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ABSTRACT Data partitioning algorithms aiming to minimize the execution time and the energy of
computations in self-adaptable data-parallel applications on modern extreme-scale multicore platforms must
address two critical challenges. First, they must take into account the new complexities inherent in these
platforms such as severe resource contention and non-uniform memory access. Second, they must have
low practical runtime and memory costs. The sequential data partitioning algorithms addressing the first
challenge have a theoretical time complexity of O(m∗m∗p∗p) wherem is the number of points in the discrete
speed/energy function and p is the number of available processors. They, however, exhibit high practical
runtime cost and excessive memory footprint, therefore, rendering them impracticable for employment
in self-adaptable applications executing on extreme-scale multicore platforms. We present, in this paper,
the parallel data partitioning algorithms that address both the challenges. They take as input the functional
models of performance and energy consumption against problem size and output workload distributions,
which are globally optimal solutions. They have a low time complexity of O(m ∗ m ∗ p) thereby providing
a linear speedup of O(p) and low memory complexity of O(n) where n is the workload size expressed as
a multiple of granularity. They employ dynamic programming approach, which also facilitates the easier
integration of performance and energy models of communications. We experimentally study the practical
cost of application of our algorithms in two data-parallel applications, matrix multiplication and fast Fourier
transform, on a cluster in Grid’5000 platform. We demonstrate that their practical runtime and memory costs
are low making them ideal for employment in self-adaptable applications. We also show that the parallel
algorithms exhibit tremendous speedups over the sequential algorithms. Finally, using theoretical analysis
for a forecast exascale platform, we demonstrate that the parallel algorithms have negligible execution times
compared to the matrix multiplication application executing on the platform.

INDEX TERMS Data parallelism, data partitioning, energy, energy optimization, homogeneous multicore
CPU clusters, load balancing, parallel algorithms, performance, performance optimization.

I. INTRODUCTION
Data partitioning algorithms aiming to solve the optimization
problems of minimization of time and energy of computa-
tions in self-adaptable data-parallel applications on modern
extreme-scale multicore CPU platforms must address two
formidable challenges.

By self-adaptable applications, we mean applications
that automatically adapt at runtime to any set of hetero-
geneous processors with a priori unknown performance

characteristics [2]. They are typically executed in dynamic
environments or environments where the number of avail-
able processors and their performance characteristics can be
different for different runs of the same application. They
must adapt at runtime to dynamic changes in the environment
in even a single run. Such applications should be able to
optimally distribute computations between the processors of
the executing platform assuming that this platform is different
and a priori unknown for each run of the application.
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Self-adaptability is essential not only due to the changing
underlying execution environment but also due to the spe-
cific characteristics/requirements of the application domains
(for example: adaptive mesh refinement, particle simula-
tions, transient dynamics calculations, etc), and autotuning
softwares. We furnish real-life use cases that highlight its
importance below. They are detailed in the Appendix B,
supplemental.
• Self-adaptability of the solver is vital in adaptive mesh
refinement on clusters for solving large computational
fluid dynamics (CFD) and computational mechanics
(CM) problems where the computational load varies
throughout the evolution of the solution [3]–[6].

• Autotuning parallel softwares perform an empirical
search by generating numerous versions of a program
at runtime, which are then executed to find the best
configuration of a program. The key building blocks
that enable them to prune and accomplish this search
in reasonable runtime are fast data-partitioning algo-
rithms employing realistic computation and communi-
cation performance models [7]–[9].

• Supercomputer administrators routinely report that
nodes closer to the hotter regions (hotspots) execute
codes slower than the nodes closer to the cooler
regions in the supercomputing centres due to varia-
tions in the airflow caused by the layout of the cooling
systems [10]–[13]. Therefore, static data partitioning
strategies are not ideally suitable to address this situation

• Shared environments such as cloud computing systems
today are placing great emphasis in facilitating easier
migration and execution of HPC workloads by striv-
ing to remove impediments to this process. The lead-
ing objectives for optimization for the cloud service
providers are performance, energy consumption, cost,
and reliability. Self-adaptable applications employing
fast data partitioning algorithms for optimization of their
performance and energy evidently and directly address
the first two concerns [14].

We describe now the two crucial challenges to data par-
titioning algorithms posed by self-adaptable data-parallel
applications executing on modern extreme-scale multicore
CPU platforms.

To elucidate the first challenge, we compare the typical
shapes of real-life scientific data-parallel applications on
platforms consisting of uniprocessors and modern multicore
CPUs. For this purpose, we select two widely used and highly
optimized scientific routines, dense matrix-matix multiplica-
tion (OpenBLAS DGEMM) [15] and fast Fourier transform
(FFTW) [16], [17].

Consider the shapes of the speed and dynamic energy con-
sumption functions of the OpenBLAS DGEMM application
built experimentally by executing it on a single core of an
Intel Haswell workstation (specification shown in Table 1).
The application multiplies two dense square matrices of size
n × n (problem size is equal to n2). For a problem size n2

in the speed function, the speed is equal to 2×n3
t where t is

TABLE 1. Specification of the intel haswell workstation used to build the
uniprocessor speed and energy models.

FIGURE 1. a). Speed function of OpenBLAS DGEMM application executed
on a single core on the Intel Haswell workstation. b). Dynamic energy
consumption of OpenBLAS DGEMM application executed on a single core
on the Intel Haswell workstation.

execution time taken to multiply two n × n square matrices.
In these experiments, the numactl tool binds the application
to one core. The dynamic energy consumptions are obtained
using Watts Up Pro power meter (Appendix C).

Figures 1a and 1b show the shapes of the speed and energy
functions. The salient properties of the shapes are below:

• The functions are smooth.
• The speed function satisfies the following properties:

– Monotonically increasing.
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FIGURE 2. a). Speed function of OpenBLAS DGEMM application executed
on a single core on the Intel Haswell server. b). Dynamic energy
consumption of OpenBLAS DGEMM application executed on a single core
on the Intel Haswell server.

– Concave.
– Any straight line passing through the origin of the

coordinate system intersects the graph of the func-
tion in no more than one point.

• The dynamic energy consumption is a monotonically
increasing convex function of problem size.

For such shapes, Lastovetsky and Reddy [18] prove
that the solutions determined by the traditional (based on
constant performance model) and the state-of-the-art load-
balancing algorithms based on functional performance mod-
els (FPMs) [19]–[26], simultaneouslyminimize the execution
time and dynamic energy consumption of computations in
the parallel execution of the application. Figures 2a and 2b
show the shapes of the speed and dynamic energy consump-
tion functions for the same application built experimentally
by executing it on a single core of an Intel Haswell server
(specification shown in Table 2).While the shape of the speed
function is the same as before, the shape of the dynamic
energy consumption function is linear. This implies that all
workload distributions will result in same dynamic energy
consumption and therefore parallelization has no effect on the
dynamic energy consumption of computations in the parallel
execution of the application.

To summarize, on platforms composed of uniprocessors,
the shapes of the performance and energy functions are
smooth with minimal variations. The performance functions

TABLE 2. Specification of the intel haswell server used to build the FPM
and energy model for multithreaded OpenBLAS DGEMM and FFTW
applications.

comfortably satisfy the conditions imposed by the FPMs that
are crucial for the correct operation of the load balancing
algorithms.

On modern homogeneous clusters composed of multi-
core CPUs, the performance and energy profiles of real-
life scientific applications executing on these platforms are
not smooth and may deviate considerably from the shapes
observed before. This is due to the newly introduced inher-
ent complexities such as resource contention and NUMA.
Figures 3 and 4 illustrate the shapes for the speed and
dynamic energy consumption graphs for multi-threaded
OpenBLAS DGEMM and FFTW applications executed with
24 threads on the Intel Haswell server. The FFTW application
performs a 2D FFT of size n× n (the problem size being n2).
For a problem size n2 in the speed function, the speed is equal
to 5.0×n2×log2 n2

t where t is execution time taken to compute
2D complex DFT of size n2.
For each function, solid lines connect the points in its

graph to highlight the variations. To make sure the experi-
mental results are reliable, we follow a statistical method-
ology described in the Appendix D. Briefly, for every data
point in the functions, the automation software executes the
application repeatedly until the sample mean lies in the 95%
confidence interval with a precision of 0.025 (2.5%). For this
purpose, we use Student’s t-test assuming that the individual
observations are independent and their population follows the
normal distribution. We verify the validity of these assump-
tions using Pearson’s chi-squared test.

Therefore, the variation observed is not noise but is
an inherent trait of applications executing on multicore
servers with resource contention and NUMA. In a function
(speed or energy f ), it is the difference of function values
between two subsequent local minima (f1) and maxima (f2)
defined as following:

variation(%) =
|f1 − f2|
min(f1, f2)

× 100 (1)
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FIGURE 3. a). Speed function of FFTW executing 24 threads on the Intel
Haswell server. b). Function of dynamic energy consumption against
problem size for FFTW executing 24 threads on the Intel Haswell server.

The salient points about the variations are below:

• They can be large. This is evident from the speed and
energy functions shown in Fig. 3a and 3b. From the
speed function plot, one can observe performance drops
of around 70% for multiple problem sizes.

• The variations is not due to the constant and stochastic
fluctuations owing to OS activity or a workload execut-
ing in a node in common networks of computers. One
way to represent these inherent fluctuations in the speed
is to use a speed band rather than a speed function. The
width of the band characterizes the level of fluctuation in
the speed due to changes in load over time. For a node
with uniprocessors, the width of the band decreases as
the problem size increases. For a node with a high level
of network integration, typical widths of the speed bands
were observed to be around 40% for small problem
sizes and narrowing down to 3% for large problem sizes.
Therefore, as the problem size increases, the width of
the speed band decreases. Therefore, for long running
applications, the widthwould become narrow (3%). This
however is not the case for variations in the presented
graphs. The dynamic energy consumption in the Fig-
ures 3b and 4b show the widths of the variations increas-
ing as problem size increases. These widths reach a
maximumof 70% and 125% for large problem sizes. The

FIGURE 4. a). Speed function of OpenBLAS DGEMM executing 24 threads
on the Intel Haswell server. b). Function of dynamic energy consumption
against problem size for OpenBLAS DGEMM executing 24 threads on the
Intel Haswell server.

speed functions in the Figures 3a and 4a demonstrate
that the widths are bounded with the averages around
17% and 60%. This suggests therefore that the variation
is due to the newly introduced complexities and not due
to the fluctuations arising from changing transient load.

Therefore, these variations are not singular and will
become natural because chip manufacturers are increasingly
favoring and thereby rapidly progressing towards tighter inte-
gration of processor cores, memory, and interconnect in their
products.

Due to these variations, optimization problems of min-
imization of time and energy of computations for the
most general shapes of performance and energy profiles
of data-parallel applications have become difficult to solve.
To demonstrate why this is the case, we zoom into the
energy function of the OpenBLAS DGEMM application to
analyze its properties (which are also exhibited by the speed
functions). Figure 5 shows the energy function between two
arbitrarily chosen points A and B.
• One can observe that the energy function is character-
ized by multiple local minima (Q1,Q2, ...) and multiple
local maxima (P1,P2, ...). There is one global maximum
P and one global minimum Q.

• The function (feasible region) is non-linear and non-
convex.
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FIGURE 5. Zoomed energy function of OpenBLAS DGEMM application
between two arbitrarily chosen points A and B. Dashed lines connect the
points for clarity.

• Since deriving an analytical formula for such a function
is non-trivial, optimization solvers that rely on the exis-
tence of derivatives cannot be directly applied.

We summarize the challenges below:
1) Modern extreme-scale multicore CPU platforms are

composed of tightly integrated multicore CPUs with
highly hierarchical arrangement of cores. This tight
integration has resulted in the cores contending for
shared on-chip resources such as Last Level Cache
(LLC) and interconnect (For example: Intel’s Quick
Path Interconnect, AMD’s Hyper Transport), leading to
resource contention and non-uniform memory access
(NUMA). Due to these newly introduced complexities,
the performance and energy profiles of real-life scien-
tific applications executing on these platforms are not
smooth and may deviate considerably from the shapes
observed before. These behaviors limit the applicabil-
ity of state-of-the-art load balancing algorithms (based
on functional performance models (FPMs)) thereby
necessitating either a thorough redesign or develop-
ment of novel models and algorithms.

2) The data partitioning algorithm employed in a self-
adaptable application to optimally distribute compu-
tations must have low practical runtime and memory
costs compared to that of the application. This would
make them ideal for application even in domains where
time and memory are more critical.

We present an overview of the latest research efforts
addressing the challenges before highlighting their drawbacks

that make them impracticable for employment in self-
adaptable applications.

Lastovetsky and Reddy [18] propose novel model-based
methods and algorithms for minimization of time and energy
of computations for the most general performance and energy
profiles of data parallel applications executing on homoge-
neous multicore clusters. They formulate the performance
and energy optimization problems and present efficient algo-
rithms of complexity O(m2

× p2) solving these problems
where m is the cardinality of the discrete sets representing
the speed/energy functions and p is the number of available
processors. The memory complexity of the algorithms are
O(n × p2). Unlike load balancing algorithms, optimal solu-
tions found by these algorithms may not load-balance an
application. Manumachu and Lastovetsky [27] study the bi-
objective optimization problem for performance and energy
(BOPPE) for data-parallel applications on homogeneous
clusters of modern multicore CPUs. It employs only one
but heretofore unstudied decision variable, the problem size.
They present an efficient and exact global optimization algo-
rithm called ALEPH that solved the BOPPE. It takes as
inputs, functions of performance and dynamic energy con-
sumption against problem size, and outputs the globally
Pareto-optimal set of solutions. They prove the complexity
of the algorithm to be O(m2

× p2) where m is the cardinality
of the discrete sets representing the speed/energy functions
and p is the number of available processors. The memory
complexity of the algorithm is O(n× p2).
The proposed data-partitioning algorithms are, however,

sequential, recursive, and have high practical runtime and
memory costs for large values of p (in the order of hundreds).
For such large values of p, the runtime cost is in the order
of minutes and the memory cost is also high causing severe
degradation of performance due to paging. Therefore, these
two prohibitive costs render them unsuitable for employ-
ment in self-adaptable applications executing on extreme-
scale multicore platforms.

We present in this work parallel data partitioning algo-
rithms that address both the challenges. Like the sequential
algorithms, they take as input the functional models of per-
formance and energy consumption against problem size and
output workload distributions, which are globally optimal
solutions. They have low time complexity of O(m2

× p)
thereby providing linear speedup of O(p) and low memory
complexity of O(n) where n is the workload size expressed
as a multiple of granularity. They employ dynamic program-
ming approach, which also facilitates easier integration of
performance and energy models of communications.

We experimentally study the practical runtime costs of
the algorithms in two data parallel applications, matrix
multiplication and fast Fourier transform, on a cluster in
Grid’5000 platform. We demonstrate that their practical run-
time and memory costs are low making them ideal for
employment in self-adaptable applications.We also show that
the parallel algorithms exhibit tremendous speedups over the
sequential algorithms. Finally, using theoretical analysis for
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a forecast exascale platform, we demonstrate that the parallel
algorithms have negligible execution times compared to the
matrix multiplication application executing on the platform.

To summarize, the main contributions in this work are:
• Efficient parallel data partitioning algorithms for
performance and energy optimization problems for
data-parallel applications executing on homogeneous
multicore CPU clusters. The algorithms address the
challenges posed by complexities of NUMA and severe
resource contention inherent in modern multicore plat-
forms and have low computational and memory com-
plexity thereby making them suitable for employment
in self-adaptable data-parallel applications. While there
are other possible solution methods for parallelization,
our solution using dynamic programming technique is
holistic since it allows easy integration of performance
and energy models of communication.

• Practical application where we show how a loop con-
taining recursive invocations is carefully restructured to
allow parallel computation of the loop iterations.

• Illustration of how the cost of communications during
the execution of the data-parallel application can be
seamlessly integrated in our parallel data partitioning
algorithms.

• Experimental study of practical cost of the parallel data
partitioning algorithms for large clusters and theoreti-
cal study of the execution times of the algorithms on
extreme-scale parallel platforms.

• Efficient implementation of the parallel data partitioning
algorithms that employ hybridMPI+OpenMP program-
ming model with threaded MPI communications for
minimizing the execution time.

We organize the rest of the paper as follows. Section II
presents related work on data partitioning techniques targeted
for self-adaptable applications. Section III contains formu-
lations of performance and energy optimization problems
for homogeneous multicore clusters. Section IV presents an
overview of the sequential data partitioning algorithms solv-
ing the performance and energy optimization problems for
homogeneous multicore clusters. Section V presents the par-
allel data partitioning algorithms. Section VI contains experi-
mental and theoretical analysis of the algorithms. Section VII
concludes the paper.

II. RELATED WORK
We classify our literature survey into four categories summa-
rized in Table 3.

The first category deals with data partitioning algorithms
employed for performance optimization on HPC platforms.
The second category presents self-adaptable applications
and dynamic runtime schedulers. The third category sur-
veys efforts that investigate loop and data transformations to
improve performance of regular and irregular codes. Final
category deals specifically with works that have proposed
data partitioning techniques targeted for self-adaptable appli-
cations on heterogeneous platforms.

TABLE 3. Main categories in the related work.

A. DATA PARTITIONING ALGORITHMS BASED ON LOAD
BALANCING
There are different classifications of load-balancing algo-
rithms: static or dynamic, non-centralized or centralized, task
queue or predicting-the-future.

Static algorithms, such as those based on data partitioning
[19], [28], [29], use a priori information about the parallel
application and platform. These algorithms are also known
as predicting-the-future because they rely on accurate per-
formance models as input to predict the future execution
of the application. They are particularly useful for appli-
cations where data locality is important because they do
not require data redistribution. They however are unsuitable
for non-dedicated platforms, where load changes with time.
Dynamic algorithms, such as task scheduling and work steal-
ing [30]–[32], balance the load by moving fine-grained tasks
between processors during the execution. They do not require
a priori information about execution but may incur large
communication overhead due to data migration. They can use
static partitioning for the initial step due to its provably near-
optimal communication cost, bounded small load imbalance,
and lesser scheduling overhead.

In non-centralized algorithms [33], [34], load is migrated
locally between neighboring processors, while in central-
ized ones [35]–[37], load is distributed based on global load
information. Non-centralized algorithms are slower to con-
verge. At the same time, centralized algorithms typically have
higher overhead. The centralized algorithms can be further
subdivided into two groups: task queue [36] and predicting-
the-future [35], [37].

B. SELF-ADAPTABLE APPLICATIONS AND RUNTIME
SCHEDULERS
Hendrickson and Devine [6] survey approaches addressing
the dynamic load balancing problem that arises in compu-
tational mechanics applications where the computation must
adapt dynamically during the simulation (for e.g., adaptive
mesh refinement, particle simulations and transient dynamics
calculations). Among the essential properties identified by
them that a dynamic load balancer should possess are parallel
speed and modest memory usage.

Runtime schedulers such as KAAPI [38], StarPU [39],
and DAGuE [40] schedule an application described as a
Direct Acyclic Graph (DAG) or task graph onto parallel
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platforms. The DAG expresses different types of tasks and
the data dependencies between them and is created either
statically or dynamically. Little information exists on the
computational performance and memory utilization of DAG
schedulers. They cater to particular classes of applications
(sparse, irregular, etc) that are not applicable to our data
partitioning algorithms. For the data-parallel applications,
it is a edifying research task to conduct a comprehensive com-
parison between them and static and dynamic load-balancing
and load-imbalancing algorithms.

C. LOOP AND DATA TRANSFORMATIONS
Loop and data transformations to improve the locality of
regular and irregular codes is an active area of research.
Han and Tseng [41] propose low overhead data and com-
putation re-ordering techniques to improve the locality
of irregular codes. Jo and Kulkarni [42] propose a locality
enhancing technique that is based on loop tiling to improve
the performance of applications that use recursive data struc-
tures such as trees and graphs. Ravishankar et al. [43] present
an approach for parallel execution of a class of irregu-
lar loop computations using a combination of static and
runtime analysis. Venkat et al. [44] describe a generalized
loop-coalescing transformation to represent and transform
computations. In this work, we transform a sequential, recur-
sive loop using dynamic programming technique so that the
main loop iterations are executed in parallel.

D. DYNAMIC DATA PARTITIONING ON HETEROGENEOUS
PLATFORMS
All the works examined in this category strive to achieve
dynamic load balance. They use a simple principle of ‘‘using
the past to predict the future’’ where they employ the informa-
tion (speeds, execution times, etc) from the current iteration
to redistribute work for the ensuing iterations. Self-adaptable
applications, which are typically executed in dynamic envi-
ronments, may invoke a data partitioning algorithm multiple
times due to which cost of data redistribution or migration is
incurred.

Legrand et al. [35] study mapping of iterative computa-
tions onto heterogeneous clusters. At each iteration, local
computations are performed in parallel and some commu-
nications (boundary information) take place between con-
secutive processors in the ring. The authors consider the
problem of optimal partitioning the workload in each iter-
ation taking into account the computations and communi-
cations so that the total execution time is minimized. They
prove the NP-completeness of the problem and design an
efficient heuristic. Mahanti and Eager [45] study different
data redistribution policies when processors (or nodes) are
added or removed during the execution of a data parallel
application in a dynamic heterogeneous environment. In their
approach, the cost of the data partitioning algorithm is not the
main concern.

Galindo et al. [46] propose a dynamic load balancing
approach to balance the workload of iterative algorithms in

dedicated heterogeneous platforms. Before the start of exe-
cution of the iterative algorithm, homogeneous distribution
of the workload is used. The speeds of the processors are
determined after the execution of one iteration. These speeds
are used to determine new workload distribution for the
next iteration. Martínez et al. [37], [47] propose a dynamic
load balancing approach to balance the workload of iterative
algorithms in heterogeneous dedicated and non-dedicated
platforms composed of multiprocessor nodes.

Clarke et al. [2] propose a data partitioning algorithm,
which is practicable for employment in self-adaptable appli-
cations due to its low runtime cost. This algorithm does not
require as input the full functional performancemodel (FPM).
Unlike algorithms which require construction of full FPMs
as a prerequisite, it builds a partial estimate of the FPM and
uses it to determine optimal data partitioning with a given
accuracy. Sanjuan-Estrada et al. [48] propose a dynamic load
balancing strategy, which determines the number of threads at
runtime (at different stages of an application execution) based
on two decisions. These are the completed work and the exis-
tence of a sleeping thread in the application. The execution
of an application starts with one thread. The strategy uses
these decisions to determine if a thread needs to be created to
maintain load balance at different (predetermined or equidis-
tant) stages of the application. Wang et al. [49] present a self-
adaptive and parallelized maximum likelihood evaluation
(MLE) framework. It consists of a master process and a set
of worker processes in a distributed environment where the
master is responsible for re-distributing the computing tasks
to workers and the workers compute tasks. The goal of the
framework is to achieve load balance of workload between
the workers. The workload distribution is determined using
the execution times of the workers. Acosta et al. [50] propose
a dynamic load balancing approach to balance the workload
of iterative algorithms in homogeneous and heterogeneous
multi-GPU platforms. The approach is not novel and is sim-
ilar to the efforts presented earlier. Zhang et al. [51] report
significant non-deterministic variations for applications that
are not bound to the cores of the executing multicore plat-
form. Their approach is to try to reduce the non-deterministic
variations by using different execution patterns.

The data partitioning algorithm that we propose has note-
worthy differences. First, it is a parallel algorithm. Second,
it takes as input a functional performance model and not a
constant performance model such as an execution time to
determine the workload distribution. Third, workload distri-
bution (which is globally optimal) found by it may not load-
balance the application.

III. FORMULATIONS OF PERFORMANCE OPTIMIZATION
AND ENERGY OPTIMIZATION PROBLEMS
Before we present the formulations, we would like to define
the meaning of the terms ‘‘problem size’’ and ‘‘workload
size’’ used in this work. These two terms are used synony-
mously in the literature. The problem size is defined as a set
of one, two ormore parameters characterizing the amount and
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layout of data stored and processed during the execution of a
computational task. It also represents the size of a computa-
tional task that is allocated to a processor during the parallel
execution of a data-parallel application. The workload size
is defined as the size of the workload of the data-parallel
application that is executed using one or more processors. It is
a multiple of one or more computational tasks, whose size is
defined to be the problem size. By data-parallel workloads,
we mean computations involving dense objects such as dense
matrices or grids (for example, dense linear algebra routines
such as matrix-matrix multiplication of dense matrices, fast
Fourier transform of a dense signal matrix, etc.).

Consider a data-parallel application workload of size n
executed using p number of identical processors. Let the
speed function of a processor executing a problem size x
be represented by s(x). Here the speed can be measured in
floating point operations per second or any other fixed-size
computation units per unit time. The size of workload can be
characterized by the problem size (for example, the number
of cells in the computational domain or thematrix size) or just
by the number of equal-sized computational units. The speed
s(x) for a problem size x is calculated as x

t(x) , where t(x)
is the time of execution of the problem size x. n and x are
considered one-dimensional. Since the processors involved
in the execution of the workload are identical, the input to
the problem is a single speed function. We do not specify
how to build the speed function. It may be constructed using
one or more processors.

The formulation for the performance optimization problem
follows:

A. PERFORMANCE OPTIMIZATION PROBLEM, POPT(n, p,
s, q, d )
The problem is to find a partitioning, d = {x1, ..., xq}, of the
workload of size n between q number of identical processors
that minimizes the computation time of parallel execution
of the workload. The parameters (n, p, s) are the inputs
to the problem. The parameters (q,d) are the outputs. The
formulation of the problem (as an integer non-linear program
(INLP)) follows:

minimize
q

max
i=1

xi
s(xi)

Subject to x1 + x2 + ...+ xq = n

xi ≤ n i = 1, ..., q

xi > 0 i = 1, ..., q

1 ≤ q ≤ p

where

p, q, n, xi ∈ Z>0 and s(x) ∈ R>0

This INLP problem can be modified to an equivalent integer
linear program (ILP) problem as follows:

minimize f

Subject to f ≥
xi
s(xi)

i = 1, ..., q

x1 + x2 + ...+ xq = n

xi ≤ n i = 1, ..., q

xi > 0 i = 1, ..., q

1 ≤ q ≤ p

where

p, q, n, xi ∈ Z>0 and s(x) ∈ R>0

Informally speaking, the objective function in POPT is a
function of workload distribution D = {x1, ..., xp}, of a given
workload n executed using p number of identical processors.
For each givenD, it returns the time of computations involved
in its parallel execution, which is calculated as the time
taken by the longest running processor to execute its assigned
problem size. The distribution that minimizes this function is
considered optimal as its execution time of workload n using
the p processors cannot be improved. The optimal distribution
may utilize number of processors (q) less than or equal to p.
The formulation for optimization problem for energy is

based on an energy model, which represents the dynamic
energy consumption of a processor by a function of prob-
lem size. The dynamic energy consumption of execution of
a problem size x by a processor is represented by �(x).
We explain the rationale behind using dynamic energy con-
sumption in Appendix C. Since the processors involved in
the execution of the workload are identical, the input to the
problem is a single energy function. We do not specify how
to build the energy function. It may be constructed using
one or more processors.

EnergyOptimization Problem,EOPT (n, p,�, q, d): The
problem is to find a partitioning, d = {x1, ..., xq}, of thework-
load of size n between q number of identical processors that
minimizes the dynamic energy consumption of computations
in the parallel execution of the workload. The parameters
(n, p,�) are the inputs. The parameters (q,d) are the outputs.
The formulation of the problem (as an integer linear program
(ILP)) follows:

minimize
q∑
i=1

�(xi)

Subject to x1 + x2 + ...+ xq = n

xi ≤ n i = 1, ..., q

xi > 0 i = 1, ..., q

1 ≤ q ≤ p

where

p, q, n, xi ∈ Z>0 and �(x) ∈ R>0

Informally speaking, the objective function in EOPT is
a function of workload distribution D = {x1, ..., xp}, of a
given workload n executed using p number of identical pro-
cessors. For each given D, it returns the energy consump-
tion of the computations involved in its parallel execution,
which is calculated as the sum of the energy consumptions
of all processors executing problem sizes assigned to them.
The distribution that minimizes this function is considered
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Algorithm 1AlgorithmDetermining Optimal Distribution of
Workload of Size n for Maximizing Performance
1: procedure POPTA(n, p,1x,X , S,Dopt , topt )

Input:
Workload size, n ∈ Z>0
Number of processors, p ∈ Z>0
Minimum granularity, 1x ∈ Z>0
Speed function represented by two sets (X , S),
X = {x1, ..., xm}, x1 < ... < xm, xi ∈ Z>0,∀i ∈ [1,m]
S = {s(x1), ..., s(xm)}, s(x) ∈ R>0

Output:
Optimal workload distribution,
Dopt = {x1opt , ..., x

p
opt }, x

i
opt ∈ Z>0,∀i ∈ [1, p]

Optimal execution time, topt ∈ R>0

2: for point ← 1,m do
3: (X↑[point], S↑[point])← Sort↑(point , X , S)
4: end for
5: (B,E)← GetBE(n,p,1x,X ,S)
6: if n mod p = 0 then
7: if E ≤

X↑[ np ]

S↑[ np ]
then

8: Diopt ←
n
p ,∀i ∈ [1, p]; topt ←

n
p×1x

S[ np ]
9: return (Dopt , topt )

10: end if
11: end if
12: ∀I ∈ [1, np ], J ∈ [1, p],K ∈ [1, J ],
13: memorized[I ][J ][K ]← (0, 0, 0)
14: (Dopt , topt )← POPTAKernel(

n,p,1x,B,E ,X ,S,X↑,S↑,memorized)
15: return (Dopt , topt )
16: end procedure

optimal as its energy consumption of workload n using the p
processors cannot be improved. The optimal distribution may
utilize number of processors (q) less than or equal to p.

POPT and EOPT are also known as min-max and min-sum
problems.

IV. POPTA AND EOPTA: SEQUENTIAL DATA
PARTITIONING ALGORITHMS SOLVING POPT AND EOPT
We present an overview of the sequential data partitioning
algorithms [18] solving the performance and energy opti-
mization problems.

A. POPTA: ALGORITHM SOLVING POPT PROBLEM
The algorithm POPTA (Algorithm 1) solves POPT. The
inputs to POPTA are the size of the workload, n, given as
multiple of 1x, the number of processors, p, the minimum
granularity, 1x, and the speed function represented by two
discrete sets, X and S, containing problem sizes and speeds.
m is the cardinality of the sets X and S. The outputs are the

Algorithm 2 The Kernel of the Algorithm 1
1: function POPTAKernel(n, p,1x,B,E,

X , S,X↑, S↑,memorized,Dopt , topt )
2: if p = 1 then return ({n}, n×1xS[n] ) end if
3: Diopt ←

n
p ,∀i ∈ [1, p]

4: Diopt ← Diopt + 1,∀i ∈ [1, n mod p]

5: topt ← max
1≤i≤p

(
Diopt

S[Diopt ]
)

6: for L ← memorized[B][p][n mod p][1], |X↑| do
7: nr ← X↑[L]
8: tr ←

nr
S↑[L]

9: if tr ≥ E then break end if
10: for r ← 1, p− 1 do
11: nl ← n− r × nr
12: if (nl < 0) then break end if
13: if nl = 0 and tr < topt then
14: d iopt ← nr ,∀i ∈ [1, r]
15: d iopt ← 0,∀i ∈ [r + 1, p]
16: topt ← tr
17: continue
18: end if
19: (Bl,El)← GetBE(nl ,p− r ,1x,X ,S)
20: if Bl > |X | then continue end if
21: if (nl mod (p− r) 6= 0) or (El >

X↑[Bl ]
S↑[Bl ]

) then
22: El ← (El > tr ) ? tr : El
23: tl ← memorized[ nl

p−r ][p − r][n mod
p][3]

24: if (tl ≤ El and max(tr , tl) < topt ) then
25: ∀i ∈ [r + 1, p], xi←
26: memorized[ nl

p−r ][p− r][n mod p][2]
27: else
28: {(xr+1, ..., xp), tl}←

POPTAKernel(
nl ,p− r ,1x,Bl ,El ,
X ,S,X↑,S↑,memorized ,Dopt ,topt )

29: end if
30: else
31: tl ← El
32: if max(tr , tl) < topt then
33: xi← Bl,∀i ∈ [r + 1, p]
34: end if
35: end if
36: if max(tr , tl) < topt then
37: d iopt ← nr ,∀i ∈ [1, r]
38: d iopt ← xi,∀i ∈ [r + 1, p]
39: topt ← max(tr , tl)
40: if tl ≤ tr then Go To 44 end if
41: end if
42: end for
43: end for
44: memorized[ B

1x ][p][n mod p]← (L, dopt , topt )
45: return (Dopt , topt )
46: end function
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FIGURE 6. POPTA example: Speed function of a processor executing the
multithreaded OpenBLAS DGEMM application represented by a discrete
set of points (connected by dashed lines for clarity).

optimal workload distribution, Dopt , where the distributions
are given in multiples of1x, and the optimal execution time,
topt . The optimal number of processors that are selected by
POPTA in the optimal workload distribution may be less
than p. The traditional load-balancing algorithm returns the
workload distribution, xi = n

p ,∀i ∈ [1, p].
We will illustrate its execution through an example. Con-

sider p = 4 processors involved in parallel execution of
a OpenBLAS DGEMM workload of size n = 64. Let the
minimum granularity1x be 1. We use a segment of the speed
function, s(x), shown in Figure 6. The function is represented
by discrete sets X and S containing the points in the graph
connected by dashed lines for clarity. The recursive proce-
dure, POPTAKernel (Algorithm 2), examines all the points
between the lines B and E as shown in Figure 7. Vertical line
B represents x = n

p (x = 16 in this example) and lineE passes

through origin and the point ( np ,
n
p

s( np )
).

The first step of POPTA is to create a sorted array of
points for each point a ∈ [1,m] (Lines 2-4). For each point
a, the array contains all the points sorted in non-decreasing
order of X [b]

S[b] ,∀b ∈ [a + 1,m]. The ratio x
s(x) is equal to the

execution time of the problem size x. The sorted arrays are
stored in the arrays, {X↑, S↑}. If the point a has execution time
less than or equal to execution times at points greater than it
(x > a), then the point a represents the optimal workload
distribution for workload of size p × a using p processors.
That is, the problem size a is allocated to all the p processors.
The sorted arrays of points prevents recursion at points, which
give optimal workload distribution for sub-problems.

The procedure, GetBE (given in Section 2 of the supple-
mental), determines the lines B and E and takes into account
the case when n is not divisible by p. A key optimization in
POPTA is the 3D array,memorized , of sizeO(m×p2), which
memorizes the points that were visited already during the
recursive invocations. This array is initialized to zero before
the invocation of the core routine (Algorithm 2). Briefly,
for the execution of the problem size n using p processors,
the array value memorized[ np ][p][extra] contains the ending
index of the range of points examined during the previous

FIGURE 7. POPTA example: POPTA sorts points between B and E in
non-increasing order of 2.

FIGURE 8. POPTA example: Points on line L1 examined followed by
points on line L2 and so on until the points on line Lq.

invocation. The array entry memorized[ np ][p] is of size p
where the extra index represents a problem size ( np+n mod p)
in the range [ np ,

n
p + p]. This memorization ensures that there

are only O(m × p2) recursive invocations of the core kernel
(Algorithm 2) to solve a problem size of n using p processors.
Along with memorization of the range of points examined,
the optimal workload distribution and the optimal execution
time are also memorized.

One other optimization (Line 40) is that during the
recursive invocation of POPTA (Algorithm 2) for some r
(Line 11), if tl is less than or equal to tr , then we return
from the invocation because we have found the optimal
solution for the problem size n using p processors. This is
because any other solutionwill have an execution time greater
than or equal to tr since points to the right of B = nl

p−r are
sorted in non-decreasing order of execution times (as given
by the arrays {X↑, S↑}). This is the best case.
Line 2 of the procedure, POPTA, deals with the simple

case of solving the problem size n using one processor.
Lines 3-5 initialize the outputs, Dopt and topt , allocating
each extra bit 1x to all the processors, I ∈ [1, n mod p].
Lines 6-45 contain the kernel of POPTA. The array of sorted
points between B and E as shown on lines L1, ...,Lq in Fig-
ure 8 is sequentially examined (Line 6-8). The condition
(tr > E) ensures that all points beyond E are not considered.
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For each point A (on line Lx ,∀x ∈ [1, q]), there are p−1main
execution steps in the nested for loop (at Line 10). In a main
step, each of the r processors is allocated the problem size nr
to the right of B. If the remaining problem size nl is less than
0, that means there is excessive allocation to the right of B and
so we break from the loop since subsequent allocations to the
right of B will always result in negative remaining problem
size to the left of B. If the remaining problem size nl is equal
to 0, then we save this distribution if (tr < topt ) (Lines 14-16).
Then, we determine the lines Bl and El for the recursive

invocation of POPTA solving the problem size nl to the left
of B using p − r processors using the function, getBE (Line
19). We invoke POPTA to solve the problem size nl to the
left of B using p − r processors only if nl is not divisible by
p − r and the execution time of the point Bl given by El in
the recursive invocation is greater than the execution times
of the points beyond it (Line 21). This can be determined
using the sorted arrays, (X↑, S↑). Otherwise, the optimal
workload distribution is given by the pointBl for the recursive
invocation (Lines 32-34). If the memorized execution time
of the recursive invocation (tl) is less than or equal to El ,
then we use the memorized workload distribution and avoid
recursion (Line 26). Essentially, if a range of points have
already been examined, then they will not be re-examined due
to the memorization. For the recursive invocation solving the
problem size nl to the left ofP using p−r processors, the lines
B and E are set in Bl and El . El is either Lx or

Bl
s(Bl )

, whichever
is lesser. If Bl

s(Bl )
is less than Lx , then we don’t consider points

beyond Bl
s(Bl )

(i.e., greater than Bl
s(Bl )

but less than or equal to
Lx) because those points will have worse execution times.
That is, when POPTA is considering the points on a line Lx ,
this line will always be the limiting line for the recursive
invocations.

For a main step, if the execution time of the parallel exe-
cution (max(tr , tl)) is less than the topt , we save the improved
solution (Lines 37-39). For each problem size nl solved using
p − r processors, the ending index L, which contains the
range of points already examined, is saved (Line 44). So,
if an invocation for solving this problem size recurs, then
recursion is avoided using the memorized arrays (Line 26).
Therefore, this memorization ensures that the total number
of examined points (including those in the recursive invoca-
tions) for a point on a line Lx,∀x ∈ [1, q] is not more than
O(m× p2).

Let us trace the execution of the procedure for the only
point P on line L1. There are 3 main execution steps for this
point (for loop in Line 10). In the first step, one processor is
allocated the problem size nr = 19 to the right shown by point
P in Figure 9. POPTAKernel is now invoked to find the opti-
mal workload distribution for problem size nl = 45 and p −
r = 3 processors. The point Q1 shown in Figure 9 represents
x = n

p = 15 for this problem size in the recursive invocation
POPTAKernel(45, 3, 1,Q1,L1,X , S, ...). The lines B and E
for this recursive invocation are set toQ1 and L1 respectively.
In the second step, 2 processors are allocated the problem

FIGURE 9. POPTA example: One processor is allocated problem size 19 to
the right. POPTA is invoked for remaining problem size 45 and
3 remaining processors.

FIGURE 10. POPTA example: Two processors are allocated problem size
P = 19 each to the right. POPTAkernel is invoked to find optimal load
distribution for remaining problem size 26 and 2 remaining processors.

size nr = 19 to the right shown by point P in Figure 10.
POPTAKernel is now invoked to find the optimal workload
distribution for problem size nl = 26 and p − r = 2
processors. The point Q2 shown in Figure 10 represents x =
n
p = 26 for this problem size in the recursive invocation
POPTAKernel(26, 2, 1,Q2,L1,X , S, ...). The lines B and E
for this recursive invocation are set toQ2 and L1 respectively.
Similarly, for the third step, 3 processors are allocated the
problem size nr = 19 to the right shown by point P and
one processor is allocated the problem size nl = 7 to the
left shown by point Q3 in Figure 11. The best workload
distribution and execution time from the execution of these
three steps is saved in Dopt and topt .

After examining all the points on L1, POPTA considers
the points on Line L2. There is only one point P on this
line as shown in Figure 12. For this point, the points Q1,
Q2, andQ3 respectively represent the recursive POPTAkernel
invocations to the left of B for r = 1, r = 2, and r = 3.
So, in this manner, POPTA examines the points on lines L1,
L2, L3, and so on until the final line Lq (shown in Figure 13)
before (and excluding) E .
At the end of the execution of POPTA, the optimal work-

load distribution is returned in dOpt and the optimal execution
time is returned in eOpt .
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FIGURE 11. POPTA example: Three processors are allocated problem size
P = 19 each to the right. The only remaining processor is allocated
problem size Q3 = 7.

FIGURE 12. POPTA example: Point P on line L2 examined. The
corresponding allocations to the left are Q1, Q2, and Q3.

FIGURE 13. POPTA example: Point P on the final line Lq examined. The
corresponding allocations to the left are Q1, Q2, and Q3.

B. EOPTA: ALGORITHM SOLVING EOPT PROBLEM
The algorithm EOPTA solving EOPT has code structure sim-
ilar to POPTA (Algorithm 1). The inputs to EOPTA are size
of the workload, n, given as multiple of 1x, the number of
processors, p, the minimum granularity,1x, and the dynamic
energy function represented by two discrete sets, X and 9
respectively containing problem sizes and dynamic energy
consumptions. m is the cardinality of the sets X and 9.
The outputs are the optimal load distribution, Dopt , and the
optimal dynamic energy consumption, �opt . The number
of processors selected by EOPTA in the optimal workload

FIGURE 14. Convex points shown for a segment of dynamic energy
consumption graph of OpenBLAS DGEMM application.

distribution may be less than p. For example, if the dynamic
energy function is concave, then EOPTA may select just one
processor to execute the workload if the workload size lies in
the domain of the dynamic energy function.

Unlike POPTA, which examines a subset of points in the
speed function, EOPTA examines only the convex points in
the energy function (X , 9). A point Q is defined as convex if
9[IQ − k] + 9[IQ + k] > 2 × 9[IQ],∀k ∈ [1, 2 × IQ],
where IQ is the index of point Q. For example, Figure 14
shows these points in a segment of the energy function of
OpenBLAS DGEMM application.

Similar to POPTA, a 3D array, memorized , of size O(m×
p2) is used to memorize the points that have been examined
during the recursive invocations. While in POPTA, the space
of points considered on the right lies between B = n

p and E ,
the space of points in EOPTA are all the convex points in the
energy function. While POPTA solves a min-max problem,
EOPTA solves a min-sum problem.
The optimality and complexity proofs of POPTA and

EOPTA are presented in [18].

V. PARALEPH : PARALLEL DATA PARTITIONING
ALGORITHMS USING DYNAMIC PROGRAMMING
We examined the main loop in POPTA and EOPTA and
observed two crucial aspects that formed the motivation
for redesigning the algorithms using dynamic programming
approach. First, the sequential algorithms employ top-down
approach where they start evaluating points from x = n

p
onwards until x = m, which is the end point of discrete
speed/dynamic energy functions. Second, a 3D array, memo-
ized, is used to memorize the points that were visited already
during the recursive invocations. The top-down strategy and
memoization optimization guided us to design a solution
that used bottom-up approach with memoization to reuse
already saved work. Dynamic programming (DP) technique
manifested as the perfect fit.

Once we designed the basic building blocks of a dynamic
programming solution (recurrence relations, tabular compu-
tation, traceback), our next main objective was to transform
the main loop so that table cells in the DP technique can
be evaluated in parallel. To summarize, the loop containing
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recursive invocations in the sequential algorithms is care-
fully restructured to allow parallel computation of the loop
iterations.

We now present the parallel data partitioning algo-
rithm PARALEPH employing the dynamic programming
approach. The number of processors available for its exe-
cution is p, which is also the number of processors avail-
able for execution of the data-parallel application in which
PARALEPH is applied. We illustrate PARALEPH using
an implementation employing hierarchical two-level paral-
lelism. The first parallelism is intra-process using OpenMP
where each process executes t threads and the second paral-
lelism is inter-process using qMPI processes.

Algorithm 3 shows the implementation details of PAR-
ALEPH.

The inputs to PARALEPH are the type of minimization
problem represented by F where F = max represents POPT
and F =

∑
represents EOPT, size of the workload n

expressed as multiple of 1x, the number of available pro-
cessors p executing the data-parallel application, the number
of parallel processes q executing PARALEPH, the number
of threads per process t executing PARALEPH, a function
represented by two discrete sets, X and9, where X contains
problem sizes. When solving the POPT problem, the discrete
set 9 contains the execution times. For solving the EOPT
problem, the discrete set 9 contains the dynamic energy
consumptions. m is the cardinality of the sets X and 9. It is
assumed that the problem sizes in the discrete set X are
separated by constant granularity, 1x.
The outputs are the optimal workload distribution, Dopt ,

and the optimal execution time or total dynamic energy con-
sumption, �opt . The optimal number of processors selected
by PARALEPH in the optimal workload distribution may be
less than p.

All the inputs are assumed to be available only at process
0. The outputs are also only available at process 0 after
the termination of PARALEPH. There are two internal data
structures employed in PARALEPH, which are distributed
between the q processes. We assume p is divisible by q for the
clarity of exposition. The dynamic programming table dpt is
distributed between the q processes where each process stores
p
q columns of the table. The structure tb contains traceback
pointers, which allows to reconstruct the optimal workload
distribution once the tabular computation is completed. Each
cell contains two such pointers. Therefore, there are p

q × 2
pointers stored at each process.

Figures 15, 16 illustrate PARALEPH. Since PARALEPH
uses dynamic programming approach, it has three core com-
ponents: a). Recurrence relation, b). Tabular computation,
and c). Traceback.

The recurrence relations are as follows:

dpt(1, h) = �(1), ∀h ∈ [1, p]

dpt(v, 1) = �(v), ∀v ∈ [1,m]

dpt(v, 1) = ∞, ∀v ∈ [m+ 1,∞]

Algorithm 3 Parallel Algorithm Determining Optimal Dis-
tribution of Workload of Size n for Maximizing Perfor-
mance or Minimizing Dynamic Energy
1: procedure PARALEPH(F, n, p, q, t,X , 9,Dopt , �opt )

Input:
Objective to minimize, F ∈ {max,

∑
}

Workload size, n ∈ Z>0
Number of available processors, p ∈ Z>0
Number of parallel processes executing PARALEPH, q ∈
Z>0
Number of threads executed by each process executing
PARALEPH, t ∈ Z>0
Execution time or Energy function represented by two
sets (X , 9),
X = {x1, ..., xm}, x1 < ... < xm, xi ∈ Z>0,∀i ∈ [1,m]
9 = {�(x1), ..., �(xm)}, �(x) ∈ R>0

Output:
Optimal workload distribution,
Dopt = {x1opt , ..., x

p
opt }, x

i
opt ∈ Z>0,∀i ∈ [1, p]

Optimal execution time or dynamic energy consumption,
�opt ∈ R>0

2: if (p = 1) then return ({n}, 9[n]}) end if
3: me← MPI_Comm_rank(MPI_COMM_WORLD)
4: for h← 1, pq do
5: dpt(1, h)← 9[1]
6: end for
7: if me = 0 then
8: for v← 2,m do
9: dpt(v, 1)← 9[v]

10: end for
11: end if
12: #pragma omp parallel num_threads(t)
13: for L ← 4, n+ p do
14: ncells← getncells(n, p,L)
15: (dpt, tb)← computeL(

F , 9,me, n, p, q,m,L, ncells, dpt, tb)
16: end for
17: if me = 0 then
18: MPI_Recv(�opt , 1, , q− 1, ...)
19: end if
20: if me = (q− 1) then
21: MPI_Send(&dpt(n, pq ), 1, , 0, ...)
22: end if
23: Dopt ← Traceback(n, p, p, q, q− 1, tb)
24: return (Dopt , �opt )
25: end procedure

dpt(v, h) = min(F(dpt(I , 1), dpt(v− I , h− 1))),

F(dpt(v, h− 1)))

∀I ∈ [1,min(v− 1,m)]

where

F = max , for solving POPT

F =
∑

, for solving EOPT
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FIGURE 15. (a). The tabular computation in the dynamic programming approach in PARALEPH. The problem size n is a multiple of
granularity, which is considered here to be 1 for effective illustration. (b). The distribution of the columns of the dynamic
programming table amongst the processes, which are distinguished by colors. It is assumed that each process owns two columns
each. (c). The base conditions in the dynamic programming approach. The orange cells in the first row, dpt(1, h),∀h ∈ [1, p], are
initialized to 9[1]. The red cells in the first row, dpt(v, 1),∀v ∈ [1, n], are initialized to 9[v ],∀v ∈ [2, m]. Rest of the cells are
initialized to∞. (d). The anti-diagonals are L = 4, 5, ..., k, ..., n+ p− 2, n+ p− 1, n+ p. The cells are evaluated in the direction of
the minor anti-diagonals as shown by the red arrows. The anti-diagonals are evaluated sequentially in this direction. (e). All the
table cells in an anti-diagonal can be evaluated in parallel.

The relations are used to compute the values of cells
in the dynamic programming table, dpt , as shown in the
Figure 15(a). The table cell value dpt(v, h),∀v ∈ [1, n], h ∈
[1, p] contains the minimum execution time or total dynamic
energy consumption to solve the workload of size v using
h processors. At the end of execution of PARALEPH,
the table cell value dpt(n, p) contains the minimum execu-
tion time or total dynamic energy consumption to solve the
workload of size n using p processors.

The base initialization consists of computing the values of
the cells in the first row and first column as shown in the
Figure 15(c). The value of each table cell in an anti-diagonal
L ∈ [4, n + p] depends only on the cells above the diagonal
as shown in Figure 16(c). Hence these cells can be computed
independently and in parallel. The anti-diagonals, which start
from 4, are however executed sequentially. Consider the anti-
diagonal, L=4. There are three cells, {(3,1),(2,2),(1,3)}, that

need to be computed. Two cells {(3,1),(1,3)} have been com-
puted in the base initialization. The value of the remaining
cell, (2,2), depends only on the values of the cells above the
diagonal, which are {(1,1),(1,2),(2,1)}. It is computed by the
process highlighted in blue. For anti-diagonal L=5, there are
four cells, {(4,1),(3,2),(2,3),(1,4)}, out of which two cells
{(4,1),(1,4)} have been computed in the base initialization.
Two processes compute the values of the cells (3,2) and (2,3)
in parallel. Their values depend only on the values of the cells
above the diagonal (L=5). So, in this manner, all the cells in
the anti-diagonals L ∈ [4, n+ p] are computed.
We will now describe the pseudocode presented in the

algorithm 3. To simplify the description, we assume that
p is divisible by q. Line 2 deals with the simple case of
solving the problem size n using one processor. A process
identifies its rank, me, on Line 3. Lines 4-11 contain the base
conditions of the recurrence relations. The base condition,
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FIGURE 16. (a). All the table cells in the anti-diagonal lk are evaluated in parallel by q parallel processes. In the figure, each process
executes t = 2 threads and is responsible for computing 2 cells in an anti-diagonal. (b). The parallel processes are shown using
different colors. (c). The value of a cell in an anti-diagonal, for example: the brown cell, is determined purely based on the values in
the purple cells above the anti-diagonal. The arrow i < −− > j shows that cells i and j are compared and max or sum is computed.
(d). Communications between neighboring processes. For example: communications during the course of execution of PARALEPH
between processes represented by purple and brown cells are shown as blue arrows. For each of the iterations of L represented by
dotted red arrows, there is communication of only one cell between these two processes. (e). Traceback to reconstruct the optimal
workload distribution. In the example, workload size n = 12 is solved using p = 6 available processors. PARALEPH is executed using
q = 3, t = 2 configuration. The optimal workload distribution returned by PARALEPH is {2, 3, 3, 4}.

dpt(1, h),∀h ∈ [1, pq ], represents the objective function value
solving a workload of size 1 using h ∈ [1, pq ] processors.
These cells are shown in orange color in the Figure 16(b). The
base condition, dpt(v, 1),∀v ∈ [1, n], signifies the objective
function value solving a workload of size v ∈ [1, n] using 1
processor. These cells are shown in green color in the Fig-
ure 16(b). Since process 0 stores the first column, it initializes
the cells in the first column.

Line 13 starts the core loop of PARALEPH. For every
process t threads are created before this point (Line 12) and
reused during the execution ofPARALEPH. The loop variable
L = v+h goes from 4 until and including n+p. Each iteration
represents an anti-diagonal shown in the Figures 15,16 and
is computed using the routine, computeL (Algorithm 4). The
number of cells in an anti-diagonal L, ncells, are computed
using the routine, getncells (given in Appendix E-B). There
can only be a maximum of p cells in any anti-diagonal. The
routine, getmyncells, returns the number of cells, myncells,
in an anti-diagonal that is owned by the process me and
the number of cells, ncellsbeforeme, that precede the cells
belonging to process me.
Lines 4-12 (Algorithm 4) present the communications in

PARALEPH, which are illustrated in Figure 16(d). Just one

cell value is communicated between neighboring processes i
and j = i + 1 in each iteration of L. If the process me 6= 0
and it is computing a cell in its first dpt column given by the
condition (h − me × p

q = 1), it needs the values of the cells
in the dpt column preceding this column from neighboring
process me− 1. The buffer dptLeft stores/accumulates these
values with every increment of L. The index where to store
the neighboring cell value is given by the variable, leftcell.
Therefore, there is no need to communicate all the cells from
the process me− 1 except for the last cell value, dpt(myv, pq ).
If the process me 6= (q − 1) and is not the last process
owning a cell in the anti-diagonal L given by the condition
((ncellsbeforeme + myncells) < ncells), it sends the cell
value, dpt(myv, pq ), to neighboring process, me+ 1.
After the communications are completed, Line 13 (Algo-

rithm 4) starts the core computations, which is that all the cells
owned by a process, myncells, are computed independently
by its t threads using OpenMP pragma for.

The routine, computecell (Algorithm 6), computes the
table cell value dpt(v, h). When solving the POPT problem,
the F function is min operator. When solving the EOPT
problem, theF function is

∑
operator. The value of the table

cell, dpt(v, h) depends only on the cells above the diagonal,
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Algorithm 4 All Cells in the Minor Anti-Diagonal L are
Computed in Parallel
1: function computeL(F, 9,me,

n, p, q,m,L, ncells, dpt, tb)
2: start ← min(L − 2, n)
3: (myncells, ncellsbeforeme)← getmyncells(

me,L, start, ncells, p, q)
4: h← L − start + ncellsbeforeme
5: leftcell ← start − ncellsbeforeme
6: #pragma omp for{
7: if me 6= 0 and h 6= 2 and h− me× p

q = 1 then
8: MPI_Recv(&dptLeft[leftcell],

1, ,me− 1, ...);
9: end if

10: if me 6= q− 1 and
(ncellsbeforeme+ myncells) < ncells then

11: myv← start − myncells− ncellsbeforeme
12: MPI_Send(&dpt(myv, pq ), 1, ,me+ 1, ...)
13: end if
14: }

15: #pragma omp for
16: for c← 1,myncells do
17: v← start − ncellsbeforeme− c
18: h← L − start + ncellsbeforeme+ c
19: myh← h− me× p

q
20: (dpt(v,myh), tb(v,myh))←
21: computecell(F, 9,

me,m, v, h, dptLeft, dpt, tb)
22: end for
23: return (dpt,tb)
24: end function

{(I , 1), (v − I , h − 1)},∀I ∈ [1, v], (v, h − 1), as shown
in Figure 15(c). myh represents the column number that is
stored in a process. When myh = 1 and the process me is not
0, the array, dptLeft , contains the cells that have been received
by the processme from processme−1 before the computation
of the cell, dpt(v, h).

Lines 9-19 shows the invocation of binary operator F on
cells (I , 1) and (v− I ,myh− 1) as shown in the Figure 16(c).
For the computation of the cell dpt(v, h), there aremin(m, v−
1) evaluations of the operator F , where m is the cardinality
of the discrete sets representing the speed/energy functions.
Therefore, there are a maximum of m evaluations of the
operator F for the table cell dpt(n, p).
At the end of the execution of PARALEPH, the value in

the cell dpt(n, p) is sent by the process q − 1 to process
0. It contains the minimum execution time or total dynamic
energy consumption to solve the workload of size n using p
processors.

Once the tabular computation is completed, trace-
back of pointers as shown in Figure 16(e) is used to
reconstruct and return the optimal workload distribution.
Line 23, Algorithm 3, invokes the traceback routine. The
traceback algorithm is provided in Appendix E-D. In the

Figure 16(e), workload size n = 12 is solved using
q = 3 processes, each process executing t = 2 threads.
The optimal execution time for the table cell dpt(12, 6) is
composed from (dpt(4, 1), dpt(8, 5)). The optimal execu-
tion time for dpt(8, 5) is derived from (dpt(3, 1), dpt(5, 4)).
The optimal execution time for dpt(5, 4) is derived from
(dpt(3, 1), dpt(2, 3)). Finally, the optimal value for the table
cell dpt(2, 3) is composed from dpt(2, 1). Therefore, the opti-
mal workload distribution is {2, 3, 3, 4}.

A. OPTIMALITY PROOF OF PARALEPH
Proposition 5.1: Let 1x be the minimum granularity of

workload so that each processor is allocated a multiple of
1x only. Let the execution time function of a processor, 9,
be represented by a discrete set of experimental points sepa-
rated by 1x. Then PARALEPH solves the POPT problem.

Proof: The optimal workload distribution is a combina-
tion of cells in the first column, (v, 1),∀v ∈ [1,m].
Assume that the solution provided by PARALEPH has the

workload distribution, (k1, k2, ...ku), 9(k1) > 9(k2) > ... >

9(ku),
∑u

i=1(ki) = n. We need to show that this workload
distribution is optimal. That is, it gives the optimal execution
time, eu.

We demonstrate using proof by contradiction that a work-
load distribution, (l1, l2, ...lw), 9(l1) > 9(l2) > ... >

9(lw),w < u,
∑w

i=1(li) = n, which is assumed to give
execution time, eopt < eu, does not exist. We assume that
k1 6= l1, ..., kw 6= lw. From our hypothesis, we can assume
without any loss of generality, 9(l1) < 9(k1), 9(l2) <

9(k2), ..., 9(lw) < 9(kw).
Since 9(l1) < 9(k1), the workload distribution for (n −

k1, p−1), which is equal to (k2, ...ku), must have an execution
time dpt(n−k1, p−1) greater than the execution time, dpt(n−
l1, p−1), given by theworkload distribution, (l2, ...lw). This is
becausePARALEPH compares dpt(k1, 1) with dpt(n−k1, p−
1) and dpt(l1, 1) with dpt(n−l1, p−1) and picks theminimum
of the two maximums. Otherwise, it would have picked the
combination (l1, 1) and (n− l1, p− 1) instead.

Since 9(l2) < 9(k2), the workload distribution for (n −
k1−k2, p−2), which is equal to (k3, ...ku), must have an exe-
cution time dpt(n− k1− k2, p− 2) greater than the execution
time, dpt(n−l1−l2, p−2), given by theworkload distribution,
(l3, ...lw). Proceeding in this manner, we come to the case
where since 9(lw−1) < 9(kw−1), the workload distribution
for (n −

∑w−1
i=1 (ki), 1), which is equal to (kw, ..., ku), must

have an execution time dpt(n−
∑w−1

i=1 (ki), 1) greater than the
execution time, dpt(n−

∑w−1
i=1 (li), 1), given by the workload

distribution, (lw). It is however not possible that 9(kw−1) >
9(lw−1) and 9(kw) > 9(lw) since in this case PARALEPH
would have picked (lw−1, lw) instead of (kw−1, kw, ..., ku).

Since PARALEPH picked (kw−1, kw, ..., ku), the max-
imum of (kw−1, kw, ..., ku) must be less than the max-
imum of (lw−1, lw). This means that 9(kw−1) <

9(lw−1) or 9(kw−1) = 9(lw−1) and 9(kw) ≤ 9(lw).
The second condition is ruled out because of our assumptions.
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Working bottom-up now, 9(kw−2) < 9(lw−2) since other-
wise PARALEPH would select (lw−2, kw−1, ..., ku) instead of
(kw−2, kw−1, ..., ku). So, in this manner, we proceed to show
that 9(k1) < 9(l1) contradicting our hypothesis. �

The proof that PARALEPH solves EOPT follows on sim-
ilar lines.

B. COMPUTATIONAL COMPLEXITY OF PARALEPH
Proposition 5.2: The time complexity of PARALEPH is

O(m2
× p), where n is the workload size expressed as a mul-

tiple of granularity, p is the number of available processors in
the execution of PARALEPH, and m is the cardinality of the
discrete sets representing the speed/energy functions.

Proof: We will first compute the complexity of
computations.

The base initialization of the table dpt , which consists of
evaluation of first row and first column in the table, can be
accomplished in O(n+ p) arithmetic operations.
There are n+p−4 u O(n+p) anti-diagonals in the tabular

computation (Algorithm PARALEPH, Line 13). There can
only be amaximum of p cells in an anti-diagonal. The number
of cells increase from 1 to p and then decrease to 1 with
increasing anti-diagonal index. We are excluding the cells in
the first row and first column, which have been initialized.

All the cells in an anti-diagonal are computed in parallel
by p processors. The number of evaluations of operator F is
bounded by O(m) in the case of table cell dpt(n, p) (Algo-
rithm ComputeCell, Lines 9-19). So, the total complexity is
equal to O(n+ p)× O(m) ≈ O(m× (n+ p)).
The traceback of the pointers to reconstruct the optimal

data distribution can be accomplished in O(p) arithmetic
operations.

The total complexity of PARALEPH is equal toO(n+p)+
O(m× (n+ p))+ O(p) ≈ O(m× (n+ p)).

Since n u O(m × p) and O(m × p + p) u O(m × p),
the complexity of computations becomes O(m2

× p).
Since the communication complexity is bounded by

O(m2
× p), the time complexity is O(m2

× p). �
Let us estimate the cost of communications where we

assume PARALEPH is executed by q parallel processes (q >
1). Assume the cost of communication of a cell (a double
precision floating-point number) in the dpt table between two
processors is represented by α+β×8 using Hockney model
where α is the latency for every message and β is the recip-
rocal of network bandwidth. During the execution of PAR-
ALEPH, in a iteration of L, processme,∀me ∈ [0, q−2] sends
one element in its last local dpt column to the neighboring
processme+1. So, the total number of cells it sends is equal to
the number of elements in this column, which is n. Therefore,
the total cost of communications of sending these cells is
(α+β×8)×n. Since the total number of processes involved in
the communications is q− 1, the communication complexity
of PARALEPH is equal to (α+β×8)×n×(q−1) u O(n×q).
The communication complexity of PARALEPH is therefore
(α + β × 8) × (n × q). Since n u O(m × p) and q u O(p),
the complexity remains O(m2

× p).

The memory complexity of PARALEPH is O(n), where n
is the workload size expressed as a multiple of granularity.
The DP table dpt of size n × p is distributed between the
p processors where each processor stores one column of
the table. Each processor also stores two traceback pointers
per cell. Therefore, the memory complexity per processor is
just O(n).
Therefore, we can conclude that the potential speedup

delivered by the parallel algorithms is O(p), which is the case
for embarassingly-parallel algorithms.

C. INCORPORATION OF COST OF COMMUNICATIONS
We present how the cost of communications during the
execution of a data-parallel application employing our data
partitioning algorithm can be seamlessly integrated in PAR-
ALEPH.

The core idea is the use of analytical approach to esti-
mate the cost of communications. Rico-Gallego et al. [52]
formulate and implement this idea where they find the opti-
mal communication scheme without expensive testing on
the executing platform to estimate the communication cost
of different configurations of the application. They propose
and discuss an extension of the τ -Lop communication per-
formance model to cover heterogeneous architectures. So,
to summarize, there are now two performance models, which
are input to our data partitioning algorithm that optimizes
data-parallel application for performance. They are an exper-
imentally constructed computation performance model and
a communication performance model employing analytical
formulas. Energy models for communications is a open
research problem and hence we do not consider our data par-
titioning algorithm for energy optimization in this discussion.

As described already,PARALEPH usesDynamic Program-
ming technique (DP) where the execution time of computa-
tions for two cells (n1, p1) and (n2, p2) are compared in each
step of the algorithm, L, in the functionComputeCell to solve
a problem size (n1 + n2, p) where p1 + p2 <= p. To take
into account the cost of communications, we add a simple
extension to the function, ComputeCell, in the algorithm.

To simplify the exposition, we will consider paral-
lel matrix multiplication application employing SUMMA
algorithm [53]. We will use an analytical model (Hock-
ney) to parameterize the cost of communications, (Cn,p),
to solve a problem size n using p processors. The execu-
tion time of communications considering that SUMMA uses
scatter-allgather broadcast is estimated using the Hockney
model [54]. Scatter is implemented using a binomial tree
and allgather, a ring algorithm in which the data from each
processor are sent around a virtual ring of processors in p−1
steps.

C(n, p) = T commSUMMA(N/1024, p, b, α, β)

= (log2 p+ 2× (
√
p− 1))× α ×

N
b

+ 4× (1−
1
√
p
)× β ×

N 2

√
p
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where N = n×1024, b is the block size, α is the latency, and
β is the reciprocal of network bandwidth. α and β are prop-
erties of the communication network that are experimentally
obtained.

Therefore, when two cells, (n1, p1) and (n2, p2), are com-
pared, we compare the total execution times, which are
obtained by summing the time of computations (from the
functional performance model) and the cost of communica-
tions estimated from the analytical communication perfor-
mance model.

The computational complexity of PARALEPH remains the
same since the computation of the cost of communications
takes a constant number of arithmetic operations.

D. GUIDELINES FOR APPLICATION OF PARALEPH
In this section, we present a brief on how PARALEPH can be
applied practically. The optimal values of the two parameters,
(q, t), are typically found via experimentation. One important
constraint is, q × t ≤ p, to prevent over-subscription of
resources. If the data-parallel application is executed in one
node and employs p threads, PARALEPH can be executed by
q processes each executing t threads such that q × t ≤ p.
If q = 1, then only OpenMP is used in the execution of
PARALEPH and the cells in the anti-diagonals are divided
equally between the t threads using the OpenMP pragma
for. If t = 1, then PARALEPH can be executed using q
MPI processes (q ≤ p) where the columns of the dpt table
are divided equally between the q processes. It is however
recommended that PARALEPH be executed using p threads
where one thread is mapped to one core.

Consider a data-parallel application which is executed in a
cluster of p nodes and employs p processes where one process
is mapped to one node and each process employs t threads
where one thread is mapped to one core in a node. For such
an application, one can choose to execute PARALEPH using
either q = p processes where each process executes t = 1
thread or q processes where each process executes t threads
such that q× t = p.

E. APPLICATION DOMAINS FOR PARALEPH
In Appendix F, we provide examples of classes of applica-
tionswhere our data partitioning algorithms can be employed.
From our experience, there are multiple classes of appli-
cations that benefit from our data partitioning algorithms.
A dominant class contains applications where the speed of
an application is a function of problem size, which is defined
as a set of one, two or more parameters characterizing the
amount and layout of data stored and processed during the
execution of a computational task.

The research focus in this work is focused entirely on
traditional HPC and does not target data analytical or Big
Data applications such as MapReduce, Hadoop, Spark, etc.
We believe that MapReduce like applications are more appli-
cable to domains that are highly data-driven and not compute-
driven in the sense that the ratio of in-memory compute times
to the data processing times (due to specialized storage in

filesystems such as HDFS, etc) is low. Our research work,
however, is mainly directed towards scientific applications
with high in-memory computational complexity and, there-
fore, the most important concern is to reduce this complexity.

VI. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we demonstrate the practical cost of applying
PARALEPH in two data-parallel applications, OpenBLAS
DGEMM [15] and FFTW [17]. We also demonstrate the
tremendous speedups of the parallel algorithms over the
sequential algorithms. We conclude with theoretical analysis
ofPARALEPH using parallel matrix-matrix multiplication on
extreme-scale platforms.

A. EXPERIMENTAL ANALYSIS OF PARALEPH
We demonstrate the low runtime cost of PARALEPH using
experiments performed in the Grid’5000 platform hosted
in France (http://www.grid5000.fr). The platform contains
24 clusters distributed over 10 sites (nine in France and one
in Luxembourg), which includes 1006 nodes, 8014 cores.
We used the Graphene cluster in Nancy site for our experi-
ments. We used a total of 576 cores from 144 nodes. Each
node has a disk of 298 GB storage, 16 GB of memory,
and a quad-core Intel Xeon X3440 CPU. The nodes in the
cluster are interconnected via 20 Gb/s Infiniband. For the
MPI communications, OpenMPI-1.6.5 is used. gcc compiler
version used for compilation is 4.9.2.

Before we present the comparison of execution times of
the data-parallel applications and the data partitioning algo-
rithms, we present a brief on how the execution time and
energy functions are built since these are input to the data par-
titioning algorithms. The execution times of the algorithms do
not include the cost of building these functions since they are
assumed to be the inputs.

The execution time and the energy functions are built sep-
arately experimentally using an automated build procedure
using 144 parallel processes where one process is mapped
to one node. To make sure the experimental results are reli-
able, an experimental methodology described in detail in the
Appendix D is used. The inputs to the automation procedure
are the application and application parameters (problem size,
number of threads, etc), range of problem sizes, and granu-
larity. To obtain a data point for each function, the software
executes the application repeatedly until the sample mean
lies in the 95% confidence interval with precision of 0.025
(2.5%). For this purpose, we use Student’s t-test. The software
outputs a set of points, which represents the discrete function.
The total dynamic energy consumption during the application
execution is obtained using Watts Up Pro power meter.

The cardinality m of the discrete sets representing the
execution time and dynamic energy functions is chosen to
be 1024. So, the first 144 points are built experimentally in
parallel by the 144 parallel processes, the next 144 points
are built experimentally in parallel by the same processes
again, and so on. The granularity (1x), separating the points
in the functions, is 524288 representing DGEMM of a
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TABLE 4. Execution times of PARALEPH and DGEMM in seconds. PARALEPH solves POPT. p in first column. n
p in first row. n

p ∈ {8, 16, 32}. Each cell in the
table contains the execution time of the data-parallel application, the execution time of PARALEPH, the time of communications in PARALEPH, and the
speedup of PARALEPH over the sequential data-partitioning algorithms. ‘F’ indicates failure of the sequential algorithm.

TABLE 5. Execution times of PARALEPH and DGEMM in seconds. n
p ∈ {64, 128}. Each cell in the table contains the execution time of the data-parallel

application, the execution time of PARALEPH, the time of communications in PARALEPH, and the speedup of PARALEPH over the sequential
data-partitioning algorithms. ‘F’ indicates failure of the sequential algorithm.

512×512matrix and 2D FFT of 512×512. Lesser granularity
would unveil larger fluctuations but would also mean more
experimental points thereby increasing the time to build the
speed and energy functions. As the granularity increases,
the functional models become smooth and will resemble
those for uniprocessors therefore disallowing any opportunity
for optimization. We observed, however, that the variations
are drastic for this particular granularity compared to other
granularities. The execution times of building the FPMs in
parallel using the 144 nodes in Graphene in Grid’5000 for
OpenBLAS DGEMM and FFTW are 4900 seconds and
63 seconds.

The applications are executed for different values of p ∈
{2, 4, 16, 36, 64, 100, 144, 196, 256, 324, 400, 484,
576} and granularities (problem size per processor) n

p ∈

{8, 16, 32, 64, 128}. Although each node is oversubscribed
for values of p > 144, we show the results just to emphasize

that sequential algorithms fail for large values of n and p
due to high memoization cost while parallel algorithms do
not exhibit any performance degradation or failures. We do
not have out-of-core implementations for the sequential algo-
rithms to compare against parallel algorithms for such values
of n and p. This we hope to address in our future work.

The parallel matrix-matrix application is based on
SUMMA [53] and employs heterogeneous two-dimensional
block-cyclic distribution of matrices [53], [55]. In this appli-
cation, the square matrices A, B, and C of size (n × 1x) ×
(n×1x) are distributed over a two-dimensional arrangement
of processors, p1 × p2, p1 =

√
p, p2 =

p
p1
. The local

computations are performed using the DGEMM routine from
the optimized OpenBLAS2.18 library.
PARALEPH is executed on just one node for values of

p < 36. For larger values of p, it is executed using p
parallel processes each executing 1 OpenMP thread. We have
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TABLE 6. Execution times of PARALEPH and DGEMM in seconds. PARALEPH solves EOPT. n
p ∈ {8, 16, 32}. Each cell in the table contains the execution

time of the data-parallel application, the execution time of PARALEPH, the time of communications in PARALEPH, and the speedup of PARALEPH over
the sequential data-partitioning algorithms. ‘F’ indicates failure of the sequential algorithm.

TABLE 7. Execution times of PARALEPH and DGEMM in seconds. PARALEPH solves EOPT. n
p ∈ {64, 128}. Each cell in the table contains the execution time

of the data-parallel application, the execution time of PARALEPH, the time of communications in PARALEPH, and the speedup of PARALEPH over the
sequential data-partitioning algorithms. ‘F’ indicates failure of the sequential algorithm.

found this configuration of PARALEPH to be the optimal
(Appendix G). The sequential data-partitioning algorithms
(POPTA, EOPTA) are executed using one core in one single
node.

We verified experimentally that the optimal solutions
returned by the sequential and parallel data partitioning algo-
rithms (POPTA, EOPTA, PARALEPH ) are the same.

Tables 4, 5 and 6, 7 shows the execution times of
PARALEPH in DGEMM solving optimization problems for
performance and energy. Tables 8, 9 and 10, 11 shows the
execution times of PARALEPH in FFTW solving optimiza-
tion problems for performance and energy.

Each cell in the tables contains four values, (tapp,
tPARALEPH , tcomm, speedup), where tapp is the execu-
tion time of the data-parallel application, tPARALEPH is
the execution time of PARALEPH, tcomm is the time of
communications in PARALEPH, and speedup is the speedup

of PARALEPH over the sequential data-partitioning algo-
rithms (POPTA or EOPTA). The speedup is the ratio of
execution time of the sequential data-partitioning algorithm
over the execution time of PARALEPH.

We can conclude from the tables that the execution times of
PARALEPH are negligible compared to the execution times
of the applications. PARALEPH gives tremendous speedups
over the sequential algorithms. For large values of n and p,
the sequential algorithms fail due to their high memory cost
indicated by F in the tables.

B. THEORETICAL ANALYSIS OF PARALEPH FOR EXTREME
SCALE PLATFORMS
We consider the execution of parallel matrix-matrix multi-
plication application based on SUMMA [53] and employing
PARALEPH on a theoretical exascale platform published in
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TABLE 8. Execution times of PARALEPH and FFTW in seconds. PARALEPH solves POPT. n
p ∈ {8, 16, 32}. Each cell in the table contains the execution time

of the data-parallel application, the execution time of PARALEPH, the time of communications in PARALEPH, and the speedup of PARALEPH over the
sequential data-partitioning algorithms. ‘F’ indicates failure of the sequential algorithm.

TABLE 9. Execution times of PARALEPH and FFTW in seconds. PARALEPH solves POPT. n
p ∈ {64, 128}. Each cell in the table contains the execution time of

the data-parallel application, the execution time of PARALEPH, the time of communications in PARALEPH, and the speedup of PARALEPH over the
sequential data-partitioning algorithms. ‘F’ indicates failure of the sequential algorithm.

an exascale architecture roadmap [56]. The salient parameters
for the platform are shown in the Table 12.We do not consider
parallel fast Fourier transform application since we do not
have theoretical complexity of cost of communications for
it. This we would address in our future work.

In the parallel matrix multiplication application, the square
matrices A, B, and C of size N × N are distributed over
a two-dimensional grid of processors,

√
p ×
√
p, where

N = n × 1x. The block size is b. This algorithm has N
b

steps. In each step, the processors broadcast a pivot row of
matrix B and a pivot column of matrix A. We assume the
communications are serialized. We also assume no overlap
between computations and communications in the executions
of the application as well as PARALEPH.

We compare the execution times of the application and
PARALEPH for varying values of n

p . To simplify the expo-
sition, we assume that configuration used in the execution

of PARALEPH is (q, t) = (p, 1). We also assume that
the optimal workload distributions result in average per-
centage improvement of 25% in time of computations
(τ = 0.75). The execution time of the application considering
that SUMMA uses scatter-allgather broadcast is estimated as
shown below using the Hockney model [54]. Scatter is imple-
mented using a binomial tree and allgather, a ring algorithm in
which the data from each processor are sent around a virtual
ring of processors in p− 1 steps.

TSUMMA = T compSUMMA + T
comm
SUMMA (2a)

T compSUMMA =
2× N 3

p
×
τ

γ
(2b)

T commSUMMA = (log2 p+ 2× (
√
p− 1))× α ×

N
b

+ 4× (1−
1
√
p
)× β ×

N 2

√
p

(2c)

VOLUME 6, 2018 69095



R. R. Manumachu, A. Lastovetsky: Parallel Data Partitioning Algorithms for Optimization

TABLE 10. Execution times of PARALEPH and FFTW in seconds. PARALEPH solves EOPT. n
p ∈ {8, 16, 32}. Each cell in the table contains the execution time

of the data-parallel application, the execution time of PARALEPH, the time of communications in PARALEPH, and the speedup of PARALEPH over the
sequential data-partitioning algorithms. ‘F’ indicates failure of the sequential algorithm.

TABLE 11. Execution times of PARALEPH and FFTW in seconds. PARALEPH solves EOPT. n
p ∈ {64, 128}. Each cell in the table contains the execution time

of the data-parallel application, the execution time of PARALEPH, the time of communications in PARALEPH, and the speedup of PARALEPH over the
sequential data-partitioning algorithms. ‘F’ indicates failure of the sequential algorithm.

TABLE 12. Salient parameters of the forecasted exascale platform.

where N = n× 1024, α is the latency, and β is the reciprocal
of network bandwidth ( 1B = 0.01 ns).
The total execution time of PARALEPH is estimated to

be sum of total cost of computations and communications as
follows:

TPARALEPH = T compPARALEPH + T
comm
PARALEPH (3a)

T compPARALEPH = m× (n+ p)×
1
γ

(3b)

T commPARALEPH = (α + β × 8)× n× p (3c)

where n is a multiple of granularity, 1024 × 1024, and
m = 1024.
Table 13 shows that the execution time of PARALEPH is

negligible compared to the execution time of the application.
The percentage ratio of its execution time over the application
decreases as the granularity ( np ) increases.

VII. CONCLUSION
Self-adaptable data-parallel applications executing on mod-
ern extreme-scale multicore CPU platforms pose two
formidable challenges to data partitioning algorithms aiming
to minimize the execution time and energy of computations
in these applications.
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TABLE 13. Percentage ratio of execution times of PARALEPH and parallel
matrix-matrix application based on SUMMA and employing PARALEPH.

The first challenge arises from the new inherent complexi-
ties introduced in multicore platforms such as severe resource
contention and non-uniform memory access (NUMA) due
to tight integration of cores that contend for shared on-chip
resources such as Last Level Cache (LLC) and interconnect
(For example: Intel’s Quick Path Interconnect, AMD’s Hyper
Transport). The second challenge is that the runtime and
memory overheads of a data partitioning algorithm employed
in these applications must be insignificant compared to that
of the application.

The sequential data partitioning algorithms addressing the
first challenge have theoretical time complexity ofO(m2

×p2)
where m is the number of points in the discrete speed/energy
function and p is the number of available processors. Their
practical runtime and memory costs are high therefore ren-
dering them impracticable for employment in self-adaptable
applications executing on extreme-scale multicore platforms.

We presented in this work parallel data partitioning algo-
rithms that address both the challenges. Like the sequential
algorithms, they take as input the functional models of per-
formance and energy consumption against problem size and
output workload distributions, which are globally optimal
solutions. They have low time complexity of O(m2

× p)
thereby providing linear speedup of O(p) and low memory
complexity of O(n) where n is the workload size expressed
as a multiple of granularity. They employ dynamic program-
ming approach, which also facilitates easier integration of
performance and energy models of communications.

We experimentally demonstrated the low practical cost
of our algorithms for two data parallel applications, matrix
multiplication and fast Fourier transform, on homogeneous
extreme-scale multicore clusters. We show that the parallel
algorithms exhibit tremendous speedups over the sequential
algorithms. Using simulations based on a forecast exascale
platform, we show that the algorithms also have negligible
execution times for large values of n and p.
The software for the parallel algorithms can be downloaded

from the URL [1].

In our future work, we would try to develop extensions of
these algorithms for clusters of p heterogeneous processors.

APPENDIX A
SUPPLEMENTAL MATERIAL
The following materials supplement the main manuscript:
• Real-life use cases highlighting the importance of self-
adaptability.

• Why we use dynamic energy consumption in our prob-
lem formulations and algorithms.

• Experimental methodology followed to obtain speed and
energy functions presented in the main manuscript.

• Exposition of all the helper functions called in the par-
allel data partitioning algorithm, PARALEPH.

• Classes of applications where our data partitioning algo-
rithms can be applied.

• Experimental Results for PARALEPH solving POPT
and EOPT for DGEMM and FFTW for varying (q, t).

APPENDIX B
SELF-ADAPTABILITY IN HPC
Self-adaptability is an important feature and the need for
it arises not only due to the changing underlying exe-
cution environment but also due to the specific char-
acteristics/requirements of the application domains (for
example: adaptive mesh refinement, particle simulations,
transient dynamics calculations, etc), and autotuning soft-
wares. We furnish real-life use cases below:

1) Self-adaptability of the solver is vital in adap-
tive mesh refinement on clusters for solving large
computational fluid dynamics (CFD) and computa-
tional mechanics (CM) problems where the compu-
tational load varies throughout the evolution of the
solution. For example, solving for flow or stress
in different parts of the domain in a multiphysics
casting simulation. Williams [3] proposes parallel
mesh-distribution algorithms for a solution-adaptive
Laplace solver. Walshaw et al. [4] propose a parallel
method for the dynamic partitioning of unstructured
meshes. Arulananthan et al. [5] describe a method for
determining how frequently to partition in unstruc-
tured mesh computational mechanics applications.
Hendrickson and Devine [6] present qualities that a
good dynamic load balancer employed in dynamic
mesh partitioning must possess: a). It must distribute
the mesh between the processors at runtime so that
the computational load is evenly balanced and the
amount of interprocessor communication isminimized.
b). It must be fast so as to not dominate the computation
of the main solution method. Ideally, it should have
parallel capability and its memory usage must be mod-
est. c). It must minimize the cost of data redistribution
arising from dynamic partitioning. d). It must have a
neat abstraction and easy-to-use user interface.

2) Autotuning parallel softwares perform an empirical
search by generating numerous versions of a program
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at runtime, which are then executed to find the best
configuration of a program. A key building block that
enables them to prune and accomplish this search in
reasonable runtime is a fast data-partitioning algorithm
that is based on realistic computation and communica-
tion performance models. Chen et al. [7] describe their
LAPACK for clusters (LFC) software in their Self-
Adapting Numerical Software (SANS) system that
addresses both computational time and space com-
plexity issues in a manner as transparent to the user
as possible. Franchetti et al. [8] describe their pro-
gram generation system, which entirely autonomously
generates platform-tuned implementations of discrete
Fourier transform on multicores, IBM Cell, and GPUs.
HeteroScaLAPACK [9] is a linear algebra package
for heterogeneous clusters that determines the opti-
mal number and arrangement of processors to be used
during the execution of a linear algebra kernel. One
important reason how the mapping runtime in this soft-
ware accomplishes this task in a reasonable runtime is
the invocation of fast data partitioning algorithms that
are based on realistic computation and communication
performance models, which are efficiently constructed
at runtime. From our experience and reports of expert
HPC programmers, we can affirm that autotuning is
a necessary feature not only in dynamic environments
but even in dedicated environments where performance
and energy profiles of the applications can change for
different day-to-day runs with the same application
configuration.

3) Supercomputer administrators routinely report that
nodes closer to the hotter regions (hotspots) execute
codes slower than the nodes closer to the cooler regions
in the supercomputing centers due to variations in
the airflow caused by the layout of the cooling sys-
tems [10]. Thermal-aware workload scheduling tech-
niques [11]–[13] take into account these temperature
variations to optimize for performance and energy.
Therefore, static data partitioning strategies are not
ideally suitable to address this situation. Production
codes executed in the supercomputers still continue to
use static techniques mainly to avoid the enormous cost
and risk of bugs incurred by changing their codes to
employ dynamic load balancing.

4) Shared environments such as cloud computing systems
today are placing great emphasis in facilitating easier
migration and execution of HPC workloads by striv-
ing to remove impediments to this process. The lead-
ing objectives for optimization for the cloud service
providers are performance, energy consumption, cost,
and reliability. Self-adaptable applications employing
fast data partitioning algorithms for optimization of
their performance and energy evidently and directly
address the first two concerns. Atif and Strazdins [14]
present a framework that performs live migration of
jobs to improve the overall throughput and performance

Algorithm 5 Function Determining the Sample Mean of an
Experimental Run Using Student’s t-Test
1: procedureMeanUsingTtest(app,minReps,maxReps,

maxT , cl, eps,
repsOut, clOut, etimeOut, epsOut,mean)

Input:
The application to execute, app
The objective function to measure,
Objective, TIME or ENERGY
The minimum number of repetitions, minReps ∈ Z>0
The maximum number of repetitions, maxReps ∈ Z>0
The maximum time allowed for the application to run,
maxT ∈ R>0
The required confidence level, cl ∈ R>0
The required accuracy, eps ∈ R>0

Output:
The number of experimental runs actually made,
repsOut ∈ Z>0
The confidence level achieved, clOut ∈ R>0
The accuracy achieved, epsOut ∈ R>0
The elapsed time, etimeOut ∈ R>0
The mean, mean ∈ R>0

2: reps← 0; stop← 0; sum← 0; etime← 0
3: while (reps < maxReps) and (!stop) do
4: st ← measure(TIME)
5: start ← measure(Objective)
6: Execute(app)
7: end ← measure(Objective)
8: et ← measure(TIME)
9: reps← reps+ 1
10: etime← etime+ et − st
11: ObjArray[reps]← query(Objective)
12: sum← sum+ ObjArray[reps]
13: if reps > minReps then
14: clOut ← fabs(gsl_cdf_tdist_Pinv(cl, reps −

1))
× gsl_stats_sd(ObjArray, 1, reps)
/ sqrt(reps)

15: if clOut × reps
sum < eps then

16: stop← 1
17: end if
18: if etime > maxT then
19: stop← 1
20: end if
21: end if
22: end while
23: repsOut ← reps; epsOut ← clOut × reps

sum
24: etimeOut ← etime; mean← sum

reps
25: end procedure

of a cloud infrastructure. The core of this framework is
a lightweight runtime profiler, which constructs com-
putation and communication models at runtime at low
cost, to guide the migration decisions.
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Algorithm 6 The Cell (v, h) in the Anti-Diagonal L is Com-
puted
1: function computecell(F, 9,me,

m, p, v, h, dptLeft, dpt, tb)
2: myh← h− me× p

q
3: if myh = 1 and me 6= 0 then
4: dpt(v,myh)← dptLeft(v)
5: else
6: dpt(v,myh)← dpt(v,myh− 1)
7: end if
8: tb(v)← (v, h− 1)
9: for I ← 1,min(m, v− 1) do

10: if myh = 1 and me 6= 0 then
11: tmp← F(dpt(I , 1), dptLeft(v− I ))
12: else
13: tmp← F(dpt(I , 1), dpt(v− I ,myh− 1))
14: end if
15: if dpt(v,myh) > tmp then
16: dpt(v,myh)← tmp
17: tb(v)← ((I , 1), (v− I , h− 1))
18: end if
19: end for
20: return (dpt,tb)
21: end function

Algorithm 7 Get Number of Cells in a Minor Anti-
Diagonal L
1: function getncells(L, n, p, ncells)
2: n1← n− 1; n2← p− 1
3: max12← max(n1, n2); min12← min(n1, n2)
4: if (L − 3) ≤ max12 then
5: ncells← ncells+ 1
6: if ncells > min12 then
7: ncells← min12
8: else
9: ncells← ncells− 1

10: end if
11: end if
12: return ncells
13: end function

APPENDIX C
RATIONALE BEHIND USING DYNAMIC ENERGY
CONSUMPTION INSTEAD OF TOTAL ENERGY
CONSUMPTION
In this section, we describe the terms related to energy predic-
tive models used in this work. We also explain the rationale
behind using only the dynamic energy consumption in our
problem formulations and algorithms.

There are two types of power consumptions in a com-
ponent: dynamic power and static power. Dynamic power
consumption is caused by the switching activity in the compo-
nent’s circuits. Static power is the power consumed when the
component is not active or doing work. Static power is also
known as idle power or base power. From an application point

Algorithm 8 Get Number of Cells in a Minor Anti-Diagonal
L Belonging to Process me
1: function getmyncells(me,L, start, ncells, p, q)
2: myncells← 0; ncellsbeforeme← 0
3: for c← 1, ncells do
4: col ← L − start + v
5: if col < me× p

q then
6: ncellsbeforeme← ncellsbeforeme+ 1
7: end if
8: if col ≥ me× p

q and col < (me+ 1)× p
q then

9: myncells← myncells+ 1
10: end if
11: if col ≥ (me+ 1)× p

q then break end if
12: end for
13: if myncells = 0 then ncellsbeforeme← 0 end if
14: return (myncells,ncellsbeforeme)
15: end function

Algorithm 9 Get Number of Cells in a Minor Anti-Diagonal
L Belonging to Process me
1: function fillD(me, v, h, p, q, root, tb,Dopt )
2: if (v = 0)and(h = 0) then
3: ;
4: else if (v = 1)and(h = 1) then
5: if me = 0 then
6: Dopt (rec)← 1; rec← rec+ 1
7: end if
8: else if v = 1 then
9: if me = 0 then

10: Dopt (rec)← 1; rec← rec+ 1
11: Dopt (proc)← 0,∀proc ∈ [2, h]
12: end if
13: else
14: for r ← 0, q do
15: if (h ≥ r × p

q )and(h < (r + 1)× p
q ) then

16: root ← r ; break
17: end if
18: end for
19: Traceback(v, h, q, root, tb,Dopt )
20: end if
21: return (Dopt )
22: end function

of view, we define dynamic and static power consumption as
the power consumption of the whole system with and without
the given application execution. From the component point of
view, we define dynamic and static power consumption of the
component as the power consumption of the component with
and without the given application utilizing the component
during its execution.

We obtain the power consumption during the application
execution usingWatts Up Pro power meter.
There are two types of energy consumptions, static energy

and dynamic energy. We define the static energy consump-
tion as the energy consumption of the platform without the
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Algorithm 10 Traceback of Pointers to Reconstruct the Opti-
mal Distribution of Workload of Size n
1: procedure traceback(v, h, p, q, root, tb,Dopt )

Input:
The row index of the dpt cell, v ∈ Z>0
The column index of the dpt cell, h ∈ Z>0
Number of parallel processes executing PARALEPH, q ∈
Z>0
root, The root process owning the cell (v, h), root ∈ [1, q]
Traceback pointers array, tb

Output:
Optimal workload distribution,
Dopt = {x1opt , ..., x

p
opt }, x

i
opt ∈ Z>0,∀i ∈ [1, p]

2: me← MPI_Get_rank(MPI_COMM_WORLD)
3: if me = root then
4: myh← h− me× p

q
5: tbvh← tb(v− 1,myh)
6: end if
7: MPI_Bcast(tbvh, 4, , root, ...)
8: (n1, p1, n2, p2) ←

(tbvh[0], tbvh[1], tbvh[2], tbvh[3])
9: fillD(me, n1, p1, p, q, root, tb,Dopt )

10: fillD(me, n2, p2, p, q, root, tb,Dopt )
11: return (Dopt )
12: end procedure

given application execution. Dynamic energy consumption
is the difference between the total energy consumption of
the platform during the given application execution and the
static energy consumption. That is, if PS is the static power
consumption of the platform, ET is the total energy consump-
tion of the platform during the execution of an application,
which takes TE seconds, then the dynamic energy ED can be
calculated as,

ED = ET − (PS × TE ) (4)

We consider only the dynamic energy consumption
in our problem formulations and algorithms for reasons
below:

1) Static energy consumption is a hard constant (or a
inherent property) of a platform that can not be opti-
mized. That is, it does not depend on the application
configuration and will be the same for different appli-
cation configurations.

2) Although static energy consumption is a major con-
cern in embedded systems, it is becoming less com-
pared to the dynamic energy consumption due to
advancements in hardware architecture design in HPC
systems.

3) We target applications and platforms where dynamic
energy consumption is the dominating energy
dissipator.

4) Finally, we believe its inclusion can underestimate the
true worth of an optimization technique that minimizes

the dynamic energy consumption. We elucidate using
two examples from published results.
• In our first example, consider a model that reports
predicted and measured total energy consumption
of a system to be 16500J and 18000J. It would
report the prediction error to be 8.3%. If it is how-
ever known that the static energy consumption of
the system is 9000J, then the real prediction error
(based on dynamic energy consumptions only)
would be 16.6% instead.

• In our second example, consider two different
energy prediction models (MA and MB) with same
prediction errors of 5% for an application execu-
tion on two different machines (A andB) with same
total energy consumption of 10000J. One would
consider both the models to be equally accurate.
But supposing it is known that the dynamic energy
proportions for the machines are 30% and 60%.
Now, the true prediction errors (using dynamic
energy consumptions only) for the models would
be 16.6% and 8.3%. Therefore, the second model
MB should be considered more accurate than the
first.

APPENDIX D
EXPERIMENTAL METHODOLOGY TO BUILD THE
SPEED/PERFORMANCE AND ENERGY FUNCTIONS
To make sure our experimental results are reliable, we follow
the methodology described below:
• The server is fully reserved and dedicated to our exper-
iments during their execution. We also made certain
that there are no drastic fluctuations in the load due to
abnormal events in the server by monitoring its load
continuously for a week using the tool sar. We observed
insignificant variation in the load during this monitor-
ing period suggesting normal and clean behavior of the
server.

• An application is bound to the physical cores using the
numactl tool during its execution.

• To obtain a data point in the speed and energy function,
the application is repeatedly executed until the sample
mean lies in the 95% confidence interval with a precision
of 0.025 (2.5%). For this purpose, we use Student’s t-test
assuming that the individual observations are indepen-
dent and their population follows the normal distribu-
tion. We verify the validity of these assumptions using
Pearson’s chi-squared test.
The function MeanUsingTtest , shown in Algorithm 5,
describes this step. For each data point, the function is
invoked, which repeatedly executes the application app
until one of the following three conditions is satisfied:
1) The maximum number of repetitions (maxReps) is

exceeded (Line 3).
2) The sample mean falls in the confidence inter-

val (satisfying the precision of measurement eps)
(Lines 15-17).
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TABLE 14. Execution times of PARALEPH for DGEMM solving POPT for varying values of t in seconds. Each tuple in a cell contains the number of threads
used in the execution of PARALEPH, the execution time of PARALEPH, and the time of communications in PARALEPH.

3) The elapsed time of the repetitions of applica-
tion execution exceeds the maximum time allowed
(maxT in seconds) (Lines 18-20).

So, for each data point, the function MeanUsingTtest is
invoked and the sample meanmean is returned at the end
of invocation. The function Measure measures the exe-
cution time or the dynamic energy consumption using
the library [57] based on the input, TIME or ENERGY.
The input minimum and maximum number of repeti-
tions, minReps and maxReps, differ based on the prob-
lem size solved. For small problem sizes (32 ≤ n ≤
1024), these values are 10000 and 100000. For medium

problem sizes (1024 < n ≤ 5120), these values are
100 and 1000. For large problem sizes (n > 5120),
these values are 5 and 500. The values of maxT , cl, and
eps are 3600 seconds, 0.95, and 0.025. If the precision
of measurement is not achieved before the maximum
number of repeats is exceeded, we increase the num-
ber of repetitions and also the maximum elapsed time
allowed.

APPENDIX E
PARALEPH : PARALLEL DATA PARTITIONING
ALGORITHM USING DYNAMIC PROGRAMMING
Subroutines called in PARALEPH are presented here.
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TABLE 15. Execution times of PARALEPH for DGEMM solving EOPT for varying values of t in seconds.

A. COMPUTATION OF THE CELL (V , H) IN THE
ANTI-DIAGONAL L
The algorithm 6 computes the cell (v, h) in the anti-
diagonal L. This is a local routine.

B. NUMBER OF CELLS IN AN ANTI-DIAGONAL L
The algorithm 7 returns the number of cells in an anti-
diagonal L. This is a local routine.

C. NUMBER OF CELLS IN AN ANTI-DIAGONAL L OWNED
BY PROCESS ME
The algorithm 8 returns the number of cells, myncells, in an
anti-diagonal L belonging to process me and the number
of cells, ncellsbeforeme, that precede the cells belonging to

process me. The input ncells is the total number of cells in
an anti-diagonal that are distributed between the q processes.
This is also a local routine.

D. TRACEBACK
This section explains the recursive traceback algorithm 10.
All the parallel processes participate in the execution of this
routine. The traceback array entry for dpt cell, (v, h), contains
four values, (n1, p1, n2, p2) where v = n1 + n2, h = p1 + p2.

The process root owns the traceback entries for the table
cell (v, h). It broadcasts this cell to the other processes. The
processes owning (n1, p1) and (n2, p2) become roots for the
subsequent recursive broadcasts. The recursion terminates
when three conditions are met: a). The traceback values,
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TABLE 16. Execution times of PARALEPH for FFTW solving POPT for varying values of t in seconds.

n1 and n2, are zero. b). The traceback values, p1 and p2, are
both 1, and c). The traceback entries n1 and n2, are both 1.
The process 0 during the execution of this routine fills the

optimal workload distribution, Dopt , in the routine, fillD.

APPENDIX F
CLASSES OF APPLICATIONS WHERE PARALEPH CAN BE
EMPLOYED
From our experience, there are multiple classes of appli-
cations that benefit from our data partitioning algorithms.
A dominant class contains applications where the speed of an
application is a function of problem size, which is defined as a
set of one, two or more parameters characterizing the amount
and layout of data stored and processed during the execution
of a computational task. Some classes are the following:

• Data-parallel applications, which involve dense matrix
computations. For example: Matrix-vector multiplica-
tion, Matrix-matrix multiplication, QR decomposition,
LU decomposition, Cholesky decomposition, etc.

• Image and signal processing applications, which
involved a fast Fourier transform (FFT).

• Applications performing inexact matching of strings.
For example: the core algorithm in gene sequenc-
ing applications, Smith-Waterman, which computes the
alignment of two sequences. The speed here is a function
of problem size, which is represented by the lengths of
the two sequences.

• Dense or regular stencil kernels where the speed is
a function of the size of the dimensions representing
the computational domain of the stencil. For example:
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TABLE 17. Execution times of PARALEPH for FFTW solving EOPT for varying values of t in seconds.

consider the real-life scientific application, Multidi-
mensional Positive Definite Advection Transport Algo-
rithm (MPDATA). MPDATA is a core component of the
EULAG (Eulerian/semi-Lagrangian fluid solver) geo-
physical model [58], which is an established compu-
tational model developed for simulating thermo-fluid
flows across a wide range of scales and physical scenar-
ios. Here, the speed is a function of sizes of the dimen-
sions representing the computational domain, (l,m, n).

• We envisage use of our algorithms to speedup core
data analytical algorithms. They are enumerated below
and form active subjects in our current research
investigation.
– k-means and k-medoids, where the computational

complexity is O(N × k) and therefore speed is a

function of (N ,k), which are the number of obser-
vations and the number of clusters.

– Support Vector Machines (SVM), where the com-
putational complexity is O(m3

+m×N +N × p×
m) and therefore speed is a function of (N , p, m)
where (N , p, m) are the number of training cases,
the number of predictors, and the number of support
vectors.

– General splines whose computational complexity
is O(N 3) and therefore speed is a function of N ,
the number of observations.

– Finally, neural networks whose computational com-
plexity isO(N×p×M×L) where speed is a function
ofN observations, p predictors,M hidden units, and
L training epochs.
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APPENDIX G
EXPERIMENTAL RESULTS FOR PARALEPH FOR
VARYING (q, t )
Table 14 shows the results for PARALEPH solving POPT for
DGEMM for multiple configurations of (q, t). The parameter
t takes the values, {2,4,8} since each node has four phys-
ical cores and eight logical cores. For a given t , the val-
ues of q are set to p

t . Each cell in the table contains two
tuples. Each tuple is represented by (t, tPARALEPH , tcomm)
where t is the number of threads used in the execution of
tPARALEPH , tPARALEPH is the execution time of PARALEPH,
and tcomm is just the time of communications in PARALEPH.
For the value of t = 8, we can see that there is seri-
ous performance degradation. While the configuration (q, 4)
performs better than (q, 2), the optimal configuration is
(q, t) = (p, 1).
Table 15 shows the results for PARALEPH solving EOPT

for DGEMM for different configurations of (q, t). Table 16
shows the results for PARALEPH solving POPT for FFTW
for different configurations of (q, t). Table 17 shows the
results for PARALEPH solving EOPT for FFTW for different
configurations of (q, t).
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