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ABSTRACT Brain–computer interfaces (BCIs) are used to provide a direct communication between the
human brain and the external devices, such as wheelchairs and intelligent apparatus, by interpreting the
electroencephalograph (EEG) signals. Recently, motor imagery EEG (MI-EEG) has become an active
research field where a subject’s active intent can be detected. The accurate decoding of MI-EEG signals
is essential for effective BCI systems but also very challenging due to the lack of informative correlation
between the signals and the brain activities. To improve the precision performance of a BCI system, accurate
feature discrimination from input signals and proper classification are necessary. However, the traditional
deep learning scheme is failed to generate spatio-temporal representation simultaneously and capture the
dynamic correlation for an MI-EEG sequence. To address this problem, we propose a long short-term
memory network combined with a spatial convolutional network that concurrently learns spatial information
and temporal correlations from rawMI-EEG signals. In addition, spectral representations of EEG signals are
obtained via a discrete wavelet transformation decomposition. In order to achieve even higher learning rates
and less demanding initialization, we employ a batch normalization method before training and recognition.
Various experiments have been performed to evaluate the performance of the proposed deep learning
architectures. Results indicate a high level of accuracy over both the public data set and the local data set.
Our method can also serve as a useful and robust model for multi-task classification and subject-independent
movement class decoder across many different methods.

INDEX TERMS Motor imagery electroencephalograph (MI-EEG) brain computer interfaces (BCI), long
short-term memory (LSTM), convolutional neural networks (CNN).

I. INTRODUCTION
Brain computer Interfaces (BCI) [1]–[3] play an essential
role as information pathways between the human brain and
external world [4] when the peripheral nerve pathway is
severely damaged by disease such as apoplexy or degener-
ative pathologies. Among the different types of BCI mech-
anisms, motor imagery Electroencephalography (MI-EEG)
[5], [6], is considered to be the most flexible method since it
has been proved promising in discriminating different brain
activities. Motor imagery (MI) is a mental process [7] with
which a subject can encode its intentions in EEG by imag-
ining performing a certain action such as lifting right hand
or moving feet. Actually, when people imagine movement
of unilateral limb, the wave power of µ (8-12Hz EEG) and
β (18-26hz EEG) rhythm [8] from the contralateral motor
sensory cortex decrease while the wave power increase in

the ipsilateral. These correlative phenomena [9] are named
event related desynchronization (ERD) and event related
synchronization (ERS) respectively which could be experi-
mentally observed through various brain activity measuring
techniques. The most popular technologies to record such
brain signals is EEG. For MI-EEG, signals inherently lack
of sufficient spatial resolution and activity insights of deep
brain structures. the EEG sequence usually have low signal-
to-noise ratio (SNR) and contains a large amount of useless
information [10], which makes it very challenging to accu-
rately understand brain dynamics and classify different motor
imageries. Thus, the key issue concerning an EEG-based BCI
system is to accurately interpret EEG signals from user’s
intent. At present, four state-of-the-art methods are mainly
applied in BCIs which are based onMI-EEG. Linear Discrim-
inant Analysis (LDA) [11] is a machine learning algorithm
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that attempts to represent one dependent variable as a linear
combination of other features. It performs well in linear
application analysis but is not much accurate at nonlinear BCI
systems. Support Vector Machine (SVM) [12] can generate a
non-linear decision boundary by projecting the data through
a non-linear function to a high dimensional space. It provides
good nonlinear mapping ability and generalization capacity.
Naive Bayes (NB) [13] is based on Bayes’ theoremwith inde-
pendence assumptions where the presence of a class feature
is unrelated to rest. It cannot handle very noisy EEG data.
Deep neural networks (DNN) are based on the Back Prop-
agation (BP) algorithm and present strong nonlinear fitting
capability [14]. Various previous studies apply the developed
deep neural networks such as convolutional neural networks
(CNN) and recurrent neural networks (RNN) for decoding
MI-EEG.

CNN are widely applied in MI-EEG recognition due its
ability of extracting the most discriminant features (high-
level features) for classification [15]. Various works utilizing
deep convolutional neural network focus on obtaining dis-
criminative features from input signal, they do not con-
sider disentangle factors and variation parameters [16].
The discrete wavelet transforms (DWT), as a new devel-
opment of Fourier transform, can express the feature
information of a sequence both in temporal and spectral
domain [17] Taking this consideration, we employ the CNN
and DWT to help us locate the most informative channels
and explore the time-frequency feature from the MI-EEG
data.

Recurrent neural networks (RNNs) [18] is a class of artifi-
cial neural networks with recurrent connections able to model
sequential data and exhibit dynamic temporal behavior for
sequence recognition and prediction. RNNs consist of high
dimensional hidden states with non-linear characteristic [19].
The hidden states work as the memory of the architecture and
current states of the hidden layers are correlated with their
previous ones. The motivation behind using RNNs is their
ability to exploit sequential information since their structure
allows remembering and processing past complex signals for
long time periods. For each timestep, RNNs can map an input
signal to the output signal and predict the sequence in the
next timestep. While RNNs can make use of information in
arbitrarily long sequences, they are actually limited to only
few steps back and are weak in vanishing and exploding
gradient problems. Long short-term memory (LSTM) net-
works [20], [21], as a novel class of RNNs, are much more
efficient at capturing long-term dependencies, thus, they are
popular and effective in reducing the effects of vanishing and
exploding gradients when training traditional RNNs. By this
method the composition of hidden units is changed from
‘‘sigmoid’’ or ‘‘tanh’’ to memory cells, for controlling the
inputs and outputs applied to the gates. These gates control
the information flow in hidden neurons and preserve the
extracted features from previous timesteps. Compared with
the RNN, LSTM can ‘‘look back’’ further and reach less risk
on vanishing gradient and over-fitting [22].

For traditional neural network methods, the initial weights
need be chosen with experience and patience, which is one
major obstacle of their widespread application. In addition,
the traditional machine learning and neural network methods
neglect the significance of feature extraction and selection.
The signal is prone to transform using independent compo-
nent analysis (ICA) or common spatial patterns (CSP) [23]
to obtain spatial components. Furthermore, these deep neu-
ral network recognitions [24] also neglect the long-range
dynamical correlation which is vital to the event related
potential (ERP) from MI-EEG [25]. On the other hand,
the training of deep neural network is time-consuming and
Batch Normalization (BN) is thus used to normalize the
input before the training. BN is technique that normalizes
activations in intermediate layers with zero mean and unit
variance [26].

In brief, a novel convolutional neural networks (CNN)
were used to find out the most-informative linear subspace
of the original channels. Then, DWT is designed to cap-
ture the temporal and spectral features and BN is used for
training smoothly. Finally, a special kind of recurrent neu-
ral network (RNN) called long short-term memory (LSTM)
is developed as regression algorithm to capture the tem-
poral dynamics and recognized our MI-EEG. Our method
is different from the aforementioned methods in design-
ing convolution layers and DWT to select the spatial and
time-frequency attributes for followed LSTM recognition.
This work analyzes each channel of MI-EEG and extract its
effective wavelet coefficients. The LSTM is meanwhile used
as the regression algorithm to capture the temporal dynamics
of the signal and help us capture the long-range sequence
feature information.

In this study, we propose the combination of convolutional
neural networks (CNN) and long short-termmemory (LSTM)
to recognize our MI-EEG. In particular, DWT is designed
to model temporal and spectral features and BN is used for
smooth training. In brief, the primary contributions of this
study are listed as follows:

1) We present a deep joint network that leverages CNN
and DWT to capture high-level spatial feature repre-
sentations and time-frequency information from raw
MI-EEG signals for recognition, respectively.

2) We employ Batch Normalization for faster training and
for reducing the sensitivity to initialization before the
LSTM regression algorithm, which captures the tem-
poral dynamics and the state transitions after feature
extraction.

3) We extensively evaluate our model using public and
private datasets for demonstration the efficacy and
practicality of our approach. The experimental results
illustrate that the proposed model can achieve high
levels of accuracy over both the public (87.36%) and
the local datasets (86.71%).

The rest of the paper is as follows. In Section II, the
experiment datasets and data processing are presented in
Section III, we describe the proposed deep learning archi-

VOLUME 6, 2018 79051



J. Yang et al.: Deep Fusion Feature Learning Network for MI-EEG Classification

TABLE 1. Properties of raw materials.

FIGURE 1. EEG collection.

tecture for feature extracting and classification. Finally, vari-
ous experiments and visualizations validate effectiveness and
robustness of the proposed architecture.

II. DATASET AND PRE-PROCESSING
Before EEG decoding and interpretation, EEG feature repre-
sentation and the EEG preprocessing should be elaborated.

A. DATA ACQUISITION AND REPRESENTATION
The proposed scheme has been evaluated on both public
data and private data collected in our lab. The MI-EEG data
sequence was randomly separated into labelled training sub-
set (almost 70% positive and negative class samples of total
experiment data sets) and testing subset (almost 30% of the
rest). The data details are shown in Table 1. In this study, all
data is labeled with two categories. D1 is the private dataset
collected during our own experiments.

In the experiment, six healthy subjects with mean age
of 27.8 years were asked to wear the EEG device and sit in
front of a computer screen which provides guidance then per-
forming certain imaginary actions (see Fig. 1). Each trial of
the collected dataset includes four sessions of motor imagery
process, among which the first two sessions are recorded
without feedback (left hand and right foot imagery) and the
other sessions have incorporated online feedback. D2, D3 and
D4 are public datasets from the BCI competition III and IV
data sets. Concretely, our experiment input is sequence data

which denoted as 3-D shape as (time, 1, channel). The time
length is calculated by sample rate and trial time such as when
we use the sampling rate of 500Hz for a total time of 10s for
a subject, the calculation of length is 5000. The order of the
electrodes (channel) which was arranged and stored in our
experiment consistent with the public data.

B. DATA PRE-PROCESSING
Before feature extraction, recognition and prediction are
introduced to the EEG sequence, several pre-processing oper-
ations were necessary, as stated below:

1) Referencing[27]. In this experiment, the vertex elec-
trode (Cz) is used as reference electrode. We define the
M × N data matrix which contains the two-dimension
information of electrodes and the EEG recordings are
referenced to Cz by subtraction. This process can be
performed by the following transformation:

Cz(Vm) = (I − VCz )Vm (1)

where I is the M ×M identity matrix.

VCz =

0 · · · 1 · · · 0
...

...
...

0 · · · 1 · · · 0

 (2)

It is anM×M matrix with ones in the Cz electrode cor-
responding column. Vm is another electrode sequence
data which need to be referenced.

2) Electrode Selection. The main correlated locations of
the 9 MI-EEG electrodes are P3, P4, C3, C4, O1, O2,
Pz, Fz and Cz. The reference electrode Cz was placed
on the central top of the skull [28].

3) Artifact removal. The recorded EEG data included
some other irrelevant signals such as electrocardio-
grams, myoelectricity and electro-oculogram, which
bring great difficulties to the signal analysis and
processing. To address this challenge, independent
component analysis (ICA) and principal component
analysis (PCA)were frequently used. The PCAmethod
mainly involve that unwanted artifacts are removed and
pure signal is preserved after the raw EEG is decom-
posed into independent components. The ICA however
employ model to estimate signal source and make non-
linear transformation which avoid lose key information
against decomposition. In this work, we choose the ICA
as our artifact removal approach.
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FIGURE 2. The decomposition of proposed deep structure.

4) Signal filtering. The principal component of MI-EEG
was distributed in the frequency band of the µ and β
rhythm mentioned above. We used the bandpass filter
to process our data.

III. SPATIAL CONVOLUTION
The proposed architecture is inspired by the typical MI-EEG
feature extraction pipeline which consists of spatial convo-
lution transformation and time-frequency analysis, as shown
in Fig.2. Our deep architecture combined a spatial convolu-
tional layer, a hierarchical feature extractor with DWT, and
a LSTM that is able to process sequential data and capture
temporal dynamics in the neural data.

A. THE SPATIAL CONVOLUTION NEURAL NETWORK
The purpose of applying the CNN method was to define
the most informative or task-modulated linear subspace of
the original channels. The weights of the model are updated
through the algorithm of error backpropagation. The convo-
lutional layer performed spatial filtering on the input EEG
signal. Various parameters can be optimized for the CNN net-
work which leads to many possible configurations. Themajor
parameters for a CNN network design are show in Table 2.
Parameters can be first initialized in simple ways and then
weights are trained using back-propagation. We found that
appropriate parameter initialization can significantly reduce
the chance of overfitting. Thus, we actually choose a dropout
probability of 0.5 to counter overfitting. The input signal was
a vector with a shape of (N 1, C). N and C are the samples
and channel numbers of input for each subject, respectively.
The 16 spatial features are learned through the CNN struc-
tures. If CNN have high classification accuracy, these spatial
features which we denote as S has the direct linear map
relationship with the EEG sample label.

TABLE 2. The hyper-parameters of the CNN network.

B. THE DISCRETE WAVELET TRANSFORMS
For feature extraction, methods such as fast Fourier transform
(FFT) [29], discrete wavelet transforms (DWT) and common
spatial patterns (CSP) are frequently employed. DWT is par-
ticularly popular for time–frequency sequence since it has
the ability to achieve high resolutions in the time domain.
The DWT can decompose sequence into its components in
different frequency bands. This make the DWT perform well
on spectral multiresolution and more applicable to EEG pro-
cessing than FFT [30].

The DWT can decompose a signal into its components in
different frequency bands. The DWT of a signal f (t) is given
as follows:

Wj,k (f , gj,k ) = 2−
1
2

+∞∑
n=−∞

f (t)ḡ(2−jt − k) j, k ∈ Z (3)

where gj,k (t) = 2−
j
2 g(2−jt − k) is a wavelet sequence, j

and k are the frequency resolution and time of the transform,
respectively. In wavelet analysis, the low-frequency, high-
scale component of the signal is approximated as L and the
high-frequency, low-scale component as H. The extending
scheme showing the components of a multi-level analysis
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FIGURE 3. The hierarchically organized decomposition of DWT.

is depicted in Fig.3. D2[∗] denotes the down sampling by a
factor of 2 such as:

D2[L1(n)] = L1(2n) (4)

When the EEG is sampled with fs, the corresponding bands
can be denoted as follows:[

0,
fs

2L+1

]
,

[
fs

2L+1
,
fs
2L

]
, · · · ,

[
fs
22
,
fs
2

]
(5)

The temporal features extracted by DWT is maintained
the spatial features which generate from the CNN. Then the
LSTM recurrent networks classifier canmake full use of these
temporal features. The temporal features can be calculated in:

Fj =
G∑
i=1

Si,jAi (6)

where Si,jAi represents wavelet packet coefficientsAi work on
i-th spatial feature Si. G is the spatial feature number (G= 16)
which generated from the CNN. The accumulation represents
the fusion for serial features.

C. BATCH NORMALIZATION
In deep neural network, with the growing network depth,
learning rate which control the speed of gradient descent
in unnormalized networks is further limited by diver-
gence due the magnitude of activations growing exponen-
tially and gradient-information becomes less input-sensitive
for unnormalized networks which limits possible learning
rates [31], [32]. Hence, we employ batch normalization (BN)
technique to improve generalization and accelerate training
by normalizing inputs. For an L-dimensional input as men-
tioned above, we normalize each dimension as:

BN (Xi) = (Xi − E(Xi))/
√
Var(Xi) (7)

E(Xi) =
1
m

L∑
i=1

Xi (8)

Var(Xi) =
1
m

L∑
i=1

[Xi − E(Xi)]2 (9)

FIGURE 4. The LSTM unit block.

where Xi is the vector that needs to be normalized. E(Xi)
and Var (Xi) are the expectation and variance of the current
mini-batch of Xi, respectively. In our framework, we then use
Batch Normalization to normalize the fusion feature to have
a mean of 0 and standard deviation of 1. The batch size is
set to correspond to our test data size. Then, the normalized
features are introduced to our LSTM model.

D. THE LSTM NETWORK AND TRAINING PROCESS
In Fig.4, a typical LSTM unit block is composed of four
main components: a cell, an input gate, an output gate and
a forget gate. These units receive the activation sequence
from different sources and control each cell’s activation by
the designed multipliers. The cell is designed to ‘‘remember’’
values over arbitrary time intervals, hence the word ‘‘mem-
ory’’ in LSTM. The LSTM networks can propagate errors
and preserve signals much longer than traditional RNNs.
Furthermore, Input and output gate function for setting input
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and output of the network while forget gate about setting
the cell memory. The LSTM gates also can keep the rest
network from adjusting the contents of the memory cells.
Thus, gates play the important role in LSTM network due to
responsibility for setting up memory cells in processing the
stored information.

The LSTM used in this work is implemented by the fol-
lowing composite function:

gct = gft ⊗ g
c
t−1 + g

i
t ⊗ σ (Wcxt + Ucgct−1 + bc) (10)

gft = σ (Wf xt + Uf ht−1 + bf ) (11)

git = σ (Wixt + Uiht−1 + bi) (12)

got = σ (Woxt + Uoht−1 + bo) (13)

ht = got ⊗ tanh(gct ) (14)

where f , i, o and c denote the forget gate, input gate, output
gate and cell state, respectively. W , U and b are the weight
matrices and bias vector parameters which need to be learned
during training. The σ denotes the element-wise sigmoid
function, and ⊗ denotes the Hadamard product.
During the training, the gradient of the objective function

with respect to each parameter can be calculated efficiently
via back propagation over the whole network. Obtaining
the back-propagation formulas is tedious, thus we list some
indispensable details below to elaborate our work [33], [34].
For each memory block and error passed to the hidden vector
δht the derivatives of each gate are computed as follow:

δht =
do
dht

(15)

1h
t = δ

h
t ⊗ tanh(δct )⊗ θ

′(got ) (16)

1
f
t = δ

c
t ⊗ g

c
t−1 ⊗ θ

′(gft ) (17)

1i
t = δ

c
t ⊗ tanh(xt )⊗ θ ′(git ) (18)

where θ ′(∗) is the element-wise derivative of the logistic
function over vector ∗, and δct is the derivative of the cell
vector.

The LSTM is theoretically powerful than alternative RNNs
and other sequence learning methods due to its ability to learn
from observations when it spends long time lags between
relevant events. We used a sequential way to optimize the
LSTM parameters. We firstly set the unit numbers to be
500 and optimized it. 200-time steps were chosen as it was
long enough to capture the previous temporal correlation
and not too complicated to calculate and training. Then we
choose out the best weight though the training. The optimized
parameter values for LSTM are detailed in Table 3. Final
output unit produce a prediction at every time step. Given
the softmax classifier, the predicted output of our architecture
(expressed by conditional probabilities) [35] is denoted with
the input X and label Y , defined as,

Y ′j = P(Yi|f (Xj,w)) =
exp(fi(Xj,w))
C∑
i=1

(fi(Xj,w))

(19)

TABLE 3. The hyper-parameters of the LSTM network.

through minimizing the sum of the cross-entropy losses [36],
high probabilities will be assigned to the correct labels:

w = argmin
1
N

N∑
j=1

Yj log(Y ′j )+(1− Yj) log(1− Y
′
j ) (20)

IV. EXPERIMENTAL RESULTS
In this section, systematic and extensive experiments have
been conducted on a public dataset and a local dataset to
validate the performance of the proposed architecture for
MI-EEG decoding. We provide comparative results of model
training and spatial performance against other models. More-
over, the model feature patterns from each layer analysis
are reported. Last, we evaluate our model’s performance on
training efficiency and overall classification comparison.

A. COMPARATIVE RESULTS
To validate the performance of our joint deep learning
network for MI-EEG decoding, experimental comparisons
are performed with other state-of-the-art methods, including
Linear Discriminant Analysis (LDA), Naive Bayes (NB),
support vector machine (SVM) and single LSTM. The tradi-
tional classifiers are implemented with python platform and
Machine Learning Toolbox by applying the default parame-
ters in MATLAB 2016a. CNN and LSTM are implemented
using TensorFlow and Theano package in python platform.
The results in terms of mean classification accuracy in the
public datasets (D2,D3,D4) are given in Table 4. The horizon-
tal terms represent different subjects we selected from each
dataset (three subjects in every dataset) as our comparison
object.

As shown in Table 4, the proposed method achieved better
performance than the other state-of-the-art methods for all the
datasets. In these subjects, the accuracy has been increased in
average over 3% compared with other methods. We can also
note that the classification accuracy of the proposed method
has performed significantly well in D3 and D4. To verify
whether the performance of the joint model is statistically sig-
nificant, we evaluate the CNN and LSTM models against the
joint model, proving its effectiveness. In addition, we provide
the comparison results within and without DWT which sug-
gest this temporal feature extractor benefit the recognition.
Finally, the mean classification accuracy for public datasets
through main deep learning method is illustrated in bar chart.
(see Fig. 5)

The classification accuracy of the experiments in private
dataset is listed in Table 5 where the proposed method
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TABLE 4. The recognition accuracy of different methods (public data).

TABLE 5. The recognition accuracy of different methods (private data).

FIGURE 5. Comparison of accuracy among four methods with private
data.

outperforms the other methods for all the subjects except
subF. The average classification accuracy has been increased
about 4% comparedwith the second-best method. In addition,
we can obviously learn that the DWT take effect both in
public and private data. It can effectively improve the clas-
sification accuracy of MI-EEG.

We take comparison between the combination of CNN and
DWTused in this work and aforementionedmethod of feature
extraction. The comparison results of classification accuracy
in Table 6 reveals that the ICA and CSP almost have the same
performance and the combination of CNN and DWT outper-
form the other methods except in D2 data set which suggest
that the MI-EEG we chose from D2 may involve less spa-
tial or time-frequency dependence. As indicated in Table 7,
the average accuracy of proposed method has an increased
recognition rate at least about 1%. The stacked autoencoders
(SAE) and restricted Boltzmann machine (RBM) are deep

TABLE 6. The comparative results with different feature extractor.

TABLE 7. The MI-EEG recognition comparison with other previous model
(public data).

learning architecture and the remaining are machine learning
method.

B. THE PARAMETER TUNING PERFORMANCE OF
TRAINING PROCESS
Fig. 6 show that the proposed approach performs differently
under different learning rates in each component. The final
selected learning rates are 0.004 and 0.02 for CNN, and
LSTM, respectively.

In order to observe the convergence process of our model
at the parameter-tuning stage, the error rate curves of four
datasets are showed in Fig. 7, which expose the percentage
of the incorrectly classified samples in the training set. In our
proposed scheme, the training process converges within about
100 epochs except subject A (over 200 epoch).

Fig. 8. presents the model performance when data used
as fuel. The results illustrate that when near 70% of the
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FIGURE 6. The learning rate comparison between RNN and LSTM. (a) CNN learning rate (b) LSTM learning.

FIGURE 7. Error rate of training of different datasets (vertical term is the error rate while horizontal term presents the epochs of training).
(a) D1. (b) D2. (c) D3(d) D4.

training set has been trained, our model recognition reaches
a high accuracy of 89% and follow a slight fluctuation in
accuracy with the remaining training data which reveal the
tiny existence of overfitting.We can also learn fromFig. 8 that
the training time changes nearly linearly with the scale of the
training data.

From Table 8, LSTM take substantially longer to train than
using batch normalization, especially the private data D1,
which suggest that the gradient vanishing problem is effec-
tively prevented by BN and it thus accelerate the convergence
of training.

C. THE SPATIAL PERFORMANCE AND RECEIVER
OPERATING CHARACTERISTIC CURVES OF OUR MODEL
A very important parameter was the number of electrodes in
the electrode selection step of feature extraction. Too many

electrodes can lead to over-fitting and estimation issues, while
too few channels lead to a loss of information. Taking the spa-
tial features which we filtered through the CNN into account,
we can find out the most discriminant electrodes according
to the weight, as shown in Table 9. This result approximately
coheres with the MI-EEG data pre-processing part which
we mentioned above. Not only the electrode selection but
also high-level spatial feature presentations which is obtained
through the spatial convolution help our recognition model to
achieve high performance.

The receiver operating characteristic (ROC) curves of four
methods for testing set are shown in Fig.9. For our private
data, we define the left hand and right foot movement as
positive class and negative class, respectively. According to
Fig.10, the AUC (area under curve) of the ROC curve of pro-
posed method is larger than those of the other three methods,
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FIGURE 8. The performance analysis during data training process.

TABLE 8. Training times across subjects within and without BN.

TABLE 9. Most informative electrodes of subject A-D in D1.

FIGURE 9. Comparison with ROC curves of four methods (D1 dataset.

which suggest that the proposed model has a better capacity
of discernment.

V. CONCLUSION AND FUTURE WORK
In this paper, a fusion feature extraction LSTM network was
proposed for decoding raw EEG signals. The model employs
CNN, DWT, BN and LSTM to learn the temporal and spatial
dependency features from the input EEG raw data. The fea-
tures are then fused to capture the temporal correlation and

adaptive filtering is employed to incorporate temporal infor-
mation into the system. We elaborate the CNN and LSTM
capacity to learn high level EEG features consisted of low-
level ones, after feature extraction by DWT. We evaluated
our approach on a public and a private MI-EEG dataset with
the results indicating that the proposed scheme is relatively
robust to the BCIs and universally suitable for MI-EEG
decoding. The results indicate that our proposed model can
further improve classification performance compared to other
methods. The application of combination of CNN and DWT
in EEG analysis might possibly pave a way for classical
spatio-temporal feature analysis in bioelectric signal. LSTM
network can be promoted also for EEG decoding and recog-
nition, and for exploring more complex EEG features.

Future work will attempt to introduce the attention region
mechanism in order to extract more interesting information
to improve the performance of the motor imagery BCIs.
In addition, we will further extend the proposed MI-based
BCI recognition model for more potential input data, such as
near-infrared spectroscopy (NIRS) and functional magnetic
resonance imaging (fMRI).
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