
Received October 9, 2018, accepted October 26, 2018, date of publication November 12, 2018,
date of current version December 7, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2879717

Semi-Slack Scheduling Arbitrary Activation
Patterns in Mixed-Criticality Systems
BIAO HU 1, GANG CHEN 2, AND KAI HUANG 2, (Member, IEEE)
1College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
2School of Data and Computer Science, Sun Yat-sen University, Xiaoguwei Island, Panyu District, Guangzhou 510006, China

Corresponding author: Gang Chen (gangchen1170@foxmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grants 61802013, 61702085, and 61872393,
in part by the Talent Foundation of the Beijing University of Chemical University under Grant buctrc201811, in part by the Open Research
Project of the State Key Laboratory of Synthetical Automation for Process Industries under Grant H2018294, and in part by the
Fundamental Research Funds for the Central Universities under Grant XK1802-4.

ABSTRACT This paper proposes a semi-slack scheduling framework for mixed-criticality systems with
arbitrary task activation patterns. In particular, based on the schedulability test of arbitrary task activation
model, we present a tight slack-reclaim scheme that can adaptively make use of system slack to improve
the quality of service to low critical tasks. This scheme works at the moment that low critical tasks are
supposed to be degraded by the offline schedulability test, while at other moments the system is scheduled
by the earliest deadline first with virtual deadlines. The semi-slack scheduling scheme is first discussed in
uniprocessor and later extended to multiprocessor. Extensive simulation results demonstrate that compared
with some state-of-the-art scheduling approaches, the proposed semi-slack scheduling scheme efficiently
reduces deadline misses of low critical tasks without jeopardizing the guarantee to critical tasks.

INDEX TERMS Mixed-criticality system, semi-slack scheduling.

I. INTRODUCTION
Today’s emerging embedded systems for intelligent vehicles
and robots are performing more complex and diverse tasks
on a single platform than ever before, as in this way costs
and space can be reduced. Those tasks in a safety-critical
system often have different criticalities and thus should be
guaranteed to different degrees [1]. This type of system
is called mixed criticality system (MCS). A typical exam-
ple of MCS is the unmanned aerial vehicle system that
needs to guarantee the correctness more for tasks related to
vehicle safety than for tasks only related to some vehicle
missions.

A. MOTIVATIONS
A common assumption adopted by the real-time system
committee [1] is to guarantee the schedulability of all tasks
when no tasks overrun their less rigorous execution thresh-
olds (normal mode) and the schedulability of only critical
tasks when they overrun (critical mode). In such certifiable
mixed-criticality real-time systems, tasks are often modeled
as sporadic activation pattern that only defines a minimum
inter-activation interval (also called period) [1], [2]. Although
results based on the analysis of sporadic tasks can provide
some insights for classic activation patterns like periodic acti-

FIGURE 1. Illustration of difference by modeling the same task activation
pattern as different models.

vations, those results are indeed pessimistic to accommodate
complex activation tasks. A simple example is illustrated
in Fig. 1, where a task is activated every 4 time units, while
there is a jitter of 1 time unit in every activation. In this
case, the minimum distance between two task activations is
2. If this task is modeled as a sporadic task, the estimated
number of task activations within 14 is 8. However, the fact
is that at most 5 activations would happen within 14. The
overestimation on activation events would make a system
schedulability test more pessimistic. To fully exploit the
system schedulability towards tasks with arbitrary activation
patterns, a more accurate task activation model should be
explored.

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

68507

https://orcid.org/0000-0002-8968-7229
https://orcid.org/0000-0002-0632-0318
https://orcid.org/0000-0003-0359-7810

B. Hu et al.: Semi-Slack Scheduling Arbitrary Activation Patterns

Recently, a more powerful schedulability test that can cope
with arbitrarily activated tasks has been proposed in [3]. This
schedualbility test is more practical because complex or arbi-
trary activation patterns are very common in automotive sys-
tems [4]–[10], where tasks in a processing unit are often
triggered by external events coming from other devices.
Arrival patterns of most external event streams are neither
periodic nor periodic with a jitter, but with some peculiar-
ities that are difficult to be captured by the sporadic task
model. In order to precisely analyze effects of event arrival
patterns on the system behavior, the framework of Real-Time
Calculus [11] adopts a more general task activation model,
arrival curve, to compute the task response time or maximum
backlogged events. Stemming from the theory of network cal-
culus [12], arrival curve effectively expresses the maximum
arrival events within any interval, which provides more accu-
rate information on task activations than sporadic model [13].
Network calculus is also a very effective theory to bound
the system processing delay. In this article, arrival curve is
adopted to model task arbitrary activation patterns.

A scheduling routine in classic mixed-criticality model is
to degrade or completely remove low critical tasks once a high
critical task overruns its given execution budget. However,
this is a pessimistic scheduling routine as the system may
have free slack to allow tasks overrun without degrading the
service to low critical tasks. This free slack arises because
tasks may not be activated as frequently as the worst-case
assumption, or because most activated tasks use less time
than the given budgets to finish. Being aware of free slack,
we propose a semi-slack scheduling scheme to exploit such
free slack as much as possible. In detail, this scheme performs
two functionalities. The first function is to postpone the sys-
tem entering critical mode by allowing high-critical tasks to
overrun. The second function is to schedule low critical jobs
as in normal mode after the system enters into the critical
mode. In contrast with previous scheduling scheme, this new
scheduling scheme relaxes the system mode-switch and fully
exploit the system free slack to improve the quality of service
to lo-critical tasks. This scheme is called semi-slack schedul-
ing scheme because system free slack is exploited only when
high critical tasks overrun in the normal mode or when the
system is in critical mode.

B. RELATED WORK
The slack scheduling in mixed-criticality systems is not new.
Existing slack scheduling approaches with relation to four
system properties are generally summarized in Tab 1. The
runtime adaptability denotes that the scheduling capacity
for both high critical and low critical tasks can be adap-
tively updated based on runtime scheduling. An essential
difference between mixed-criticality systems and traditional
real-time systems is the criticality guarantee, where different
criticality tasks are guaranteed to different levels. Schedul-
ing approaches that can handle arbitrary task activations
and multiprocessor are two important but seldom studied
topics.

TABLE 1. Comparison of the existing results.

Some of previous slack scheduling approaches adopt the
scheme in which low critical tasks are run in the slack gen-
erated by high critical jobs when they only use their low-
level execution budgets [14]–[16]. Themain difficulty of such
slack scheduling scheme is to incorporate sporadic tasks. It is
unclear at what point that slack of a non-appearing sporadic
task can be allocated to low critical jobs [1]. The problem
of handling sporadic tasks has been partly resolved by two
recent approaches. In [17], a dynamic scheduling model is
proposed to determine execution budgets online for individ-
ual high critical tasks. In [18], an adaptive task dropping
scheme is proposed tominimize execution penalty of low crit-
ical tasks by adaptively determining which task to drop based
on the runtime analysis. In [19], a model called interference
constraint graph is proposed to specify allowed interferences
between tasks. Although this model can generalize many of
existing mixed-criticality scheduling conditions, it does not
take the runtime adaptability into consideration. The draw-
back of all aforementioned approaches is that they are not
capable of handling arbitrary activation tasks.

There are some other scheduling approaches that are effec-
tive for arbitrary activation tasks. Under the interpretation of
considering the mixed-criticality system as a system mixed
with soft and hard real-time tasks, some shaping approaches
are proposed to shape arrival events to conform to the offline
computed bound, where the offline computed bound is often
too pessimistic for serving low critical tasks [8], [20], [21].
To improve the system utilization, the online information
should be used to calculate a tighter bound. The runtime
adaptability has been addressed in [22] and [23] where the
inflowworkload of low critical tasks is regulated based on the
actual demand of high critical tasks. Although this shortens
the response time of low critical tasks, it is not clear at
what level of guarantee that the system can provide to low
critical tasks. In a nutshell, it is still an open problem on
how to adaptively explore system slack to schedule general
activation task models while sufficiently providing the basic
service guarantee to low critical tasks.

C. CONTRIBUTIONS
In [24], we have partly analyze how to sufficiently guarantee
system schedulability at runtime by exploring free slack to
run low critical tasks. Based on the schedulability analysis
result from [24], this article proposes a semi-slack scheduling
scheme that can fully make use of system slack to improve
the scheduling performance for a dual-criticality system.

68508 VOLUME 6, 2018

B. Hu et al.: Semi-Slack Scheduling Arbitrary Activation Patterns

Compared to previous scheduling approaches, the proposed
approach covers the four properties. First, the system schedu-
lability towards arbitrary activation tasks is first verified so
that the basic service guarantee is provided to low critical
tasks. After ensuring the system is schedulable, we proceed
to apply the slack reclaim scheme to improve quality of
service to low critical tasks. With the existence of free slack,
we use the task procrastination techniques [25], [26] to detect
runtime slack that can be safely used to run low critical tasks
without reducing the guarantee to critical tasks. The detected
slack can be either used to postpone the system switching to
critical mode or to not degrade the service to low critical jobs
even when the system is in critical mode. In this way, the free
slack can be aggressively explored to improve the system
scheduling capability. In addition, we extend the semi-slack
scheduling from uniprocessor to multiprocessor. In order to
balanceworkload among different processors, a global sched-
uler is devised to cross-use system free slack. The global
scheduler is on top of the local scheduler in each individual
processor, dispatching or migrating tasks. The results confirm
the high effectiveness of our proposed global scheduler.

The remainder of this article is structured as follows.
In Section II, we introduce the system model. Then we
explain how the semi-slack scheduling works for uniproces-
sor platform (Section IV). In Section V, we present how
to extend this semi-slack scheduling to multiprocessor plat-
form. We provide extensive simulation results (Section VI).
We finally conclude this article in Section VII.

II. SYSTEM MODEL AND SCHEDULABILITY ANALYSIS
A. EVENT MODEL
We consider that a task is activated by an event [9]. Task
activation sequence in the system can be expressed as an
event stream. A trace of such an event stream is described
by means of a function R[s, t) that denotes the sum of events
arrived in the time interval [s, t), with R[s, s) = 0, ∀s, t ∈
R. While any R always describes one concrete trace, αu(1)
provides an abstract event stream model that represents the
maximum number of events that are seen in a time interval
with 1 length.
Definition 1 (Arrival Curve [9]): Denote R[s, t) as the

number of events that arrive on an event stream in the time
interval [s, t). Then, R, αu represents the upper and lower
bound on the number of event in any interval t − s, that is,

R[s, t) ≤ αu(t − s), ∀t ≥ s ≥ 0,

with 1 = t − s and αu(1) ≥ 0 for ∀1 ∈ R≥0.
The concept of arrival curve substationally generalizes

conventional event stream models, such as sporadic, peri-
odic, periodic with jitter, and arbitrary event streams. For
instance, for the arbitrary events modeled with the period p,
the jitter j, and the minimum inter arrival distance d between
successive two events, its upper arrival curve is αu(1) =
min{d1+jp e, d

1
d e}. This arrival pattern is called pjd pattern

that is often used as a typical example of the complex arrival
pattern in many previous works [22], [26], [27].

The arrival curve only provides an upper bound on the
number of events. In order to know specificminimal distances
among any events, we rely on a concept similar to the arrival
curve: minimum distance function [4].
Definition 2 (Minimum Distance Function): The mini-

mum distance function δ(q) is a pseudo super-additive1

function, which returns a lower bound on the time interval
between the first and the last event of any sequence of q + 1
event occurrences.

The minimum distance function is an inverse description
of upper arrival curve. For example, δ(k) = 1k denotes that,
the first and the last event of any sequence of k + 1 events is
at least 1k time units apart, i.e., α(δ(k)) = k + 1.

Analogous to the arrival curve that provides an abstract
event stream model, the service curve β l(1) denotes the
minimum number of execution time units available over any
time interval of fixed length1, where the superscript l means
the lower bound. In this article, the uniprocessor is supposed
to be a unit-speed platform. For example, for a task set τ , if the
processing is not interrupted, the service curve provided to τ
can be represented by β l(1) = 1.

B. MIXED-CRITICALITY SYSTEM SETTINGS
This paper assumes a dual-criticality uniprocessor or multi-
processor systemwith two distinct criticality levels: HI (high)
and LO (low). For abbreviation, we use LO mode and HI
mode to represent the system at LO and HI criticality level,
respectively. A task set τ = {τ1, . . . , τn} is given to be
scheduled. The task WCETs are modeled on both criti-
calities. Therefore, each task τi can be characterized by
(αu(1) or δi(q), Ci, Li), where
• αu(1) denotes the upper bound of task activations within
a certain time interval 1; δi(q) denotes the minimum
time interval of q+ 1 activations.

• Ci = (CL
i ,C

H
i) represents a task two level WCETs,

where CL
i is a low-confidence WCET and CH

i is a high-
confidence WCET.

• Li ∈ {LO, HI } represents a task criticality.
For HI-critical tasks, the WCETs on the HI criticality are
non-decreasing when compared to their WCETs on the LO
criticality, i.e., ∀τi ∈ τH : CL

i ≤ CH
i where τH denotes the

subset of HI-critical tasks in τ . Based on the basic schedul-
ing scheme of EDF on MCS, the deadline of HI-critical
tasks should be shortened when system is in LO mode,
which means there will be two deadlines mounted on each
HI-critical task. We use Di = (DLi ,D

H
i) to represent the

deadline of a HI-critical task in LO mode and in HI mode,
respectively. In contrast, a LO-critical task only has a deadline
because it is not supposed to meet its deadline in HI mode.

III. PRELIMINARY KNOWLEDGE
In this section, we present the online and offline schedula-
bility test. We first present the schedulability conditions and

1For pseudo super-additive we denote the property of a function δ that
∀a, b ∈ N+ : δ(a + b) ≥ δ(a) + δ(b). It corresponds to the property of
‘‘good’’ arrival curve in [12].

VOLUME 6, 2018 68509

B. Hu et al.: Semi-Slack Scheduling Arbitrary Activation Patterns

then present how to derive the demand-bound function offline
and online because the schedulability test relies on them.

A. SCHEDULABLE CONDITIONS
In order to test the schedulability of a system scheduled
by Earliest Deadline First-Virtual Deadline (EDF-VD) [2],
we now introduce the demand-bound function.
Definition 3 (Demand-Bound Function [2], [28]): The

demand-bound function dbf(τi,1) gives an upper bound
on the maximum possible execution demand of the task τi
in any time interval of length 1, where demand is cal-
culated as the total amount of required execution time of
events with their whole scheduling windows within the time
interval.

For a non-mixed-criticality system with a task set τ ,
the following inequality guarantees the schedulability of this
task set: ∑

τi∈τ

dbf(τi,1) ≤ β l(1), ∀1 ≥ 0.

For a dedicated unit-speed uniprocessor that constantly keeps
working in active state, its supply β l(1) = 1. Analogously,
in MCSs, the task set is schedulable if DBFs in LO and
HI modes are smaller than the provided supply of this plat-
form [2], [29], [30], i.e.,

Condition 1 : ∀1 ≥ 0 :
∑
τi∈τ

dbfLO(τi,1) ≤ β l(1) = 1,

Condition 2 : ∀1 ≥ 0 :
∑
τi∈τH

dbfHI(τi,1) ≤ β l(1) = 1,

where Condition 1 guarantees that all tasks meet their dead-
lines in LO mode (normal mode) and Condition 2 guarantees
that HI-critical tasks meet their deadlines in HI mode (critical
mode). The two conditions were first used to test the schedu-
lability of a system with sporadic tasks. However, according
to the definition of demand-bound function, it is also applica-
ble to test the schedulability of a system with arbitrarily acti-
vated tasks, because dbfLO(τi,1) indicates the lower bound
of supply bound to meet its deadline. Therefore, to determine
the schedulability of a task set, one only needs to derive DBFs
in both modes.

The definition 3 defines dbf(τi,1) to denote the worst-case
demand that the demand of τi will never surpass it at runtime.
In order to represent the demand-bound function at runtime
more tightly, we use dbf(τi,1, t) and β l(1, t) to denote the
task demand and system service curve over any1 from time t
and onward. Analogous to the schedulable conditions offline,
the schedulable conditions at runtime would be

Condition 1 : ∀1 ≥ 0 :
∑
τi∈τ

dbfLO(τi,1, t) ≤ β l(1, t),

Condition 2 : ∀1 ≥ 0 :
∑
τi∈τH

dbfHI(τi,1, t) ≤ β l(1, t).

B. DEMAND-BOUND FUNCTIONS OFFLINE
For the task with arbitrary activation pattern with dual-
criticality, it has been derived in [24] that{
dbfLO(τi,1) = ᾱui (1− D

L
i) · C

L
i

dbfHI(τi,1) = (k + 1) · CH
i − JCL

i − (1− δ′i(k))K0,
(1)

where

δ′i(k) =

{
k · CL

i , k ≤ h
h · CL

i + δi(k)− δi(h), k > h,
(2)

and the denotation JxK0 is the abbreviation of max(0, x);
δi(h + 1) − δi(h) > Ci(LO), k ∈ N+, h = min{q|δi(q +
1) − δi(q) > CL

i }. It has also been presented in [24]
how to construct the pseudo-polynomial bound such that
the above two conditions can hold. For completeness,
we present the derivation of Eq. 1 and how to decide DLi
to pass the schedulability test of arbitrary activation tasks in
Appendix VII.

FIGURE 2. System monitored by dynamic counters, which can provide the
demand-bound function of each task at runtime dbf(τi ,1, t).

C. DEMAND-BOUND FUNCTIONS AT RUNTIME
To get dbf(τ,1, t), event streams have to be monitored. The
system monitoring setup is shown in Fig. 2, where external
events activate n tasks and are thus monitored by n monitors.
By constantly monitoring arriving events, the monitor is able
to provide the demand-bound function of each task at runtime
to system schedule.

1) FUTURE EVENTS AND THEIR DEMAND BOUND
In principle, any complex arrival pattern αu(τi,1) of task τi
can be bounded by a set of upper staircase functions [31], i.e.,

∀1 ∈ R≥0 : αu(τi,1) ≤ min
j=1..n′
{N u

j + b
1

δuj
c},

where N u
j is the initial value of a staircase function, δuj is

the stair length and n′ is the number of staircase functions
that need to be approximate αu(τi,1). As shown in Fig. 2,
dynamic counters (DC) can be used to predict the upper
bound of activations of task τi from time t and onward [27],
which is

αu(τi,1, t) = min
j=1..n′

(Uj(τi,1, t)). (3)

68510 VOLUME 6, 2018

B. Hu et al.: Semi-Slack Scheduling Arbitrary Activation Patterns

where

Uj(τi,1, t) = DCj(t)

+

b
1+ (t − kjδuj)

δuj
c if DCj(t) < N u

j

b
1

δuj
c if DCj(t) = N u

j

(4)

Then, it can be derived that the demand bound function of
future events is that

dbfF(τi,1, t) = αu(τi,1− Di, t) · ci, (5)

where Di and ci are relative deadline and WCET of
task τi. The detailed derivation of Eq. 3 is presented in
Appendix VIII.

2) BACKLOGGED EVENTS AND THEIR DEMAND
During the runtime, if events arrive more frequently than
the rate that they can be processed, some events may be
backlogged.We denote the set of unfinished events of τi in the
backlog at time t as E(τi, t). Then, the number of backlogged
events can be denoted as |E(τi, t)|. We denote the j-th event
in the backlogged events as ei,j. For each event ei,j ∈ E(τi, t),
we use Di,j to denote its absolute deadline. Let Di,j denote
the absolute deadline for event ei,j ∈ E(τi, t). A backlogged
demand for this task is defined as [26]

dbfB(τi,1, t)=ci ·

{
(j− 1), Di,j−t<1<Di,j+1 − t,
|E(τi, t)|, 1 ≥ Di,|E(τi,t)| − t,

(6)

in which Di,0 is defined as t for brevity.

3) CARRY-ON EVENT AND ITS DEMAND
A carry-on event is an event that has been released but not
finished. Suppose C(τi, t) is used to denote the left time for
finishing a carry-on event of τi at time t , and the demand for
the carry-on event is that

dbfC(τi,1, t) = ci ·

{
0, 1 < Dc − t,
C(τi, t), 1 ≥ Dc − t,

(7)

where Dc is the absolute deadline of this carry-on event.

4) DEMAND-BOUND FUNCTION IN LO MODE
Based on the definition of demand bound function, it can be
concluded that the demand bound function dbf(τi,1, t) of
task τi is that,

dbf(τi,1, t) = dbfF(τi,1, t)+ dbfB(τi,1, t)
+ dbfC(τi,1, t). (8)

In the dual-criticality system, the system mode is divided
into LO or HI mode. In LO mode, a task τi is assigned to
be with execution time of CL

i and relative deadline of DLi .
Straightforwardly, the demand bound function of a task τi in
LO mode is

dbfLO(τi,1, t) = dbfFLO(τi,1, t)

+ dbfBLO(τi,1, t)+ dbfCLO(τi,1, t), (9)

where the WCET is CL
i instead of ci and the relative deadline

is DLi instead of Di in above equations from Eq. 3 to Eq. 8.

IV. SEMI-SLACK SCHEDULING IN UNIPROCESSOR
A schedulability test has been presented to verify an arbi-
trary activation task set is schedulable in LO and HI modes.
This schedulability test adopts the scheme that the system
should immediately enter into HImode once a HI-critical task
overruns its given LO WCET, where in HI mode LO-critical
tasks are not guaranteed schedulable. While this scheme
is sufficient in providing the basic level of guarantee to
both LO-critical and HI-critical tasks, it fails to fully make
use of system resource to improve the quality of service
to LO-critical tasks. In reality, the task often demands less
than the worst-case assumption because the task will neither
be activated as frequently as the arrival curve nor need the
given execution budgets to finish at runtime. Due to this
lesser demand on the system resource, there will be some
free slack that can be exploited to loosen the mode-switch
scheme or even run LO-critical jobs as normal when system
is in HI mode. In light of this, we present the semi-slack
scheduling scheme in this section to make use of system free
slack to postpone the mode-switch as long as possible and
furthermore not degrade the service to LO-critical jobs when
system being in HI mode.

The semi-slack scheduling is inspired by the task procras-
tination technique in hard real-time system [25], [26], where
task executions are deliberately delayed by forcing processor
to sleep state without missing any deadlines. Analogously,
the overrun of HI-critical tasks is considered as resources pro-
crastination on all tasks in the sense that overrun executions
obstruct executions of all other tasks. We adopt such task
procrastination technique to explore the system free slack at
runtime. Because system free slack is exploited only when
high critical tasks overrun or when the system is in critical
mode, the proposed approach is called semi-slack scheduling
approach.

A. TASK PROCRASTINATION APPROACH
Before we present the semi-slack scheduling scheme, we give
a brief introduction on how to detect the free slack by using
task procrastination approach [25], [26]. Typically, the sys-
tem free slack comes from the case that tasks demand fewer
resources than what the system can provide. In order to
compute the system free slack at runtime, the task online
demand-bound function has to be derived. The computation
of online demand-bound function has been presented in the
previous section. More details can be found in [23] and [27].
Under EDF schedule, the demand-bound function of a task
set τ is the sum of every task demand-bound function, i.e.,

dbf(τ,1, t) =
∑
τi∈τ

dbf(τi,1, t). (10)

Based on dbf(τ,1, t), the maximum free slack can be
computed in the following way.

ρ∗(t) = max
{
ρ : J1− ρK0 ≥ dbf(τ,1, t), ∀1 ≥ 0

}
,

(11)

VOLUME 6, 2018 68511

B. Hu et al.: Semi-Slack Scheduling Arbitrary Activation Patterns

FIGURE 3. Illustration of maximum free slack by task procrastination
approach.

where ρ∗(t) is the maximum free slack that can be exploited
for other purposes. Fig. 3 conceptually shows how to compute
the free slack by Eq. 11.
Theorem 1 (From [25]): Suppose dbf(τ,1, t) denote

DBF of a task set τ from time t . If there is a ρ (ρ > 0) that
satisfies

∀1 > 0 : dbf(τ,1, t) ≤ J1− ρK0, (12)

then executions of all tasks can be immediately delayed for ρ
and there will be no deadline misses after t .

The complexity of computing ρ∗(t) has been demonstrated
in [23] to beO(n·log(n)) (n is the number of tasks). It was also
evaluated that the computation time is 36.1µs for computing
one task and 164.7µs for computing ten tasks in [23]. For
practical implementation, we propose setting a certain time
budget for computing free slack. When this time budget is
used up, the free slack updating would be stopped and the
system would be forcefully switched to HI mode. Another
drawback of this approach is that the computation time will
increase with task set size. A possible solution could be
to take the largest overhead among all tested task sets into
scheduling. In this article, the practical influence of computa-
tion overhead is not deeply studied because we want to focus
on the proof-of-concept results by our proposed approaches.

FIGURE 4. Workflow of the mode-switch procrastination.

B. MODE-SWITCH PROCRASTINATION
The workflow of mode-switch procrastination is shown
in Fig. 4, where we introduce a term called HI-critical
Budget (HI-B) to denote the extent that HI-critical tasks can
be allowed to overrun without switching system to HI mode.
First of all, we set up a HI-B timer that is used to limit
the overrun margin within HI-B. HI-B is a variable that will

change with the time. So we denote HI-B as HI -B(t). The
system runs tasks without using HI -B(t) when all HI-critical
jobs run within their LO WCETs. Once a HI-critical job
overruns (t†), HI -B(t) starts to decrease. If this overrun job
is suspended or finished before HI -B(t) decreases to 0 (t§),
HI -B(t) will stop decreasing and the system returns to ‘no
overrun’ state. If this job does not finish before HI -B(t)
elapses to 0 (t‡), HI -B(t) will be updated. In this case this
overrun job will still be allowed to overrun if the updated
HI -B(t) is greater than 0. Otherwise the system will be
switched to HI mode.

A key problem of such mode-switch scheme is how to
find a feasible HI -B(t) that can safely allow tasks to over-
run without violating the basic guarantee level to tasks, i.e.,
LO-critical tasks should be schedulable in LO mode and
HI-critical tasks should be schedulable in both modes. To get
a feasible HI -B(t), we have to first derive system online
demand-bound function in LO mode, where all tasks are
given LO WCET budgets. The derivation of demand-bound
function in LO mode is similar to Eq.10, as shown below:

dbfLO(τ,1, t) =
∑
τi∈τ

dbfLO(τi,1, t)

=

∑
τi∈τ

{dbfFLO(τi,1, t)+ dbfBLO(τi,1, t)

+ dbfCLO(τi,1, t)}, (13)

where the subscript of LO in each dbf means that a task τi
only demands LO WCET for each job.
Theorem 2: Suppose the LOmode demand-bound function

of a task set τ at time t is dbfLO(τ,1, t), then by giving ρ∗(t)
computed by Eq. 11 to HI-B(t) at every updating step, all
tasks will meet their LO deadlines.

Proof: In order to prove this theorem, we separate
system runtime behavior to ‘no overrun state’ and ‘overrun
state’, which represents whether a job is overrunning or not.
On the one hand, the system demand in ‘no overrun state’
is bounded within dbfLO(τ,1, t). Since the provided system
resource to ‘no overrun state’ is J1 − ρ∗(t)K0. Because of
J1 − ρ∗(t)K0 ≥ dbfLO(τ,1, t), there will be no deadline
misses in ‘no overrun state’. On the other hand, according
to theorem 1, J1 − ρ∗(t)K0 ≥ dbf(τ,1, t) also denotes that
the system can be shutdown for ρ∗(t) without missing any
deadline, which also indicates that any task can be allowed
to overrun for ρ∗(t). Hence, there will also no deadline miss
during ‘overrun state’. �
Corollary 1: Suppose ts is the mode-switch moment of

a system under the mode-switch procrastination scheme of
Fig. 4. Then, the following inequality is guaranteed:

∀τi ∈ τ
H , dbfHI(τi,1, ts) ≤ dbfHI(τi,1), (14)

where dbfHI(τi,1, ts) is the demand-bound function of a HI-
critical task τi that demands HIWCET at ts, and dbfHI(τi,1)
is the offline derived demand-bound function.

Proof: Theorem 2 has showed that τi will be schedulable
even when its jobmay overrun before mode-switch. There are

68512 VOLUME 6, 2018

B. Hu et al.: Semi-Slack Scheduling Arbitrary Activation Patterns

two cases to HI-B in Fig. 4, which are HI-B=0 and HI-B>0.
In the case that HI-B=0, the mode-switch will be triggered
immediately after a job overruns, which is equivalent to the
system without deploying the semi-slack slack scheduling
scheme. Then, according to the derivation of dbfHI(τi,1, ts)
of [3], we have dbfHI(τi,1, ts) = dbfHI(τi,1). In the other
case, if a job has overrun for a certain time before mode-
switch, τi will demand less at ts than that of not overrunning
because a part of execution of τi has been processed in LO
mode. Thus, dbfHI(τi,1, ts) < dbfHI(τi,1). �
From the above corollary, we can further prove that∑

τi∈τH

dbfHI(τi,1, ts) ≤
∑
τi∈τH

dbfHI(τi,1) ≤ 1. (15)

According to the Condition 2, Corollary 1 and the above
equation show that the mode-switch procrastination scheme
can guarantee the system will be schedulable after the system
enters into HI mode.

C. SHAPING APPROACH IN HI MODE
After the system enters into HI mode, a lot of previous
scheduling approaches abandon LO-critical tasks in order
to sufficiently meet HI-critical tasks timing requirements.
However, abandoning all LO-critical tasks is unnecessary due
to the existence of free slacks. In this section, we present a
shaping approach to let LO-critical jobs run in HI mode.

The shaping approach also depends on the task procrasti-
nation technique to exploit free slack. The shaping principle
is to run LO-critical jobs only if their executions will not
violate the feasible procrastination interval. With the shaping
approach, LO-critical tasks are not prevented from executing
in HI mode, but are constrained within a certain execution
extent. To specify such extent, a term named LO-critical
Budget (LO-B) is introduced. LO-B(t) at some time t is a safe
upper bound on the total amount of time that the processor
can work on LO-critical tasks after time t . In other words, all
HI-critical tasks can meet their deadlines after time t if the
processor execute HI-critical tasks for no more than LO-B
time units.

FIGURE 5. Workflow of the shaping approach in HI mode.

Analogous to Fig. 4, the system in HI mode will schedule
HI- and LO-critical tasks as Fig. 5. First of all, we set up a
LO-B timer. Based on the principle of earliest-deadline-first
schedule, the task with the earliest deadline will be executed
prior to other tasks. If this task is HI-critical, the system
allows it to run without the constraint of LO-B(t). If it is

LO-critical, its execution will be constrained by LO-B(t).
Suppose at a time t⊥ (see Fig. 5), the system starts to
run a LO-critical task; meanwhile the LO-B(t) timer starts
to decrease. The execution extent of this task depends on
LO-B(t) timer. In a case that this task does not finish till
LO-B timer times out (time instant t`), the systemwill update
LO-B(t). The new updated LO-B(t) will either allow this task
to run further if the new LO-B(t) is greater than zero, or drop
it otherwise. In another case that this task finishes before
LO-B timer times out (time instant ta), LO-B(t) will hold its
current value at the task finishing time and be used for shaping
future LO-critical tasks. Compared to the previous shaping
approaches, the key advantage of our shaping approach is
able to detect and use runtime processing slack as much as
possible by updating LO-B(t) whenever it runs out.
The updating on LO-B(t) is similar to updating HI -B(t)

in the mode-switch procrastination approach. First, we have
to derive the total demand-bound function of HI-critical
tasks because only they need to be sufficiently guaranteed
schedulable in HI mode. The total demand-bound function of
HI-critical tasks is

dbfHI(τH ,1, t) =
∑
τi∈τH

dbfHI(τi,1, t) (16)

Then by using Eq. 11 with dbfHI(τH ,1, t), we get the corre-
sponding ρ∗(t), which will be used to update LO-B(t).
Theorem 3: Suppose the HI mode demand-bound function

of HI-critical tasks τH at time t is dbfHI(τH ,1, t), then by
giving ρ∗(t) computed by Eq. 11 to LO-B(t) at every updating
step, all HI-critical tasks will meet their deadlines inHImode.

Proof: Straightforwardly, since ∀t ≥ 0, J1−ρ∗(t)K0 ≥
dbfHI(τH ,1, t), i.e., the provided processing resource is
always greater than the demand of all HI-critical tasks, there
will be no HI-critical task deadline miss. �

An example is presented below to illustrate how the pro-
posed semi-slack scheduling works on a uniprocessor.
Example 1: Suppose there are three sporadic tasks in a

uniprocessor system. Task parameters are shown as Tab. 2.
This task set is tested to be schedulable with the assigned
LO deadlines in table. δi(1) denotes the minimum interval
between any two task activations.

TABLE 2. Task parameters.

The system runtime behavior is shown in Fig. 6. Suppose
the three tasks are activated at the beginning. We assume that
actual execution times for the three tasks are constant number,
which are 3, 4, 5 from τ1 to τ3. From Tab. 2, we know that τ2
and τ3 have run over their LOWCETs.
We analyze three scheduling policies, as presented

in Fig. 6. The first one presents the schedule of system driven
by EDF with LO deadlines but without switching to HI mode.

VOLUME 6, 2018 68513

B. Hu et al.: Semi-Slack Scheduling Arbitrary Activation Patterns

In this situation, interfered by the LO-critical task τ1, the first
job of HI-critical task τ2 misses its deadline because both
τ2 and τ3 have executed over their LO WCETs. The second
Gante diagram presents the task execution with the mode-
switch scheme. It shows that after the system enters into HI
mode, HI-critical tasks will be scheduled by HI deadlines and
LO-critical tasks will be dropped. In this situation, the first
three jobs of τ1 have been dropped. The third Gante diagram
shows task executions with mode-switch scheme and together
with the proposed semi-slack scheduling. In this situation,
the mode-switch is postponed for 2 time units compared with
the second diagram. By using HI-B(t) and LO-B(t), jobs of τ1
are given some time budgets to run in HI mode. The schedule
result demonstrates that all tasks can meet their deadlines.

FIGURE 6. Example showing the runtime behavior of system under three
scheduling policies. The dashed downward arrow denotes LO deadlines
in LO mode. The black part denotes the time that a HI-critical task runs
over its LO WCET. The change of HI-B(t) and LO-B(t) at runtime is also
presented in the third diagram. The denotations of ’LO’ and ’HI’ at the
bottom of each diagram represent LO and HI modes, respectively.
(a) Without mode-switch. (b) With mode-switch but without deploying
semi-slack scheduling. (c) With mode-switch and semi-slack scheduling.

From Fig. 6(a), we observe that the interference from
LO-critical tasks results in the deadline miss of the HI-critical
task. By switching the system mode, HI-critical tasks can
meet their deadlines by sacrificing QoS of LO-critical tasks,
as demonstrated in Fig. 6(b). To improve the QoS of
LO-critical tasks as well as guaranteeing timing requirements

of HI-critical tasks, we can deploy the semi-slack scheduling,
because the two budgets HI − B(t) and LO − B(t) allow the
system to stay in LO mode as long as possible and provides
execution budget to LO-critical tasks in HI mode. The two
features can significantly improve QoS of LO-critical tasks.

V. SEMI-SLACK SCHEDULING IN MULTICORES
This section presents how to extend the semi-slack schedul-
ing to cope with multicores. The scheduling in multi-
core platform can be generally categorized into partitioned
scheduling and global scheduling. The partitioned scheduling
statically allocates tasks to individual cores and does not
allow migration of tasks among processors, while global
scheduling allows a task to execute on any processor at any
time. The key problem of partitioned scheduling is how to
allocate tasks among processors so that the system perfor-
mance can be maximized, and global scheduling focuses on
workload balance among processors. In this article, we sup-
pose tasks have been allocated to processors and tested to
be mixed-criticality schedulable with EDF+SSS in each core
beforehand and propose a global scheduling strategy in order
to fully use system free slack.

FIGURE 7. Scheduling structure in multicores.

The scheduling structure in multicores is shown in Fig. 7,
where there arem identical cores in a multicore platform, and
the scheduling framework is composed of one local scheduler
that works on individual processor and one global scheduler
that works on all processors. Each core has already been
allocated LO-critical and HI-critical tasks and is scheduled
by a local scheduler composed of the EDF algorithm assisted
with our proposed semi-slack scheduling (SSS) approaches,
where mode-switch is independent from each other. On top
of all local schedulers, there is a global scheduler to manage
the migration of jobs among all cores so that the free slack on
each core can be used to serve jobs from other cores (we call it
cross-use). It should be noted that in most of time, processors
are scheduled by the local scheduler. A local scheduler can
only be interfered by the depletion of free slack on a proces-
sor or by the job migration from another processor. The local

68514 VOLUME 6, 2018

B. Hu et al.: Semi-Slack Scheduling Arbitrary Activation Patterns

scheduler has been discussed in the previous section and our
focus in this section is to design an efficient global scheduling
approach that can cross-use free slack by migrating jobs
among cores.

A. PROCEDURES
The main idea of applying global scheduler is to utilize other
core’s free slack when one core runs out its own free slack,
in which way a core has less possibility to be switched to HI
mode or to abandon its LO-critical jobs. The role of global
scheduler is thus to migrate an overrun job or a LO-critical
job from a core without free slack to another core with free
slack.

Algorithm 1 Semi-Slack Scheduling Algorithm on
Multicores
Input: A task set τ = {τ1, . . . , τn}, the parameters ∀τi ∈ τ ,

(αi or δi(q),Di,Ci, Li), the processors P = {P1, . . . , Pm}
Output: Task Executions
1: Schedule tasks on each core independently by the semi-

slack scheduling scheme in uniprocessor; F Local
scheduling

2: if ∃Pi ∈ P, Pi.free_slack runs out then
3: ChosenProID = 0, free_slack_Max = 0;
4: for k = 1..m do
5: if Pk .free_slack is not occupied &&
Pk .free_slack > free_slack_Max then

6: ChosenProID = k;
7: free_slack_Max = Pk .free_slack;
8: end if
9: end for
10: if ChosenProID > 0 then
11: Migrate the job Jr that causes free slack running

out in Pi to the processor PChosenProID, and assign the
highest scheduling priority to it;

12: else if Jr is LO-critical then
13: Jr is dropped;
14: else
15: Jr is returned to its birth core and forces its birth

core to HI mode.
16: end if
17: end if F Global scheduling

By deploying the global scheduler, we still need to guar-
antee the system schedulability property, i.e., on each core
all tasks can meet their deadlines in LO mode and HI-critical
tasks will meet their deadlines in HI mode. Towards this goal,
the scheduling algorithm is designed as Algo. 1. In the first
line, tasks are locally scheduled by the semi-slack scheduling
of uniprocessor on each core. The global scheduler starts to
work only when a job uses up a core’s free slack. In detail,
the procedures of global scheduler in handling the case that a
core runs out its free slack (HI -B(t) or LO-B(t)) are designed
as the following steps.
• Step 1: The global scheduler is activated whenever a
job uses up a core’s free slack. This job is marked

as Jr , which can be either a HI-critical overrun job or a
LO-critical job when the system is in HI mode (line 2).

• Step 2: Then the global scheduler finds out another core
that satisfies the below two conditions. First, this core
is not using its free slack at this moment. Second, its
free slack is the largest among cores that meet the first
condition (lines 3-9).

• Step 3: The global scheduler migrates Jr to the core
found out by step 2 and executes Jr ahead of all other
jobs in this core until Jr finishes or free slack in the
chosen core runs out.

• Step 4: If Jr does not finish before free slack in the
chosen core runs out, repeat step 2,3.

• Step 5: If there is not an available core to run Jr from
step 2,3, Jr will be processed depending on its criticality.
If Jr is a LO-critical job, it will be dropped immediately.
If it is a HI-critical job, it will be returned to its birth
core (the core that produces the job), in which case
system of its birth core will be switched to HI mode
(lines 12-16).

From above procedures, we note that the local scheduler,
i.e., EDF+SSS, will not be interfered by global scheduler
unless its free slack runs out or it is chosen to run a job
migrated from another core. Whenever Jr finishes or is
migrated to another place, the system that releases this job
will be scheduled by EDF+SSS again.

The computation complexity of semi-slack scheduling in
multicores includes two parts, i.e., local scheduling complex-
ity and global scheduling complexity. The local scheduling
complexity is O(n · log(n)) because the local scheduler is
the semi-slack scheduling algorithm in uniprocessor. The
computation of global scheduler is to find the maximum free
slack among all cores, which has O(m) complexity. In this
article, the overhead of migrating a job to another core is
neglected as the aim of this article is to produce the proof-of-
concept results. Nevertheless, in actual implementation, it can
be accounted as an extra task execution time and consume the
free slack.

We provide a simple example to illustrate how the global
scheduler works.
Example 2: We deploy our proposed scheduling strategy

in a dual-core system. Suppose each core has been allocated
two tasks whose properties have been presented in the fol-
lowing table, where τ ji denotes the i-th task in core j. It can
be observed that the two cores have the same tasks. We further
suppose the actual execution time of each released job from
those tasks are τ 01 .act = {4, 4, 4, 4}, τ

0
2 .act = {2, 6, 6},

τ 11 .act = {4, 4, 4, 4}, and τ
1
2 .act = {6, 4, 6}, where the

k-th element in the set τ ji .act denotes the actual execution
time of k-th job released from τ ji .

VOLUME 6, 2018 68515

B. Hu et al.: Semi-Slack Scheduling Arbitrary Activation Patterns

FIGURE 8. Example showing the runtime behavior of a dual-core system
with our proposed global scheduler and local scheduler. The dashed
downward arrow denotes LO deadlines in LO mode.

We find that the two cores have been overloaded at dif-
ferent moments. If each core works independently with the
local scheduler, i.e., EDF+SSS, τ 01 and τ 11 must abandon
one or two jobs. Considering that the overload in two cores
happens in different moments, we can apply the global sched-
uler to cross-use the free slack so that the workload in the two
cores can be balanced. As shown in Fig. 8, at t = 4, core 1 has
used up its free slack. Because core 0 has remaining free
slack, τ 22 will be migrated to core 0 and be assigned with
the highest priority. This task will preempt other tasks and
execute until its finish. Analogously, when core 0 has run out
its free slack, the overrun task will be migrated to core 1. Our
proposed global scheduler performs very well in maintaining
the timing requirement and keeping system in LO mode.

B. SYSTEM PROPERTY ANALYSIS
In Section IV, we have proved that EDF+SSS can guarantee
all tasks meet deadlines in LO mode and HI-critical tasks
meet deadlines in both modes. Now we analyze the influence
of global scheduler on the individual system with EDF+SSS.
After deploying global scheduler, there are two main changes
to each core. First, a core may execute a job from another
core. Second, a core may release a job to another core and
perhaps retake the released job. For the first change, since
the execution on a migrated job is constrained within the
free slack, the system schedulability property will not be
changed. For the second change, after a job has beenmigrated
to another place, its birth core will be continuously scheduled
by EDF+SSS and its schedulability is also guaranteed until
the back of this migrated job. Then, we only need to analyze
the migrated job.

There are three cases that could happen to the migrated job.
First, the migrated job finishes in step 3. Second, when it goes
to step 5, it is dropped if it is a LO-critical job. In the third case
if it is a HI-critical job, it will be returned to its birth core
and forces the system on the birth core to switch to HI mode.
Here we should note that if the criticality of migrated job is
LO-critical, this job must come from the HI-mode system,

because LO-critical jobs do not need free slack when the sys-
tem is in LO mode. Since the LO-critical job does not need to
be guaranteed meeting its deadline in HI mode, the migrated
LO-critical job can be dropped in the second case without
violating the mixed-criticality schedulability property.

Hence, we only need to prove that the HI-critical migrated
job will meet its deadline in the first case, and in the third case
the system of its birth core can still meet the schedulability
in HI mode. Formally, we denote a job J ir as a HI-critical
migrated job from core i andwe suppose its execution finishes
in another core j (i 6= j). In addition, we further denote
the LO WCET, HI WCET, LO deadline, HI deadline and
actual execution time of J ir as C

L
J ir
, CH

J ir
, DLJ ir

, DHJ ir
and J ir .act ,

respectively, where J ir .act ≤ C
H
J ir
.

Corollary 2: If tasks in i-th core is mixed-criticality
schedulable, the inequality DHJ ir

− DLJ ir
≥ CH

J ir
− CL

J ir
holds.

Proof: We prove it by contradiction. Suppose DHJ ir
−

DLJ ir
< CH

J ir
− CL

J ir
. There could be a case that J ir has finished

CL
J ir
execution and this moment is just atDLJ ir

. Then the system

will switch to HI mode, and it further needs CH
J ir
− CL

J ir
execution to finish. Because DHJ ir

− DLJ ir
< CH

J ir
− CL

J ir
, this

task may miss its HI mode deadline, which is contradicted
with the mixed-criticality schedulable result. �
Corollary 3: Once J ir leaves its birth core, J

i
r will contin-

uously execute until its finish.
Proof: From the line 11 of Algo. 1, except in its birth

core, the migrated job will be always assigned the highest
priority in any core. Therefore, before J ir returns to its birth
core, J ir will continuously execute until its finish. �
Lemma 1: J ir will meet its HI deadline.
Proof: Theorem 2 has showed that all tasks will meet

their LO deadlines, which means that the execution of Jr
before it leaves its birth core is more than CL

Jr . As J
i
r .act −

CL
J ir
≤ CH

J ir
− CL

J ir
, Jr will need execution less than CH

Jr −

CL
Jr to finish. According to Corollary 3, once J ir leaves its

birth core, J ir will be continuously processed until its finish.
By constantly executing Jr after it leaves its birth core, it can
meet DHJr because we have D

H
Jr −D

L
Jr ≥ C

H
Jr −C

L
Jr according

to Corollary 2. �
We have proved that the HI-critical migrated job will meet

its deadline if this job finishes in step 3. We next prove that if
the HI-critical migrated job returns to its birth core and forces
the system of this birth core to HI mode, this system can still
be schedulable.
Lemma 2: Under the global schedule, if the migrated job

J ir returns to its birth core and forces the system of its birth
core to HI mode, this system can still be schedulable after
entering into HI mode.

Proof: For representation simplicity, we denote the
task that releases J ir as τJ ir . We have proved in Corollary 1
that the local semi-slack scheduling is able to guarantee
∀τi ∈ τ

H , dbfHI(τi,1, ts) ≤ dbfHI(τi,1), where ts is the
mode-switch time. Hence, in the birth core of J ir , for the task

68516 VOLUME 6, 2018

B. Hu et al.: Semi-Slack Scheduling Arbitrary Activation Patterns

∀τi ∈ τ
H
\{τJ ir
}, we also have dbfHI(τi,1, ts) ≤ dbfHI(τi,1)

because those tasks τi ∈ τH\{τJ ir
} are only under the

local semi-slack scheduler. For the task τJ ir , since J
i
r con-

stantly executes before it returns to its birth core, the HI
mode demand of τJ ir at ts will also be less than its offline
demand-bound function dbfHI(τJ ir ,1). As a result, we have
∀τi ∈ τH , dbfHI(τi,1, ts) ≤ dbfHI(τi,1) and further
prove that

∑
τi∈τH

dbfHI(τi,1, ts) ≤
∑
τi∈τH

dbfHI(τi,1) ≤ 1.

Therefore, the system is still schedulable afer entering into
HI mode. �

VI. EVALUATIONS
We now evaluate the performance of our proposed semi-slack
scheduling approach with state-of-art scheduling techniques
by extensive simulations. To this aim, two types of task sets
are randomly generated for the evaluation, which are sporadic
task sets and arbitrarily activated tasks.

A. COMPARED APPROACHES
In uniprocessor platform, the semi-slack scheduling has
been presented to perform two functionalities: postponing
the mode-switch and shaping LO-critical jobs in HI mode.
In order to compare the performance of semi-slack schedul-
ing on the two functionalities respectively, we evaluate
approaches with the following combinations:
• EDF+MSP: the EDF approach assisted with mode-
switch procrastination.

• EDF+Shaping: the EDF approach assisted with shaping
approach in HI mode.

• EDF+SSS: the EDF approach assisted with full semi-
slack scheduling.

In order to evaluate the performance of our proposed
approaches on uniprocessor, we choose seven existing
scheduling techniques, including two popular scheduling
approaches as baselines, i.e., EDF-VD and AMCmax; and
seven state-of-art approaches that are also able to improve
the QoS of LO-critical tasks, i.e., MEBA, BPSG, Service-
Adaption, Elastic, Isolation-Scheme, ICG and MC-ADAPT.
In the following, we compare their performance separately,
because these approaches cannot deal with burst arrival
pattern.
• EDF-VD: The basic EDF-VD scheduling that forces
mode-switch whenever a HI-critical task overruns [2].

• AMCmax: The basic fixed-priority scheduling with the
AMCmax schedulability test. Details of this test can be
seen in [32].

• MEBA (short for Maximum Execution-based Budget
Allocation): The dynamic mixed-criticality model that
works under EDF-VD. Based on the system runtime
behavior, MEBA dynamically determines the budget to
CL
i of a HI-critical task at runtime. Compared to fixing

CL
i offline, MEBA has been proved performing better in

postponing mode-switch [17].
• BPSG (short for Bailout Protocol with Slack and
Gain Time): This is an enhanced bailout protocol by

increasing the execution budgets of CL
i offline, and via

reclaiming gain time as well. This protocol works under
fixed-priority schedule and its main purpose is to timely
switch system from HI mode back to LO mode, instead
of waiting for an idle tick. Details of this approach are
in [33]. The effectiveness of this protocol is demon-
strated to be more effective than most of other state-of-
art scheduling approaches in [33].

• Service-Adaption: The service to LO-critical tasks is
degraded after the system enters into HI mode [34].

• Elastic: The periods and deadlines of LO-critical tasks
are increased after the system enters into HI mode. This
is called elastic task model [35].

• Isolation-Scheme: A mechanism is designed to provide
the necessary isolation to support the execution of low
critical tasks [36].

• ICG (short for interference constraint graph): ICG spec-
ifies the allowed interferences between tasks and makes
it possible to systematically reduce the number of tasks
that can be dropped [19].

• MC-ADAPT: Analogous to our proposed approach,
MC-ADAPT adaptively drop LO-critical tasks based on
the runtime schedulability analysis [18].

• Offline-Shaping: This approach considers the mixed-
criticality system as a system mixed with soft and hard
rea-time tasks. An offline calculated bound is used to
regulate the execution of soft real-time tasks so that hard
real-time tasks can always meet their timing require-
ments [21].

• Online-Shaping: Under the same interpretation as
offline-shaping on mixed-criticality system, the online-
shaping updates the bound on running LO-critical tasks
at runtime so that the dynamic free slack can be
used [22].

B. RANDOM TASK SET GENERATION
We generate the task set in the same way as [2]. In order
to generate tasks including sporadic tasks, a random task
set is generated as a pjd activation task by starting with an
empty task set τ = ∅, where random tasks are successively
added and pjd activation pattern is defined as αui (1) =
min{d1+jipi

e, d1di
e}.

• The task set utilization is a value of (x + 0.5)/30, where
x ∈ {0, 1, . . . , 29}.

• The probability of a random task being HI-critical is 0.5.
• CL

i is drawn from the uniform distribution over
{1, 2, . . . , 10}.

• CH
i is drawn from the uniform distribution over
{CL

i ,C
L
i + 1, . . . , 4 · CL

i } if Li = HI .
• The period pi is drawn from the uniform distribution
over {CH

i ,C
H
i + 1, . . . , 200}.

• The jitter ji is set as J · pi.
• The minimum inter distance di is set as D · pi.
• The relative deadline is set to Di = pi.

VOLUME 6, 2018 68517

B. Hu et al.: Semi-Slack Scheduling Arbitrary Activation Patterns

FIGURE 9. The boxplot of the deadline misses in 107 time units simulation. Tasks in simulation are sporadically activated. (a) fa = 1.2, fe = 0.8.
(b) fa = 1.8, fe = 0.2.

We define ULO(τ) =
∑
τi∈τ

(
CL
i /pi

)
, and UHI (τH) =∑

τi∈τH

(
CH
i /pi

)
, where τ includes both LO-critical and

HI-critical tasks, and τH only include HI-critical tasks. The
task set utilization is defined as U (τ) =

(
UHI (τH) +

ULO(τ)
)
/2. For every task set generation, the utilization is

allowed to be located in [U∗ − 0.005,U∗ + 0.005], where
U∗ is a targeted utilization. If the generated utilization is
smaller than U∗ − 0.005, a new random task is added. If the
generated utilization is greater than U∗ + 0.005, this task set
is discarded, and a new empty task set is started, until a task
set with the allowed utilization is found.

C. SEMI-SLACK SCHEDULING PERFORMANCE
1) SEMI-SLACK SCHEDULING IN UNIPROCESSOR
Conceptually, the advantage of adopting the semi-slack
scheduling over other approaches lies in making use of the
system free slack. Hence, the more free slack there is, the bet-
ter that system performance can be improved. The free slack
can be categorized into two types: static slack and dynamic
slack. Due to the under-utilization of system, there exits some
free static slack. The dynamic slack arises from the actual
execution time or activation frequency being less than the
worst-case assumption. In this section, we investigate the
effect of dynamic slack on scheduling sporadic tasks and
arbitrarily activated tasks.

By configuring J = 0 and D = 1, tasks generated
by above procedures will be sporadically activated. We ran-
domly generate 50 feasible task sets, where in every task
set its ULO(τ) = 0.75, UHI (τ) = 0.95. A task set is
feasible in the sense that they are schedulable by our proposed
scheduling approaches and all the compared approaches.
At runtime, a HI-critical job has 0.01 probability to overrun
its LO WCET and a LO-critical job will always be finished
by its LO WCET. If a job does not overrun, its actual exe-
cution time is evenly distributed in [fe · CL

i , C
L
i], where

fe ∈ {0.2, 0.4, 0.6, 0.8}. The runtime activation frequency
is also relaxed. Suppose d ti represent the theoretically min-
imum distance between two events from τi at time t . Then
during the runtime simulation, the actual distance of two
events at t is a random number within [d ti , fa · d

t
i], where

fa ∈ {1.2, 1.4, 1.6, 1.8}. From the above setting, we know
that fe and fa represent the extent of free slack that can be
generated at runtime. By configuring fa = 1.2, fe = 0.8 and
fa = 1.8, fe = 0.2, the least free slack and the most free
slack can be generated during simulation. For every task set,
we simulate 107 time units and collect the number of deadline
misses (dropped jobs are also counted as deadline misses).

The simulation results are presented in Fig. 9. In both
configurations, the result presents that the number of dead-
line misses with our proposed approaches is 3-4 folds less
than other state-of-art approaches. The performance between
EDF+MSP and EDF+Shaping is very close because the

68518 VOLUME 6, 2018

B. Hu et al.: Semi-Slack Scheduling Arbitrary Activation Patterns

functionalities of both approaches are to exploit the free slack
in system to serve LO-critical tasks. The approach EDF+SSS
performs slightly better than the two other our proposed
approaches. This is because the free slack in system has been
exploited by both approaches so efficiently that not much
free slack can be left by the counterpart approach. Besides,
considering that the number of deadline misses in Fig. 9(b)
is almost half of deadline misses of Fig. 9(a), we find that
less LO-critical jobs will miss their deadlines when the sys-
tem free slack increases, which is in accordance with our
expectation.

Regarding to results of other existing approaches, EDF-
VD and AMCmax perform the worst because they directly
drop all LO-critical tasks whenever a task overruns, without
taking any free slack into consideration. Although MEBA
works under EDF-VD, it dynamically determines the value
of CL

i at runtime, in which way the mode-switch can be
postponed and thus save LO-critical jobs. BPSG works under
fixed-priority schedule and saves the LO-critical jobs by
switching the system from HI mode back to LO mode as
soon as possible. Both MEBA and BPSG rely on the offline
schedulability analysis and can only use free slack to a lim-
ited extent. The two approaches of Service-Adaption and
Elastic improve the system performance by tuning parame-
ters of running LO-critical tasks in HI mode. The Isolation-
Scheme proposes a component-based scheduling strategy that
supports the execution of LO-critical tasks while simulta-
neously protects HI-critical tasks. Although this approach
provides a very tight schedulability test, it fails to use the
system free slack at runtime and leads to a big loss in running
LO-critical tasks. ICG approach only provides a graph-based
schedulability analysis, which is also not able to use the free
slack. The inner working scheme of MC-ADAPT is very
close to our proposed EDF+MSP approach and performs
better than other existing approaches. There are two main
differences betweenMC-ADAPT and EDF+MSP.One is that
MC-ADAPT relies on an utilization-based schedulability test,
and EDF+MSP relies on demand-based schedulability test.
As demand-based schedulability test is tighter but more com-
plex than utilization-based schedulability test, EDF+MSP
performs better in using free slack but has larger complex-
ity compared to MC-ADAPT. The other difference is that
EDF+MSP drops the overrun job, while MC-ADAPT drops
the LO-critical task. As a result, EDF+MSP allows tasks to
constantly release jobs, but the dropped tasks in MC-ADAPT
will not release jobs until its recovery.

In above experiments where sporadic workload is consid-
ered, we have demonstrated that our approach outperforms
all the existing approaches because the system free slack is
aggressively exploited to run LO-critical jobs. As semi-slack
scheduling approaches are superior in scheduling arbitrary
activation tasks, we next investigate the scheduling effect
of our proposed approaches on complex activated tasks by
configuring J = 3 and D = 0.2. MC-ADAPT is chosen
to compare with our approaches because it has a relatively
higher performance than other existing approaches. We use

FIGURE 10. Average number of deadline misses in two different settings,
where both figures share the same line scheme. (a) fa = 1.2. (b) fe = 0.8.

the minimum distance D between two successive activations
to define the sporadic task model in order to accommodate
MC-ADAPT scheduling model. The deadline misses with
regard to actual execution time (fe) and activation (fa) are
individually investigated. As shown in Fig. 10, we either fix
fa to investigate the effect of fe or fix fe to investigate the
effect of fa. Fig. 10 shows that all three approaches of deploy-
ing our proposed slack scheduling outperform the EDF-VD,
MC-ADAPT and offline-shaping to a large extent, which
confirms that the semi-slack scheduling is very effective to
improve the system performance. Fig. 10 also shows that
online-shaping, EDF+MSP and EDF+shaping can achieve
almost the same performance on supporting LO-critical ser-
vice, but are inferior to EDF+SSS. This is expected because
EDF+SSS reclaims the free slack no matter which mode the
system is. The drawback of EDF+Shaping is that it considers
LO-critical tasks as soft real-time tasks without providing a
certain guarantee to LO-critical tasks.

2) SEMI-SLACK SCHEDULING IN MULTIPROCESSORS
We now present the semi-slack scheduling results in mul-
tiprocessor platforms. Since it is not clear how to extend
existing approaches to multiprocessor in a global scheduling
way, we can only evaluate their performance in multipro-

VOLUME 6, 2018 68519

B. Hu et al.: Semi-Slack Scheduling Arbitrary Activation Patterns

cessor in the partitioned scheduling. As the performance
of partitioned scheduling is the same as the scheduling in
uniprocessor, we skip it. In multiprocessors our proposed
approaches can be either deployed as the global schedule to
cross-use the free slack among different cores or as the local
schedule to implement the semi-slack scheduling in every
core. Hencewe compare these two approaches: EDF schedule
assisted with full semi-slack scheduling in every core (E+S);
on top of the first approach (E+S), the system is deployed
with global schedule to cross-use free slack (E+S+C) in the
second approach.

FIGURE 11. Boxplot of deadline misses per core with regard to the
number of cores, where m represents core number.

We present our results in Fig. 11, where 2-core, 4-core
and 8-core multiprocessors are investigated. Here we list the
distribution of deadline misses per core among 50 task sets
when the task set in every core satisfies fa = 1.2, fe =
0.8, ULO(τ) = 0.75, UHI (τ) = 0.95. For the approach E+S,
the scheduler of every core works independently from each
other. Thus the scheduling performance of each core only
depends on the allocated tasks by itself. We observe that the
deadline miss distributions on every core is the same across
different multiprocessors because the system utilization in
each core keeps the same. While for the approach E+S+C,
the number of deadline misses decreases with increasing core
number, because the extra free slack of one core can be used
to compensate the lack of free slack on other cores. When the
core number increases, there will be more extra free slack to
be compensated on different cores. As a result, the number of
deadline misses decreases.

VII. CONCLUSION AND FUTURE WORKS
In this article, we presented a semi-slack scheduling frame-
work that is able to reclaim system free slack to serve the
overrun HI-critical job or LO-critical job, in which way the
system mode-switch is postponed as much as possible and
LO-critical jobs can still run in HI mode. This framework has
been extended to work in multiprocessor systems. We also
theoretically prove that the semi-slack scheduling can main-
tain themixed-criticality schedulability property, i.e., all tasks
can meet their deadlines in LO mode and HI-critical tasks
meet their deadlines in HI mode. At last, the effectiveness of
our proposed schedulability analysis and semi-slack schedul-
ing has been confirmed by extensive simulations.

In the future, we are going to extend the semi-slack
scheduling framework from dual-criticality systems to
multiple-criticality systems. We can also extend the indepen-
dent task model to a task graph model. Besides, the schedul-
ing performance can be evaluated by implementing it in
real-world platform.

APPENDIX A
SCHEDULABILITY TEST
A. SCHEDULABLE CONDITIONS
The schedulable conditions are,

Condition 1 : ∀1 ≥ 0 :
∑
τi∈τ

dbfLO(τi,1) ≤ 1,

Condition 2 : ∀1 ≥ 0 :
∑

τi∈HI (τ)

dbfHI(τi,1) ≤ 1.

Therefore, to determine the schedulability of a task set, one
only needs to derive the DBFs in both modes.

B. DEMAND-BOUND FUNCTION IN LO MODE
If the system is in LO mode, every task behaves as a normal
task with parameters (ᾱui (1) or δi(q), CL

i , D
L
i). According

to the framework of real-time calculus [11], a tight demand
bound function (DBF) of a task τi is that

dbfLO(τi,1) = ᾱui (1− D
L
i) · C

L
i . (17)

C. DEMAND-BOUND FUNCTION IN HI MODE
The derivation of DBF in HI mode needs to know the max-
imum required execution times within any time interval in
HI mode to guarantee that events within this interval can
meet their deadlines, where events of an interval may include
the carry-over jobs (released but not finished at the mode-
switching time). In order to know dbfHI(τi,1), we need to
upper-bound the maximum number of deadlines of τi within
any interval of a length1 in HI mode. To do so, the as-early-
as-possible event arrivals are assumed because this assump-
tion is able to accumulate the most number of deadlines in
the shortest time. Hence, when given a time length 1 in HI
mode, the maximum number of deadlines is ᾱui (1) and the
demand is ᾱui (1) · CH

i . However, this demand ignores that
events may have been finished earlier than their deadlines
if those events need to keep schedulable. To explore those
finished executions, we introduce the effective deadlines to
define the timing constraints that are able to guarantee the
system schedulable in LO mode.

1) EFFECTIVE DEADLINES
The timing constraints require that the finishing time of any
event must not exceed its absolute deadline, where the abso-
lute deadline of an event is the time point that is the sum of
its arrival time and its relative deadline.

For some event streams, their events may be required to be
finished earlier than their absolute deadlines so that there will
be enough slacks for processing following events. The effec-
tive deadline is thus defined to show this timing constraint.

68520 VOLUME 6, 2018

B. Hu et al.: Semi-Slack Scheduling Arbitrary Activation Patterns

Definition 4 (Effective Deadline): The effective deadline
of an event is referred to its allowable largest finish time
that guarantees other events of this task meet their absolute
deadlines.

We use AD(e) and ED(e) to respectively denote the abso-
lute deadline and the effective deadline of an event e.
Example 3: An example is used to explain the differences

between effective deadlines and absolute deadline. For a task
τi activated by a pjd event stream with p = 10, j = 30, d = 2,
the as-early-as-possible arrival events are shown in Fig. 12.
Suppose the relative deadline DLi is 7 and every event needs
3 time units to be processed, then the absolute deadlines of
e1, e2, e3, e4 are 7, 9, 11, 13, while their effective deadlines are
4, 7, 10, 13 as every released event should be given 3 process-
ing time units. Hence, e1, e2, e3 are required to be finished
before ED(e1), ED(e2), ED(e3).

FIGURE 12. Event trace, absolute deadlines, and effective deadlines of a
task τ1 activated in the pjd pattern of p = 10, j = 30, d = 2.

From this example, we find that the latest finishing times
of events are constrained by the effective deadlines, instead of
absolute deadlines. Therefore, to explore the exact executions
of events in LO mode, we rely on the information of effective
deadlines.

2) MINIMUM DISTANCE FUNCTION OF
EFFECTIVE DEADLINES
First, the MDF of event trace can be generally categorized
to be two types. One type fulfills that CL

i ≤ δi(1), which
means that the WCET is not greater than the minimum inter-
activation interval. The effective deadlines are the same as
the absolute deadlines for this type. The other type fulfills
that CL

i > δi(1), which means that the WCET is greater than
theminimum inter-activation interval. The effective deadlines
will be different with absolute deadlines. The MDF of event
trace is generalized as follows

h = min{q|δi(q+ 1)− δi(q) > CL
i }. (18)

where δi(0) = 0, q ∈ N. If h = 0, this is the type of
CL
i > δi(1). Otherwise, it is the type of CL

i ≤ δi(1).
In Fig. 13, δ′i(k) represents the MDF of effective deadlines.

Since the effective deadlines of first h events are separated by
CL
i and the effective deadlines of later events are the same

as the absolute deadlines, the δ′i(k) can be generalized as
follows:

δ′i(k) =

{
k · CL

i , k ≤ h
h · CL

i + δi(k)− δi(h), k > h,
(19)

where δi(h+ 1)− δi(h) > CL
i , k ∈ N+.

FIGURE 13. The absolute deadlines and effective deadlines
corresponding to the as-early-as-possible event trace.

3) DERIVING DEMAND-BOUND FUNCTION
The idea of deriving the DBF of HI mode is based on the
condition that the task set is schedulable in LO mode (i.e.,
Condition 1 holds). When we derive the DBF of HI mode,
we therefore assume that all effective deadlines are met in
LO mode.

The maximum number of effective deadlines within an
interval of 1 depends on the MDF δ′i(k) of effective dead-
lines. We set DHi = DLi to keep the relative deadlines
unchanged after the mode-switch. Hence, the effective dead-
lines are also not changed after mode-switch. As shown
in Fig. 14, within an interval 1 that δ′i(k) ≤ 1 < δ′i(k + 1),
the DBF is at most (k + 1) · CL

i . In this interval, there
might be an event that has already been executed before the
mode-switch.

FIGURE 14. Bounding the demand of an event trace.

Lemma 3: In the interval of 1 that satisfies δ′i(k) ≤ 1 <

δ′i(k + 1) in HI mode, if the system needs to schedule k + 1
events, the execution time of these events before the mode-
switch is not smaller than JCL

i − (1− δ′i(k))K0.
Proof: For the time interval of length 1, there are at

most x = 1 − δ′i(k) time units left for the ‘‘first’’ event (the
first event in HI mode) if the system schedules k + 1 events
in HI mode. If x ≥ CL

i , the ‘‘first’’ event may not be executed
before the mode-switch because there is enough interval for
scheduling the ‘‘first’’ event. If 0 ≤ x < CL

i , the execution
time of the ‘‘first’’ event is at least CL

i −x because the ‘‘first’’
event is supposed to meet its effective deadline in LO mode.
In general, JCL

i − (1−δ′i(k))K0 represents the least execution
time. �

VOLUME 6, 2018 68521

B. Hu et al.: Semi-Slack Scheduling Arbitrary Activation Patterns

According to Lem. 3, the DBF of HI mode is thus con-
cluded as follows:

dbfHI(τi,1) = (k + 1) · CH
i − JCL

i − (1− δ′i(k))K0,

where δ′i(k) ≤ 1 < δ′i(k + 1) and δ′i(0) = 0.

D. DEMAND-BOUND FUNCTION TUNING
Inspired by the EDF-VD [2], by artificially decreasing the LO
mode deadline DLi , the DBF of HI mode can be decreased.
We can apply the following theorem to tune dbfHI (τi,1).
Theorem 4: If a HI-critical task τi is schedulable in LO

mode, its DBF of HI mode is that:

dbfHI(τi,1) =

0, if 0 ≤ 1 < DHi − D

L
i

(k + 1) · CH
i − JCL

i − xK0,
where x = 1− δ′i(k)−

(
DHi − D

L
i

)
and δ′i(k) ≤ x + δ

′
i(k) < δ′i(k + 1).

(20)

Proof: After themode-switch, there is at least an interval
of DHi −D

L
i within which there is no deadline. Hence, if 0 ≤

1 < DHi −D
L
i , dbfHI (τi,1) = 0. If1 ≥ DHi −D

L
i , within an

interval of1 that δ′i(k) ≤ 1−
(
DHi −D

L
i

)
< δ′i(k+1), there are

at most k+1 effective deadlines. Hence, dbfHI (τi,1) ≤ (k+
1)·CH

i . If the system needs to schedule k+1 events during this
interval, the ‘‘first’’ event will probably have been executed
before the mode-switch. According to Lem. 3, the execution
time is not smaller than JCL

i − (1− δi(k))K0 in the case that
DHi = DLi . In the case thatD

L
i < DHi , x = 1−δ

′
i(k)−

(
DHi −

DLi
)
is the time interval for scheduling the ‘‘first’’ event to

meet the DLi . As D
L
i is met, the execution time is JCL

i − xK0.
Hence, dbfHI (τi,1) = (k+1)·CH

i −JCL
i −xK0 where δ

′
i(k) ≤

x + δ′i(k) < δ′i(k + 1). �
Based on Theorem 4, dbfHI (τi,1) can be tuned by chang-

ing the DLi . In order to make this dual-criticality system
schedulable, conditions 1, 2 should hold.

VIII. FUTURE EVENT PREDICTION BY
DYNAMIC COUNTERS
In principle any (discrete) complex arrival pattern can be
bounded by a set of upper and lower staircase functions of
the form αui (1) = N u

i + b
1
δui
c [31]:

∀1 ∈ R≥0 : αu(1) ≤ min
i=1..n
{αui (1)}.

A dynamic counter (DCi) can be used to track a single upper
staircase function (αui). The detail tracking algorithm can be
seen in Algo. 2 [27]. DCi tracks the potential burst capacity,
and the auxiliary variable ki in Algo. 2 tracks the offset
between the current time t and the last δui . Below shows an
example of using dynamic counters for event prediction.
Example 4: As shown in Fig. 15, for the PJD task with

(P, J, D) = (100, 300, 20), two staircase functions, α1 and
α2, are used to approximate the arrival curve of this PJD
task. Every staircase function is tracked by a counter. Assume
the real arrival event trace is shown in the event trace Ract .
By applying Algo. 2 [27], DC1 tracks the arrival event trace

Algorithm 2 Implement a Dynamic Counter to Track a Stair-
case Function
Input: signal s, Ftuple < DCi,CLKi >;
1: if s = eventArrival then
2: if DCi = N u

i then
3: reset_timer(CLKi, δui)
4: ki = 0
5: end if
6: DCi← DCi − 1
7: end if
8: if s = CLKiTimeout then
9: DCi← min(DCi+1,N u

i)
10: reset_timer(CLKi, δui)
11: ki = ki + 1
12: end if
13: if DCi < 0 then
14: report_exception
15: end if

FIGURE 15. An example for using dynamic counters to predict the future
events.

based on α1, and DC2 tracks the arrival event trace based
on α2. The minimum of DC1(t) and DC2(t) is the potential
activations of this task at time t.
As shown in Fig. 15, the bold line shows the worst-case

arrival pattern at the beginning, DC1(t0) = N u
1 = 1,

DC2(t0) = N u
2 = 4. At time t1, two events have

been recorded, and dynamic counters are updated to that
DC1(t1) = 1, DC2(t1) = 2. The future event prediction is
shown in the dotted line, which is less than the worst-case
assumption. At time t2, dynamic counters are updated to that
DC1(t2) = 1, DC2(t2) = 0 since five events arrived during
[t0, t2]. The prediction shown in the solid line is further less
than the one at time t1.
The potential burst capacityDCi(t), together with staircase

function, yields the following future events prediction [27]:

Ui(1, t) = DCi(t)+

b
1+ (t − kiδui)

δui
c if DCi(t) < N u

i

b
1

δui
c if DCi(t) = N u

i

(21)

where N u
i is the absolute burst. The above function bounds

future event arrivals. By using the monitor to track the events

68522 VOLUME 6, 2018

B. Hu et al.: Semi-Slack Scheduling Arbitrary Activation Patterns

trace for high-critical tasks, DCi and ki can be known during
the runtime. Therefore, Ui is also known during the runtime.
For bounding the number of future event arrivals w.r.t. com-
plex task activations, one can simply take the minimum over
all the Ui:

αu(τi,1, t) = min
i=1..n

(Ui(1, t)). (22)

ACKNOWLEDGMENT
The authors would like to express their gratitude to the asso-
ciate editor and two anonymous reviewers for their construc-
tive comments which have helped to improve the quality of
the paper.

REFERENCES
[1] A. Burns and R. I. Davis, ‘‘A survey of research into mixed criticality

systems,’’ ACM Comput. Surv., vol. 50, no. 6, pp. 1–37, 2017.
[2] P. Ekberg and W. Yi, ‘‘Outstanding paper award: Bounding and shaping

the demand of mixed-criticality sporadic tasks,’’ in Proc. 24th Euromicro
Conf. Real-Time Syst. (ECRTS), Jul. 2012, pp. 135–144.

[3] B. Hu, ‘‘Schedulability analysis of general task model and demand aware
scheduling in mixed-criticality systems,’’ Ph.D. dissertation, Dept. Infor-
matiks, Technische Universität München, 2017.

[4] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst, ‘‘Sys-
tem level performance analysis—The SymTA/S approach,’’ IEE Proc.-
Comput. Digit. Techn., vol. 152, no. 2, pp. 148–166, Mar. 2005.

[5] X. Chen, J. Feng, M. Hiller, and V. Lauer, ‘‘Application of software watch-
dog as a dependability software service for automotive safety relevant
systems,’’ in Proc. 37th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw. (DSN), Jun. 2007, pp. 618–624.

[6] N. N. Stoimenov, ‘‘Compositional design and analysis of distributed,
cyclic, and adaptive embedded real-time systems,’’ Ph.D. dissertation,
Dept. Inf. Technol. Elect. Eng., Univ. Adelaide, Adelaide, SA, Australia,
2011.

[7] M. Neukirchner, T. Michaels, P. Axer, S. Quinton, and R. Ernst, ‘‘Monitor-
ing arbitrary activation patterns in real-time systems,’’ in Proc. IEEE 33rd
Real-Time Syst. Symp. (RTSS), Dec. 2012, pp. 293–302.

[8] M. Neukirchner, K. Lampka, S. Quinton, and R. Ernst, ‘‘Multi-mode
monitoring for mixed-criticality real-time systems,’’ in Proc. Int. Conf.
Hardw./Softw. Codesign Syst. Synth. (CODES+ISSS), Sep./Oct. 2013,
pp. 34:1–34:10.

[9] E. Wandeler, ‘‘Modular performance analysis and interface-based design
for embedded real-time systems,’’ Ph.D. dissertation, Dept. Inf. Technol.
Elect. Eng., ETH Zurich, 2006.

[10] G. Carvajal, M. Salem, N. Benann, and S. Fischmeister, ‘‘Enabling rapid
construction of arrival curves from execution traces,’’ IEEE Des. Test,
vol. 35, no. 4, pp. 23–30, Aug. 2018.

[11] L. Thiele, S. Chakraborty, and M. Naedele, ‘‘Real-time calculus for
scheduling hard real-time systems,’’ in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2000, pp. 101–104.

[12] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Determinis-
tic Queuing Systems for the Internet. New York, NY, USA: Springer, 2001.

[13] S. Schliecker, J. Rox, M. Ivers, and R. Ernst, ‘‘Providing accurate
event models for the analysis of heterogeneous multiprocessor systems,’’
in Proc. 6th IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst.
Synth. (CODES+ISSS), Oct. 2008, pp. 185–190.

[14] D. de Niz, K. Lakshmanan, and R. Rajkumar, ‘‘On the scheduling of
mixed-criticality real-time task sets,’’ in Proc. 30th IEEE Real-Time Syst.
Symp. (RTSS), Dec. 2009, pp. 291–300.

[15] H.-M. Huang, C. Gill, and C. Lu, ‘‘Implementation and evaluation of
mixed-criticality scheduling approaches for periodic tasks,’’ in Proc. IEEE
18th Real Time Embedded Technol. Appl. Symp. (RTAS), Apr. 2012,
pp. 23–32.

[16] D. De Niz, L. Wrage, A. Rowe, and R. R. Rajkumar, ‘‘Utility-based
resource overbooking for cyber-physical systems,’’ ACMTrans. Embedded
Comput. Syst., vol. 13, no. 5s, pp. 162–188, 2014.

[17] X. Gu and A. Easwaran, ‘‘Dynamic budget management with service
guarantees for mixed-criticality systems,’’ in Proc. IEEE Real-Time Syst.
Symp., Nov./Dec. 2017, pp. 47–56.

[18] J. Lee, H. S. Chwa, L. T. Phan, I. Shin, and I. Lee, ‘‘MC-ADAPT: Adaptive
task dropping in mixed-criticality scheduling,’’ ACM Trans. Embedded
Comput. Syst., vol. 16, no. 5s, pp. 1–21, 2017.

[19] P. Huang, P. Kumar, N. Stoimenov, and L. Thiele, ‘‘Interference constraint
graph—A new specification for mixed-criticality systems,’’ in Proc. IEEE
18th Conf. Emerg. Technol. Factory Automat. (ETFA), Sep. 2013, pp. 1–8.

[20] M. Neukirchner, P. Axer, T. Michaels, and R. Ernst, ‘‘Monitoring of
workload arrival functions for mixed-criticality systems,’’ in Proc. IEEE
34th Real-Time Syst. Symp. (RTSS), Dec. 2013, pp. 88–96.

[21] S. Tobuschat, M. Neukirchner, L. Ecco, and R. Ernst, ‘‘Workload-aware
shaping of shared resource accesses in mixed-criticality systems,’’ in Proc.
Int. Conf. Hardw./Softw. Codesign Syst. Synth. (CODES+ISSS), Oct. 2014,
pp. 1–10.

[22] B. Hu, K. Huang, G. Chen, L. Cheng, and A. Knoll, ‘‘Adaptive runtime
shaping for mixed-criticality systems,’’ in Proc. Int. Conf. Embedded
Softw. (EMSOFT), Oct. 2015, pp. 11–20.

[23] B. Hu, K. Huang, G. Chen, L. Cheng, and A. Knoll, ‘‘Adaptive workload
management in mixed-criticality systems,’’ ACM Trans. Embedded Com-
put. Syst., vol. 16, no. 1, p. 14, 2016.

[24] B. Hu and K. Huang, ‘‘Scheduling and shaping of complex task activations
for mixed-criticality systems,’’ in Proc. 23rd Asia South Pacific Design
Automat. Conf. (ASP-DAC), Jan. 2018, pp. 58–63.

[25] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. C. Buttazzo, ‘‘Adap-
tive dynamic power management for hard real-time systems,’’ inProc. 30th
IEEE Real-Time Syst. Symp. (RTSS), Dec. 2009, pp. 23–32.

[26] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. C. Buttazzo, ‘‘Apply-
ing real-time interface and calculus for dynamic power management in
hard real-time systems,’’Real-Time Syst., vol. 47, no. 2, pp. 163–193, 2011.

[27] K. Lampka, K. Huang, and J.-J. Chen, ‘‘Dynamic counters and the efficient
and effective online power management of embedded real-time systems,’’
in Proc. 9th IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst.
Synth. (CODES+ISSS), Oct. 2011, pp. 267–276.

[28] S. K. Baruah, A. K.Mok, and L. E. Rosier, ‘‘Preemptively scheduling hard-
real-time sporadic tasks on one processor,’’ in Proc. 11th Real-Time Syst.
Symp. (RTSS), Dec. 1990, pp. 182–190.

[29] A. Easwaran, ‘‘Demand-based scheduling of mixed-criticality sporadic
tasks on one processor,’’ in Proc. IEEE 34th Real-Time Syst. Symp. (RTSS),
Dec. 2013, pp. 78–87.

[30] P. Ekberg and W. Yi, ‘‘Bounding and shaping the demand of generalized
mixed-criticality sporadic task systems,’’ Real-Time Syst., vol. 50, no. 1,
pp. 48–86, 2014.

[31] K. Lampka, S. Perathoner, and L. Thiele, ‘‘Analytic real-time analysis
and timed automata: A hybrid method for analyzing embedded real-
time systems,’’ in Proc. Int. Conf. Embedded Softw. (EMSOFT), 2009,
pp. 107–116.

[32] S. K. Baruah, A. Burns, andR. I. Davis, ‘‘Response-time analysis formixed
criticality systems,’’ in Proc. IEEE 32nd Real-Time Syst. Symp. (RTSS),
Nov./Dec. 2011, pp. 34–43.

[33] I. Bate, A. Burns, and R. I. Davis, ‘‘An enhanced bailout protocol for mixed
criticality embedded software,’’ IEEE Trans. Softw. Eng., vol. 43, no. 4,
pp. 298–320, Apr. 2017.

[34] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele, ‘‘Service adap-
tions for mixed-criticality systems,’’ in Proc. 19th Asia South Pacific
Design Automat. Conf. (ASP-DAC), Jan. 2014, pp. 125–130.

[35] H. Su, D. Zhu, and S. Brandt, ‘‘An elastic mixed-criticality task model and
early-release edf scheduling algorithms,’’ ACM Trans. Design Automat.
Electron. Syst., vol. 22, no. 2, pp. 1–25, 2016.

[36] X. Gu, A. Easwaran, K.-M. Phan, and I. Shin, ‘‘Resource efficient isolation
mechanisms in mixed-criticality scheduling,’’ in Proc. 27th Euromicro
Conf. Real-Time Syst., Jul. 2015, pp. 13–24.

BIAO HU received the B.Sc. degree in control
science and engineering from the Harbin Institute
of Technology in 2010, theM.Sc. degree in control
science and engineering from Tsinghua University
in 2013, and the Ph.D. degree from the Depart-
ment of Computer Science, Technische Universität
Müchen, Germany, in 2017. He is currently an
Associate Professor with the College of Informa-
tion Science and Technology, Beijing University
of Chemical Technology. His research interests

include the autonomous driving, OpenCL computing in heterogeneous sys-
tem, the scheduling theory in real-time systems, and safety-critical embedded
systems. He is a Handling Editor of the Elsevier Journal of Circuits, Systems,
and Computers.

VOLUME 6, 2018 68523

B. Hu et al.: Semi-Slack Scheduling Arbitrary Activation Patterns

GANG CHEN received the B.E. degree in biomed-
ical engineering, the B.S. degree in mathematics
and applied mathematics, and the M.S. degree in
control science and engineering from Xi’an Jiao-
tong University, China, in 2008, 2008, and 2011,
respectively, and the Ph.D. degree in computer
science from Technische Universität Müchen,
Germany, in 2016. He is currently an Associate
Professor with Sun Yat-sen University, China. His
research interests includemixed-criticality system,

energy-aware real-time scheduling, certifiable cache architecture design, and
high-performance computing.

KAI HUANG received the B.Sc. degree from
FudanUniversity, China, in 1999, theM.Sc. degree
from the University of Leiden, The Netherlands,
in 2005, and the Ph.D. degree from ETH Zurich,
Switzerland, in 2010. He was a Research Group
Leader with fortiss GmbH, Munich, Germany,
in 2011, and a Senior Researcher with the Com-
puter Science Department, Technische Universität
Müchen, Germany, from 2012 to 2015. He joined
Sun Yat-sen University as a Professor in 2015.

In 2016, he joined the School of Data and Computer Science, Institute of
Autonomous Cyber Physical Systems, as the Director. His research interests
include techniques for the analysis, design, and optimization of embedded
systems, particularly in the automotive domain. He has been serving as a
member for the Technical Committee on Cybernetics for Cyber-Physical
Systems of the IEEE SMC Society since 2015. He was a recipient of the
the Program of Chinese Global Youth Experts in 2014 and the Chinese
Government Award for Outstanding Self-Financed Students Abroad in 2010.
He received the Best Paper Award from ESTIMedia in 2013 and SAMOS
in 2009, and the General Chairs Recognition Award for Interactive Papers
from CDC in 2009. He is a Regional Editor of the Elsevier Journal of
Circuits, Systems, and Computers.

68524 VOLUME 6, 2018

	INTRODUCTION
	MOTIVATIONS
	RELATED WORK
	CONTRIBUTIONS

	SYSTEM MODEL AND SCHEDULABILITY ANALYSIS
	EVENT MODEL
	MIXED-CRITICALITY SYSTEM SETTINGS

	PRELIMINARY KNOWLEDGE
	SCHEDULABLE CONDITIONS
	DEMAND-BOUND FUNCTIONS OFFLINE
	DEMAND-BOUND FUNCTIONS AT RUNTIME
	FUTURE EVENTS AND THEIR DEMAND BOUND
	BACKLOGGED EVENTS AND THEIR DEMAND
	CARRY-ON EVENT AND ITS DEMAND
	DEMAND-BOUND FUNCTION IN LO MODE

	SEMI-SLACK SCHEDULING IN UNIPROCESSOR
	TASK PROCRASTINATION APPROACH
	MODE-SWITCH PROCRASTINATION
	SHAPING APPROACH IN HI MODE

	SEMI-SLACK SCHEDULING IN MULTICORES
	PROCEDURES
	SYSTEM PROPERTY ANALYSIS

	EVALUATIONS
	COMPARED APPROACHES
	RANDOM TASK SET GENERATION
	SEMI-SLACK SCHEDULING PERFORMANCE
	SEMI-SLACK SCHEDULING IN UNIPROCESSOR
	SEMI-SLACK SCHEDULING IN MULTIPROCESSORS

	CONCLUSION AND FUTURE WORKS
	SCHEDULABLE CONDITIONS
	DEMAND-BOUND FUNCTION IN LO MODE
	DEMAND-BOUND FUNCTION IN HI MODE
	EFFECTIVE DEADLINES
	MINIMUM DISTANCE FUNCTION OF EFFECTIVE DEADLINES
	DERIVING DEMAND-BOUND FUNCTION

	DEMAND-BOUND FUNCTION TUNING

	FUTURE EVENT PREDICTION BY DYNAMIC COUNTERS
	REFERENCES
	Biographies
	BIAO HU
	GANG CHEN
	KAI HUANG

