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ABSTRACT Night vision technology is becoming ever-more widely used in military and civil fields, and it
will be more accurate for target detection and recognition through color fusion of infrared and low light level
images. Since the classic Waxman fusion model-only simulates the rattlesnake’s IR-depressed Visual Cell
and the target in fusion image is not obvious, a novel fusion model is proposed in this paper. We enhance
the edge information through the ON neural network for the infrared and low light-level images and then
establish a mathematical model to process the rattlesnake’s ‘‘enhanced cells’’ and ‘‘depressed cells’’. Next,
we input the ON-central receptive field for fusion and RGB spatial mapping, which can fully realize the union
function of the ‘‘enhanced cells’’ and ‘‘depressed cells’’. Finally, we conduct comparative experiments and
image quality evaluation with the classical Waxman fusion model. The results show that image targets are
more obvious obtained by our algorithm and increased by an average of 51.97%, 4.07%, and 7.62% than
Waxman algorithm in terms of color, mutual information, and structural similarity, respectively. It turned
out that our fusion images are richer in color than the Waxman fusion images, which contain more source
image information, and more similar to the source image structure.

INDEX TERMS Infrared image, low light level image, color fusion, bionic, bimodal cell.

I. INTRODUCTION
Night vision technology was proposed by the US Department
of Defense in the 1930s and is mainly used for military
activities. However, it is gradually being applied more in
the civilian field along with the continuous development and
improvement of night vision technology. There are some
of the most common applications, such as night driving or
flying, night safety monitoring, wildlife observation, sleep
laboratory monitoring and search and rescue, etc.

The color night vision technology, which can utilize a vari-
ety of sensor image information of multi-spectral night vision
systems (infrared and low light level image) to form a unified
color night vision image. In the color night vision technol-
ogy, the target and the background can be recognized not
only by the brightness but also by the chromatic aberration,
which help to improve the image quality of the night vision
system, the response speed of the observer and the ability of
target recognition, and it also enhance the performance of the
night vision system greatly. Therefore, it is of great practical

significance to carry out a series of research on color fusion
methods of infrared and LLL (low light level) images.

In 2000, Allen M. Waxman and David A. Fay of the MIT
obtained natural color fusion images based on Opponent
Receptive Field Theory by simulating the two-channel visual
characteristics of the rattlesnake to fuse infrared and LLL
images.

In 1996, Alexander Toet of the Netherlands Organization
for Applied Scientific Research developed a TNOmethod [3]
by using the unique and common features of infrared and
LLL images for fusion. In 2003, Toet [4] used Reinhard color
transfer algorithm to color remapping the image obtained by
TNOmethod. In 2008, Toet and Hogervorst [5], [6] proposed
to use the look-up table method to carry out the color fusion
method of infrared and LLL images, whereas it needs much
more prior information and limits its usage in night vision.
In 2010, Li et al. [7] obtained a better fusion image by
using color space YCbCr instead of color transfer lαβ and
greatly reduced the complexity of the Toet color transfer
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fusion algorithm. In 2012, Qian et al. [8] proposed a fast color
fusion method for local color transfer. In 2016, Qu et al. [9]
used the GIST (Generalized Search Trees) feature of infrared
and LLL images to classify the scenes, and then selected the
appropriate color reference images from the image library for
color transfer. In 2017, Lu et al. [10] proposed amethod based
on scene parsing to select the appropriate color reference
image for color transfer.

It can be seen that the current infrared and LLL color fusion
algorithm mainly focus on the Waxman fusion method and
the color transfer method. However, the color transfer algo-
rithm relies too much on the reference image, and the algo-
rithm is complicated and difficult to implement. Although
the Waxman fusion method can obtain a more natural color
image, the target is difficult to recognize. In this paper,
we propose a new bionic algorithm for color fusion based on
rattlesnake bimodal cells.

The main structure of the article is as follows: In section 2,
we first introduce the concentric circle opponent receptive
field and the rattlesnake bimodal cells, Secondly, we analyze
the process of Waxman fusion method in detail and point out
the defects of Waxman method. In section 3, we first conduct
the mathematical modeling and simulation of the rattlesnake
bimodal cells, and then propose a new bionic algorithm for
color fusion. In section 4, we evaluate the fusion results
obtained by our method and Waxman method.

II. WAXMAN COLOR FUSION ALGORITHM
Waxman et al. were inspired by the rattlesnake. They used
the concentric circle opponent receptive field to fuse infrared
and LLL images. Although the natural color image could be
obtained, the target was not prominent.

A. RECEPTIVE FIELD MATHEMATICAL MODEL
Physiological vision studies show that the spatial distribution
of the retinal receptive field is a concentric circular oppo-
nent receptive field model, which can be divided into two
systems: ON-center/OFF-surround system and OFF-center/
ON-surround system. The two receptive field models are
shown in Fig. 1, where the ‘‘+’’ represents the excitatory
receptive field and the ‘‘−’’ represents the inhibitory recep-
tive field.

FIGURE 1. ON-Center Receptive Field (left) and OFF-Center Receptive
Field (right).

The passive membrane equation is a kinetic description
of the center-surround antagonistic domain and is primar-
ily used to simulate electrophysiological cell membrane
ion exchange, originally proposed by A.L. Hodgkin and
A.F. Huxley. The most widely used method is the passive
membrane dynamics equation established by Grossberg for
concentric circles to antagonize structural receptive fields.

The derivation process of the ON-center type receptive field
passive membrane dynamic equation is as follows.

In general, each population contains both excitatory and
sleeping subpopulations of cells, and the two kind of cells are
convertible at any time. The excitable sites cells generate a
pulse frequency, and the sleeping state cells do not generate
a pulse frequency. Let x(t) be the number of pulse frequency
generated by all cells at time t . Three effects determine the
passive membrane dynamics equation:

1) Spontaneous Decay Activity of Cells
Active sites become inactive at a fixed rate. Assuming that

the rate is A, then the spontaneous decay pulse of the cell at
time t is A[x(t)−D]. Where A is a constant andD is the basal
cell activity.

2) Inhibition Activity of Excitatory Cells
The frequency at which excitatory cells release pulse is

depressed by a randomly distributed inhibition signal S(t),
and the intensity is proportional to [F + x(t)]S(t). Where
S(t) is an externally inhibition signal, and F is a polarization
constant.

3) Triggered Activity of Sleeping Cells
The sleeping cells are activated by a randomly distributed

excitation signal C(t), which becomes an excited state and
begins to release pulse, and the intensity is proportional to
[E − x(t)]C(t). Where C(t) is the external excitation signal,
and E is a polarization constant.

The passivemembrane dynamics equation is obtained from
the above three factors:
d
dt
x = −A[x(t)−D]+[E−x(t)]C(t)−[F+x(t)]S(t) (1)

When the equation is balanced, there are:

x =
AD+ EC(t)− FS(t)
A+ C(t)+ S(t)

(2)

Therefore, the ON-center receptive field equation [11] is:

xi,j =
[
AD+ ECi,j − FSi,j
A+ Ci,j + Si,j

]+
(3)

The OFF-center receptive field equation [11] is:

x̃i,j =

[
AD̃+ ESi,j − FCi,j
A+ Ci,j + Si,j

]+
(4)

Where i, j is the pixel coordinate and A is the attenuation
constant and D, D̃ are the basal activity of cells, E and F
are polarization constants. []+ represents the rectifier, that
is [x]+ = max(x, 0). Center area of receptive field Ci,j and
surrounding area of receptive field Si,j are:

Ci,j = I ci,j
∗Gc(m, n)=

1√
2πσ 2

c

∑
m,n

I ci−m,j−n exp(−
m2
+n2

2σ 2
c

)

(5)

Si,j = I si,j
∗Gs(p, q)=

1√
2πσ 2

s

∑
p,q

I si−p,j−q exp(−
p2+q2

2σ 2
s

)

(6)
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Among them, I ci,j and I si,j are the input images of the
central area Ci,j and the surrounding area Si,j respectively.
Gc(m, n) and Gs(p, q) are the Gaussian distribution functions
of the central area and the surrounding area respectively.
The Gaussian function widths are σc, σs respectively, and the
Gaussian template sizes are m× n and p× q respectively.

B. RATTLESNAKE BIMODAL CELL
The IR-depressed Visual Cell, Visual-depressed IR Cell,
IR-enhanced Visual Cell and Visual-enhanced IR Cell of the
bimodal cells in the rattlesnake optic tectum can fuse the
infrared stimulation signal and the visible light stimulation
signal to form the dual vision perceptual system of the rat-
tlesnake [12].

1) ‘‘Depressed cells’’: responds only to one modal signal
and does not respond when stimulated only by another
model signal. However, the neuronal cell response will
be inhibited and significantly weakened when neuronal
cells are co-stimulated by two kinds of modal signals.
‘‘Depressed cells’’ are composed of two kinds of cells,
namely ‘‘Visual-depressed IRCell’’ and ‘‘IR-depressed
Visual Cell’’.

2) ‘‘Enhanced cells’’: respond only to one modal signal
and does not respond when stimulated only by another
modal signal. However, the neuronal cell response
will be enhanced and become significantly stronger
when neuronal cells are co-stimulated by two modal
signals. ‘‘Enhanced cells’’ are also composed of two
types of cells, namely ‘‘Visual-enhanced IR Cell’’ and
‘‘IR-enhanced Visual Cell’’.

C. WAXMAN FUSION STRUCTURE
The Waxman fusion structure is shown in Fig. 2. In the first
stage of the algorithm, they use the ON system to enhance
the edge information of the infrared and LLL image and then
obtain the ON_IR and ON_LLL image. And then use the
OFF system to enhance the edge information of the infrared
image, darken the bright area and brighten the dark area to
get the OFF_IR image. In the second stage, ON_LLL and
ON_IR are fed into the excitatory and inhibitory center of the
ON-center receptive field respectively, and then the fusion
signal +LLL − IR is obtained to simulate the IR-depressed

FIGURE 2. Waxman fusion structure.

Visual Cell. Then ON_LLL and OFF_IR are fed into the
excitatory and inhibitory center of the ON-center receptive
field respectively, and then the fusion signal +LLL + IR
is obtained to simulate the IR-enhanced Visual Cell. In the
third stage, the three signals +LLL + IR, ON_LLL, and
+LLL−IR are mapped to the R,G, and B three color channels
respectively to generate a color fusion image.

Since the OFF_IR only darkens the original infrared sig-
nal at the bright place and brightens the dark place, it is
still a signal that is always greater than or equal to zero,
so the enhanced signal +LLL + IR which obtained by feed-
ing ON_LLL into the excitatory center and OFF_IR into
the inhibitory center is still the depressed signal. Therefore,
the Waxman fusion method only simulated the IR-depressed
Visual Cell of the rattlesnake, and the rest of them are not
simulated, so the ‘‘integrity’’ of the rattlesnake bimodal cells
cannot be reflected. And also the fusion image obtained by
Waxman method is not obvious.

III. PROPOSED COLOR FUSION ALGORITHM
In view of the defects of the Waxman method, this section
builds amodel based on the ‘‘depressed cells’’ and ‘‘enhanced
cells’’ of the rattlesnake and proposes a new color fusion
method.

A. MATHEMATICAL MODEL OF RATTLESNAKE
BIMODAL CELL
There are two kinds of rattlesnake bimodal cell: depressed
and enhanced cell. In this paper, mathematical modeling is
carried out respectively.

1) DEPRESSED CELLS
The Waxman fusion method shows that the passive mem-
brane equation of the ON-central receptive field can be used
to simulate ‘‘depressed cells.’’

fA→B− (i, j) =
[
AD+ ECi,j − FSi,j
A+ Ci,j + Si,j

]+
(7)

Where fA→B− means that the signal A depressed the signal B.
The Ci,j and Si,j are:

Ci,j = fB∗Gc(m, n) =
1√
2πσ 2

c

∑
m,n

fB exp(−
m2
+ n2

2σ 2
c

) (8)

Si,j = fA∗Gs(p, q) =
1√
2πσ 2

s

∑
p,q

fA exp(−
p2 + q2

2σ 2
s

) (9)

Where the fA and fB represent the signal A and B respectively.
Fig. 3 is a waveform diagram of input signal 1 and 2,

the waveforms of ‘‘Depressed cells’’ are only stimulated by
signal 1, ‘‘Depressed cells’’ are only stimulated by signal 2,
and ‘‘Depressed cells’’ are co-stimulated by signal 1 and 2 are
shown in Fig. 4.

As can be seen from Fig. 4, when ‘‘Depressed cells’’
are only stimulated by signal 1, the mathematical model
of ‘‘Depressed cells’’ has corresponding output signal;
when ‘‘Depressed cells’’ are only stimulated by signal 2,

VOLUME 6, 2018 68983



Z. Zhang et al.: Bionic Algorithm for Color Fusion of Infrared and Low Light-Level Image

FIGURE 3. Input signal waveform. (a) Input signal 1, (b) Input signal 2.

FIGURE 4. Response waveform of Depressed cells. (a) Stimulated by signal 1 only, (b) Stimulated by signal 2 only, (c) Co-stimulated by
signal 1 and 2.

the output signal of ‘‘Depressed cells’’ mathematical model
is 0; when ‘‘Depressed cells’’ are co-stimulated by sig-
nal 1 and 2, the mathematical model of ‘‘Depressed cells’’ has
corresponding output signal, and the larger input signal 2 is,
the smaller output signal is, which means that the signal 2 has
a restraining effect on the signal 1. This characteristic accords
with the rattlesnake’s ‘‘Depressed cells’’ biological model.

2) ENHANCED CELLS
Similarly, assuming that x(t) is the number of active sites
at time t , the mathematical model of ‘‘enhanced cells’’ is
determined by three factors:

1) Spontaneous Decay Activity of Cells
Active sites become inactive at a fixed rate. Assuming that

the rate is A, then the spontaneous decay pulse of the cell at
time t is A[x(t)−D]. Where A is a constant andD is the basal
cell activity.

2) Enhancement Activity of Excitatory Cells
The frequency at which excitatory cells release pulse is

enhanced by a randomly distributed enhancement signal S(t),
and the intensity is proportional to [F + x(t)]S(t). Where
S(t) is an externally enhanced signal, and F is a polarization
constant.

3) Triggered Activity of Sleeping Cells
The sleeping cells are activated by a randomly distributed

excitation signal C(t), which becomes an excited state and
begins to release pulse, and the intensity is proportional to
[E − x(t)]C(t). Where C(t) is the external excitation signal,
and E is a polarization constant.

The mathematical model of ‘‘enhanced cells’’ is obtained
from the above three factors:
d
dt
x = −A[x(t)− D]+ [E − x(t)]C(t)+ [F + x(t)]S(t)

(10)

When the system is balanced, the equation is:

x =
AD+ EC(t)+ FS(t)
A+ C(t)− S(t)

(11)

Therefore, the mathematical model of ‘‘enhanced cells’’ is
shown in (12).

fA→B+ (i, j)

=


[
AD+ ECi,j + FSi,j
A+ Ci,j − Si,j

]+
, signal A exists

0, signal A does not exist
(12)
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FIGURE 5. Response waveform of Enhanced cells. (a) Stimulated by signal 1 only, (b) Stimulated by signal 2 only, (c) Co-stimulated by
signal 1 and 2.

Where fA→B+ means that the signal A enhanced the signal B.
The Ci,j and Si,j are:

Ci,j = fB∗Gc(m, n) =
1√
2πσ 2

c

∑
m,n

fB exp(−
m2
+n2

2σ 2
c

) (13)

Si,j = fA∗Gs(p, q) =
1√
2πσ 2

s

∑
p,q

fA exp(−
p2+q2

2σ 2
s

) (14)

Where the fA and fB represent the signal A and B respectively.
Fig. 3 is a waveform diagram of input signal 1 and 2,

the waveforms of ‘‘Enhanced cells’’ are only stimulated by
signal 1, ‘‘Enhanced cells’’ are only stimulated by signal 2,
and ‘‘Enhanced cells’’ are co-stimulated by signal 1 and 2 are
shown in Fig. 5.

As can be seen from Fig. 5, when ‘‘Enhanced cells’’
are only stimulated by signal 1, the mathematical model of
‘‘Enhanced cells’’ has corresponding output signal; when
‘‘Enhanced cells’’ are only stimulated by signal 2, the output
signal of ‘‘Enhanced cells’’ mathematical model is 0; when
‘‘Enhanced cells’’ are co-stimulated by signal 1 and 2, the
mathematical model of ‘‘Enhanced cells’’ has corresponding
output signal, and the larger input signal 2 is, the larger output
signal is, which means that the signal 2 has an enhancement
effect on the signal 1. This characteristic accords with the
rattlesnake’s ‘‘Enhanced cells’’ biological model.

B. THE FUSION STRUCTURE OF PROPOSED ALGORITHM
The ‘‘Enhanced cells’’ model and the ‘‘Depressed cells’’
model (ON-central receptive field) are shown in Fig. 6.

FIGURE 6. ‘‘Enhanced cells’’ model (left) and ‘‘Depressed cells’’
model (right).

The color fusion algorithm proposed in this paper has
the following four stages: enhancement stage of edge infor-
mation of the ON neural network, processing stage of the
rattlesnake’s ‘‘enhanced cells’’ and ‘‘depressed cells’’, fusion

stage of the ON neural network, and the RGB spatial map-
ping stage. The color fusion structure proposed in this paper
is shown in Fig. 7.

FIGURE 7. Color fusion structure.

The first stage of the algorithm—enhancement stage of
edge information of the ON neural network—is the same
as the Waxman fusion method. Both of them use the ON
neural network to enhance the edge information of infrared
and LLL images and obtain the ON_IR and ON_LLL image.

The second stage is the processing stage of the rat-
tlesnake’s ‘‘enhanced cells’’ and ‘‘depressed cells’’. At this
stage, we feed ON_IR and ON_LLL into the central exci-
tatory and surrounding enhanced region of the ‘‘enhanced
cells’’ respectively to imitate the response of Visual-enhanced
IR Cell and obtain the LLL enhanced infrared image
LLL → IR+. We feed ON_IR and ON_LLL into the
central excitatory and surrounding inhibitory region of the
‘‘depressed cells’’ respectively to imitate the response of
Visual-depressed IR Cell and obtain the LLL depressed
infrared image LLL → IR−. We feed ON_LLL and ON_IR
into the central excitatory and surrounding enhanced region
of the ‘‘enhanced cell’’ respectively to imitate the response
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of IR-enhanced Visual Cell and obtain the infrared enhanced
LLL image IR → LLL+. Finally, we feed ON_LLL and
ON_IR into the central excitatory and surrounding depressed
region of the ‘‘depressed cell’’ respectively to imitate the
response of IR-depressed Visual Cell and obtain the infrared
depressed LLL image IR→ LLL−.

The third stage is the Fusion stage. We feed the LLL
enhanced infrared image LLL → IR+ and the LLL depressed
infrared image LLL → IR− into the excitatory and inhibitory
area of the ON neural network respectively to obtain the
fusion image (IR ↑ +LLL) − (IR ↓ −LLL) = +IR +
LLL. In the same way, we feed the infrared enhanced LLL
image IR → LLL+ and the infrared depressed LLL image
IR → LLL− into the excitatory and inhibitory area of the
ON neural network respectively and get the fusion image
(LLL ↑ +IR)− (LLL ↓ −IR) = +LLL + IR.

The fourth stage is the RGB spatial mapping stage, which
maps the signals +LLL + IR, ON_LLL, and +IR + LLL to
the R, G, and B color channels respectively and then generate
a color fusion image.

IV. EXPERIMENT AND ANALYSIS
In this section, five groups of infrared and LLL images are
used for simulation experiments. The following figures show
original images and fusion images using theWaxman method
and our algorithm respectively. We choose five images of the
TNO Multiband Image Collection [13], including Sandpath,
Nato camp, House, Soldier behind smoke, and Kaptein 1123.

It can be seen from Fig. 8 to Fig. 12 that fusion images
obtained by our algorithm have more highlighted targets and
richer color, whereas the target in the fusion images obtained
by the Waxman method is difficult to identify under a com-

FIGURE 8. Sandpath. (a) Original IR image, (b) Original LLL image, (c) Fusion image of Waxman method, (d) Fusion image of our method.

FIGURE 9. Nato camp. (a) Original IR image, (b) Original LLL image, (c) Fusion image of Waxman method, (d) Fusion image of our method.

FIGURE 10. House. (a) Original IR image, (b) Original LLL image, (c) Fusion image of Waxman method, (d) Fusion image of our method.
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FIGURE 11. Soldier behind smoke. (a) Original IR image, (b) Original LLL image, (c) Fusion image of Waxman method, (d) Fusion image of our method.

FIGURE 12. Kaptein 1123. (a) Original IR image, (b) Original LLL image, (c) Fusion image of Waxman method, (d) Fusion image of our method.

TABLE 1. The evaluation results of two color fusion images.

plicated environmental condition. For instance, the target is
disappeared in the jungle or smoke.

We evaluate the experimental results objectively in two
aspects. One is the contrast between two color fusion images;
the other is the contrast between the color fusion images and
the original grayscale images.

A. COMPARISON AND EVALUATION AMONG COLOR
FUSION IMAGES
The fusion image of Waxman method and our method both
are three-channel images, which can be directly compared.
Therefore, this paper evaluates the gray standard deviation,
information entropy, average gradient, and colorfulness [14]
of two color fused images. The results are shown in Table 1.

It can be seen from the table that the two algorithms in
terms of gray standard deviation, information entropy and
average gradient are almost the same. As for the colorfulness,
however, the fusion image of our algorithm is higher than the
Waxman algorithm by 41.10%, 57.91%, 51.52%, 49.24% and
60.07% respectively in five different scenes. These results
indicating that the fusion image of our algorithm has better

color performance, which can display more kinds of colors
and more information.

B. COMPARISON AND EVALUATION BETWEEN COLOR
FUSION IMAGES AND ORIGINAL GRAYSCALE IMAGES
Since the color image is a three-channel image and the orig-
inal grayscale image is a single-channel image, it cannot be
evaluated directly. Therefore, we convert the color of RGB
space into color of YIQ space, which is similar to human
perception, and compare the luminance channel Y of the
fusion images with the original gray images by using the
evaluation methods of mutual information [15] and SSIM
(structural similarity index) [16]. The results are shown in
Table 2.

It can be seen from the table that the mutual information
between the fusion images obtained by our algorithm and the
original images is 3.29%, 5.28%, 3.28%, 4.30% and 4.17%
higher than that obtained by the Waxman algorithm. The
SSIM between the fusion images obtained by our algorithm
and the original images is 9.44%,7.93%,7.39%,6.65% and
6.71% higher than that obtained by the Waxman algorithm.
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TABLE 2. The evaluations between color fusion images and original grayscale images.

The fusion image obtained by our algorithm, whether in
the value of mutual information or SSIM, always performs
better than the fusion image obtained by Waxman method.
It is shown that the fusion images obtained by our algorithm
contain more information about original infrared and LLL
images and their structures are more similar.

V. CONCLUSION
Based on the classical Waxman fusion model, we researched
on the visual mechanism of rattlesnake and propose a new
bionic algorithm for color fusion of Infrared and LLL image.
In this paper, we compare our algorithm with the classi-
cal Waxman algorithm, and evaluated the image quality of
fusion images. Evaluation results show that the fusion images
obtained by our algorithm havemore outstanding advantages.
They have a richer color, more obvious targets and better
comprehensive fusion effect.
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