IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 17, 2018, accepted November 7, 2018, date of publication November 12, 2018,

date of current version December 18, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2880998

Change-Oriented Open Source Software

Process Simulation

XUAN ZHANG 12, XU WANG?, AND YANNI KANG'

1School of Software, Yunnan University, Kunming 650091, China
2Key Laboratory of Software Engineering of Yunnan, Kunming 650091, China
3School of Economics, Yunnan University, Kunming 650091, China

Corresponding author: Xuan Zhang (zhxuan@ynu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61862063, Grant 61502413, Grant
61262025, Grant 61379032, and Grant 61662085, in part by the National Social Science Foundation of China under Grant 18BJL104,

in part by the Natural Science Foundation of Yunnan Province under Grant 2016FB106, in part by the Natural Science Foundation of the
Yunnan Educational Committee under Grant 2015Z020, in part by the Natural Science Foundation of the Key Laboratory of Software
Engineering of Yunnan Province under Grant 2015SE202, in part by the Data Driven Software Engineering Innovative Research Team
Funding of Yunnan Province under Grant 2017HCO012, in part by the Social Science Foundation of Yunnan Province under Grant
YB2016013, and in part by the Software Engineering Innovative Research Team Funding of Yunnan University.

ABSTRACT The goal of our research is to find better ways for assessing the impact of changes to the
software projects and the cost-effectiveness of process improvement strategies. To support decision-makers
in analyzing changes effects and finding the optimal improvements of software process in a given project,
a process simulation model using the system dynamics modeling technique is proposed and used in the
context of a case study with open source software. Details of the system dynamics model, its usage scenarios
and simulation experiments are provided. With the help of the simulation model, the process quality attributes
of the open source software Spring Framework with varying change effects was evaluated. The project
effort, delivery time, productivity, schedule, and product quality are impacted as a result of changes. Three
different process improvement strategies were evaluated to help decision-makers choose most cost-effective
improvement strategies. The simulation models can be used as an effective tool to evaluate the impact of
changes, reason about the process improvement, and support consensus building by visualizing dynamic
views of the process.

INDEX TERMS Open source software (OSS), change management, software process simulation, system

dynamics (SD), software process improvement (SPI).

I. INTRODUCTION

Software development and evolution is a dynamic process
and is characterized by change. Software projects often begin
with unclear, ambiguous, and incomplete requirements which
give rise to intrinsic volatility [1]. Meanwhile, the project
team members, software users, environment and technologies
are also likely to change throughout the life of the project
as different versions of their software are released. When
these important factors change and affect the software prod-
ucts, projects, and processes, these changes must be carefully
planned [2]. Especially, when additions, deletions and modi-
fications are made to previous generated or in process project
artifacts, additional time investment, scrapped effort, and
even bugs can result. Therefore, it is important to understand
the changing dynamics overtime, the complex interaction
effects, and to find the way to control the negative effects

of the changes. System dynamics (SD) modeling is one of
the best techniques to enable project personnel to software
process and model change effects and run the models to better
understand the implications of candidate project strategies
and decisions [3].

Open source software (OSS) has some distinctive features
and characteristics that deserve to be studied and under-
stood [3], [4], so that we can exploit them to find the ways
to increase the quality of software and of software process
in software organizations. Our research is motivated by the
tremendous growth in the open source movement and the
success of some OSS projects in their quick response of
changes and the capability in high-quality software develop-
ment. Based on the preceding discussion, change requests are
risks of high time pressure, cost, and poor product quality.
We are interested in achieving a better understanding of the

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 6, 2018

Personal use is also permitted, but republication/redistribution requires IEEE permission.

70145

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2929-2126

IEEE Access

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

trade-off effects of change management on the project cost,
duration, and software quality. Additionally, much of the OSS
process data is recorded and public, such as issue trackers,
bug databases, and code repository histories. Therefore, our
research subject is the change management in OSS processes
and our first goal is to use large-scale, quantitative data of
OSS and capture the dynamic nature of the OSS process to
understand of how the changes affect the software projects
and how to reduce the negative effects on software qual-
ity, project duration and cost. Moreover, we would like to
improve the project performance as a result of an adequate
process improvement. Based on the widely accepted assump-
tion that there is a relationship between software process qual-
ity and the quality of the resulting software product [5], past
experience with insufficient process quality has motivated
the improvement of software processes. Software engineer-
ing community has accumulated enormous experiences on
software process. But we are here still looking for bullets
to improve productivity and quality. One of the important
reasons might be the many elements in software processes,
such as human, artifact, cost, and schedule et al.. Therefore,
in this paper, our second goal is to use simulation to gather
all relevant factors and parameters in a holistic view for
evaluating candidate process improvement strategies. In sum-
mary, the simulation from this research will not only serve
for process analysis but also for identification of potential
process improvement strategies, eventually resulting in mod-
eling the specific software process models and evaluating the
candidate process improvements.

By adopting Ferreira ef al’s research method [6] and
following Miinch’s simulation models development lifecy-
cle [2], our simulation development procedure was organized
in three steps and the rest of the paper is organized by follow-
ing these steps.

Stepl. A rigorous review of the related literatures was
performed first. But, in order to show the differences
of our work, analyses of their work and the compari-
son between our work and their work are presented in
Section IV.

Step2. Our work is elaborated in section II. GQM (Goal
Question Metric) paradigm [7] was used for define simula-
tion goals, questions and the needed measures. A common
OSS change management process workflow was analyzed to
create a causal model. Based on the cause-effect relationships
in the causal model, a SD model was developed by designing
subsystems for simulation. Simulation model for each sub-
system was also developed and tested.

Step3. In Section III, by inputting empirical data from an
OSS - Spring Framework, the simulation model is performed
to examine the effects of changes, determine the simula-
tion outcomes, and answer the question about “which pro-
cess improvement is most cost-effective in reducing negative
effects of changes?”’. The contributions and limitations of our
model are also discussed.

Section V summarizes the main results presented in this
paper and draws conclusions for future work.

70146

Il. CHANGE-ORIENTED SOFTWARE PROCESS
SIMULATION

Software process simulation modeling captures the dynamic
behavior and uncertainty in the software process [8]. Accord-
ing to Kellner [9], the reasons for using simulations of soft-
ware processes are clustered into six categories of purpose.
They are strategic management, planning, control and oper-
ational management, process improvement and technology
adoption, understanding, and training and learning. When
developing software process simulation models, identifying
the purpose and the questions would like to address is central
to defining the model scope and data that need to be collected.
Therefore, GQM was first used for defining our simulation
goals, questions and the needed measures. The purpose and
scope of our model are described by the goals (indicated
in G*.) below:

G1. Develop a change-oriented open source software pro-
cess simulation model for analyzing, understanding, plan-
ning, and controlling the change effects on project manpower,
productivity, schedule, cost and quality.

G2. For continuous software process improvement (SPI),
analyze the effects of SPI on the software quality, project
duration, and cost. Then, compare, select and customize the
best SPI to support the decision of select the most suitable
SPI strategies.

According to the purposes of our simulation, the following
questions (indicated in Q*.) are formulated that the model
should help to answer.

Q1. What are the effects of changes? How an OSS project
team manages the changes?

Q2. Is SPI useful in reducing the negative effects of the
changes? What does the effectiveness of SPI affect the soft-
ware quality, project duration, and cost? When possible SPI
action may be needed?

Afterward, the parameters of the models are defined as the
metrics of GQM. They are the information elements needed
to answer the questions that were specified along with the
purpose of the model. Depending on the preceding questions,
the following basic parameters (indicated in P*.) could be
devised for simulation:

P1. Project changes;

P2. Manpower of project and developers’ productivity
(computed from the changes per week);

P3. Project cost and productivity (computed from the
effort, i.e. triage effort, changes resolving effort, and bug
fixing effort);

P4. Quality of delivered software (computed from the bug
rate);

P5. Duration of project;

Change management behavior and decision made at one
point in the process impact others in complex or indirect ways
and must be accounted for. For example, in a software process
the decision to add new developers or not, inspect change
requests or not have multiple impacts. For documenting these
complex feedback relationships between process parameters,
casual model is developed next.

VOLUME 6, 2018

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

IEEE Access

Attracting

;—/ participants :\
+

Software quality

Number of users

+

Change requests Code bug§

Bug fixing cfﬁm Accepted change
+ requests
Triage effort + Cod)
. ode review
- Change resolving Developers
effort / motivation
Automatic Lol ;/ Excessive schedule -
recognition / pressure
effectiveness Total change +
effort +

Duplicated & invalid

Develope.rs change requests
4— productivity +
Project duration +
+ Communication
. .
Development + effiiency
Number of contributing + workforce [———_ Workload for core

developers + developers per week
Workload for
contributing developers
per week

+ Number of core
developers

FIGURE 1. Cause model (cause-effect diagram) for change-oriented
process.

A. CAUSE-EFFECT RELATIONSHIPS ANALYSIS

Based on the analysis of the literature review and discus-
sions with software process experts and experienced software
developers from university and company, relevant factors and
associated relationships were identified and a causal model
was developed, as shown in Figure 1.

This model is used to evaluate which software factors are
affected by changes because it illustrates the cause and effect
relationships between software factors related to changes.
Four structural views were consisted in the model: Process
view, effort view, productivity view, and quality view. The
relationships between cause and effect factors are represented
by arrows and + or —, depending on whether variation of
the factors occurs in the same way or in the opposite way.
To learn more about the complex interactions of the cause-
effect relationships that force a certain simulation output to
be generated, a SD model is created in the following. This
model provides a tool for software project managers and
researchers to perform ‘“what if”” analyses, and enables users
to examine the effects and impact of various changes and
determine project outcomes.

B. SYSTEM DYNAMICS MODELING

In the context of OSS change management, to analyze the
performance of their change management process, we devel-
oped and applied a simulation model representing the main
elements of the process reference model. The simulation
model was developed with the help of the SD tool Vensim
PLE 6.3! (Ventana simulation environment personal learn-
ing edition). During the modeling activity, process experts
and experienced software developers from university and
company were organized to elicit the required knowledge.
The modeling procedure was proceeded iteratively and four

1Vensim 6.3 was release in 2014 by Ventana Systems, Inc.

VOLUME 6, 2018

0SS
community
subsystem

Schedule pressure:

Developers productivity

Users and
developers

Sprint
duration

X Issues
Attracting

participation

Accepted and

invalid issues Issue

tracking

Code bugs
Developers

motivation Accepted change

requests

Issue
resolving
subsystem,

Quality
assurance
subsystem

FIGURE 2. Subsystem design for simulation.

Contributing
developer:

FIGURE 3. 0SS onion model.

versions of models were developed. The model was first pre-
sented to two software project teams in Taili on March 2018.
Three meetings were held to discuss the model and many
valuable comments and recommendations were collected.
During the modification of the model, these discussions
were continued until the final model was made. To reduce
the complexity, the model is segmented into 5 subsystems,
which are organized into logical groupings of related factors.
Figure 2 depicts the subsystem design of the model.

In Figure 2, OSS community subsystem, Issue tracking
subsystem, and Issue resolving subsystem are three parts of
change management subsystems. OSS community subsystem
simulates the evolutions of human resources in OSS projects.
Issue tracking subsystem simulates managing and addressing
issue reports. In OSS projects, by filing issues reports, users
helps submit change requests, identify and fix bugs, docu-
ment software code, and enhance the software via feature
requests [10]. Therefore, in the following, we use the issue to
indicate the change request. Issue resolving subsystem links
issue reports to changes in source code. We use grey shading
rounded rectangles to highlight these three subsystems. Due
to the additional unplanned changes, severe consequences
can potentially occur, including significant schedule and cost
overruns, and quality declines. Therefore, the other two sub-
systems, Quality assurance subsystem and Schedule control
subsystem, simulate three key project management indicators
(quality, schedule, and cost).

Integrating change management functions and software
lifecycle activities, each of the subsystem is developed with
a SD stock-level diagram, which elaborated in the following

70147

IEEE Access

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

<Percent of duplicated

. o -1 Schedule pressure <Schedule
Effectiveness of & invalid issues> inﬂunepnce “ pressure>
attracting participants
/ Communication
Developers efficiency
motivation ~———am Developers - Workload for
productivity contributing developers
per week
<Baseline user <Baseline fmm.‘lhulmg Baseline core developer Development
attraction rate> developer transition rate transition rate> workforce “®—— Workload for core

g
User attraction
rate

Contributing developer
transition rate

User defection

<Software
rate

quality>

<Percent of accepted
issues>

developers per week

Contributing] Core
developers Core developer developers
transition rate
Contributing Core developer
developer defection rate

defection rate

<Week Number>

FIGURE 4. 0SS community subsystem (stock-level diagram).

Section 1) to 5). In these subsystems, two types of parameters
were defined: project-specific input and variable parameters.
Project-specific inputs are used to represent a specific project.
Variable parameters can be changed to analyze the results of
the output variables.

1) OSS COMMUNITY SUBSYSTEM

Group dynamics play a big role in OSS development.
An investigation of OSS project evolution found that the
OSS and the community must coevolve to achieve high qual-
ity [11]. In practice, OSS community is commonly orga-
nized in onion model, as depicted in Figure 3. “Onion”
refers to the successive layers of member types [12]. Indi-
viduals increase their involvement through a process of role
meritocracy.

The user base performs the bulk of the system test-
ing, sometimes even exclusively, as with Apache [13]. The
extensive test generally makes OSS having lower defect.
Raymond coined ‘““given enough eyeballs, all bugs are shal-
low,” [3], [14] meaning that if enough people see a software
error, at least one of them will probably be able to fix it.
Therefore, OSS projects have access to far more human
resources and demonstrate its power to develop faster and
increase quality [15]. As users move toward the core, they
might over time become developers. Developers are often
classified according to the core and peripheral contributing
roles. A few peripheral contributing developers will even-
tually join the small team of core developers. Each type of
member has certain responsibilities in the system’s devel-
opment and evolution, which relate to the systems overall
productivity and quality. Figure 4 depicts the stock-level
diagram for OSS community. In this OSS community sub-
system, all baseline data in ‘<>’ are project-specific inputs,
all the other data in ‘<>’ are derived from the other stock-
level diagram. The parameters that without ‘<>’, such as
Developers motivation, Developers productivity are variable
parameters.

70148

The OSS community management impacts the developers’
productivity directly. Developers’ productivity here is the
developers’ work rate due to the workforce, communication,
and motivation of developers. Developers productivity and
Developers motivation in Figure 4 are calculated in the fol-
lowing formula (1) and (2) respectively.

ey

In formula (1), pg is Developers productivity; ng is the
number of Contributing developers; wy is Workload for con-
tributing developers per week, which represents the weekly
changes that Contributing developers can handle. Its unit is
changes/(person*week). Similarly, n. is the number ofCore
developers; w. is Workload for core developers per week.
Thus, ny, X wp +ne X we is Development workforce. e is Com-
munication efficiency, which indicates the impact of com-
munication on the Developers productivity. Its value range
is from O to 1. When it is equal to 1, it is ideal state and
means that the communication effectiveness is 100%. If it
is 0, the communication effectiveness is 0%. There is no
communication between developers. The last variable m is
Developers motivation which is calculated in the following
formula (2).

pa = (na X wa +ne X we) x (e +m)/2

m=(l1—sp) x (1 —v)x(d+k) ©))

In formula (2), sy is Schedule pressure influence, it is
determined by Schedule pressure, which will be introduced
in the following Section 5). Any change will increase the
schedule pressure on the developers, which has been known
to cause poor quality designs and code. v is Percent of dupli-
cated & invalid issue, which is obtained in the following
Issue tracking subsystem (see Section 2)). It is the percent-
age of duplicated and invalid issues in total issues. k is
Effectiveness of attracting participants. If it is less than 0,
it means that attracting participants is invalid, which declines
developers’ motivation. On the contrary, if it is greater than

VOLUME 6, 2018

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

IEEE Access

Automatic recognition
effectiveness

Issue resolving

effort

<Baseline issue
created rate>

Baseline

Triage effort accepted rate>

Open issues S

Issue

Returned rate

<Sprint job size>

Baseline resloved &

closed rate>

Resolved and
closed issues

s
3 Accepted rate
created rate ' \ transition rate
Duplicated& /(
invalid rate Percent of . (IR d raty
<Users> accepted issues <Baseline Baseline copened rate
) transition rate> 3 3 resolving rate> Baseline
aD[l].éplilI:\iszig sprint switch reopened rate
Baseline issues ime= | Reopen ssues

duplicated&invalid rate> - .
Sprint duration
Percent of duplicated

& invalid issues

FIGURE 5. Issue tracking subsystem.

0, it is effective and makes developers more motivated. The
other parameters are similar and are omitted for the sake of
simplicity.

2) ISSUE TRACKING SUBSYSTEM

This subsystem models how OSS project teams handle issues.
The dominant and mainstream way to manage the OSS
changes from inception to full realization is the adoption of an
issue tracking system [16]. Figure 5 illustrates the issue track-
ing process in OSS projects. The work flow in this process
encompasses a normal issue tracking work flow. The normal
issue tracking work flow begins at the Open issues stock. The
Open issues stock is initially populated with the Issue created
rate, which is decided by requirements volatility and user
participations. The work then flows through the In progress
issues, Sprint issues, Waiting for review issues, and Resolved
and closed issues. Once the resolution of an issue is failed
in test, the issue becomes part of the rework work flow. All
issues are generated, investigated, and resolved in this work
flow.

There are different types of issues such as questions, bug
reports, and feature requests. Triage is the activity of catego-
rizing, updating and adding information to issues so devel-
opers know where their efforts are most needed. Oftentimes
work related to existing issues already exists. These dupli-
cated issues might be found and closed. Some issues are
also often reported incomplete. If the missing information is
not provided these issues should be closed and we call them
invalid issues in the model (see Figure 5). Therefore, in Issue
tracking subsystem, Triage effort is used to show how much
effort is spent on triage issues. It is calculated in the following
formula (3):

g=U—-u)x(ry+ra) 3

In formula (3), g is Triage effort; u is Automatic recognition
effectiveness;r, isDuplicated and invalid rate; r, is Accepted
rate. Automatic recognition effectiveness is the effectiveness

VOLUME 6, 2018

Rework rate <Baseline

rework rate=

of using tools to help triage automatically. It is a ratio between
automatic recognized issues and all reported issues.

Issue resolving effort is the number of issues processed
weekly. It is the sum of Sprint transition rate, Rework rate,
Resolving rate, Resolved & closed rate, and Reopened rate.

3) ISSUE RESOLVING SUBSYSTEM
For each accepted issue, corresponding source code might be
changed. When a fix is ready for an issue, it is submitted via
the commit command in the code version management soft-
ware. Issue resolving subsystem simulates the code adding,
modifying, and deleting. It should be noted that the contents
submitted by the commit are not all related issues. Also,
issues are divided into bug type or feature type. Therefore,
commits are divided into Issue commits, Other commits, and
Bug commits, as shown in Figure 6.

Total changed codes is calculated by adding up the codes
for all commits, including Codes for issue commits, Codes for
other commits, and Codes for bug commits.

4) QUALITY ASSURANCE SUBSYSTEM
According to a 2013 study by the University of Cam-
bridge [17], [18], the global cost of finding and removing
bugs from software has risen to $312 billion annually, and
it makes up half of the development time of the average
project. Furthermore, constant change makes matters worse.
Changes are the main causes of software bugs and major
issues faced by the software industry. Studies conducted by
Javed et al. [1] indicated that there is a significant relation-
ship between change requests and overall bugs. Based on
Mozilla quality assurance process [19], the focus of the qual-
ity assurance is correcting bugs. Therefore, based on these
studies, our Quality Assurance Subsystem is modeled and
depicted in Figure 7.

Software quality is calculated in the following formula (4):

g = bl x 1000))

70149

IEEE Access

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

<Baseline code added
<Baseline issue rate for issue commits>
commit rate>

Awd
X Zs

Issue Commits|

issue commit rate
<Baseline other

commit rate>

g
Code added rate
for issue commits

<Baseline code deleted
rate for issue commits™>

Percent of code
for issues

Codes for
issue commits

Code deleted rate
for issue commits

- Codes for
Other commits| Fay B other commits| Code deleted rate Total changed
other commiit rate Code added rate for other commits codes
for other commits

<Baseline bug

commit rate> ;

Bug commit rate

/o

Bug commits

for bug commits

<Baseline code added
rate for other commits>

FIGURE 6. Issue resolving subsystem.

<Baseline bug
accepted rate>

X

AN
Code added rate

<Baseline code added
rate for bug commits>

All bugs

7

Codes for bug
commits

209]

ode deleted rate
for bug commits

Percent of code
for bugs

<Baseline code deleted
rate for other commits>

<Baseline code deleted
rate for bug commits>

<Baseline bug
rework rate>

bug accepted rate In progress o
bugs . wk Reopen bugs
rework rate
<Baseline bug lL 1 rew
<Baseline bug fixing rate1>)2
created rate> .
bug fixing ratel bug refipened
e
Open bugs Waititl)lg to test
B u;
bug created rate bug fixing rate2 5 <Baseline bug
/ reopened rate>
Code review
<Developers g fiware / Resolved and
motivation™> quality Bugs fixing effort bug fixed closed bugs
rate “®—_)
<Total changed <Baseline bug - I?HSC]IHC ?ng
codes> fixing rate2> fixed rate>

FIGURE 7. Quality assurance subsystem.

In formula (4), g is Software quality; b is Open bugs; [is
Total changed codes. Software quality is expressed by the bug
rate, which is equal to the number of Open bugs divided by
the Total changed codes.

In Quality assurance subsystem, Code review by numer-
ous reviewers, particularly when carried out in tandem with
automatic test, can significantly, positively impact software
quality. Code review in Figure 7 is a ratio of the effectiveness
of the review. If it is equal to O, it means that the changed
code is not reviewed. In the following empirical case study
(in Section III), we input a random function to analyze its
impact.

5) SCHEDULE CONTROL SUBSYSTEM

In Schedule control subsystem, the workload caused by the
requested changes is calculated and the duration of the project
is controled according to factors such as schedule pressure of
the project and the expected productivity of the project team.
Figure 8 depicts the stock-level diagram for Schedule control
subsystem.

70150

In Schedule control subsystem, Expected project duration
is obtained by dividing Remaining issues & bugs by Project
actual productivity, as shown in the following formula (5)

&)

In formula (5), x is Expected project duration;i is Remain-
ing issues & bugs; pp is Project actual productivity. Remain-
ing issues & bugs are all issues and bugs except duplicated,
invalid, resolved, and closed issues and bugs. Project actual
productivity is the sum of Issues resolving effort, Bugs fixing
effort, and Triage effort.

Schedule pressure is calculated by the gap between the
expected and actual productivity, as shown in the following
formula (6):

x=i/pp

(6)

In formula (6), s, is Schedule pressure; p, is Project
actual productivity; x is Expected project duration; t isTime.
(pp x x)/t is Expected productivity, which is the expected
work rate due to Expected project duration x. Since excessive

sp=(pp X x)/t —pp

VOLUME 6, 2018

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

IEEE Access

<Bugs fixing
<Issues resolving effort> . ‘
effort> <Triage effort> <Time>
Actural /
‘Resolved and productivity rate Project actual Expect'efl
T closed bugs> productivity productivity
Remaining issues
& bugs Expected
< Allissues> Expected project duration
duration rate Schedule pressure

<Duplicated and ~ <Resolved and

invalid issues> closed issues®

FIGURE 8. Schedule control subsystem.

schedule pressure will increase bugs, decline the quality, and
reduce the acceptance of the changes, to reduce its negative
impact, schedule pressure is controlled by adjusting the sprint
duration and job size.

By integrating all the five subsystems, our SD model
represents essential change management in OSS processes.
It represents OSS change management as an integrated sys-
tem rather than in isolation, and incorporates dynamic fea-
tures and nonlinear cause-effect relationships. Therefore, this
model can be used to examine the dynamic nature of the
impact of change management on critical project outcomes
such as software quality, project schedule, and work effort.

C. MODEL STRUCTURAL TESTS

Once the simulation models are developed, model tests are
performed to determine whether the models are suitable for
the purpose, address the problems, and reasonable represen-
tation of the real process [2]. System dynamics modelers have
developed a wide variety of specific tests, including tests of
model structure and the ability of the model to reproduce
real-life behavior [20], [21]. By adopting the tests from Ster-
man [21], the test activities were performed by the model
developer, and software process and project experts. The
identification of the appropriate structure is the first step in
SD model test because the structure drives its behavior [22].
Table I summarizes the performed model structural tests and
the test results.

The results in table 1 suggest that our model structure
closely reflects real OSS change management processes. The
model is then ready to include quantitative data. In order to
derive the quantitative relationships between the parameters
in the simulation models, an empirical study on a real-life
OSS project is presented in the following. Also, behavioral
tests were assessed in this study to achieve the overall validity
of the model.

llIl. EMPIRICAL CASE STUDY

The process simulation should be combined with empiri-
cal studies to help process understanding and improvement.
We demonstrated the applicability of our SD model in a case

VOLUME 6, 2018

/

Sprint duration

Sprint job
size

TABLE 1. Model structural testing lists.

Test Purpose of test Testing procedure and results
Boundary Assesses the The model boundary was
Adequacy appropriateness of determined by the subsystem
the model boundary diagram (See Figure 2). After
for the purpose of reviewing of the relevant literatures
the model. and soliciting expert opinion from
interviews, the model was improved
and no important feedbacks were
omitted from the model.
Dimensional Ensures that each ‘Units Check’ in Vensim was used
Consistency equation for automated dimensional analysis
dimensionally first. Then, the model equations
consistent without were inspected for suspect
the use of parameters. Any dimensional errors

parameters having
no real world
meaning.

or suspect parameters had been
corrected.

Structure Ensures that the After inspecting the model
Assessment model is consistent equations, the model was modified
with knowledge of to be conformed to basic physical
the real system realities.
relevant to the
purpose.
Parameter Makes sure every After reviewing the relevant
Assessment parameter is literature and referring to the data
reasonable and has collected from OSS projects, all
a clear, real-life parameters were assessed and
meaning. modified to have clear and real-life
meanings. Then, the values of each
parameter were estimated
judgmentally using the expert
opinion.
Extreme Ensures that the We tested the output when each
Conditions model behave input to the equation takes on its
appropriately when ~ maximum and minimum values.
the inputs take on Any outputs that violated feasible or
extreme values. reasonable had been corrected.
Integration Ensures that the Euler integration was used and the
Error model is not time step was week. There was no

sensitive to the
choice of time step
and integration
method.

change in behavior when the time
step was cut in half or different
integration methods were used.

study of the open source software-Spring Framework Version
3. By parameterizing the elements of the SD model and using
public data from Spring Framework to initialize, the baseline
performance is evaluated, which includes the changes of

70151

IEEE Access

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

project manpower, productivity, and software quality. Then,
by simulating three process improvement strategies, their
improvement performances were compared. For example,
by adding Code Review activity in Quality Assurance Sub-
system, how the software quality and the expected project
duration will be changed.

A. CHANGE-ORIENTED 0SS PROCESS ANALYSIS

Since Spring Framework Version 3 was released in 2009,
all the project-specific inputs were collected in the duration
of 440 weeks. After data cleanup and format transformation,
these inputs were inputted into the Vensim for simulation.
The project performance was then reflected by the simulation
output data. Before the simulation analyses, model behavior
tests were conducted to improve the model. Table 2 lists these
behavior tests.

After the model has been improved and tested to be val-
idated, a more detailed analysis of the simulation results
of software project manpower, productivity, and quality is
illustrated below.

1) PROJECT MANPOWER

The success of OSS development is highly dependent on
the formation and evolution of their supporting communi-
ties [3]. Modeling the process factors of community would
enable better understanding of open source methodologies.
Therefore, using the data from Spring Framework, the num-
ber of the Users, Contributing developers, Core developers,
Developers productivity, and Expected project duration out-
puts were examined and the simulation results are illustrated
in Figure 9.

In Figure 9, (a), (b), and (c) are the simulation results of
OSS community subsystem, indicating the number of Users,
Contributing developers, and Core developers change over
time. All of the simulation results show an increasing trend,
reflecting the gradual development and expansion of the soft-
ware project team. Especially after 176" week, Contributing
developers increase substantially. Developers’ productivity
in (d) also shows a corresponding increase. However, in the
mid-late stage (after 244™ week) of Spring Framework Ver-
sion 3 development, due to the release of Version 4 and the
reduction of change requests, the time spent by developers in
Version 3 was gradually reduced. Unresolved change requests
were migrated to other version branches. Therefore, after
244™ weeks, project developers’ productivity fluctuates more
slowly.

In Figure 9, (e) is the simulation result of the Schedule
control subsystem, indicating Expected project duration. The
duration required to deal with the software changes decreases
with time, and then increases. Before 44" week, the decrease
of Expected project duration in Fig. 9 (e) is because the fast
increasing in the manpower and less change requests in the
early stage. But, in the middle to late stages, change requests
increase sharply, while the developer’s average productivity
increase rate is relatively slow, so that the duration of dealing
with the software changes is increasing.

70152

TABLE 2. Model behavior testing lists.

Test Purpose of test

Testing procedure and results

Checks if the model
reproduces the
behavior of the
interest in the
system.

Behavior
Reproduction

Establishes the
significance of
important
relationships by
examining whether
anomalous behavior
arises when the
relationship is
deleted or modified.
Ascertain whether
the model can
generate the
behavior of other
instances in the
same class as the
model was built to
mimic.

Examines
unexpected or
anomalous
behavior.

Behavior Evaluates the
Mode impact of changing
Sensitivity assumptions on the
robustness of the
conclusions.

Behavior
Anomaly

Family
Member

Surprise
Behavior

Checks whether the
modeling process
helped change the
system for the
better.

System
Improvement

Point-by-point fit was used to
compare simulated and actual data
in MATLAB 2015b. The
coefficient of determination R? and
root mean square error (RMSE)
were used as the measures of fit.
Some flaws were discovered and
had been revised. Additionally,
these revisions were checked to be
consistent with all the other tests
discussed above.

When variables in the casual loop
were removed from the model, the
model exhibited anomalous
behavior. Therefore, all the
relationships in casual loop are
important and must be included.

Hadoop Common was used as
another instance to test model
behavior. The test results will be
described in the following forth
analysis item (See 4) Simulations in
different projects).

The behavior of each variable was
tested and no unexpected or
anomalous behavior was found.

In assessing sensitivity to
parametric assumptions, uncertain
and influential parameters and
relationships were analyzed by
defining best and worst case
scenarios and comparing these
scenarios to the base case. The best
and worst cases provide bounds of
the model behavior.

We proposed three improvements
for the change management
process. They were code review,
attracting participants, and
requirements triage. The simulation
results showed that the system can
be better after taking the improved
policies. The details of these
improvement tests are described in
the following Section B.

2) PROJECT PRODUCTIVITY

In the following, the issues, bugs and project productivity out-
puts were examined. Their simulation results are presented in
Figure 10.

In Figure 10, (a) indicates the number of weekly issue
creations, (b) indicates the actual productivity per week.
Using curve fitting to analyze the similarity between Issue
created rate and Actual productivity rate, the coefficient of
determination R2 > 0.6. That is, the creation rate of the
issues affects the actual productivity of project. In Figure 10,
(c) represents the percentage of accepted change requests.
It can be seen that more than 90% of the change requests were
accepted. From the impact of changes on project productivity

VOLUME 6, 2018

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

IEEE Access

Users

3000

person
o
(=3
=

750

0

0 44 88 132 176 220 264 308 352 396 440

Time (week)
Users : Baseline
(a)
Core developers
6
45
2 3
2
15
0

0 44 88 132 176 220 264 308 352 396 440
Time (week)
Core developers : Baselne

(0

Contributing developers

90

person
o
L

0 44 88 132 176 220 264 308 352 396 440
Time (week)

Contributing developers : Baseline

(b)

Developers productivity

70

issue/week
w
uh

0 44 88 132 176 220 264 308 352 396 440
Time (week)

Developers productivity : Baseline

(d)

Expected project duration

300

wesk
—
'
(=]

0 44 88 132

Expected project duration - Baseline

220 264 308 352 396 440

Time (week)

(e)

FIGURE 9. Analyses of human resource and developers’ productivity. (a) Number of users. (b) Number of contributing developers. (c)
Number of core developers. (d) Developers’ productivity. (e) Expected project duration.

and the percentage of accepted issues, we can say that in
Version 3, the project developers can respond positively and
rapidly according to the change requests. After 244™ week,
due to the release of Version 4, there are the same decrease in
both (a) and (b). But, between 220™ to 244" week, there is a
sharp increase of Actual productivity rate in (b), which means
the project team resolves and closes most issues in Version 3
and prepares to release Version 4.

Similarly, we use curve fitting to analyze the similar-
ity between Bug created rate and Actual productivity rate
((d) and (b) in Figure 10), the coefficient of determination
R*> > 0.3. There is less impact of bug creation on the
project productivity. This is because the bugs are found and

VOLUME 6, 2018

reported later than the proposed issues. However, from the
simulation result of (e), Percentage of code for bugs increases
continuously. The project team has a positive response to
the fixing of bugs. This is a positive effect on attracting
users.

In Figure 10, (f) reflects the percentage changes of dupli-
cated and invalid issues that is rejected by the project team.
In the entire life cycle of Version 3, rejected duplicated and
invalid issues are within 10% of all issues. In the early stage,
this percentage shows an overall rapid upward trend. How-
ever, in the later, it can be seen that the project team make
more effective control on the rejection percentage and keep it
around 6%, showing a steady trend.

70153

IEEE Access

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

Issue created rate

40

30

issue/week
o
f=)

10
0 AMJ\ g i
0 44 88 132 176 220 264 308 352 396 440
Time (week)
Issue created rate - Baseline
@)

Percent of accepted issues

(¥

Dol

in

0

0 44 88 132 176 220 264 308 352 396 440

Tme (week)
Parcent of sccepted isses : Bassline
(c)
Percent of code for bugs

06

045

E 0
s}

015

0

0 44 88 132 176 220 264 308 352 396 440
Time (week)
Percent of code for bugs - Baseline

(e)

Actual productivity rate

90

67.5

1ssuelw eek
.
L

2
&7
n

: b b

0 44 88 132 176 220 264 308 352 39 440

Time (week)
Actual productivity rate : Baseline
(b)
Bug created rate

40

30
o
3
£ 20

10

0 .NI L““ .“m I.Ii\||luu|l|‘|
308

0 44 88 132 176 220 264 352 396 440

Time (week)
Bug created rate : Baseline
(d)
Percent of duplicated & invalid issues

07

0525

T 035
[=]

0175

0

0 44 88 132 176 220 264 308 352 396 440
Time (week)
"Percent of duplicated & invalid issues" : Baseline

(U]

FIGURE 10. Analyses of software changes and project productivity. (a) Issue created rate. (b) Actual productivity rate. (c) percent of accepted
issues. (d) Bug created rate. (e) Percent of code for bugs. (f) Percent of duplicated & invalid issues.

3) SOFTWARE QUALITY
Quality dynamics are different in OSS, partly because ‘“Many
eyes make all bugs shallow” [3], [14]. With so many open
source testers, a high percentage of bugs could be found
in every release. In order to analyze the quality dynam-
ics, the simulations of Resolved and closed issues, Total
changed codes, Developers motivation, and Software qual-
ity were examined and the simulation results are presented
in Figure 11.

In the Figure 11, (a) is the simulation result of Issue
tracking subsystem, indicating the number of the completed
issues; (b) is from Issue resolving subsystem, indicating the

70154

total changed codes. According to (a) and (b), as the number
of completed issues increases, the code lines for software
changes is increasing. All the software changes expand the
software scale and make the code maintenance more difficult.
Therefore, the software changes cause Developers motivation
and Software quality to decline slowly, as shown in Figure 11
(c) and (d). Please note that the software quality is represented
by the bugs per KLOC, which means an increase in software
bug rate indicates a decline in software quality.

In the early stage, Developers motivation (see Figure 11(c))
and Software quality (see Figure 11(d)) do not decline sharply
because the number of issues is small and the productivity of

VOLUME 6, 2018

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

IEEE Access

Resolved and closed issues

2000

188118

1000

0 44 88 132 176 220 264 308 352 396 440
Time (week)
Resolved and closed issues : Baseline

(a)

Total changed codes

IM

750,000

line

500,000

250,000

0

0 44 88 132 176 220 264 308 352 396 440
Time (week)
Total changed codes - Baseline

b
Developers motivation

(]

Dimnl

n

0 44 88 132 176 220 264 308 352 396 440
Time (week)

Developers motivation : Baseline
(c)
Software quality

delect/KLOC
[=]

0 44 88 132 176 220 264 308 352 396 440
Time (week)
Software quality : Baseline

(d)

FIGURE 11. Analyses of software quality. (a) Resolved and closed issues.
(b) Total changed code. (c) Developers motivation. (d) Software quality.

developers is rising rapidly. But in the middle to late stages,
the number of issues increases sharply, the productivity of
developers increase relatively slow. This relatively slow speed

VOLUME 6, 2018

causes the project schedule pressure to rise, which leads to a
gradual decline in Developers motivation(see Figure 11(c)),
and further leads to the software quality decline slowly
(see Figure 11(d)). In addition, at the 3101 weeks, Version
3.2.10 was released and the bug reporting rate was reduced.
After 310" weeks, Software quality and Developers motiva-
tion in Figure 11 (c) and (d) fluctuate more slowly. Similarly,
it can be seen from (a) that after 244" weeks, Version 4 was
released and the project team devoted most of their energy to
the new version. Therefore, as shown in Figure 11 (a) and (b),
after 244" weeks, Resolved and closed issues are reduced and
the fluctuation of Total changed codes are also flat.

4) SIMULATIONS IN DIFFERENT PROJECTS

To ascertain whether the model can generate the behavior of
other instances in the same class as the model was built to
mimic. Hadoop Common was used as another instance to test
the model behaviors. In the following Figure 12, the simu-
lation results of Hadoop Common are presented and further
compared with Spring Framework.

In Figure 12, (a) and (b) reflect the expansion of the number
of Contributing developers in Hadoop Common and Spring
Framework respectively. It can be seen that they both have a
sharp increase in the middle stage of the project. But, there are
more developers in Hadoop Common and they are constantly
growing, while in the later stages of Spring Framework,
the developers are relatively stable and no longer sustain rapid
grow.

The simulation results of (a) and (b) reflect different behav-
ior patterns of developer growth in both projects. In contrast,
(c) and (d) in Figure 12 reflect the similar fluctuations in
the Developers motivation. By further analyzing, the sim-
ilarity is due to similar fluctuations in Schedule pressures
in the two projects. As shown in the preceding formula
(6), Schedule pressure is calculated by the gap between
the expected and actual productivity. It is actually calcu-
lated by dividing the number of remaining issues and bugs
by the actual productivity of the developers. In the early
stage of the two projects, the number of issues and bugs
was small and the productivity of developers was rising
rapidly, reflecting the increased motivation of the developers.
In the middle to late stages, the number of issues and bugs
increased dramatically, and the average productivity of the
developers raised relatively slowly, which led to a gradual
decline in Developers motivation. However, since the devel-
opers in Hadoop Common continue replenish and the number
is relatively large, the decline of Developers motivation is
smoothing.

In Figure 12, (e) and (f) simulate the software quality (rep-
resented by the bug rate) changes in two projects. As shown
in (e), the quality of Hadoop Common fluctuated greatly in
the early stage, and the bug rate is extremely high. However,
from 108 weeks to 112 weeks, the defect rate decreases and
the late rise gradually flattened. The reason for such large
fluctuations was that in 2009, Hadoop Core was renamed to
Hadoop Common and a stable version was released in 2011

70155

IEEE Access

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

Contributing developers

300

£ 150
2
75
0
0 112 223 335 446
Time (week)
Contributing developers - Hadoop
(C)]
Developers motivation
2
15
E 1
s
5
0
0 112 223 335 446
Time (week)
Developers motivation : Hadoop
()
Software quality
) w
8.25
&)
o
E 55
275
0
0 112 223 335 446
Time (week)
Software quality - Hadoop
(e)

Contributing developers

90

person
.
o

=]

44 82 132 176 220 264 308 352 39 440
Time (week)
Coniributng developers : Baseline

(b)

Developers motivation

[*]

Dimnl

n

0 44 88 132 176 220 264 308 352 396 440

Time (week)
Developers motivation - Baseline
(d)
Software quality
4
3
Q
&)
A
=
1
0la
0 44 88 132 176 220 264 308 352 396 440
Time (week)
Software quality - Baseline
®

FIGURE 12. Simulation comparison between Hadoop Common and Spring Framework. (a) Hadoop Common contributing developers.
(b) Spring Framework contributing developers. (c) Hadoop Common developers morale. (d) Spring Framework developers motivation.
(e) Hadoop Common software quality. (f) Spring Framework software quality.

(about 108 weeks). Unlike Hadoop Common, Spring Frame-
work has consistently shown a trend of stable increasing.
The preceding understanding of change-oriented software
process simulation for OSS would not only help us to under-
stand the phenomenon of open source but would also benefit
practitioners in both open source and closed-source soft-
ware communities. However, software organizations need
to improve their software processes continuously to meet
the growing demands for products and services. Based on
the simulation results, how to improve the software quality?
Which software process improvement strategies are effec-
tive? The answers of these questions can also be simulated

70156

and compared in our model. In the following, we propose and
test three improvement strategies.

B. SOFTWARE PROCESS IMPROVEMENT SIMULATION

Humphrey [Humphrey 1989] argued that software quality can
be improved by improving its development process. Both
academia and industry are striving to find ways for soft-
ware process improvement (SPI). There are numerous SPI
framework and methodologies available today, but they all
have one challenge in common: the cost of experimenting
with the process change. It is widely claimed that software

VOLUME 6, 2018

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

IEEE Access

process simulation modeling can help in predicting the ben-
efits and repercussions of a process change, thus enabling
organizations to make more informed decisions and reduce
the likelihood of failed SPI initiatives [8].

Currently, mainly two types of SPI approaches are being
used in practice: model-based SPI approaches and continu-
ous SPI approaches. Model-based SPI approaches compare
organizational processes with a reference model and are
used to identify coarse-grained problem areas and potential
improvement strategies. Continuous SPI approaches are used
to develop process-specific solutions for important problems
and assess the effects of improvement actions [2]. Since
continuous SPI approaches can be applied, independent of the
maturity of an organization, we used continuous approaches
in this paper.

Continuous SPI approaches focus on solutions for the most
important challenges of a software development organization
and usually involve improvement cycles based on an initial
baseline that defines the respective starting point of each
improvement action [2]. In the following, we describe and
discuss three improvement actions that can be used to assess
the trade-offs independent from a specific project context.
We utilized the simulation to evaluate alternative actions on
how to construct the future software processes. For each
improvement context, the baseline was the situation when
all improvement activities are set to be no effect, while the
improvement was to set the random effect for all improve-
ment activities.

1) CODE REVIEW

Code review is a continuous process in OSS develop-
ment [23]. Overall, the research agreed that code review
by numerous reviewers can significantly, positively impact
software quality. To test the effectiveness of code review,
the parameter of Code review in Quality assurance subsystem
was given in formulas RANDOM NORMAL(O, 1, 0.05, 0.1,
0) and all the other input parameters were kept constant.
The simulator was executed and the values of the quality
and duration were examined according to the variation in the
extent of code review.

In Figure 13, all the red lines in (a) and (b) provide the
original software project performance of the process without
code review activity. They are the initial baselines. The blue
lines show the performance of the improved process, which
we add the code review improvement. In Figure 13(a), it can
be observed from the two lines that the improved process
yields an improved product quality of fewer bugs per KLOC.
In addition, as shown in Figure 13(b), at the beginning of the
software project lifecycle, the simulation results indicate a
time overrun of about 5% compared the baseline. This delay,
however, is changed in the later project lifecycle and has an
apparently decrease.

2) ATTRACTING PARTICIPANTS
People management plays a vital role in developing high-
quality software [15]. Many studies concluded that creating

VOLUME 6, 2018

Software quality

delect/KLOC
o

0la
0 44 88 132 176 220 264 308 352 396 440
Time (week)
Software quality - Code review improvement
Software quality : Baselne
(@)

Expected project duration

week
n
=]

0 44 88 132 176 220 264 308 352 396 440
Time (week)
Expected project duration : Code review improvement
Expected project duration : Baseline
(b)

FIGURE 13. Improvement of using code review. (a) Software quality.
(b) Expected project duration.

a sustainable community should be an OSS project’s key
objective, and a sustainable community relied on attracting
participants. Specifically, research has found that reasons
to participate include enjoyment in helping others improve
software, enjoyment in tackling complex programming prob-
lems, improving programming skills, gaining financial bene-
fits, signaling competence to potential employers, improving
future job prospects, gaining recognition from peers, enhanc-
ing reputation in the field, and identifying with the project
teams [24]. Many strategies for attracting participants are pro-
posed. These include establishing an effective environment
and culture. For instance, modular design would make project
tasks less time demanding and more achievable, which would
better satisfy participants’ needs for competence [24]. Fur-
thermore, social networks should be developed to facilitate
communication, coordination, and collaboration among par-
ticipants [24]. Therefore, our second SPI simulation is to
examine the effectiveness of attracting participants. To test
the effectiveness of attracting participants, the parameter of
Effectiveness of attracting participants in OSS community
subsystem was given in formulas RANDOM NORMAL(O,
1, 0.05, 0.1, 0) and all the other input parameters were kept
constant.

Very similar to Figure 13, (a) and (b) In Figure 14 show the
simulation comparisons between baseline data and improve-
ment data. It can be concluded that attracting participants can

70157

IEEE Access

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

Software quality

defect/ KLOC
(]

0ls
0 44 88 132 176 220 264 308 352 396 440
Time (week)

Sofware quality : Attracting participants
Software quality : Bassline

(@)
Expected project duration

300

vk
—
n
=}

0 44 88 132 176 220 264 308 352 396 440

Time (week)
Expacted project duration : Attracting participants improvement
Expacted projact duration : Basaline

(b)

FIGURE 14. Improvement of using strategies for attracting participants.
(a) Software quality. (b) Expected project duration.

reduce the software bug rate (the reduction of the bug rate
means the increase of the software quality) and reduce the
duration required for software projects. Therefore, for higher
quality, open source development requires a critical mass of
participants for testing the software and providing suggested
changes. People dynamics and their motivation are essential
areas of study for OSS processes.

However, compare (a) in Figure 13 and (a) in Figure 14.
When using the same random function, the decline of blue
line in Figure 13 is more than the blue line in Figure 14. Using
code review may be more effective than using attracting
participants. The comparison of Expected project duration
will be elaborated in the following.

3) ISSUES TRIAGE

In the software change management, invalid and duplicated
issues consume the cost and time of the software project
team and degrade developer motivation and software quality.
In order to reduce this impact, it is necessary to categorize
and filter issues. In Figure 5, issue triage has been designed
in Issue tracking subsystem. To illustrate the necessity of
issue triage, a new stock-level diagram is designed by deleting
issue triage, as shown in Figure 15 (a). Due to the lack of
issue categorization and filtering, all issues will be accepted.
Only when the issues are executed, duplicated and invalid
issues will be found. The result is a waste of labor and time.

70158

TABLE 3. Comparing improvement strategies.

Improvement Strategies Labor cost Time cost
Code review High high
Attracting participants Normal Normal
Issues triage Low Low

(b), (¢), (d), and (e) in Figure 15 are the simulation compari-
son results.

In Figure 15 (b), the blue line indicates the simulation
result of Figure 15 (a), that is, the issue triage is not taken.
The red line indicates the simulation result of Figure 5, that
is, the issue triage is taken. By comparing and analyzing
Figure 15(b), it can be concluded that the issue triage activ-
ity makes the Project actual productivity higher. Thereby,
reduce the Expected project duration, as shown in (c). In Fig-
ure 15(d), the uselessness of implementing invalid and dupli-
cated issues makes Developers motivation lower, which in
turn leads to an increase in the number of bug reports. Ulti-
mately, it leads to a decline in Software quality, as shown
in (e). Therefore, under the same conditions, issue triage is
useful in reducing the loss caused by invalid and duplicated
issues to the software.

When we further compare these simulation results with the
results of the previous two improvements, the impact of the
issue triage activity on Software quality and Expected project
duration is more significant.

From the comparison of simulation results, we can see
that different process improvement strategies can be adopted
for different software organizations or different software
projects. But, how do we choose the most appropriate process
improvement strategies? We try to answering this question in
the following.

4) PRIORITIZATION OF IMPROVEMENTS

Due to the fact that software processes are usually human-
based and depend on the development context, improvements
to these processes also cause significant costs and should be
considered carefully [2]. In the following Table 3, the preced-
ing three improvement strategies are evaluated with respect to
their implementation labor cost and time cost in the case of
improving the same software quality (reducing the same bug
rate).

In general, software process improvements require differ-
ent labor costs and time costs. When dealing with change
requests, code review requires one or several humans to
check a program mainly by reading and reviewing its source
code. If the number of change requests is large, it may take
more labor and time costs. Therefore, OSS project teams
usually recommend that the modified codes should be as
small as possible. When attracting participants to an OSS
project team, the preceding methods that we described in
Section 2) are typically used. Comparing to the other two
improvement options, the labor and time costs are less than

VOLUME 6, 2018

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

IEEE Access

—__ = Percent of duplicated
& invalid issues

<Baseline duplicated

& mvalid rate>

Duplicated
and invalid
issues

Work delay

<Baseline issue
created rate>

Open issues

Issue
created rate

23
Accepted rate

Percent of
<Baseline

<Users> accepted issues
’ <Baseline transition rate
accepted rate
<Time>
<Sprint duration
Allissues:
Project actual productivity
7000
5250
g 3500
1750
0
0 44 88 132 176 220 264 308 352 396 440
Time (week)
Project actual productivity : Triage effectiveness test
Project actual productivity - Baseline
(b)
Expected project duration
500.8
3756
2 2504
2 250.
1252
0
0 44 88 132 176 220 264 308 352 39 440
Time (week)

Expected project duration : Triage effectiveness test
Expected project duration : Baseline

()

<Sprint job size>

Zas
Sprint
transition rate

Returned rate

:

sprint switch

Issue resolving
effort Duplicated &

invalid rate

Waiting to

Sprint test issues

Resolved and
closed issues

‘f

Resloved &
closed rate

Resolving rate,

/A

Baseline
resolving rate

Reopened
rate

<Baseline resloved &

closed rate>

| Reopen issues

<Baseline
l'C()PCﬂCd rate>

<Baseline
rework rate>

Developers motivation

2
15
I
a
5
0
0 4 88 132 176 220 264 308 352 39 440
Time (week)
Developer: : Triage effectiveness test
Developers motivation : Baseline
(d)
Software quality
4
3
8]
o]
22
1
01a
0 44 88 132 176 220 264 308 352 396 440
Time (week)

Software quality : Triage effectiveness test
Software quality - Baseline

(e)

FIGURE 15. Triage effectiveness test stock-level diagram and simulation comparisons. (a) Triage effectiveness test stock-level diagram. (b) Project actual
productivity. (c) Expected project duration. (d) Developers motivation. (e) Software quality.

code review but more than issues triage. However, it must be
mentioned that the methods may be invalid, delayed or even
counterproductive. These negative impacts should be fully
considered that may reduce the motivation of developers.
For the last improvement strategy, issues triage, since most
of the current large and medium-sized OSS projects use the

VOLUME 6, 2018

issue tracking system to manage the change requests [10],
the tool itself can provide issues classification and filtering
capabilities. In comparison with the other two improvement
options, the labor and time costs required may be less. That is

why this option is used by most large and medium-sized OSS
projects.

70159

IEEE Access

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

Expected project duration

500.2
3751
2501
125
0
0 44 88 132 176 220 264 8 352 396 440
Time (week)
Expected project duration : Triage test 77

Expactad project duration : Attracting e 7/
Expactad project duration : Code review i
Expactad project duration : Bassline

Expected project duration

week
[~
o
]
o

188.9

1749

330 355 381 406 431
Time (week)

Expactad project duration : Attracting
Expactad project duration : Code review i
Expactad project duration : Bassline

FIGURE 16. Comparing improvement options.

Next, we compare the simulation results of these improve-
ment stratigies on Expected project duration. The comparison
simulation results are presented in Figure 16.

In Figure 16, the second figure is an enlarged partial image
of the first figure. The grey, red, and green lines in the second
figure indicate Expected project duration that has taken the
improvements of issues triage, attracting participants, and
code review respectively. When the gray line is used as the
baseline, both improvement options are effective, and the
effect of using code review is better.

According to the above simulation results and the cost
comparison analysis, issues triage should be used first. For
the remaining two options, if attracting participant methods
can be use appropriately, it can be given priority because the
costs is relatively low and the project duration and software
quality improvement will also have a good effect. In the case
that the labor cost of the project team is relatively sufficient,
although code review consumes a certain cost, it has the great-
est improvement effect on the project duration and software
quality.

In summary, the simulation model assisted in reasoning
about why certain alternatives were better than others. The
comparing outcomes can help select and customize the best
process for a specific context.

C. DISCUSSION
OSS favors distributed development and the use of tools to
support their change management tasks [25]. This attracts

70160

the company because they involve geographically distributed
developers and are trying to rely more on tools for their
change management. Therefore, we used the SD modeling to
simulate and analyze the performance of Spring Framework
change management process. The model and results were
presented to the project leaderships in Taili Technologies.
Overall, they were pleased with the results of the modeling
effort. From the simulation results, many valuable lessons had
been learnt.

The benefit of using SD modeling is that this modeling
approach provides the means to gather all relevant factors and
parameters in a holistic view. Moreover, while the variables
included in the model can be diverse, that is, representing
different process improvement strategies. The application and
improvement analyses presented in Section A and Section B
are meant to illustrate how the SD model can be applied in a
software project in order to assess the effectiveness of change
management and SPI strategies. Therefore, our SD model can
be used to visualize the critical project behavior and to discuss
the assumptions about the cause-effect relationships that are
supposed to be responsible for the generated behavior. The
design of our models is such that it has the following positive
properties:

(1) Multi-causality: the model offers the possibility to
assess the impact of various parameters not only individually
but also concurrently. In other words, it is a holistic model
that does not limit itself to mono-causal dependencies but
facilitates the consideration of complex inter-dependencies
among impact factors.

(2) Comprehensiveness: our SD model offers the possibil-
ity to assess the impact of various model parameters not only
on one performance parameter but also several performance
parameters simultaneously, thus allowing for trade-off anal-
yses and holistic assessment of the cost-effectiveness of SPI
strategies.

Howeyver, two limitations were also found and discussed.

(1) The model structure and the simulation results are
not reviewed by experts of Spring Framework or Hadoop
Common. Our modeling goal is a common change manage-
ment process for all OSS projects. By studying the change
management processes of some OSS projects, we found that
the processes of different OSS projects have more or less
differences. Therefore, Our SD models were defined at a level
of abstraction such that it can be considered experimental
change bed containing all essential elements representing
the typical steps in change management processes. However,
without the review by the open source project team, it is still
a threat to the effectiveness of our empirical research.

(2) When simulating the software process improvements,
we used the random values. In the real project, to effectively
detect the impact of the improvement strategies real data that
according to the actual context should be used.

Regarding modeling cost, the setup of our first model
structure was consumed three persons in three months of
effort. More difficult is the simulation study and the cal-
ibration of the SD models. After the first model structure

VOLUME 6, 2018

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

IEEE Access

was determined, team members cost about two months for
modification and calibration. In addition, calibration effort
and success depends on the availability of valid data in the
software project to which the model shall be calibrated, and
the ability to estimate those parameters for which measure-
ment data are available.

Simulation models like the one presented in this paper
have the preceding limitations, but once in place they allow
for easy evaluation of many different configurations of all
software processes in a software project. Therefore, the model
will be continuously adjusted for the project specific demand
and simulation data will be collected and inputted into the
model to provide more valuable simulation results.

IV. RELATED WORK

System Dynamics (SD) was first proposed by For-
rester for industry simulation with its origins in the
1950s [22], [26]. In the late 1980s, software process simula-
tion was started from the work by Kellner and Hansen [27],
Lin and Levary [28], and Abdel-Hamid and Madnick [29],
and has become an active and growing area of research [18].
In 1998, the first international workshop on software pro-
cess simulation modeling (ProSim’98) held at Silver Falls.
Then, many companies have experimented with using process
simulation models as a management and decision-support
tool [18].

A software process simulation model focuses on some
particular software development/maintenance/evolution pro-
cess [9]. Although there are some significant applications of
SD to model and simulate the traditional software process,
our model focuses on the change-oriented aspect of OSS
processes. In this area, only a small number of the published
simulation models focus on the analysis and improvement of
change-oriented software process. To the best of our knowl-
edge, our work is the first to apply SD simulation to model
and analyze change-oriented OSS processes.

A. SIMULATION OF CHANGE-ORIENTED SOFTWARE
PROCESSES

Software requirements and software processes in practice
are not static but changing. In this environment of perpetual
change, a means of effectively predicting the impact of such
changes on software development would be valuable.

In 1989, Lin and Levary [28] presented a dynamic model
for the software process to assist in assessing the impact of
both changed requirements and new technology on software
development schedules and costs. They found a change in
the requirements phase leading to changes in all succeed-
ing phases, and also leading to a delay in schedule and
staff level. In the year 1994 and 1995, Pfahl and Lebsanft
developed a prototype PSIM (project simulator) model to
explore the potentials of the SD approach [26]. Using a
fictitious example, the effects of unexpected change requests
were simulated in PSIM. The simulation results showed
the SD model can be used to find an optimal policy to
avoid time overrun and/or quality loss. In 2000, they used

VOLUME 6, 2018

a simulation model in an industrial application to demon-
strate that requirements volatility is extremely effort con-
suming [30]. Similarly, Houston ef al. [31] used stochastic
simulation and survey to show that requirements creep is
the most significant risk factor. Donzelli and Iazeolla [32]
proposed a hybrid simulation modeling to study the effects of
requirements instability on various process quality attributes.
Martin and Raffo [33] presented a hybrid model to evaluate
simultaneous changes to both the process and the project
environment. All their work was applied to a traditional pro-
cess, but hybrid models can examine questions that cannot
be answered by either system dynamics models or discrete
event models alone. We will try to use hybrid models in the
future. In 2008, Madachy presented software process dynam-
ics [3] to explore the dynamics of the software process. In his
book, the model for requirements volatility was introduced by
using the work from Ferreira ea al.. Ferreira et al. developed
a simulator for better understanding the requirements engi-
neering process and the impact of requirements volatility [6].
After the research of traditional processes [6], Ferreira er al.
suggested that agile processes are another valuable area to
study because they welcome requirements changes. For the
objective of researching on the agile development practices,
Cao et al. [20] first applied SD simulation to model essen-
tial aspects of agile software development and studied the
dynamic implications of two agile practices (refactoring and
pair programming). Although several agile methods empha-
size co-location and do not focus on using tools to support
its development tasks [25], both OSS and agile development
embrace change by using short feedback loops with frequent
releases [34]. Therefore, our SD models have same goal
in change management function, but we elaborated more
details in OSS change management about the different people
factors, group dynamics, quality attributes, different evolu-
tion dynamics, and other phenomena compared to closed
source development. In addition, they focused on agile prac-
tices, whereas we emphasized SPI in the change-oriented
context.

The first law of software evolution [35] is continuing
change. In attempt to simulate the factors that affect the
software evolution behavior and better manage software evo-
lution, Lehman and Ramil [35], Wernick and Lehman [36],
Wernick et al. [37], Kahen et al. [38], and Ali et al. [39]
developed several simulation models and continuously
improved their models. However, except the model in [38],
the other models abstracted the modeling of changes.
Although the changes were defined explicitly in [38], the cor-
responding model variables did not refer to any particular
measure.

The target of these articles is not open source type projects
but more traditional closed source development type projects.
In addition, little empirical research has been carried out
on the topic of software change that considered the factors
involved and the integrated quantitative effects of change on
factors related to key project indicators, such as schedule,
quality, and cost.

70161

IEEE Access

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

B. SIMULATION OF SOFTWARE PROCESS IMPROVEMENT
Although software process improvement is an intensively
researched topic in software engineering, not much sup-
port is available to decide what improvement strategies
is worthwhile adopting, and what are not. Full-fledged
empirical investigations and many experiments are required
to find the best management and improvement strategies
for a specific context. Because the costs for such stud-
ies are high, the idea of building simulation models rep-
resenting the essential process activities may be a good
compromise.

An early study of process improvement dynamics in a
high-maturity organization was commissioned by the SEI
and conducted by Steve Burke [40]. His model was used for
determining SPI suggestions and reaching higher CMM level.
Almost at the same time, Madachy and Khoshnevis [41].
Christie [42], Pfahl and Lebsanft [26] reviewed how soft-
ware process simulation can be used to support software
process improvement. Madachy and Khoshnevis [41] devel-
oped a dynamic simulation model of an inspection-based
software process to support quantitative process evaluation
and aid in process improvement. Christie [42] proposed
how to apply process simulation at all levels of the CMM
(capability maturity model). Pfahl and Lebsanft [26] used a
fictitious example to show that SD model PSIM can be
used to evaluate candidate process improvement strategies.
In addition, they proposed to combine SD modeling with
measurement-based quantitative modeling. This integration
was good at complementing each other and was adopted in
our research. Powell er al. [43] used SD modeling to eval-
uate strategies for lifecycle concurrency and iteration. The
technique of SD was proven to be useful in understanding
incremental process dynamics, especially when the effec-
tiveness of alternative strategies is dependent on the process
context [43]. Ruiz et al. [44] used SD to model and simu-
late COTS (commercial-off-the-shelf)-based software devel-
opment process and process improvement. Their work only
included the first results and without obtaining real data to
validate. By means of SimSE environment [45], the simu-
lation in Hsueh et al’s work [46] provided an opportunity
for organization to improve process and reduce many efforts
before pilot project. Ali et al. [47] proposed a framework
to perform simulation-assisted value stream mapping and
illustrated which wastes and process improvements could
be identified. The results showed that the use of simulation
was particularly helpful in having more insightful discussions
and led to realistic improvements with a high likelihood of
implementation.

These existing simulation models discussed in the litera-
ture did not include change management processes consid-
ered in concert with the rest of the lifecycle or other critical
project factors. Also, most of them used model-based SPI
approaches which focused on the maturity of an organization.
We used continuous SPI approaches to involve improvement
cycles based on an initial baseline.

70162

V. CONCLUSION

Software companies are facing with constant changes and
increased demands for improvements to cycle time, develop-
ment cost, and quality. Software process simulation is emerg-
ing as an effective tool to help evaluate and manages changes
made to software projects and development organizations.
Due to the fact that process models glue together all activities,
products, and resources, the relevance of process models for
the success of software projects is enormous [2]. System
dynamics simulation is useful in assessing the impact of these
elements in software processes. In this paper, our simulation
model can represent the complexity of relationships between
large quantities of interrelated factors and effectively illus-
trates the effects of changes. The model audience is software
project managers and researchers in software project teams
who are seeking to understand the effects and management
of changes. The simulation model can be use to study the
effects of changes on various process quality attributes, such
as effort, delivery time, productivity, schedule, and product
quality. Moreover, by adding process improvement strategies,
the simulation results show that the use of the model can
provide qualitative and quantitative suggestions on how to
improve the software process or on how to satisfy specific
organizational needs.

ACKNOWLEDGMENT
“Xuan Zhang thanks the researchers and developers in Taili
Co., Ltd for their contribution in providing their valuable
industrial advices and suggestions during the modeling and
empirical case study.”

REFERENCES

[1] T. Javed, M. Magsood, and Q. S. Durrani, “A study to investigate the
impact of requirements instability on software defects,” ACM SIGSOFT
Softw. Eng. Notes, vol. 29, no. 3, pp. 1-7, 2004.

[2] J. Miinch, O. Armbrust, M. Kowalczyk, and M. Soto, Software Process
Definition and Management. Berlin, Germany: Springer-Verlag, 2012.

[3] R.J. Madachy, Software Process Dynamics. Hoboken, NJ, USA: Wiley,
2008.

[4] A. Fuggetta, “Open source software—An evaluation,” J. Syst. Softw.,
vol. 66, no. 1, pp. 77-90, 2003.

[5] W.S.Humphrey, Managing the Software Process. White Plains, NY, USA:
Longman, 1989.

[6] S. Ferreira, J. Collofello, D. Shunk, and G. Mackulak, “Understanding
the effects of requirements volatility in software engineering by using
analytical modeling and software process simulation,” J. Syst. Softw.,
vol. 82, no. 10, pp. 1568-1577, 2009.

[7] V. R. Basili, G. Caldiera, and H. D. Rombach, Goal Question Metric
Paradigm. New York, NY, USA: Wiley, 1994.

[8] N.B. Ail, K. Petersen, and C. Wohlin, “A systematic literature review on
the industrial use of software process simulation,” J. Syst. Softw., vol. 97,
pp. 65-85, Nov. 2014.

[9] M. L. Kellner, R. J. Madachy, and D. M. Raffo, “Software process sim-
ulation modeling: Why? What? How?”” J. Syst. Softw., vol. 46, nos. 2-3,
pp. 91-105, 1999.

[10] T.F Bissyandé, D. Lo, L. Jiang, L. Réveillere, J. Klein, and Y. Le Traon,
“Got issues? Who cares about it? A large scale investigation of issue
trackers from GitHub,” in Proc. IEEE 24th Int. Symp. Softw. Rel. Eng.
(ISSRE), Pasadena, CA, USA, Nov. 2013, pp. 188-197.

[11] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye, “Evolu-
tion patterns of open-source software systems and communities,” in Proc.
Int. Workshop Princ. Softw. Evol., vol. 5, 2002, pp. 76-85.

[12] M. Aberdour, “Achieving quality in open-source software,” IEEE Softw.,
vol. 24, no. 1, pp. 58-64, Jan./Feb. 2007.

VOLUME 6, 2018

X. Zhang et al.: Change-Oriented Open Source Software Process Simulation

IEEE Access

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

A. Mockus, R. T. Fielding, and J. Herbsleb, ““A case study of open source
software development: The Apache server,” in Proc. Int. Conf. Softw. Eng.
(ICSE), Limerick, Ireland, vol. 6, 2000, pp. 263-272.

E. S. Raymond, The Cathedral & The Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. Newton, MA, USA: O’Reilly
Media, 1999.

M. Aberdour, “Achieving quality in open-source software,” IEEE Softw.,
vol. 24, no. 1, pp. 58-64, Jan./Feb. 2007.

T. Bhowmik, N. Niu, P. Singhania, and W. Wang, ““On the role of structural
holes in requirements identification: An exploratory study on open-source
software development,” ACM Trans. Manage. Inf. Syst., vol. 6, no. 3,2015.
Art. no. 10.

T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen,
“Reversible debugging software-quantify the time and cost saved using
reversible debuggers,” Ph.D. dissertation, Judge Business School, Univ.
Cambridge, Cambridge, U.K., 2013.

V. Garousi and D. Pfahl, “When to automate software testing? A decision-
support approach based on process simulation,” J. Softw., Evol. Process,
vol. 28, no. 4, pp. 272-285, 2016.

C. Jensen and W. Scacchi, “Process modeling across the Web informa-
tion infrastructure,” Softw. Process Improvement Pract., vol. 10, no. 3,
pp. 255-272, 2005.

L. Cao, B. Ramesh, and T. Abdel-Hamid, “Modeling dynamics in agile
software development,” ACM Trans. Manage., Inf. Syst., vol. 1, no. 1,
Dec. 2010, Art. no. 5.

J. Sterman, Business Dynamics: Systems Thinking and Modeling for a
Complex World. New York, NY, USA: McGraw-Hill, 2000.

J. W. Forrester, Industrial Dynamics. Cambridge, MA, USA: Productivity
Press, 1961.

J. Dinkelacker, “Progressive open source,” in Proc. 24th Int. Conf. Softw.
Eng. (ICSE), vol. 5, 2002, pp. 177-184.

W. Ke and P. Zhang, “The effects of extrinsic motivations and satisfaction
in open source software development,” J. Assoc. Inf. Syst., vol. 11, no. 12,
pp. 784-808, 2010.

A. M. Magdaleno, C. M. L. Werner, and R. M. De Araujo, ‘“Reconciling
software development models: A quasi-systematic review,” J. Syst. Softw.,
vol. 85, no. 2, pp. 351-369, 2012.

D. Pfahl and K. Lebsanft, “‘Integration of system dynamics modelling with
descriptive process modelling and goal-oriented measurement,” J. Syst.
Softw., vol. 46, nos. 2-3, pp. 135-150, 1999.

M. L. Kellner and G. A. Hansen, “Software process modeling: A case
study,” in Proc. 22nd Annu. Hawaii Int. Conf. Syst. Sci., vol. 2, 1989,
pp. 175-188.

C. Y. Lin and R. R. Levary, “Computer-aided software development
process design,” IEEE Trans. Softw. Eng., vol. 15, no. 9, pp. 1025-1037,
Sep. 1989.

T. Abdel-Hamid and S. Madnick, Software Project Dynamics: An inte-
grated Approach. Englewood Cliffs, NJ, USA: Prentice-Hall, 1991.

D. Pfahl and K. Lebsanft, “Using simulation to analyse the impact of soft-
ware requirement volatility on project performance,” Inf. Softw. Technol.,
vol. 42, no. 14, pp. 1001-1008, 2000.

D. X. Houston, G. T. Mackulak, and J. S. Collofello, ‘‘Stochastic simula-
tion of risk factor potential effect for software development risk manage-
ment,” J. Syst. Softw., vol. 59, no. 3, pp. 247-257, 2001.

P. Donzelli and G. Iazeolla, “Hybrid simulation modelling of the software
process,” J. Syst. Softw., vol. 59, no. 3, pp. 227-235, 2001.

R. Martin and D. Raffo, “Application of a hybrid process simulation
model to a software development project,” J. Syst. Softw., vol. 59, no. 3,
pp. 237-246, 2001.

S. Koch, “Agile principles and open source software development: A the-
oretical and empirical discussion,” in Proc. Int. Conf. Extreme Program.
Agile Processes Softw. Eng., Calgary, AB, Canada, in Lecture Notes in
Computer Science, vol. 3092. Berlin, Germany: Springer-Verlag, 2004,
pp. 85-93.

M. M. Lehman and J. F. Ramil, “The impact of feedback in the global
software process,” J. Syst. Softw., vol. 46, nos. 2-3, pp. 123-134, 1999.

P. Wernick and M. M. Lehman, ““Software process white box modelling
for FEAST/1,” J. Syst. Softw., vol. 46, nos. 2-3, pp. 193-201, 1999.

P. Wernick, T. Hall, and C. L. Nehaniv, “Software evolutionary dynamics
modeled as the activity of an actor-network,” IET Softw., vol. 2, no. 4,
pp. 321-336, 2008.

G. Kahen, M. M. Lehman, J. F. Ramil, and P. Wernick, “System dynam-
ics modelling of software evolution processes for policy investigation:
Approach and example,” J. Syst. Softw., vol. 59, no. 3, pp. 271-281, 2001.

VOLUME 6, 2018

[39] S. M. Ali, M. Doolan, P. Wernick, and E. Wakelam, “Developing an
agent-based simulation model of software evolution,” Inf. Softw. Technol.,
vol. 96, pp. 126-140, Apr. 2018.

[40] S. Burke, “Radical improvements require radical actions: Simulating a
high-maturity software organization,” Softw. Eng. Inst., Pittsburgh, PA,
USA, Tech. Rep. CMU/SEI-96-TR-024, 1996.

[41] R. Madachy and B. Khoshnevis, “Dynamic simulation modeling of an
inspection-based software lifecycle process,” Simulation, vol. 69, no. 7,
pp. 3547, 1997.

[42] A. M. Christie, “Simulation in support of CMM-based process improve-
ment,” J. Syst. Softw., vol. 46, nos. 2-3, pp. 107-112, 1999.

[43] A.Powell, K. Mander, and D. Brown, ““Strategies for lifecycle concurrency
and iteration—A system dynamics approach,” J. Syst. Softw., vol. 46,
nos. 2-3, pp. 151-161, 1999.

[44] M. Ruiz, I. Ramos, and M. Toro, ‘“Using dynamic modeling and simulation
to improve the COTS software process,” in Proc. 5th Int. Conf. Product
Focused Softw. Process Improvement (PROFES) in Lecture Notes in Com-
puter Science, vol. 3009, F. Bomarius and H. lida, Eds. Berlin, Germany:
Kausai Science, 2004, pp. 568-581.

[45] E. O. Navarro and A. van der Hoek, “Software process modeling for
an educational software engineering simulation game,” Softw. Process,
Improvement Pract., vol. 10, no. 3, pp. 311-325, 2005.

[46] N. L. Hsueh, W.-H. Shen, Z.-W. Yang, and D.-L. Yang, “Applying UML
and software simulation for process definition, verification, and valida-
tion,” Inf. Softw. Technol., vol. 50, nos. 9-10, pp. 897-911, 2008.

[47] N.B. Ali, K. Petersen, and B. B. N. de Franga, “Evaluation of simulation-
assisted value stream mapping for software product development: Two
industrial cases,” Inf. Softw. Technol., vol. 68, pp. 45-61, Dec. 2015.

XUAN ZHANG was born in Kunming, Yunnan,
China, in 1978. She received the B.S. and M.S.
degrees in computer science and the Ph.D. degree
in system analysis and integration from Yunnan
University, Yunnan, in 2000, 2003, and 2014,
respectively.

From 2003 to 2012, she was an Assistant Pro-
fessor with the School of Software, Yunnan Uni-
versity. Since 2012, she has been an Associate
Professor with the School of Software, Yunnan
University. She has authored two books and more than 60 articles. She
has been a Principal Investigator for more than 10 national, provincial, and
private grants and contracts. Her research interests include software process,
trustworthy software, and requirement engineering.

XU WANG was born in Kunming, Yunnan, China,

in 1976. He received the B.S., M.S., and Ph.D.

degrees in economics from Yunnan University,

— - Yunnan, in 1998, 2006, and 2010, respectively.

B e o From 2010 to 2016, he was an Assistant Profes-
sor with the School of Economics, Yunnan Uni-
versity, Yunnan, China. Since 2016, he has been
an Associate Professor with the School of Eco-
nomics, Yunnan University, Yunnan, China. He
has authored three books and more than 50 arti-
cles. His research interests include business process management, monetary
economics and banking, and financial security.

YANNI KANG was born in Kunming, Yunnan,
China, in 1992. She received the B.S and M.S.
degrees in information security from Yunnan Uni-
versity, Yunnan, in 2014 and 2018, respectively.

She has authored three articles. Her research
interests include software process and requirement
engineering.

70163

	INTRODUCTION
	CHANGE-ORIENTED SOFTWARE PROCESS SIMULATION
	CAUSE-EFFECT RELATIONSHIPS ANALYSIS
	SYSTEM DYNAMICS MODELING
	OSS COMMUNITY SUBSYSTEM
	ISSUE TRACKING SUBSYSTEM
	ISSUE RESOLVING SUBSYSTEM
	QUALITY ASSURANCE SUBSYSTEM
	SCHEDULE CONTROL SUBSYSTEM

	MODEL STRUCTURAL TESTS

	EMPIRICAL CASE STUDY
	CHANGE-ORIENTED OSS PROCESS ANALYSIS
	PROJECT MANPOWER
	PROJECT PRODUCTIVITY
	SOFTWARE QUALITY
	SIMULATIONS IN DIFFERENT PROJECTS

	SOFTWARE PROCESS IMPROVEMENT SIMULATION
	CODE REVIEW
	ATTRACTING PARTICIPANTS
	ISSUES TRIAGE
	PRIORITIZATION OF IMPROVEMENTS

	DISCUSSION

	RELATED WORK
	SIMULATION OF CHANGE-ORIENTED SOFTWARE PROCESSES
	SIMULATION OF SOFTWARE PROCESS IMPROVEMENT

	CONCLUSION
	REFERENCES
	Biographies
	XUAN ZHANG
	XU WANG
	YANNI KANG

