fog com-
puting to ensure the quality of services such as the time
latency, and they present a hierarchical model with intra-fog
and inter-fog resource management. Besides some metrics
such as energy efficiency and packet dropping rates are opti-
mized. Combine fog computing and SDN in the connected
vehicles, Park and Yoo [28] try to reduce control message
overhead by adjusting the period of beacon messages and to
support efficient failure recovery, and they present a real-time
scheduling algorithm to recover the services.

The main difference between our proposal in this paper
and the aforementioned researches is that we aim at providing
humanized and accurate parking services with the help of fog
computing, such as real-time parking information dissemina-
tion and parking slots predictions. A cloud center is adopted
to achieve global optimization for parking request allocation.
We also underline the cooperation among fogs to reduce the
waiting time for vehicles in the parking lot.

(T LOTS AVAILABLE

41044100 g ey

FIGURE 1. An example of parking space prompts in smart parking lots.

Ill. SMART PARKING SCENARIO AND

SYSTEM ARCHITECUTURE

The advance of Internet of Things (IoT) has enabled much
richer means of event monitoring and information collecting
by employing various types of sensors in specified moni-
toring area (e.g., signalized intersections, parking lots, and
malls) [23]. Accordingly, we assume that the real-time park-
ing information can be obtained in this paper. Actually, most
smart parking lots have succeeded in providing accurate and
real-time slot occupation information to drivers. Moreover,
some smart devices are installed along the road to display
the current parking spaces information. For instance, Figure 1
depicts an example of parking space prompts in smart lots
to remind drivers with parking demand, where the location
of parking lots and the number of vacant parking spaces are
provided.
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FIGURE 2. The application of fog computing in parking slots allocation.

Howeyver, to obtain these kinds of guide signs are not
straightforward for the vehicles/drivers since there are no
interactions between vehicles and parking lots. Further,
checking guide signs may cause distracted driving behaviors
and lead to potential traffic accidents. Besides, a situation
may occur that multiple drivers may try their luck at the same
parking lot for only one parking space due to the delay of the
guide sign updates.

To tackle the parking problem, we face two main chal-
lenges here. The first one is how to enable the communi-
cations between vehicles and parking lots. The second one
is how to determine the optimal or near-optimal parking lot
for each individual vehicle for some particular time. In other
words, who can provide the computation capability for the
decision-making process. We can answer the first question
from the existing solution, i.e. VANET. As for the second
one, we think that a combination of fog computing and cloud
computing may provide the solution [24]. This is due to the
following two reasons. On one hand, a few fog nodes, which
are deployed at different parking lots and intersections, could
collect and disseminate both traffic and parking information
and make decisions in a timely manner. On the other hand,
a cloud data center with powerful processing capability may
gather a global view of the parking area and provide some
kind of global optimization for the decision making process.

Figure 2 depicts the smart parking scenario, where the
fog computing is applied to parking slots allocation. Each
parking lot is equipped with a fog node to achieve near
real-time information collection, processing and decision-
making. RSUs are placed along the traffic dense roads, and
they connect to the fog nodes through wired network with
low latency. In addition, vehicles and RSUs can communicate
with each other as long as they are within the communication
range. To enhance request processing abilities and seek global
optimization on parking slot allocation, a remote cloud center
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is introduced to process the parking requests uploaded from
the fog nodes in specified area.

A one-hop communication between fog nodes and RSUs
as well as between fog nodes and vehicles is enabled, i.e., the
traffic information or packets can be directly transmitted
between them without the help of relay nodes. For vehicles
with parking demand but beyond one-hop communication
with fog nodes, RSUs can act as relay nodes to dissemi-
nate the parking slot information to vehicles in vicinity, and
thereby multi-hop communications between vehicles and fog
nodes are formed.

Enormous amount of parking lot information, including
the number of vacant parking slots, the number of waiting
vehicles at the entrance and the approaching vehicles from
outside, can be collected and further periodically dissemi-
nated to vehicles with parking demand in real time. To avoid
the situation that one parking lot has numbers of vehicles
waiting at the entrance while another not far away has lots
of vacant parking slots, fog nodes can collaborate with each
other to share the parking space information. If no parking
slots are available in all parking lots, fog nodes and the remote
cloud can decide a potential optimal parking slots allocation
scheme based on some evaluation metrics. As a consequence,
the parking lots can make timely response to alleviate the
parking problems e.g., by vacant slots dissemination and
prediction, and further reduce driving time, gasoline wastes
and vehicle exhaust emissions.

Considering the needs for the real-time decision making,
fog computing is introduced as an intermediate layer in
between the cloud data center and IoT devices to facilitate
data collection, processing and analysis. Therefore, an archi-
tecture of fog computing based smart parking is then pro-
posed in this paper, which consists of four layers, i.e., cyber
physical layer, data management layer, data processing layer
and application layer, respectively.

70175



IEEE Access

C. Tang et al.: Toward Smart Parking Based on Fog Computing

A. CYBER PHYSICAL LAYER

The cyber physical layer is composed of a densely distributed
ecosystem which covers various sensors. This layer is in
charge for collecting various types of data from both vehicles
and parking lots. For instance, the vehicle related sensing
data such as velocity, acceleration, vehicle heading can be
collected by vehicle mounted sensor devices (e.g., accel-
erator, magnetometer, and inductive loop), while the data
on parking lots including the parking spaces occupancy,
the waiting vehicles can be collected by surveillance cameras
Radio-frequency identification (RFID) tags, and so on. The
core technology in the cyber physical layer is IoT, which
enables direct interactions among various entities (e.g., sen-
sors, routers, gateways).

B. DATA MANAGEMENT LAYER

To make data processing more efficient in the next stages,
we add an intermediate layer called data management layer
between the cyber physical layer and the data processing
layer. Data management layer is responsible for data pre-
processing such as data description, data fusion. The same
event can be captured by sensors of different types while
data from different sensors usually have a variety of repre-
sentation. Thus, redundancy of data may exist when storing
them. To manage data efficiently, it is necessary to process
the sensed data in advance, such as redundancy removing.
In addition, data fusion is also an essential part in data man-
agement layer, which integrates data from multiple sources
to provide much more consistent, accurate and meaningful
information than that provided by any individual data source.
For instance, vehicle entering or exiting can be monitored
by different techniques such as cameras, RFID, radar and
so on. The data sensed by different techniques should be
pre-processed before uploading to cloud center for further
optimization.

C. DATA PROCESSING LAYER

Data processing layer is the core of the fog computing based
smart parking; it integrates the application of fog computing
and remote cloud center [25]. This layer is in charge of
processing the sensed data via fog computing as well as cloud
computing. Specifically, fog nodes record the periodically
updated parking lot information, respond to parking queries,
make predictions based on the monitored slots occupancy
and the waiting vehicles, and upload parking queries to cloud
center for further slots allocation decision. On the other hand,
remote cloud center is responsible for global parking spaces
allocation when the number of vehicles with parking demands
is larger than that of parking spaces.

D. APPLICATION LAYER

The application layer offers specific intelligent applications
and services to vehicles with parking demands, aiming to
reduce driving time, gasoline wastes and vehicle exhaust
emissions. For example, interested vehicles/drivers can issue
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query service to know the occupancy status of parking lots
within the communication range. Regarding the parking lot
selection, vehicles can be guided to suitable parking lot with
the aid of positioning and navigation services.

IV. PROBLEM FORMULATION

In this section, we give an introduction to the involved entities
(i.e., fog nodes and cloud nodes), with regards to the corre-
sponding functionality as well as the roles played in the smart
parking systems. Then we formulate the evaluation metrics on
parking costs mathematically. Finally, the objective function
is given which indicates how the parking request is allocated.

A. FOG NODES AND THE ROLES

Parking slots are spatial-temporal resources which can be
monitored by various sensors (e.g., surveillance cameras,
RFID tags and so on). In the proposed architecture, each park-
ing slot is defined by a six-tuple, ps = (slotID, OCC, vehlD,
timeStamp, DUR, SPCL),of which each element is detailed
as follows:

o Parking slot ID (slotID): identification represented by
an integer or the corresponding position (x;, y;) on the
Euclidean plane. For instance, for parking slot localiza-
tion based on surveillance cameras, each parking slot
can be denoted by integers; otherwise, a corresponding
position (x;, y;) might be a good alternative.

e Occupancy (OCC): This field denotes the occupancy
status of the parking slot. If the parking slot is occupied,
set OCC to 1 and 0, otherwise.

o Vehicle ID (vehID): If OCC equals 1, a unique identifi-
cation should be used to identify the vehicle occupying
the slot. Currently, either the license plate numbers or
the OBUs can uniquely label the vehicles. If OCC equals
zero, this field can be empty or assigned with a default
value.

o Time stamp (timeStamp): This field records the times-
tamp when the vehicle starts to park at the parking space.
If OCC equals zero, this field can be empty or assigned
with a default value.

o Duration (DUR): During the interactions between vehi-
cles and fog nodes, we assume that vehicles with parking
demand will provide a rough parking time, so that fog
nodes can predict the possible status of parking slots in
the near future. Accordingly, we use DUR to approxi-
mately represent the parking time. If OCC equals zero,
this field can be empty or assigned with a default value.

o Special use (SPCL): Some parking slots are provi-
sioned exclusively for special purposes (e.g., police
cars). We use SPCL to denote this type of purposes.

Based on the descriptions above, each parking lot can be

regarded as a set of ps, which are stored and managed by
fog nodes. For instance, when a parking slot is occupied,
the information about the parking lot can be updated in real
time by fog nodes. Fog nodes disseminate the periodic beacon
messages about the current parking lot information to RSUs.
Specifically, Figure 3 depicts the general interactions among
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these entities (i.e., vehicles, fog nodes, RSUs, and cloud
node). The procedure works as follows:

1. Fog nodes deployed at the parking lot dissemi-
nate to RSUs the periodic beacon messages bcnMsg =
(lotPos, timestamp, aviSlots, futSlots, curReq), where lotPos
denotes the location of the parking lot, timestamp the time
beacon information is sent, aviSlots the current number of
vacant parking space, futSlots the number of new slots avail-
able in the near future, and curReq the number of vehicles
approaching the parking lot. Note that the number of new
vacant slots in the near future can be predicted by the duration
DUR recorded in ps.

2. After receiving the beacon information, interested
vehicles send to fog nodes the parking request pReq =
(vehPos, timestamp, OBU _ID, pTime, Destination), ~where
vehPos denotes the current position of vehicles, OBU_ID a
unique identification of an OBU as well as the vehicle, pTime
the rough parking time, Destination the place drivers want to
leave for eventually.

3. After receiving the parking request via RSUs, the fog
node copes with it as followings. Firstly, the fog node esti-
mates the time by which the vehicle will arrive; Then the
fog node predicts whether there is a vacant parking slot for
the vehicle by combining the current slot information and
new vacant slots at that time; If there is a vacant slot for
the vehicle, the fog node send to it the reply information,
denoted by relnfo = (lotPos, OBU_ID, timeStamp, avlSlots,
futSlots, curReq, cost), where OBU _ID represents the receiv-
ing node (i.e., vehicles), timestamp the time the reply infor-
mation is sent,cost the parking fees calculated by fog nodes.
Note that lotPos, aviSiots, and curReg are the same meanings
as defined in bcnMsg. If there is no vacant slot for the vehicle
by the time it arrives, the fog node uploads pReqg to the
cloud center, where a globally optimal parking slot allocation
scheme is determined based on the specified metrics such
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as parking fees. This is achievable since in the architec-
ture fog nodes also disseminate bcnMsg to the cloud center
besides RSUs. Thus, cloud center maintains the parking slot
status of all the parking lots in the coordinated area.

4. After receiving the reply information, vehicles have two
options. One is that the vehicle follows the suggestion and
drive to the specified parking lot. The other is that drivers
may ignore it, due to their own parking preferences. If the
vehicle follows the instruction, it needs to send the fog node
the confirm information which is very important for fog nodes
to update the parking lot status.

In this proposed architecture, we do not take into account
the parking slot reservation, for the reason that in some cases,
e.g., when vehicles are very close to the parking lot and
drivers are aware of its location, there is no need to turn on
the communication devices (e.g., OBU). However, if parking
slot reservation is enabled, these vehicles may be blocked
at the entrance, even if they arrive much earlier than those
with reservations. In addition, from the viewpoint of parking
lot owners, keeping current parking spaces idle with vehicles
waiting outside is not an efficient way to gain benefits. Even
worse, traffic jam and car accidents will make owners suffer
great losses, since the vehicles ordering the parking space
may arrive too late or even do not appear at all.

B. CLOUD CENTRE AND THE ROLES

In traffic dense area with multiple parking lots in the vicinity,
there may be no vacant parking spaces in all these parking
lots in peak hours. Drivers may select the parking places
based on their own preferences, which however can render
a longer waiting time if other drivers with similar prefer-
ences behave the same way. To achieve an efficient parking
slot allocation with regards to all parking places, the cloud
computing is introduced to assist decision making. In our
application scenario, each parking lot is equipped with a
fog node which is responsible for service provisioning and
parking slot prediction, while the cloud nodes located at the
remote cloud center take charge of parking slot allocation
among multiple parking lots in the coordinated area.

The interactions between cloud nodes and fog nodes have
been illustrated in Figure 3. When no parking slot is available
in these parking places, the parking requests sent by vehicles
will be uploaded to cloud nodes, where the global optimiza-
tion of parking slot allocation is performed with regards to
the specified metrics.

C. TOTAL COSTS OF PARKING PRECEDURE

Several factors affect the decision making on which parking
lot the vehicle should park, such as the drivers preferences,
the destination, the parking fees, and so on. Specifically, we
incorporate these factors and formulate the total costs taken
in the parking procedure as follows:

cost = Cgriving(vehPos, l0tPos) + Cyaiting(Num,, futSlots)
+ Cparking(pTime) + Cyyairing(lotPos, Destination)

ey
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where, Cyriving(vehPos, lotPos) represents the driving cost
from the current position to the parking lot, Cyiring(Num,,
futSlots) the waiting cost when vehicles wait at the entrance to
the parking lot, Cyaiking (lotPs, Destination) the parking fees,
and Cyygjking (lotPos, Destination) the walking cost from the
parking lot to the destination. In the next, we will calculate
these costs, respectively.

To estimate the driving cost and walking cost, we assume
that distance between two positions, denoted by
Dis(posy, posz), can be obtained, e.g., by GPS in vehicles or
smart phones. Thus the sum of driving and walking costs can
be calculated as follows:

Cariving + Cywaiking = 0 - Dis(vehPos, lotPos)
+ v - Dis(lotPos, Destination) (2)

where, § (resp.y) denotes the driving cost (resp. walking
cost) per distance unit.

The calculation of the waiting cost depends on the number
of current vacant parking slots, the number of requests and the
predicted vacant slots in the future. The number of vehicles
waiting at the entrance can be monitored and counted by
sensors such as surveillance cameras, the RFID tags, infrared
ray and so on. The number of slots to be vacant can also be
predicted based on ps. The number of approaching vehicles
can be counted based on the confirm information sent by vehi-
cles. As a result, the position of arbitrary vehicle (e.g., on the
road or in the waiting queue) can be calculated. For example,
there are ten vehicles approaching the parking lot and twenty
vehicles already waiting at the entrance. For the vehicles on
the road, according to the parking request pReq, the fog node
can estimate the times by which each vehicle arrives and the
arrival time can be denoted by a vector Ty, = (2L, ..., £}0).
Combing the periodic beacon message bcnMsg, the fog node
can estimate the position of any vehicle which is waiting in
queue.

Suppose that the information about ps is updated every
fixed time interval. We denote by #;,,; this fixed time interval.
Let Num;(>1) be the position of vehicle i waiting at the
entrance, i.e., there are other Num; — 1 vehicles in front of it.
Let WT; denote the total waiting time for vehicle i. In reality,
the waiting time of arbitrary vehicle can be collected by
various sensor devices. We in this paper estimate the waiting
time with the help of ps and t;,,,;. To calculate the waiting time
of vehicle i, we just need to find out how soon the number of
parking slots to be available amounts to at least Num;. In other
words, we need to find the minimal number of updates of ps,
denoted by ki, which satisfies:

k
kmin = mink| Y~ futSlots[j] > Num;} (3)
j=1

where, futSlots[j] represents the number of vacant slots in
the j time interval. Thus, the waiting time can be expressed
by:

WT; = kin - tinvt + Tready 4
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Where Tieqqy represents the duration from the time vehicle
begins to parking to the time the parking process is finished
and we assume it is fixed, without consideration of drivers’
preferences and skill differences. Accordingly, the waiting
cost of vehicle i can be calculated as follows:

Cwaiting =A-WIT; (5)

where, A denotes the waiting cost per time unit. Note that
the precision of the waiting cost directly depend on the update
frequency of ps. Higher update frequency of ps usually gives
rise to preciser waiting cost, which however incurs additional
computational and stored overheads.

The parking fees can be calculated as follows.

o, pTime < 1
o + (pTime — t1) - B, pTime > t;

(6)

Cparking(pTime) = {

where, #] is introduced as a time division point to cater for
a real parking environment. For instance, when the parking
time is smaller than #1, the parking fees are unchangeable.
When the parking time is longer than ¢, the parking fees
increase linearly with the increase of parking time.

Thus the total cost can be calculated by fog nodes. How-
ever, considering the preferences of drivers, e.g., some drivers
cares about parking fees more importantly than walking dis-
tance from parking lot to the destination while others are just
the reverse, thus different weights can be assigned to the four
parts based on drivers’ preferences.

V. PARKING SLOT ALLOCATION ALGORITHM

A. PROBLEM STATEMENT

To facilitate our further discussion, Table I lists some key
notations to be used through the paper. For the generalized
parking problem, suppose there are m vehicles which send
parking requests to fog nodes and n parking lots in the vicin-
ity. We use an allocation indicator variable, denoted by ¢(i, j),
to represent the parking decision. ¢(i, j) = 1 if vehicle i parks
at parking lot j and 0, otherwise. Many metrics can act as
optimization objectives such as parking fees minimization,
energy consumption minimization, and so on. Considering all
aspects involved in the parking slot allocation problem, we in
this paper regard the total costs as our objective function.
Thus, the objective function about parking slot allocation
problem P can be modeled as follows:

m n
Minimize (P) : f =Y Y ¢(i.j) - Cost(i.j)
i=1 j=1
s.t. Cost(i, j) = wy - Cdriving(ia J+wa- Cwaiting(ivj)
+ w3 - Cparking(i’j) +wy - Cwalking(iaj)

cl
WT (i, j) < Deadline(i) c2
Cparking(i»j) < Bgt(i) c3
Dis(j, Destionation) < EXP js(i) c4
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TABLE 1. Notation descriptions.

Notation Definition
m Total number of vehicles requesting parking slots
n Total number of parking lots
Cost (i, ]) Total cost when vehicle i parking at parking lot j
Cdriving (i o J ) Driving cost to parking lot j for vehicle
Cwaizing (i . J ) Waiting cost at parking lot j for vehicle i
Cparking (o)) Parking cost at parking lot j for vehicle i
Cwalking @)) Walking cost from position of i to position of j
7)) Allocation indicator variable
WT(, J) Waiting time at parking lot j for vehicle i
Deadline(i) Deadline for vehicle i
Bgt (i ) Budget of parking fees for vehicle i
Dis(i, j) Distance between the positions of 7 and j
EXP, dis (@) Longest walking distance vehicle 7 can tolerate
n
. problem is NP-hard. The most straightforward way to solve
Y el )=1 c5 . ; . . .
= this problem is to enumerate each of n"”* potential solutions,
J; which however is not impractical in reality.
dwi=1 0w <1 ie{l1,2,3,4) 6
i—1 B. GREEDY ALLOCATION ALGORITHM
o(i,j) € {0, 1} c7 It is not appropriate to solve the parking slot allocation prob-

Considering that different drivers may have different pref-
erences, constraint cl represents that the total costs are the
weighted sum of four parts as defined above, where w; rep-
resents drivers’ preferences towards each part. Constraint c2
ensures that the waiting time of vehicle i at parking lot j
should not exceed the deadline of i. Constraint c3 represents
the parking fees should not go beyond the budget. Of the
four parts which constitute the total costs, the cost on parking
fees is the one on which people usually have the most direct
and intuitive impression. People tend to choose a parking
lot with an appropriate price. We denote this constraint on
the budget by Bgt(i). The distance from parking spot to
the destination is usually an important factor in parking lot
selection. We use constraint c4 to represent that the distance
should not exceed the furthest distance drivers can tolerate.
The allocation indicator variable ¢(i, j) denotes which vehicle
should be allocated to which parking lot. However, one vehi-
cle can be allocated to at most one parking lot, and thus we use
constraints c5 and c7 to represent this constraint condition.
Constraint c6 represents the preferences of different drivers
towards the four parts.

The problem P is actually a special 0/1 multiple knap-
sack problem, where vehicles correspond to the items and
parking lots correspond to the knapsacks without capac-
ity limitation. Therefore, this combinatorial optimization
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lem P by heuristic algorithms such as genetic algorithms and
ant colony optimization, for the reason that these algorithms
process the parking requests in batches instead of one by one
in chronological order, which means that the parking slot is
not allocated in real time fashion. It contradicts the principle
of real time towards smart parking proposed in this paper.
Besides, vehicles may miss the specified parking lot by the
time the allocation result is received. Based on the above
observations and analysis, we propose greedy parking slot
allocation algorithms to obtain near optimum solution with
regards to the objective function. Specifically, two algorithms
which based on different types of parking requests are put
forward in the next subsections.

1) SINGLE PARKING REQUEST BASED SLOT

ALLOCATION ALGORITHM

In this paper, we assume that the fog nodes try to cope with
the parking requests in the order they arrive, such that the
requests can be responded in the real-time fashion. Specifi-
cally, the pseudo code of the greedy parking slot allocation
algorithm is shown in Algorithm 1. We denote this single
parking request based slot allocation algorithm by GPSA.
By single parking request, we mean that most of parking
requests arrive in sequence. In GPSA, the parking request is
processed in chronological order. When receiving the parking
request, the corresponding fog node will first check whether
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Algorithm 1 Greedy Parking Slot Allocation Algorithm
(GPSA)
Input: Fog Nodes (FN), Parking lots status, Parking
request pReq.
Output: Parking allocation decision.
1: If FN; receives the parking request pReq do
2. If aviSlots[i] > 0 do

3: Response to the parking request by providing
lotPosi].

4: Else

5:  upload pReq to cloud center.

6: Forj=0:N do

7. If the constraints (c2-c4) are satisfied do

8: Calculate the total costs if the vehicle parks at
lotPos[]].

9: Variable C,;,;, records the minimal cost
calculated so far.

10: Endif

11:  Endfor

12: Response to the parking request by providing
lotPos[j] with Cpip.

13: Endif

14: Endif

the parking lot it is in charge of has vacant parking spaces
or not. If there is a parking slot available, the fog node will
respond to the vehicle which requests the parking slot by
offering the vacant parking spaces. Otherwise, the request is
uploaded to cloud center, and the cloud nodes are responsible
for allocating the parking lot to it. It needs to traverse each
parking lot and find the one with minimal parking costs,
denoted in lines 6-11. A variable C,;, is used to record the
minimal parking cost which has been searched out so far.
After that the corresponding parking lot can be sent to the
vehicle which sending the parking request.

GPSA tries to seek global optimization with regards to the
objective function by allocating the vehicle to the parking lot
which has the minimal total costs for it. However, GPSA does
not ensure that the global optimum value can be obtained for
all the parking requests, since several factors may affect the
decision making and thus lead to sub-optimal solution.

2) MULTIPLE PARKING REQUEST BASED
SLOT ALLOCATION ALGORITHM
GPSA copes with the parking requests in chronological order.
However, in peak hours, it is common that multiple parking
requests arrive at the same time or the arrive intervals are
negligible. For these concurrent parking requests, fog nodes
store and process them in random order. In other words,
GSPA does not have efficient mechanism to process these
concurrent parking requests. In worst case, GPSA degrades
to the random algorithm when the parking requests are all
concurrent parking requests.

As one of these factors which affect the decision making
and thus lead to sub-optimal solution, the order the concurrent
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parking requests are processed may have a direct impact on
seeking the best solution. Different allocation plans may have
different results.

Intuitively, there are several heuristic rules which can guide
us to allocate these parking requests. One of them is to
firstly calculate the parking costs of these parking requests,
respectively. Then select the one with the minimum value of
parking costs to allocate the parking lot. For the remaining
parking requests, repeat the procedure iteratively, until all
the parking requests are processed. However, this heuristic
consumes more computational resources.

We notice that of all the four kinds of costs (i.e., Cgriving,
Cyaiting> Cparking and Cyqiking) Which constitute the total park-
ing costs, only the waiting costs are not independent of other
vehicles, which means how long the vehicle waits depends
on the number of vehicles in front of it as well as how often
the vehicles which are parking depart from the parking lot.
As for other three kinds of costs, they do not change any more,
as long as the parking lot is determined. This observation
inspires us to put forward another heuristic rule to allocate
these concurrent parking requests. Namely, we can sort these
requests by parking time and the request with minimum
parking time is first processed. The remaining requests are
processed iteratively, until all of them are processed. Consider
a simplest case where there is one parking lot with only one
parking slot available. Three parking requests, denoted by
V1, V2, v3 respectively, arrive at the same time. The corre-
sponding parking times are 1, 2 and 3 hours respectively.
Assume that another two parking slots to be available in
6 and 15 minutes later, respectively. There are two alternative
ways to process the requests, as denoted in Fig. 4. One is that
the parking request with shorter parking time is processed
first; the other is that the parking request with longer parking
time is processed first. It is obvious that when requests are
processed in accordance with the former way, the parking slot
to be available appear much earlier, i.e. 21 minutes in advance
compared to the latter way.

The sooner the parking slot is available, the less time
the vehicle needs to wait in queue. Therefore, we enhance
the abilities of GPSA by leveraging this heuristic, denoted
by EnGPSA. Firstly, fog nodes receive the parking requests
by time slots. The number of parking requests received in
time slot #; is denoted by Num(z;). In this paper we assume
that the requests received during the same time slot are con-
sidered to be concurrent requests. We process these requests
as illustrated above. Specifically, the procedure is shown in
Algorithm 2. The heuristic is activated when the number of
parking requests in single time slot is larger than 1.

VI. SIMULATION RESULTS AND ANALYSIS

A. PARKING SCENARIO BASED ON REAL ENVIRONMENT
To evaluate the parking slot allocation algorithms proposed
above, we have conducted extensive experiments in this
section, which is based on a real environment shown in Fig.5.
Fig. 5(a) shows a mall named Golden Eagle in Xuzhou City,
surrounded by six parking lots labeled by colored numbers.

VOLUME 6, 2018



C. Tang et al.: Toward Smart Parking Based on Fog Computing

IEEE Access

AN
Slot available
| | | | |

AN
Slot available
|

| vi

FIGURE 4. Two alternative ways to process the requests.

Algorithm 2 Enhanced Greedy Parking Slot Allocation
Algorithm (EnGPSA)
Input: Fog Nodes (FN), Parking lots status, Parking
request pRegq.
Output: Parking allocation decision.
1: Count the parking requests Numi(t;) for each time slot ;.
2: Foreach time slot ¢; do

3: If Num(t;) = 1do

4: Call GPSA.

5: Else If Num(t;) > 1 do

6 Sort the requests by parking time in an ascending
order.

7 For j = 0 :Num(t;) do

8 Call GPSA for request j.

9: Endfor

10:  Endif

11: Endfor

The corresponding parking network is abstracted and pre-
sented by an undirected acyclic graph shown in Fig. 5(b),
where vertexes denote the parking lots, and the edges denote
the distances between two adjacent parking lots. In addition,
the rectangular box around each vertex represents the parking
lot information, with the numbers above representing the
vacant parking spaces and the numbers below representing
the number of vehicles waiting in queue at the entrance.
Intuitively, the deployment of such dense parking lots with
hundreds of parking spaces around one mall seems adequate
to satisfy the parking demands.

However, based on our experiences and survey, several
disadvantages which do not facilitate parking are observed.
First of all, the number of parking spaces is far from enough,
especially in the evening and at the weekends. Besides,
the street, which is located on the north side of Golden Eagle
and connects four parking lots (i.e., Parking lot 10, 1, 3,
and 7), is one-way street with no U-turns and only permits
to pass from east to west. The most straightforward way to
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select parking lot for vehicles is to try each one by one along
the street. This attempt will explain based on our observation
that the front parking lots (e.g., Parking lot 7 and 3) usually
have a larger number of vehicles waiting for parking. Vehicles
have to try to parking lot 1 or 10, if the front parking lots are
all occupied and the number of vehicles waiting there goes
beyond their tolerance. However, if no vacant parking spaces
are available in pl or p10, besides waiting, vehicles have to
circle around the mall again to try other parking lots. It is a
painful experience, considering the heavy traffic and multiple
traffic lights from north to south. The inappropriate parking
lot selection causes both time waste and vehicle exhaust
emissions.

B. EXPERIMENTAL SETUPS
The initial experimental setups about the total parking spaces
and vacant parking spaces are listed in Table 2. Note that
parking lot P10 is a little far away from the mall, therefore
the number of vacant parking slots is larger than that of
other parking lots in the initial setups. Considering that the
one-way road on the north side of Golden Eagle only permits
vehicles passing from east to west, people tent to park at the
first parking lot they meet based on our observations. Thus,
the parking lot P7 has the least number of vacant parking lots
at the beginning. For those vehicles which have parked at
the corresponding lots, we assign them the random parking
time duration which ranges from ten minutes to three hours.
These parking times can be used to predict the waiting time
of vehicles outside, as denoted in Eq. (3) and (4). Intuitively,
people care more about waiting time than other evaluation
metrics such as walking costs and driving costs, which can
be achievable as long as the value of w» is higher than others.
Specifically, if w» is set to 1, it means that waiting cost is the
only evaluation metrics. We assume that the price per hour
for parking are all the same for different parking lots to cater
for the real parking environments.

GPSA and EnGPSA are investigated and compared
to other two approaches in this paper. One is the the
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FIGURE 5. Parking scenario towards smart parking based on fog computing. (a) Real time scenario. (b) Parking lot network.

TABLE 2. Experimental setups on parking slots

Parking Lot Vacant Slots Total Parking lots
P1 17 30

P2 37 40

P3 25 30

P4 21 50

P7 10 115

P10 44 45

86'8T

M Random M SPM M GPSA M EnGPSA

wLe

AVERAGE COSTS

150 160 170 180 190

210 220 240 250

NO. OF VEHICLES

FIGURE 6. Average costs for each vehicle with three parking allocation
approaches (small).

random approach; the other is the approach proposed in [21].
For simplicity, we denote this approach by SPM. The random
approach actually assigns vehicles with parking demands to
the parking lots in a random way, which does not take into
account the total parking costs defined in Eq. 1. SPM, how-
ever, allocates parking requests based on uers’s preferences
towards the parking lot. As far as EnGPSA itself is concerned,
the main factor which affects its performance is the arrival
rate of the concurrent parking requests. We will also evaluate
this kind of influence in the experiments.

C. EXPERIMENTAL RESULTS AND ANALYSIS

The total number of vacant parking slots at the beginning
is 154, and we have conduct two sets of experiments to
evaluate the performance of GPSA and EnGPSA, under dif-
ferent number of parking requests. The results are shown
in Fig.6 and Fig.7, respectively.
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FIGURE 7. Average costs for each vehicle with three parking allocation
approaches (large).

In the first set of experiments, the number of parking
requests ranges from 150 to 250 with a step of 10. From
Fig.6 we can observe that the advantages of both GPSA
and EnGPSA are obvious compared to the random approach,
denoted by ‘“Random”, as well as SPM. The average perfor-
mance improves almost by 64% and 69%, compared to the
random approach and SPM, respectively. For the performance
comparison between GPSA and EnGPSA, however, the aver-
age performance improvement for EnGPSA is not so obvious
compared to GPSA. Two reasons may lead to this conse-
quence. One is that the number of parking requests is not so
large, and thus even for the vehicles in the longest waiting
queue, they do not need to wait for very long time. Besides,
in our experimental setups, we assign the waiting costs the
largest weight in contrast to other three parking costs. The
other is that the number of concurrent parking requests also
has an influence on the performance of EnGPSA. If the
number of arriving parking requests during one time slot is
very large, EnGPSA may have a great advantage compared
to GPSA. However, if there is only one parking request in
each time slot, EnGPSA is actually the same as GPSA.

In the second set of experiments, the number of parking
requests ranges from 200 to 650, with a step of 50. A few
interesting results can be observed from Fig.7. First, both
GPSA and EnGPSA still outperform the random approach
and SPM. However, the perform improvement is not as
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much as the experimental results shown in Fig.6. This is
because with the increasing number of parking requests, each
parking lot has vehicles waiting in queue, to some extent,
each vehicle needs to wait for parking, by either the random
approach or the two fog computing based parking strategies.
Second, for the performance comparison between GPSA
and EnGPSA, the average performance improvement for
EnGPSA is increasingly demonstrating its advantages com-
pared to GPSA, which reflects the importance of our heuristic
rule, i.e., the parking time of each vehicle to be parked does
affect the performance of parking strategies. Vehicles with
shorter parking time duration are assigned first, which will
save a little more time for the vehicles waiting in queue
outside. Last, when the number of parking requests are very
large, the increase of the total parking by three approaches
is approximately linear in the number of parking requests,
which is different from the results shown in Fig.6. In Fig.6,
the random approach shows more randomness compared to
other two approaches, this is because there exist some cases
that some parking lots have been fully occupied with long
waiting queue outside, while some parking lots still have
numbers of parking spaces available.

Note that no matter how the number of parking requests
varies, GPSA and EnGPSA are still outperforming SPM.
Several reasons which can lead to this kind of results are
analyzed and listed as follows. First, in essence, SPM is not
a real-time parking slot allocation algorithm, this is because
the fog nodes cope with the parking requests in batch. Via
receiving these parking requests, fog nodes do not process
them immediately. They classify these parking requests based
on users’ preferences towards the parking lots. After that,
fog nodes begin to process the parking requests based on the
objective functions. Second, SPM aims to maximize the prof-
its of parking lot owners. To this end, fog nodes always select
the parking requests with the maximal parking time in the
candidates, which on one hand contradicts our optimization
objective as well as the heuristic rule, and on the other hand
makes early requests with short parking time are delayed.
Last but not least, fog nodes lack efficient mechanism to cope
with the case that the response latency is very long due to the
large number of parking requests with the same preferences.

In the third set of experiments, we evaluate the average
parking costs of each parking lot. The random approach
usually results in the uneven distribution of parking requests
allocation. Some parking lot which is supposed to be assigned
more parking requests are assigned few parking requests,
while those which have long waiting queues still have parking
requests coming. This will cause a longer waiting times for
some vehicles with somethings urgent to do. The experi-
mental results are shown in Fig.8. For the random approach,
parking lot P3 has the maximum parking costs while P10 has
the minimum parking costs. Intuitively, it is much fairer to
reallocate the vehicles in waiting queue of P3 to P10, so as to
reduce the parking costs of vehicles.

For GPSA and EnGPSA, the parking requests are assigned
based on the parking costs computed by fog computing and
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FIGURE 8. Average costs for each parking lot vs. three parking allocation
approaches.

cloud computing. Each parking request will be allocated to
the most appropriate parking lot with regards to the objective
function. From Fig.8, we can see that GPSA and EnGPSA
still outperforms the random approach for any of the parking
lots. For the performance comparison between GPSA and
EnGPSA, EnGPSA outperforms GPSA in most of parking
lots except the parking lot P10. The only reason which can
lead to this consequence is that to respect drivers’ preferences
towards parking lots, we permit that some vehicles which
send the parking requests do not follow the suggestions and
they finally choose their desired parking lot based on their
own preferences. However, in the simulation, the chance that
vehicles do not follow the instructions is very small. Except
this consideration, EnGPSA is at least as good as GPSA.

Note that due to different optimization objectives com-
pared to SPM, we only compare our algorithms with the
random approach in the third set of experiments.

In the last set of experiments, we evaluate the influence of
the number of concurrent parking requests on EnGPSA. EnG-
PSA degrades into GPSA when there is no concurrent parking
requests at all. However, according to our observations in
real environments, there do exist concurrent parking requests,
especially in peak hours, which is the reason why EnGPSA
is introduced to improve the performance of GPSA. To this
end, in the experiments, we control the number of concurrent
parking requests by a control factor, denoted by p. The control
factor p varies from O to 1 with a step 0.2. Specifically, when
p equals 0, EnGPSA degrades into GPSA. When p equals 1,
all the parking requests are concurrent. We can decide the
number of concurrent parking requests by p * Num. Here,
Num is the total number of parking requests. Although it is
impractical, we still use it in comparison with other values
of p in the experiments. Then we decide which vehicles
during which time slots are concurrent in a random way in
the experiments.

The experimental results are shown in Fig.9. We observe
that when the number of parking requests varies from
200 to 300, the average costs for vehicles are almost the same,
no matter how p is varied. However, when the number of
parking requests increases sharply from 300, it is obvious that
the number of concurrent parking requests is improving the
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FIGURE 9. Average costs for each vehicle with different concurrent
parking requests.

performance of EnGPSA compared to GPSA. From Fig.8 we
can conclude that when the number of parking requests is
very large, the number of concurrent parking requests has
become crucial to the performance of EnGPSA. In other
words, the more concurrent parking requests, the better the
performance of EnGPSA in contrast to GPSA.

VII. CONCLUSION
Parking problems brings both severe gasoline wastes and
vehicle exhaust emissions. To solve the parking problems,
we have proposed a fog computing based smart parking
strategy, which combines the advantages of VANETS and fog
computing to provision parking services in real time fashion.
To cope with the concurrent parking requests, a heuristic
rule is incorporated into proposed smart parking approach,
which assigns vehicles with shorter parking time duration
a bigger priority among concurrent parking requests. The
experimental results have proven that our fog computing
based smart parking strategies can effectivey improve the
parking problems.

For the future works, we plan to design more humanized
parking strategies, which incorporates drivers’ preferences to
decision marking process.
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