
Received October 6, 2018, accepted October 29, 2018, date of publication November 12, 2018,
date of current version December 7, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2880423

Global Well-Posedness and Dynamical Behavior
of Delayed Reaction-Diffusion BAM Neural
Networks Driven by Wiener Processes
XIAO LIANG 1 AND RUILI WANG2
1College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao 266590, China
2Institute of Applied Physics and Computational Mathematics, Beijing 100094, China

Corresponding author: Xiao Liang (mathlx@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 91630312, in part by the Fund of the
China Academy of Engineering Physics under Grant 2015B0202045, in part by the Development Program for Defense Department of
China under Grant C1520110002, and in part by the Shandong Provincial Natural Science Foundation under Grant ZR2017BA014.

ABSTRACT This paper studies the global existence and uniqueness as well as asymptotic behavior of
the reaction-diffusion bidirectional associative memory neural networks with S-type distributed delays
and infinite dimensional Wiener processes. The conspicuous characteristics of this system are neurons in
one layer interacting with neurons in another layer and the noise which disturbed this system has both
time and spatial structure. First, several inequalities are proposed and proved for the preparation of future
study. Then, the system is coped in the framework of semigroup theory and functional space. Furthermore,
the local existence and uniqueness of mild solution for this system is proven by using the contraction
mapping principle coupled with many functional inequalities such as Young inequality, Burkholder–Davis–
Gundy inequality, Poincaré inequality. The global well-posedness are proven through a prior estimate from
constructing appropriate Lyapunov–Krasovskii functional. Moreover, the existence of equilibrium is solved
by using the topological degree theory and homotopy invariance. At last, the globally exponential stability of
the equilibrium in the mean square sense is studied by constructing appropriate vector Lyapunov–Krasovskii
functional and using an improved inequality proposed by us. The criteria of stability are given in the form
of matrix form. It is easy to verify them in the computer and they will have a wider application. We give an
example to examine the availability of our result, and the code is performed in Matlab. The approach used
in this paper can also be extended to other systems.

INDEX TERMS Reaction-diffusion BAM neural network, existence and uniqueness, S-type delays,
Lyapunov-Krasovskii functional, Wiener processes.

I. INTRODUCTION
Bidirectional associative memory neural networks
(BAMNNs) are first proposed by Kosko [1], [2], which
have two fully connected layers. This characteristic allows
it to store multiple patterns and to search the goals in
both forward and backward directions. Now BAMNNs have
captured much more attention due to their practical appli-
cation in pattern cognition and optimization [3]–[12]. The
original BAMNNs are ideal models which are described
by ordinary differential equations. However, much more
factors must be considered in real operating surroundings
in order to describe this system accurately. For example,
Marcus and Westervelt [13] point out that it is necessary

to consider delays in the signal transmission process, since
BAMNNs with delays may be more preferable in theory
and application. This type of BAMNNs is studied under the
framework of functional differential equations. On the other
hand, noise is unavoidable in the real world, since it can
destabilize the BAMNNs, and cause oscillation and the bifur-
cation of this system [4], [14], [15]. The effect of reaction-
diffusion is also inevitable in the operation when electrons are
moving in an asymmetrical electromagnetic field [14]–[19].
Through above analysis, BAMNNs will be more precise if
delay, diffusion and noise are incorporated into this model.
BAMNNs with these factors are called stochastic delayed
reaction-diffusion BAMNNs (SDRDBAMNNs) which have
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captured many attentions of the scholars [17]–[20]. Due to
the complexity of this model, there is still little literature in
this field.

Although this paper is motivated by previous paper in
SDRDBAMNNs, it has several characteristics which are dif-
ferent from previous ones. Firstly, the space-time Wiener
process is used rather than standard Wiener process since
this type of noise not only depends on time t but also on
space x, which can describe the system more accurately in
theory [14], [15], [21]. Unlike the noise studied previously,
this type of noise is defined on an infinite dimensional Hilbert
space instead of usual Euclid space. Roughly speaking, it can
be expressed as the series of independent standard Wiener
processes coupled with appropriate weights related to base
function of Hilbert space. To the best of our knowledge,
there is no article on DRDBAMNNs disturbed by this type
of noise yet. Then, SDRDBAMNNs fall in the regime of
stochastic partial functional differential equations (SPFDEs),
they will be more powerful in theory if considered in an
abstract Banach space. However, almost all the models in the
existing literature are solved in the usual Euclidean space.
Secondly, there is no general condition for existence and
uniqueness for PDEs as the Lipschitz condition for ODEs, it is
also true for the SDRDBAMNNs. So it is necessary to find
and prove the criteria of existence and uniqueness of this sys-
tem before we study the long-time behavior of RDBAMNNs
driven by infinite-dimensional Wiener processes. However,
it is not an easy work, since the spatial structure of this system
will also pose a heavy burden on our research. For example,
the mathematical theory of global well-posedness of Navier-
Stokes equation in three dimensions is still not well-solved.
As to our model, it can be regarded as a PDE coupled with
delay and stochastic effect, and both the structure of them
are complex, let alone different states variables interact with
each other. No one has attacked the existence and uniqueness
of this model yet. Although this work is the prerequisite
of studying the quantitative and qualitative behavior of this
system. Thirdly, we must also point out long-time behavior
is based on the global well-posedness. It will be a challenge
for us to prove the global well-posedness of this system since
its complexity. New tools and new space must be introduced
in this article to solve this problem. Fourthly, the application
of BAMNNs depends on the stability of equilibrium of it
in some sense, so it is important to study the stability of
equilibrium of this system. However, we do not knowwhether
the equilibrium exists or not in this new model. Due to
complexity of this system, how to prove the stability of this
system? What is the convergence rate of this system to the
equilibrium? At last, we need criteria which are wide enough
for application. The usual criteria of BAMNNs are based on
the LMIs, but they can’t be used in the system driven by
infinite dimensional Wiener processes.

In addition, in the topological structure, BAMNNs con-
tain two layers of neurons, X-layer and Y-layer. X-layer
and Y-layer are fully connected to each other. The sizes of
X-layer and Y-layer are different, which means the states

variable must be treated in different functional spaces, and
the harmony between these two spaces is also need to take
in account in this paper. In other words, we need to use the
Descartes product of two functional space. On the other hand,
the weight matrix of BAMNNs is not square when compared
with Hopfield neural networks. So the method based on the
square matrix can’t be used to solve this model, we must
also pay attention to this point in application. These are the
main difficulties we confronted when compared with delayed
reaction diffusion Hopfield neural networks in our previous
paper [15].

In mathematics, it has the following expression

du = (∇ · (Du(x) ◦ ∇u)− Cu

+Wf (
∫ 0

−r
v(t C s, x)dηv(s))+ I)dt + P(v)dB

dv = (∇ · (Dv(x) ◦ ∇v)− Dv

+Tg(
∫ 0

−r
u(t C s, x)dηu(s))+ J)dt + Q(u)dB (1)

where u(t, x) = (u1(t, x), . . . , um(t, x))T ∈ Rm rep-
resents the state vector of X-layer, and v(t, x) =

(v1(t, x), . . . , vn(t, x))T ∈ Rn denotes the state vector of
Y-layer. Both of them depend on time t and space x. x ∈ O,
O is a connected compact set in Rl with smooth boundary.
The superscript ’T’ presents the transpose. Du

= (Du
ij)m×m,

Dv
= (Dv

ij)n×n are positive real matrices of diffusion coef-
ficients of X-layer and Y-layer neurons respectively, which
are determined by the Fick’s law. Moreover, ∇ denotes the
gradient operator, and Du

◦ ∇u is the Hadamard product of
matrix Du and ∇u, i.e. Du

◦ ∇u = (Du
ij
∂ui
∂xj

)m×l , we also have

Dv
◦ ∇v = (Dv

ij
∂vi
∂xj

)n×l .

∇ · (Du(x) ◦ ∇u) = (
l∑
j=1

∂

∂xj
(Du

1j(x)
∂u1
∂xj

), . . . ,

×

l∑
j=1

∂

∂xj
(Du

mj(x)
∂un
∂xj

))T,

∇ · (Dv(x) ◦ ∇v) = (
l∑
j=1

∂

∂xj
(Dv

1j(x)
∂v1
∂xj

), . . . ,

×

l∑
j=1

∂

∂xj
(Dv

nj(x)
∂vn
∂xj

))T.

C = diag(c1, c2, · · · , cm) and D = diag(d1, d2, · · · , dn) are
positive real diagonal matrices which represent the rate of
neurons can reset their potential to the resting state in iso-
lation in X-layer and Y-layer respectively when disconnected
from the networks and the external inputs of the Y-layer.
W = (wij)m×n and T = (tij)n×m are the connection

weights matrix of X-layer and Y-layer respectively, it should
be noted that the sizes of W and T are different in the usual
condition, so they are not squarematrix, it is also the difficulty
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in the study of this system. I = (I1, I2, · · · , Im)T is the
external input of the X-layer and J = (J1, J2, · · · , Jn)T

denotes the external input of the Y-layer. The nonlin-
ear diagonal functionals f (v) = (f1(v1), . . . , fn(vn))T and
g(u) = (g1(u1), . . . , gm(um))T are activation functionals of
the X-layer and Y-layer respectively.

The delay r is represented in the Lebesgue-Stieljies inte-
gral form, which is caused by the neuron processing and
signal delivery.

f (
∫ 0

−r
v(t C s, x)dηu(s))

= (f1(
∫ 0

−r
v1(t+s, x)dηv1(s)), f2(

∫ 0

−r
v2(t+s, x)dηv2(s)),· · ·,

fn(
∫ 0

−r
vn(t + s, x)dηvn(s)))T, g(

∫ 0

−r
u(t C s, x)dηu(s))

= (g1(
∫ 0

−r
u1(t+s, x)dηu1(s)), g2(

∫ 0

−r
u2(t+s, x)dηu2(s)),· · ·,

gm(
∫ 0

−r
um(t + s, x)dηum(s)))T.

ηui(s), ηvj(s), i = 1, 2, · · · ,m, j = 1, 2, · · · , n are nonde-
creasing functions with bounded variation. It means there
exists constants K u

i ,K
v
j ,K , i = 1, 2, · · · ,m, j = 1, 2, · · · , n

such that
∫ 0
−r dηui(s) = K u

i ≤ K ,
∫ 0
−r dηvj(s) = K v

j ≤ K .
For convenience of study, we construct the matrix Ku =
diag{K u

1 ,K
u
2 , · · · ,K

u
m}, and Kv = diag{K v

1 ,K
v
2 , · · · ,K

v
n }.

According to the theory of functional differential equations
in Hale and Lunel Verduyn [22], delay can be categorized
into discrete delay and distributed delay. And these delays
are included in the Lebesgue-Stieljies form, so our model is
more general than those studied previously.

The initial and adiabatic boundary conditions of (1) are
given by

∂u
∂ν
|∂O , (

∂u1
∂ν
,
∂u2
∂ν
, . . . ,

∂um
∂ν

)T = 0

∂v
∂ν
|∂O , (

∂v1
∂ν
,
∂v2
∂ν
, . . . ,

∂vn
∂ν

)T = 0

u(s, x) = φ(s, x), v(s, x) = ψ(s, x)

(2)

where −r ≤ s ≤ 0, ∂ui
∂ν
= ( ∂ui

∂x1
, ∂ui
∂x2
, · · · , ∂ui

∂xl
)T, ∂vj

∂ν
=

( ∂vj
∂x1
,
∂vj
∂x2
, · · · ,

∂vj
∂xl

)T, i = 1, 2, · · · ,m, j = 1, 2, · · · , n.
∂O is the boundary of O with Lebesgue measure 0. φ =
(φ1(s, x), φ2(s, x), · · · , φm(s, x))T and
ψ = (ψ1(s, x), ψ2(s, x), · · · , ψn(s, x))T are bounded and
continuous functions in [−r, 0]×O.
Random fluctuation phenomenon is described though the

Wiener process B(t, x) = (B1(t, x),B2(t, x), · · · ,Bs(t, x))T.
Compared with standard Wiener process, it not only depends
on the time t , but also the space variable x, and will be
described clearly in the later chapter. The intensified noise
PdB and QdB represent response of the neuron to a current
impulse associates with the local potential.

II. MODEL DESCRIPTION AND PRELIMINARIES
Nowwe list some notationwhichwill be used in the following
sections.

• X × Y is the Cartesian product between Banach spaces
X and Y ;

• If L2(O) is the space of real Lebegue measurable func-
tions onO, it is a Banach space when equipped with the
L2-norm ||u(t)||2 = (

∫
O |u(t, x)|

2dx)
1
2 ;

• U , {L2(O)}m, when equipped with the norm
||u||U = (

∫
O ‖u‖

2
Rmdx)

1
2 , it becomes a Banach space,

where |u|2Rm denotes the usual Euclid norm of Rm.
When endowed with the inner product (u, v)U =∫
O(u, v)Rmdx, it becomes a Hilbert space, where
(u, v)Rm denotes the usual inner product of Rm;

• U , {u|u ∈ {L2(O)}m, ∂u
∂ν
|∂O = 0}, when equipped

with the norm as that in U , it also becomes a Hilbert
space;

• U , {u|u ∈ U ,∇u ∈ U , ∂u
∂ν
|∂O = 0}, when equipped

with the norm |||u|||U = ‖∇u‖U , it also becomes a
Hilbert space;

• V , {L2(O)}n denotes the Hilbert space, equipped with
the norm ||v||V = (

∫
O ‖v‖

2
Rndx)

1
2 , and inner product

(u, v)V =
∫
O(u, v)Rndx;

• V , {v|v ∈ {L2(O)}n, ∂v
∂ν
|∂O = 0};

• V , {v|v ∈ V , ∇v ∈ V , ∂v
∂ν
|∂O = 0};

• C(U ) , C([−r, 0],U ) is the set of all continuous map-
pings from interval [−r, 0] to Banach space U with the
topology of uniform convergence, when equipped with
the sup-norm ‖ϕ‖C(U ) = sup

−r≤s≤0
‖ϕ(s)‖U , it becomes a

Banach space;
• BC([−r, 0],U ) is the Banach space of all bounded and
continuous operators from [−r, 0] to U , and it is clear
that BC([−r, 0],U ) ⊂ C(U );

• For u ∈ U , C(U ) 3 ut (s, x) , u(t + s, x),∀s ∈ [−r, 0];
• For w = (u, v)T, w+ , (|u|, |v|)T;
• For w1 = (u1, v1)T, w2 = (u2, v2)T, if u1 ≤ u2, v1 ≤ v2,
we say w1 ≤ w2;

• Let W = (wij)m×n, ‖W‖F , (
m∑
i=1

n∑
j=1

w2
ij)

1
2 denotes the

Frobenius norm of matrixW ;
• A matrix W = (wij)m×n is said to be positive, if wij >
0, i = 1, 2, · · · ,m, j = 1, 2, · · · , n;

• A vector u = (u1, u2, · · · , un) is also said to be positive,
if ui > 0, i = 1, 2, · · · , n.

B(t, x) = B(t, x)(ω) is a Wiener process with values in
the separable Hilbert space K with expectation EB = 0 and
covariance E(B(t),u)K(B(s), v)K = (t ∧ s)(Qu, v)K,∀s, t ≥
0,u, v ∈ K, (·, ·)K denotes the inner product of K, where
t ∧ s = min{t, s}. Let {en}∞n=1 is an orthogonal basis of
K, Q is a Hilbert-Schmidt operator such that Qen = αnen,
which means Q is a positive definite, symmetric, self-adjoint

operator having a finite trace trQ ,
∞∑
n=1

αn < +∞, {βn}∞n=1
is a sequence of mutually independent standard Wiener
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processes in (�,F ,P), with these notations B can be written

as B =
∞∑
n=1

√
αnβn(t)en(x). L2(K0,U ) is the space of all

Hilbert-Schmidt operators from K0 , Q
1
2 (K) into U , when

equipped with the norm ‖8‖2 ,
√
tr(8Q8∗) it becomes a

Hilbert space, where8 ∈ L2(K0,U ),8∗ denotes the adjoint
of 8. For more information, please see [15], [22].

Three inequalities are introduced in this section for
later use.
Lemma 1: Let w = (u, v)T, with u, v ≥ 0, and let it satisfy

dw
dt
≤ −Aw+ B sup

−r≤θ≤0
w(t + θ )

w(θ ) = (φ(θ ), ψ(θ ))T, φ, ψ ∈ BC([−r, 0],R)
(3)

where A =
[
a 0
0 b

]
,B =

[
0 c
d 0

]
. If a, b, c, d, t , r > 0,

and α − β > 0, with α = min{a, b}, β = max{c, d},
then there exists a positive vector k = (k, k)T and positive
constant ς , such that

w ≤ exp{−ς t}k. (4)

Proof: Let z = u+ v, from (3), we can see that
dz
dt
≤ −au− bv+ c sup

−r≤θ≤0
v(t + θ )+ d sup

−r≤θ≤0
u(t + θ )

≤ −αz+ β sup
−r≤θ≤0

z(t + θ ) (5)

with α = min{a, b} > 0, β = max{c, d} > 0.
Let

dz
dt
= −αz+ β sup

−r≤θ≤0
z(t + θ )

z(θ ) = φ(θ )+ ψ(θ ), φ, ψ ∈ BC([−r, 0],R).
(6)

We suppose the solution of (6) has the form z(t) =
k exp{−λt}, substitute it into (6), we then get

−λ = −α + β exp{λr}. (7)

Defining

f (x) , x − α + β exp{xr}. (8)

From (8), we have f (x) < 0, if x < 0. f (0) = −α+β < 0,
and lim

x→+∞
f (x) = +∞, from the intermediate theorem, the

system (7) has a solution in R+. On the other hand, f ′(x) =
1 + βr exp{xr} > 0. According to the implicit theorem, the
system (7) has a unique zero point in R+.
It follows that if α − β > 0, then there exists a constant

ς > 0 such that z(t) = k̃1 exp{−ς t} is a solution of equation
(6), with k̃1 = |φ(0)| + |ψ(0)|.
By the comparison principle, we can deduce from (5) that

there exists positive constants k and ς such that

z ≤ exp{−ς t}k (9)

with k = (‖φ‖C + ‖ψ‖C ).
Since z = u+ v, u, v ≥ 0, we also have

w =
(
u
v

)
≤

(
z
z

)
≤ exp{−ς t}k (10)

with k = (k, k)T.

Lemma 2: Let W = (wij)m×n, u = (u1, u2, · · · , un)T,
v = (v1, v2, · · · , vn)T, f (u) = Wg(u), g =

(g1(u1), g2(u2), · · · , gn(un))T, diagonal maps gi satisfies the
global Lipschitz condition |gi(ui) − gi(vi)| ≤ σi|ui −
vi|, σi > 0,∀i = 1, 2, · · · , n, then ‖f (u) − f (v)‖Rm ≤
√
nσM‖W‖F‖u − v‖Rn , where ‖u‖Rm represents the usual

norm of Rm, ‖u‖Rn represents the usual norm of Rn, σM =
max{σ1, σ2, · · · , σn}.

Proof:

(f (u)− f (v), f (u)− f (v))Rm

= (W (g(u)− g(v)),W (g(u)− g(v)))Rm

=

m∑
i=1

(
n∑
j=1

wij(gj(uj)− gj(vj))2

=

m∑
i=1

n∑
j=1

n∑
k=1

wijwik (gj(uj)− gj(vj))(gk (uk )− gk (vk ))

6
1
2

m∑
i=1

n∑
j=1

n∑
k=1

(w2
ij(gj(uj)− gj(vj))

2

+
1
2

m∑
i=1

n∑
j=1

n∑
k=1

w2
ik (gk (uk )− gk (vk ))

2)

= n
m∑
i=1

n∑
j=1

(w2
ij(gj(uj)− gj(vj))

2)

6 n(
m∑
i=1

n∑
j=1

w2
ij)(

n∑
j=1

(gj(uj)− gj(vj))2)

6 n(
m∑
i=1

n∑
j=1

w2
ij)(

n∑
j=1

σ 2
j (uj − vj)

2)

6 nσ 2
M (

m∑
i=1

n∑
j=1

w2
ij)(

n∑
j=1

(uj − vj)2)

= nσ 2
M‖W‖

2
F‖u− v‖

2
Rn .

The proof is finished.
We can infer from Lemma 2 that
Lemma 3: If f (u) = Wg(u), by using the same assumption

and notations as that in Lemma 2, we have ‖f (u)‖2Rm ≤

2n‖W‖2F‖g(0)‖
2
Rn + 2nσ 2

M‖W‖
2
F‖u‖

2
Rn .

Proof: Let v = 0 in Lemma 2, by using the triangle
inequality, we have

‖f (u)‖Rm ≤ ‖f (0)‖Rm +
√
nσM‖W‖F‖u‖Rn .

By using the basic inequality 2ab ≤ a2 + b2, and definition
of f , we have

‖f (u)‖2Rm ≤ 2‖f (0)‖2Rm + 2nσ 2
M‖W‖

2
F‖u‖

2
Rn

≤ 2n‖W‖2F‖g(0)‖
2
Rn + 2nσ 2

M‖W‖
2
F‖u‖

2
Rn .

III. MAIN RESULTS
Let us first define the linear unbounded operator as follows:

A1 : D(A1) ∈ U → U

69268 VOLUME 6, 2018
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A1u = ∇ · (Du(x) ◦ ∇u),u ∈ D(A1) (11)

A2 : D(A2) ∈ V → V

A2v = ∇ · (Dv(x) ◦ ∇v), v ∈ D(A2) (12)

and D(A1) = {u|∇ · (Du(x) ◦ ∇u) ∈ U}
⋂

U , D(A2) =
{v|∇ · (Dv(x) ◦ ∇v) ∈ V }

⋂
V.

Then, the Nemytskii operator is difined as follows:{
f (
∫ 0
−r v(t C s)dηv(s)) = f (

∫ 0
−r v(t + s, x)dηv(s))

g(
∫ 0
−r u(t + s)dηu(s)) = g(

∫ 0
−r u(t + s, x)dηu(s)).

With these tools, we can rewrite the system (1) in the more
abstract form

du
dt
= A1u− Cu

+Wf (
∫ 0
−r v(t C s)dηv(s))+ I + P(v(t))dB

dv
dt
= A2v− Dv

+Tg(
∫ 0
−r u(t + s)dηu(s))+ J + Q(u(t))dB

u(s) = φ(s), v(s) = ψ(s),−r ≤ s ≤ 0,
(φ(s),ψ(s)) ∈ BC([−r, 0],U )× BC([−r, 0],V ).

(13)

The following assumptions are needed in this paper.

H1 The diagonal activation function fi, gi and the
noise intensifying function P,Q satisfy the global
Lipschitz condition

|fi(x)− fi(y)| ≤ σi|x − y|

|gj(x)− gj(y)| ≤ γj|x − y|

‖P(v1)− P(v2)‖V ≤ k1‖v1 − v2‖V
‖Q(u1)− P(u2)‖U ≤ k2‖u1 − u2‖U (14)

with γi, σi, k1, k2 ≥ 0,∀x, y ∈ R, v1, v2 ∈
V , u1,u2 ∈ U , i = 1, 2, · · · , n, j = 1, 2, · · · ,m;

H2 There exists a positive constant α, such that Du
ij ≥

α
ml and Dv

kj ≥
α
nl , where i = 1, 2, · · · ,m, k =

1, 2, · · · , n, j = 1, 2, · · · , l;
H3 (2k14 + 2αL2 − k22 − 1) ∧ (2k15 + 2αL2 −

k21 − 1) > (n‖W‖2Fσ
2
MK

2) ∨ (m‖T‖2Fγ
2
MK

2),
where a ∨ b = max{a, b}, a ∧ b = min{a, b},
k14 = min{c1, c2, · · · , cm} > 0, k15 =

min{d1, d2, · · · , dn} > 0.

Theorem 4: From H1, we have

‖f (v)‖2V ≤ 2‖f (0)‖2V + 2σ 2
‖v‖2V

‖g(u)‖2U ≤ 2‖g(0)‖2U + 2γ 2
‖u‖2U (15)

where σM = max{σ1, σ2, · · · , σn}, γM = max{γ1,
γ2, · · · , γm}.

Proof: From H1, we can see that ∀vi ∈ R

|fi(vi)| ≤ |fi(0)| + |fi(vi)− fi(0)| ≤ |fi(0)| + σi|vi|. (16)

By using the Cauchy inequality, we have

|fi(vi)|2 ≤ 2|fi(0)|2 + 2σ 2
i |vi|

2, ∀vi ∈ R. (17)

Adding (17) from 1 to n and integrating above inequality
on O, we have

‖f (v)‖2V ≤ 2‖d(0)‖2V + 2σ 2
M‖v‖

2
V (18)

where σM = max{σ1, σ2, · · · , σn}.
Following the same procedure, we also get

‖g(u)‖2U ≤ 2‖g(0)‖2U + 2γ 2
M‖u‖

2
U (19)

where γM = max{γ1, γ2, · · · , γm}.
By using this theorem, Lemma 2, Lemma 3, and H1,

we have
Theorem 5:

‖Wf (v1)−Wf (v2)‖V ≤
√
nσM‖W‖F‖v1 − v2‖V

‖Tg(u1)− Tg(u2)‖U ≤
√
mγM‖T‖F‖u1 − u2‖U

‖W f (v)‖2V ≤ p1‖f (0)‖2Rnmes(O)+ p1σ 2
M‖v‖

2
V

‖Tg(u)‖2U ≤ p2‖g(0)‖2Rmmes(O)+ p2γ 2
M‖u‖

2
U

where u1,u2,u ∈ U , v1, v2, v ∈ V , p1 = 2n‖W‖2F ,
p2 = 2m‖T‖2F .

Theorem 6: Defining the bilinear operators as au(u,u) =
−(A1u,u)U , av(v, v) = −(A2v, v)V , u ∈ D(A1), v ∈ D(A2),
then both au(u,u) and av(v, v) are coercive. Furthermore
au(u,u) > α‖|u‖|2U , av(v, v) > α‖|v‖|2V .

Proof: ∀u ∈ D(A1)

au(u,u)U = −(∇ · (Du(x) ◦ ∇u),u)U

= −

∫
O
(∇ · (Du(x) ◦ ∇u),u)Rmdx

= −

m∑
i=1

∫
O
∇ · (Du(x) ◦ ∇u)iuidx.

By the conclusion of [12] and [13], and Gaussian formula and
the boundary condition, we get∫
O
G(u)∇ · (Du(x) ◦ ∇u)dx = −

∫
O
(Du(x) ◦ ∇u ◦ ∇u)Edx

where G(u) = Diag(u1, u2, · · · , um), E = (1, 1, · · · , 1)T .
By the definition of the Hadamard product and H2, we get
au(u,u) > α‖|u‖|2U . So the bilinear operator au(u,u) is
coercive.

Following the same method, we can get the bilinear oper-
ator av(v, v) is also coercive, and av(v, v) > α‖|v‖|2V . The
proof is finished.

We can also prove the following Poincaré inequality by
using the method in [7].
Lemma 7 (Poincaré Inequality): Let O be an open

bounded domain with smooth boundary in Rl , then there
exists a positive constant L, such that

L‖φ‖U ≤ 9φ 9U

L‖ψ‖V ≤ 9ψ9V , ∀φ ∈ U ,ψ ∈ V

and L depends on the size of the given domain O.
If A1,A2 are the infinitesimal generators of continu-

ous semigroups S1(t), S2(t). Then we have the following
properties.
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Proposition 8: Let us consider the following equations{
du = A1u
u(0) = φ,φ ∈ D(A1)

(20){
du = A2v
v(0) = ψ,ψ ∈ D(A2).

(21)

Let u(t) = S1(t)φ,v(t) = S2(t)ψ denote the solution to (20)
and (21) respectively, then both S1(t) and S2(t) are contraction
maps in U and V .

Proof: We recall that the solution to (21) is u(t) =
eA1tφ, so S1(t) = eA1t .Nowwe take the inner product of (21)
with u(t) inU , by employing theGauss formula and condition
H2 as well as Theorem 6, we get (A1u,u)U ≤ −α9u92

U ,u ∈
D(A1), and we also have

1
2
d
dt
‖u(t)‖2U + α 9 u(t)92

U ≤ 0

thanks to the Lemma 7, one obtains

d
dt
‖u(t)‖2U + 2αβ2‖u(t)‖2U ≤ 0

by using the Gronwall inequality, we have

‖u(t)‖2U ≤ e
−2αβ2 t

‖φ‖2U ≤ ‖φ‖
2
U

so S1(t) is a contraction map.
If we define v(t) = eA2tψ , and S2(t) = eA2t , following

the same procedure as above, we can get S2(t) is also a
contraction map.
With the semigroups defined in Proposition 8, we

rewrite (1) as

(ut (φ), vt (ψ))T

=



S1(t)φ(0)+∫ t
0 S1(t − s)(−Cu+Wf (

∫ 0
−r v(s C θ)dηv(θ))+ I)ds

+
∫ t
0 S1(t − s)P(u(s))dB

S2(t)ψ(0)+∫ t
0 S2(t − s)(−Dv+ Tg(

∫ 0
−r u(s+ θ )dηu(θ ))+ J)ds

+
∫ t
0 S2(t − s)Q(u(s))dB, t > 0

(φ(t),ψ(t))T , t ∈ [−r, 0].
(22)

The solution of (22) is called the mild solution of (1).

A. EXISTENCE AND UNIQUENESS OF THE MILD SOLUTION
In order to prove the local existence and uniqueness of the
mild solution of (1), we introduce the following function
spaces.
• C(U ) × C(V ) , C([−r, 0],U ) × C([−r, 0],V )) =
{φ,ψ)|φ ∈ C([−r, 0],U ),ψ ∈ C([−r, 0],V )},
when endowed with the norm ‖(φ,ψ)‖C(U )×C(V ) =

‖φ‖C(U ) + ‖ψ‖C(V ), it becomes a Banach space;
• Let XUT , L2(�,C([−r,T ] × O,U )), when
equipped with the norm ‖u‖XUT = ( sup

t∈[−r,T ]
E ‖u(t)‖2)

1
2 ,

it becomes a Banach space. By calculation, we have

‖u‖2
XUT
= sup

t∈[−r,T ]
E ‖u(t)‖2U = sup

t∈[0,T ]
sup

θ∈[−r,0]
E ‖u(t +

θ )‖2U = sup
t∈[0,T ]

E ‖ut‖2C(U );

• 6(a,T ,U ) = {u(t) ∈ XUT : ‖u‖XUT ≤ a};
• 6(a,T ,V ) = {v(t) ∈ XVT : ‖v‖XVT ≤ a};
• Let us construct the function space XT = XUT × XVT ,
when endowed with the norm ‖u‖XUT + ‖v‖XVT , it also
becomes a Banach space.

Theorem 9: For any ‖φ‖2C(U ) + ‖ψ‖
2
C(V ) <

m
5 , if the sys-

tem (1) satisfies H1 and H2, then there exists T > 0, such that
(1) has a unique mild solution in 6(a,T ,U )×6(a,T ,V ).

Proof: Taking (u, v) ∈ 6(a,T ,U ) × 6(a,T ,V ) and
defining the map T (φ,ψ,u, v) = (4,5), with

4(t) = S1(t)φ(0)+∫ t
0 S1(t − s)(−Cu+Wf (

∫ 0
−r v(s C θ)dηv(θ))+ I)ds

+
∫ t
0 S1(t − s)P(v(s))dB

5(t) = S2(t)ψ(0)+∫ t
0 S2(t − s)(−Dv+ Tg(

∫ 0
−r u(s+ θ )dηu(θ ))+ J)ds

+
∫ t
0 S2(t − s)Q(u(s))dB

(23)

taking expectation on both sides of the first equality of (23)

and applying the inequality (
n∑
i=1

ai)p ≤ n(p−1)
n∑
i=1

api , for

p ≥ 2, we have

E ‖4(t)‖2U

≤ 5 E ‖S1(t)φ(0)‖2U + 5 E ‖
∫ t

0
−CS1(t − s)uds‖2U

+ 5 E ‖
∫ t

0
S1(t − s)Ids‖2U

+ 5 E ‖
∫ t

0
S1(t − s)Wf (

∫ 0

−r
v(s C θ)dηv(θ))ds‖2U

+ 5 E ‖
∫ t

0
S1(t − s)P(v(s))dB‖2U

, I1 + I2 + I3 + I4 + I5.

Because of the contraction of the mapA1(t) and the definition
of ‖ · ‖C(U ), we find

I1 ≤ 5 E ‖S1(t)φ‖2C(U ) ≤ 5 E ‖φ‖2C(U ). (24)

With Proposition 8, Lemma 2, and the Hölder inequality, it
follows that

I2 ≤ 5 sup
t∈[0,T ]

(t E
∫ t

0
‖ − CS1(t − s)u‖2Uds)

≤ 5m‖C‖2FT E
∫ T

0
‖S1(t − s)u‖2Uds

≤ 5m‖C‖2F T E
∫ T

0
‖u‖2Uds

≤ 5m‖C‖2FT
2
‖u‖2

XUT
. (25)

Using the Hölder inequality and Proposition 8, we have

I3 ≤ 5 T sup
t∈[0,T ]

E
∫ t

0
‖I‖2Uds

≤ 5T 2
‖I‖2Rmmes(O) (26)
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where mes(O) stands for the Lebesgue measure of the
domain O.

By virtue of Lemma 2, Lemma 3, Theorem 5, Hölder
inequality, the total boundedness of Stieljies integral and H1,
we get

I4 ≤ 5 sup
t∈[0,T ]

t E
∫ t

0
‖Wf (

∫ 0

−r
v(s C θ)dηv(θ))‖2V ds

≤ 5 nT‖W‖2F E
∫ T

0
‖f (
∫ 0

−r
v(s C θ)dηv(θ))‖2V ds

≤ p3 E
∫ T

0
(‖f (0)‖2V + σ

2
M‖

∫ 0

−r
v(s C θ)dηv(θ)‖2V )ds

≤ p3 E
∫ T

0
(‖f (0)‖2Rnmes(O)+ σ 2

MK
2
‖vs‖2C(V ))ds

≤ p3 T (‖f (0)‖2Rnmes(O)+ σ 2
MK

2
‖v‖2

XVT
) (27)

where p3 = 10 nT‖W‖2F .
With the Burkholder-Davis-Gundy inequality, H1, and

Proposition 8, there exists a constant k3 > 0, such that

I5 ≤ 5k3 E sup
t∈[0,T ]

∫ t

0
‖S1(t − s)P(v(s))‖22ds

≤ 5 sup
t∈[0,T ]

∫ t

0
E ‖P(v(s))‖22ds

≤ 10
∫ T

0
(‖P(0)‖22 + k

2
1 E ‖v(s)‖

2
V )ds

≤ 10k21T‖v‖
2
XVT
+ 10‖P(0)‖22T . (28)

It follows from (23)-(28) that

‖4(t)‖2
XUT
≤ 5‖φ‖2C(U ) + k4T

2
+ k5T (29)

where k4 = 5‖I‖2Rmmes(O) + 5m‖C‖2F‖u‖
2
XUT
+

10n‖W‖2F‖f (0)‖
2
Rn mes(O) + 10nσ 2

MK
2
‖v‖2

XVT
, k5 =

10k3 k21‖v‖
2
XVT
+ 10k3‖P(0)‖22. Hence ‖4‖XT ≤ a, provided

T is sufficiently small, such that

5‖φ‖2C + k4T
2
+ k5T < a. (30)

Taking expectation on both sides of the second equality of
(23), we have

E ‖5(t)‖2V

≤ 5 E ‖S2(t)ψ(0)‖2V + 5 E ‖
∫ t

0
−DS2(t − s)vds‖2V

+ 5 E ‖
∫ t

0
S2(t − s)Jds‖2V

+ 5 E ‖
∫ t

0
S2(t − s)Tg(

∫ 0

−r
u(s C θ)dηu(θ))ds‖2V

+ 5 E ‖
∫ t

0
S2(t − s)Q(u(s))dB‖2V

, I6 + I7 + I8 + I9 + I10.

By using the contraction of the map S2(t) and the definition
of ‖ · ‖C(V ), we find

I6 ≤ 5 E ‖S2(t)ψ‖2C(V ) ≤ 5 E ‖ψ‖2C(V ). (31)

With Proposition 8, Lemma 2, and the Hölder inequality, it
follows that

I7 ≤ 5 sup
t∈[0,T ]

(t E
∫ t

0
‖ − DS2(t − s)v‖2V ds)

≤ 5n‖D‖2FT E
∫ T

0
‖S2(t − s)v‖2V ds

≤ 5n‖D‖2FT
2
‖v‖2

XVT
. (32)

Using the Hölder inequality and Proposition 8, we have

I8 ≤ 5 T sup
t∈[0,T ]

E
∫ t

0
‖J‖2ds

≤ 5T 2
‖J‖2Rnmes(O). (33)

By virtue of Lemma 2, Lemma 3, Theorem 5, Hölder inequal-
ity, the total boundedness of Stieljies integral and H1, we get

I9 ≤ 5 supt∈[0,T ] t E
∫ t
0 ‖Tg(

∫ 0
−r u(s C θ)dηu(θ))‖

2
V ds

≤ 10 mT 2
‖T‖2F (‖g(0)‖

2
Rmmes(O)+ σ 2

MK
2
‖u‖2

XUT
).

(34)

With the Burkholder-Davis-Gundy inequality, H1-H2, and
Proposition 8, there exists a constant k6 > 0, such that

I10 ≤ 5k6 E sup
t∈[0,T ]

∫ t

0
‖S2(t − s)Q(u(s))‖22ds

≤ 5k6 sup
t∈[0,T ]

∫ t

0
E ‖Q(u(s))‖22ds

≤ 10k6

∫ T

0
(‖Q(0)‖22 + k

2
2 E ‖u(s)‖

2
U )ds

≤ 10k6k22T‖u‖
2
XUT
+ 10k6‖Q(0)‖22T . (35)

It follows from (31)-(35) that

‖5(t)‖2
XVT
≤ 5‖ψ‖2C(V ) + k7T

2
+ k8T (36)

where k7 = 5n‖D‖2F‖v‖
2
XVT
+ 5‖J‖2Rnmes(O) +

10m‖T‖2F‖g(0)‖
2
Rm mes(O) + 10mγ 2

MK
2
‖u‖2

XUT
, k8 =

10 k6k22‖u‖
2
XUT
+ 10k6‖Q(0)‖22.

Hence ‖5‖XVT ≤ a, provided T is sufficiently small, such
that

5‖φ‖2C + k4T
2
+ k5T < a. (37)

From (29), (30), (36), (37), we obtain that (4,5) ∈
6(a,T ,U )×6(a,T ,V ).
Let (u1, v1), (u2, v2) ∈ 6(a,T ,U ) × 6(a,T ,V ) and for

fixed (φ,ψ), we construct Ti(ui, vi) = (4i,5i), i = 1, 2, and
$ = (41,51)− (42,52). For t ∈ [−r, 0], we have$ = 0,
and

41 −42(t) = −
∫ t

0
S1(t − s)C(u1 − u2)ds
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+

∫ t

0
S1(t − s)W (f (

∫ 0

−r
v1(s C θ)dηv(θ))

−f (
∫ 0

−r
v2(s C θ)dηv(θ)))ds

+

∫ t

0
S1(t − s)(P(v1(s))− P(v2(s)))dB

for t ∈ [0,T ].
Due to the Jensen inequality, we get

‖41(t)−42(t)‖2XUT

≤ 3 sup
t∈[0,T ]

E ‖
∫ t

0
S1(t − s)(−C(u1 − u2))ds‖2U

+ 3 sup
t∈[0,T ]

E ‖
∫ t

0
S1(t − s)C(f (

∫ 0

−r
v1(s C θ)dηv(θ))

− f (
∫ 0

−r
v2(s C θ)dηv(θ)))ds‖2U +

3 sup
t∈[0,T ]

E ‖
∫ t

0
S1(t − s)(P(v1(s))− P(v2(s)))dB‖2U

, I11 + I12 + I13.

By employing Proposition 8, Lemma 2, and the Hölder
inequality, it follows that

I11 ≤ 3 sup
t∈[0,T ]

t E
∫ t

0
‖S1(t − s)C(u1 − u2)‖2Uds

≤ 3T sup
t∈[0,T ]

E
∫ t

0
‖C(u1 − u2)‖2Uds

≤ 3Tm‖C‖2F

∫ T

0
E ‖u1 − u2‖2Uds

≤ 3T 2m‖C‖2F‖u1 − u2‖
2
XUT
.

With the contraction of S1(t), the total boundedness of
Stieljies integral, Hölder inequality, and Theorem 5, we
deduce that

I12 ≤ 3 sup
t∈[0,T ]

t E
∫ t

0
‖S1(t − s)W (f (

∫ 0

−r
v1(s C θ)dηv(θ))

−f (
∫ 0

−r
v2(s C θ)dηv(θ)))‖2Uds

≤ 3 sup
t∈[0,T ]

t E
∫ t

0
‖W (f (

∫ 0

−r
v1(t C s)dηv(s))

− f (
∫ 0

−r
v2(t C s)dηv(s)))‖2Uds

≤ 3n‖W‖2FT
∫ T

0
E ‖(f (

∫ 0

−r
v1(t C s)dηv(s))

− f (
∫ 0

−r
v2(t C s)dηv(s)))‖2V ds

≤ 3n‖W‖2FT
2σ 2

MK
2 sup
t∈[0,T ]

E ‖(v1 − v2)t‖2C(V )

= 3n‖W‖2FT
2σ 2

MK
2
‖v1 − v2‖2XVT

.

Following the same procedure as that in (28), we get

I13 ≤ 3k21k3 sup
t∈[0,T ]

∫ t

0
E ‖u1(s)− u2(s)‖2Uds

≤ 3k21k3T‖u1 − u2‖
2
XUT

(38)

which means

‖41(t)−42(t)‖2XUT
≤ k9‖u1 − u2‖2XUT

+ k10‖v1 − v2‖2XVT
(39)

where k9 = 3T 2m‖C‖2F+3 k
2
1k3T , k10 = 3n‖W‖2FT

2σ 2
MK

2.
We also have

51 −52(t) = −
∫ t

0
S2(t − s)D(v1 − v2)ds

+

∫ t

0
S2(t − s)T (g(

∫ 0

−r
u1(s C θ)dηu(θ))

− g(
∫ 0

−r
u2(s C θ)dηu(θ)))ds

+

∫ t

0
S2(t − s)(Q(u1(s))− Q(u2(s)))dB

for t ∈ [0,T ].
Due to the Jensen inequality, we get

‖51 −52(t)‖2XVT

≤ 3 sup
t∈[0,T ]

E ‖
∫ t

0
S2(t − s)(−D(v1 − v2))ds‖2V

+ 3 sup
t∈[0,T ]

E ‖
∫ t

0
S2(t − s)T (g(

∫ 0

−r
u1(s C θ)dηu(θ))

− g(
∫ 0

−r
u2(t C s)dηv(s)))ds‖2V

+ 3 sup
t∈[0,T ]

E ‖
∫ t

0
S2(t − s)(Q(u1)− Q(u2))dB‖2V

, I14 + I15 + I16.

By employing Proposition 2.1, Lemma 2, and the Hölder
inequality, it follows that

I14 ≤ 3 sup
t∈[0,T ]

t E
∫ t

0
‖S2(t − s)D(v1 − v2)‖2V ds

≤ 3T sup
t∈[0,T ]

E
∫ t

0
‖D(v1 − v2)‖2V ds

≤ 3Tn‖D‖2F

∫ T

0
E ‖v1 − v2‖2V ds

≤ 3T 2n‖D‖2F‖v1 − v2‖
2
XVT
.

With the contraction of S2(t), total boundedness of Stieljies
integral, Theorem 5, and the Hölder inequality, we get

I15

≤ 3 sup
t∈[0,T ]

t E
∫ t

0
‖S2(t − s)T (g(

∫ 0

−r
u1(s C θ)dηu(θ))

− g(
∫ 0

−r
u2(s C θ)dηu(θ)))‖2Uds
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≤ 3 sup
t∈[0,T ]

t E
∫ t

0
‖T (g(

∫ 0

−r
u1(s C θ)dηu(θ))

− g(
∫ 0

−r
u2(s C θ)dηu(θ)))‖2Uds

≤ 3n‖T‖2FT
∫ T

0
E ‖(g(

∫ 0

−r
u1(s C θ)dηu(θ))

− g(
∫ 0

−r
u2(t C s)dηu(s)))‖2Uds

≤ 3n‖T‖2FT
2γ 2

MK
2 sup
t∈[0,T ]

E ‖(u1 − u2)t‖2C(U )

= 3n‖T‖2FT
2γ 2

MK
2
‖u1 − u2‖2XUT

.

Following the same procedure as that in (28), we get

I16 ≤ 3k22k3 sup
t∈[0,T ]

∫ t

0
E ‖u1(s)− u2(s)‖2Uds

≤ 3k22k3T‖u1 − u2‖
2
XUT

(40)

which means

‖51 −52(t)‖2XVT
≤ k11‖u1 − u2‖2XUT

+ k12‖v1 − v2‖2XVT
(41)

where k11 = 3T 2n‖T‖2F+3 k
2
2k3T , k12 = 3m‖T‖2FT

2γ 2
MK

2.
From (39) and (41), we have

‖41(t)−42(t)‖2XUT
+ ‖51(t)−52(t)‖2XVT

≤ k13(‖u1 − u2‖2XUT
+ ‖v1 − v2‖2XVT

) (42)

where k13 = max{k9+k11, k10+k12}. We take T sufficiently
small, such that

k13 < 1. (43)

So T is a strict contraction map on6(a,T ,U )×6(a,T ,V ),
which has a unique fixed point (u, v). This completes the
proof of Theorem 9.
Remark 10: Although we use a more abstract method,

which is different from that in previous paper, we find that
global Lipschitz condition of activation function and pos-
itiveness of diffusion coefficient can ensure the existence
and uniqueness of mild solution of the RDBAMNNs with
S-delays driven by infinite dimensional Wiener processes.
That means our result is credible and our method is believ-
able. The boundedness restriction for activation function f
and g is waived in this paper when compared with the results
in Zhu and Cao [4] and Song et al. [19], let alone our model
is much more complex than those proposed by them. That
means our paper makes further improvement on the result of
previous scholars in some sense.
Theorem 11: We suppose the conditions H1 and H2 hold,

then the mild solution of (1) satisfies the following priori
estimate

E(‖u‖2U + ‖v‖
2
V ) ≤ c7, t ∈ [0,T ]

where c7 > 0 is a constant, which depends on T .

Proof: Let u be the mild solution of (1), we define
the Lyapunov-Krasovskii function as V (t) = e−λt (‖u‖2U +
‖v‖2V ), where λ is a sufficient large positive constant, which
will be determined later. According to the Itô formula, we
have

dV = LVdt + 2e−λt (u,PdB)U + 2e−λt (v,QdB)V (44)

where the generator LV for the evolution of V is given by

LV = −λe−λt (‖u‖2U + ‖v‖
2
V )

+2eλt ((u,A1u)U + (v,A2v))V
− 2e−λt (u,Cu)U − 2e−λt (v,Dv)V

+ 2e−λt (u,Wf (
∫ 0

−r
v(t C s)dηv(s)))V

+ 2e−λt (v,Tg(
∫ 0

−r
u(t C s)dηu(s)))U

+ 2e−λt (u, I)U + 2e−λt (v, J)V
+ e−λt tr(PQP?)+ eλt tr(QQQ?).

Integrating on both sides of (44) between 0 and t and
taking expectation on it, then using stochastic Fubini’s
theorem and the formula 2 E

∫ t
0 e
−λs(u,PdB)U = 0,

2 E
∫ t
0 e
−λs(v,QdB)V = 0, we have

EV (t)

= E ‖φ(0)‖2U + E ‖ψ(0)‖2V − λ
∫ t

0
EV (s)ds

+ 2
∫ t

0
e−λs E(u,A1u)Uds+ 2

∫ t

0
e−λs E(v,A2v)V ds

− 2
∫ t

0
e−λs E(Cu,u)Uds− 2

∫ t

0
e−λs E(Dv, v)V ds

+ 2
∫ t

0
e−λs E(u,Wf (

∫ 0

−r
v(s C θ)dηv(θ)))Uds

+ 2
∫ t

0
e−λs E(v,Tg(

∫ 0

−r
u(s C θ)dηu(θ)))V ds

+ 2
∫ t

0
e−λs E(u, I)Uds+ 2

∫ t

0
e−λs E(v, J)V ds

+

∫ t

0
e−λs E ‖P(v(s))‖22ds+

∫ t

0
e−λs E ‖Q(u(s))‖22ds.

According to the theory of functional differential equation,
which is equivalent to the system

dEV (t)
dt

= −λe−λt E ‖u(t)‖2U − λe
−λt E ‖v(t)‖2V

+ 2e−λt E(u,A1u)U + 2e−λt E(v,A2v)V
− 2e−λt E(u,Cu)U − 2e−λt E(v,Dv)V

+ 2e−λt E(u,Wf (
∫ 0

−r
v(t C s)dηv(s)))U

+ 2e−λt E(v,Wg(
∫ 0

−r
u(t C s)dηu(s)))V

+ 2e−λt E(u, I)U + 2e−λt E(v, J)V
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+ e−λt E tr(PQP?)

+ e−λt E tr(QQQ?)

, l1 + l2 + l3 + l4 + l5 + l6
+ l7 + l8 + l9 + l10 + l11 + l12 (45)

with the initial data

EV (0) = E ‖φ(0)‖2U + E ‖ψ(0)‖2V .

By using the adiabatic boundary condition, poincaré formula
(Lemma 7), Theorem 6 and H2, it follows that

l3 ≤ −2αe−λt E9u 92
U

≤ −2αL2e−λt E ‖u‖2U . (46)

Following the same procedure, we have

l4 ≤ −2αL2e−λt E ‖v‖2V . (47)

Then, taking into account the positiveness of ci and dj,
i = 1, 2, · · · ,m, j = 1, 2, · · · , n, we get

l5 ≤ −2k14e−λt E ‖u‖2U (48)

l6 ≤ −2k15e−λt E ‖v‖2V (49)

where k14 = min{c1, c2, · · · , cm} > 0, k15 =

min{d1, d2, · · · , dn} > 0.
By using the Young inequality, Lemma 2, and condition

H1, we have

l7 ≤ k17e−λt E ‖u‖2U

+
1
k17

e−λt E ‖Wf (
∫ 0

−r
v(t C s)dηv(s))‖2U

≤ k17e−λt E ‖u‖2U

+ n
1
k17
‖W‖2Fe

−λt E ‖f (
∫ 0

−r
v(t C s)dηv(s))‖2V

≤ k17e−λt E ‖u‖2U

+
2n
k17
‖W‖2Fσ

2
Me
−λt
‖

∫ 0

−r
v(t C s)dηv(s)‖2V

+
2
k17

ne−λt‖W‖2F‖f (0)‖
2
Rnmes(O)

≤ k17e−λt E ‖u‖2U

+
2n
k17
‖W‖2Fσ

2
M K 2e−λt sup

−r≤s≤0
E ‖v(t + s)‖2V

+
n
k17
‖W‖2F‖f (0)‖

2
Rnmes(O) (50)

where k17 = k16 + α2L, k16 = k14 ∧ k15.
Following the same procedure, we often get

l8 ≤ k17e−λt E ‖v‖2V

+
1
k17

e−λt E ‖Tg(
∫ 0

−r
u(t C s)dηu(s))‖2V

≤ k17e−λt E ‖v‖2V

+
2m
k17
‖T‖2Fγ

2
M K 2e−λt sup

−r≤s≤0
E ‖u(t + s)‖2U

+
2m
k17
‖T‖2F‖g(0)‖

2
Rmmes(O). (51)

By using the Cauchy inequality, we obtain

l9 ≤
1
k17

e−λt‖I‖2U + k17e
−λt E ‖u‖2U

≤
1
k17
‖I‖2Rmmes(O)+ k17e−λt E ‖u‖2U (52)

following the procedure of (52), we have

l10 ≤
1
k17

e−λt‖J‖2V + k17e
−λt E ‖v‖2V

≤
1
k17
‖J‖2Rnmes(O)+ k17e−λt E ‖v‖2V . (53)

Utilizing the Young inequality and condition H1, we obtain

l11 ≤
1

4k17
e−λt‖P(0)‖22 + k17k

2
1e
−λt E ‖v‖2V

≤
1

4k17
‖P(0)‖22 + k17k

2
1e
−λt E ‖v‖2V . (54)

l12 ≤
1

4k17
e−λt‖Q(0)‖22 + k17k

2
2e
−λt E ‖u‖2U

≤
1

4k17
‖Q(0)‖22 + k17k

2
2e
−λt E ‖u‖2U . (55)

We can infer from (45) - (55) that

d EV (t)
dt

≤ −c1 EV (t)+ c2 sup
−r≤s≤0

EV (t + s)+ c3

where c1 = λ − k17(k21 ∨ k
2
2 ), c2 = max{ 2nk17 ‖W‖

2
Fσ

2
M K 2,

2m
k17
‖T‖2Fγ

2
M K 2

}, c3 = 1
4k17
‖P(0)‖22 +

1
4k17
‖Q(0)‖22 +

2m
k17
‖T‖2F‖g(0)‖

2
Rmmes(O) + 2n

k17
‖W‖2F‖f (0)‖

2
Rnmes(O) +

1
k17
‖I‖2Rm +

1
k17
‖J‖2Rn . That means we can choose a suf-

ficiently large positive number λ such that λ − k17 > 0
and c1 − c2 > 0. By utilizing the generalized Hanalay
inequality [20], there exist some positive constants c4, c5, c6,
such that

EV (t) ≤ c4e−c5 t + c6 ≤ c4 + c6, t ∈ [0,T ]

in other words

E(‖u‖2U + ‖v‖
2
V ) ≤ (c4 + c6)eλt ≤ (c4 + c6)eλT , t ∈ [0,T ]

we can conclude that, there is a constant c7 = (c4 + c6)eλT

such that
E ‖u‖2U + E ‖v‖2V ≤ c7, t ∈ [0,T ].

The proof is finished.

IV. GLOBAL ASYMPTOTIC STABILITY OF EQUILIBRIUM
Definition 12: A fixed point (u∗, v∗) = (u∗1, . . . , u

∗
m,

v∗1, . . . , v
∗
n) is called the equilibrium point of system (1) if it

satisfies {
−Cu∗ +Wf (Kvv∗)+ I = 0

−Dv∗ + Tg(Kuu∗)+ J = 0.
(56)

Theorem 13: If the system (1) satisfies conditions H1 and
k16 − ‖Kw‖F% > 0, where % = σM ∨ γM and Kw will be
defined later, then system (1) has an equilibrium point.
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Proof: Let us construct the following block matrices

w =
(
u
v

)
, R =

(
C 0
0 D

)
= diag{c1, c2, · · · , cm, d1, d2, · · · ,

dn}, Z =
(
W 0
o T

)
, h =

(
f
g

)
, K =

(
I
J

)
, Kw =(

Ku 0
0 Kv

)
, that means h(Kww) = diag{f1(K v

1v1), · · · ,

fn(K v
nvn), g1(K

u
1 u1), . . . , gm(K

u
mum)}. With these notations,

(56) is equivalent to

−Rw∗
+ Zh(Kww∗)+ K = 0. (57)

Let us define

h(w) = Rw− Zh(Kww)− K . (58)

It is obvious that the solutions to h(w) = 0 are the equilibrium
points of system (1). Let us define homotopic mapping as
follows:

H(w, λ) = λh(Kww)+ (1− λ)w, λ ∈ [0, 1] (59)

so we get

‖H‖ ≥ λ‖Rw‖ − λ‖Zh(Kww)‖ − λ‖K‖ + (1− λ)‖w‖

≥ (λk16 + 1− λ)‖w‖ − λ‖Z‖F‖h(Kww)‖ − λ‖K‖

≥ (λk16 + 1− λ)‖w‖

− λ‖Kw‖F%‖w‖ − λ(‖Z‖F‖h(0)‖ + ‖K‖) (60)

where % = σM ∨ γM . We must point out in the proof of this
theorem, ‖ · ‖ means the product norm of U × V .

By the assumption in this theorem, there exists a positive
constant r such that (k16 − λ‖Kw‖F%)r > 0 and (k16 −
λ‖Kw‖F%)−1 > 0.

Now, let us define

U(R0) = {w|‖w‖ ≤ R0} (61)

where R0 =
(‖Z‖F‖h(0)‖+‖K‖)+r

k16−λ‖Kw‖F
. If w ∈ ∂U(R0), then

‖H‖ ≥ (1− λ)‖w‖ + λ(k16 − ‖Kw‖F%)‖w‖

−λ(‖Z‖F‖h(0)‖ + ‖K‖)

≥ (1− λ)‖w‖ + λ(k16 − ‖Kw‖F%)−1‖w‖r

> 0 (62)

that means

H(w, λ) 6= 0, ∀w ∈ ∂U(R0), λ ∈ [0, 1]. (63)

By homotopy invariance theorem, we have

deg(h(w),U(R0), 0) = deg(H(w, λ),U(R0), 0)

= deg(H(w, 0),U(R0), 0) = 1 (64)

where deg denotes the topological degree. By using the topo-
logical degree theory (see [10], [24]–[27]), we can conclude
that (57) has a solution. In other words, system (1) has an
equilibrium point.
Remark 14: Our results are slightly different from previ-

ous results given by Song et al. s [19], the difference between
us and him is that we study different models and use different

tools However, our criteria are also easy to check in the
computer.
Definition 15: The equilibrium point (u∗, v∗) of system

(1) is said to be exponentially stable in the mean square sense,
if there exists κ1 > 0 and κ2 > 0, such that any mild solution
(u, v) of (1) satisfies

E ‖u− u∗‖2U ∨ E ‖v− v∗‖2V ≤ κ1e
−κ2(t), t ≥ 0 (65)

where (φ,ψ) ∈ BC([−r, 0],U )× BC([−r, 0],V ).
In this paper, we assume P(v∗) = 0,Q(u∗) = 0.
Let (u∗, v∗) be an equilibrium point of system (1), we can

get the following equation by defining χ = u − u∗ and
ξ = v− v∗

dχ = (A1χ − Cχ
+Wf (

∫ 0
−r v(t C s)dηv(s))−Wf (Kvv∗))dt

+P(v)dB
dξ = (A2ξ − Dξ
+Tg(

∫ 0
−r u(t C s)dηu(s))− Tg(Kuu∗))dt

+Q(u)dB, t > 0
χ (t) = φ(t)− u∗, ξ (t) = ψ(t)− v∗, t ∈ [−r, 0].

(66)

Theorem 16: If the system (1) satisfies conditions H1-H3,
then the equilibrium of system (1) is exponentially stable in
the mean square sense.

Proof: Let (χ , ξ ) be the mild solution of (66), we define
the vector Lyapunov-Krasovskii functional as:

V (t) = (V1,V2)T , (‖χ (t)‖2U , ‖ξ (t)‖
2
V )

T. (67)

By using the Itô formula and the isometry formula
E
∫ t
0 (ξ ,PdB)U = 0, E

∫ t
0 (χ ,QdB)V = 0, we find that{

EV1 = EV1(0)+
∫ t
0 ELV1(s)ds

EV2 = EV2(0)+
∫ t
0 ELV2(s)ds.

(68)

With the hypothesis H1, H2, H4, H5, and (34), which means
d EV1(t)

d = ELV1(t)
d EV2(t)

d = ELV2(t)

EV1(0) = E ‖χ (0)‖2U ,EV2(0) = E ‖ξ (0)‖2V .

(69)

The infinite generators L1 V1 and L2 V2 are given by
LV1 = 2(χ ,A1χ )U − 2(χ ,Cχ )U + tr(PQP?)
+2(χ ,W (f (

∫ 0
−r v(t C s)dηv(s))− f (Kvv∗))U

LV2 = 2(ξ ,A2ξ )V − 2(ξ ,Dξ )V + tr(QQQ?)
+2(ξ ,Tg(

∫ 0
−r u(t C s, x)dηu(s))− Tg(Kuu∗))V .

(70)

By the positiveness of C,D, we have

−(χ ,Cχ )U ≤ −k14‖χ‖2U (71)

−(ξ ,Dξ )V ≤ −k15‖ξ‖2V . (72)

By utilizing adiabatic boundary condition, poincaré for-
mula (Lemma 7), Theorem 6 and H2, it follows that

(χ ,A1χ )U ≤ −α‖|χ‖|2U ≤ −αL
2
‖χ‖2U (73)

(ξ ,A2ξ )V ≤ −α‖|ξ‖|2V ≤ −αL
2
‖ξ‖2V . (74)
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With H1 and the Cauchy inequality, it follows that

2(χ ,Wf (
∫ 0

−r
v(t C s, x)dηv(s))−Wf (v∗))U

≤ ‖χ‖2 + ‖Wf (
∫ 0

−r
v(t C s, x)dηv)−Wf (v∗)‖2U

≤ ‖χ‖2U + n‖W‖
2
Fσ

2
MK

2 sup
−τ≤s≤0

‖ξ (t + s)‖2V (75)

and

2(ξ ,Tg(
∫ 0

−r
u(t C s, x)dηu(s))− Tg(u∗))V

≤ ‖χ‖2V + ‖Tg(
∫ 0

−r
u(t C s, x)dηu(s))− Tg(u∗)‖2V

≤ ‖ξ‖2V + m‖T‖
2
Fγ

2
MK

2 sup
−τ≤s≤0

‖χ (t + s)‖2U . (76)

By utilizing condition H1, H4 and definition of ‖ · ‖2,
we have

tr(PQP?) = ‖P(v(t))‖22
= ‖P(v(t))− P(v∗)‖22 ≤ k

2
1‖ξ (t)‖

2
U (77)

and

tr(QQQ?) = ‖Q(u(t))‖22
= ‖Q(u(t))− Q(u∗)‖22 ≤ k

2
2‖χ (t)‖

2
V . (78)

By virtue of (70)-(78), one obtains

LV1 ≤ (−2k14 − 2αL2 + k22 + 1)V1
+n‖W‖2Fσ

2
MK

2 sup
−r≤s≤0

V2(t + s)

LV2 ≤ (−2k15 − 2αL2 + k21 + 1)V2
+m‖T‖2Fγ

2
MK

2 sup
−r≤s≤0

V1(t + s)

(79)

from (68) and (79), we assert

d EV1(t)
dt

≤ −(2k14 + 2αL2 − k22 − 1) EV1(t)

+ n‖W‖2Fσ
2
MK

2 sup
−r≤s≤0

EV2(t + s)

d EV2(t)
dt

≤ −(2k15 + 2αL2 − k21 − 1) EV2(t)

+m‖T‖2Fγ
2
MK

2 sup
−r≤s≤0

EV2(t + s) (80)

with the Lemma 1 and H3, there is a positive vector
k = (k, k)T and a positive constant κ such that

EV ≤ ke−κt

in other words

E ‖u− u∗‖2U ∨ E ‖v− v∗‖2V ≤ ke
−κt , t ≥ 0.

So the equilibrium point of system (1) is exponentially stable
in the mean square sense.

FIGURE 1. Surface of u of Example 17.

V. AN EXAMPLE
Example 17:

du = (∇ · (Du(x)∇u− Cu

+Wf (
∫ 0
−r v(t + s, x)dηv(s))+ I )dt + P(v)dB

dv = (∇ · (Dv(x)∇v− Dv

+Tg(
∫ 0
−r u(t + s, x)dηu(s))+ J )dt + Q(u)dB

∂u
∂x

(t, 0) =
∂u
∂x

(t, 20) =
∂v
∂x

(t, 0) =
∂v
∂x

(t, 20) = 0, t ≥ 0

u(t, x) = 3 cos(0.2πx)
v(t, x) = 3 cos(0.2πx), x ∈ � = [0, 20], t ∈ [−r, 0]

where r = 1 and

ηu(s) = ηv(s) =

{
0, −1 ≤ s < 0
1, s = 0.

(81)

By calculating the Leabesgue-Stieljies integral, we get∫ 0
−1 u(t + s, x)dηu(s) = u(t − 1, x),

∫ 0
−1 v(t + s, x)dηv(s) =

v(t − 1, x). In this case f (v) = P(v) = tanh(v), g(u) =
Q(u) = tanh(u), W = 2, T = −1, n = 1,m = 1,
Du(x) = 10, Dv(x) = 10, such that ∇ · (Du(x)∇u) =
101u, ∇ · (Dv(x)∇v) = 101v, 1 is the Laplacian operator.
We can also get α = 1, so H2 is satisfied. � = [0, 20],
C = 5,D = 4, I = J = 1, U = L2(�), V = H1

0 (�),
| tanh(u) − tanh(v)| ≤ |u − v|, so σ = γ = 1 is chosen.
We can also get k1 = k2 = 1. So H1 is fulfilled. 2k14 +
2αL2 − k22 − 1 > 8 > 0, 2k15 + 2αL2 − k21 − 1 > 6 >
0, n‖W‖2Fσ

2
MK

2
= 4,m‖T‖2Fγ

2
MK

2
= 1, it is easy to find

that (2k14 + 2αL2 − k22 − 1)∧ (2k15 + 2αL2 − k21 − 1) > 6,
(n‖W‖2Fσ

2
MK

2) ∨ (m‖T‖2Fγ
2
MK

2) = 4, so H3 is fulfilled in
this example.
Let

en =

√
1
20

sin
nπx
20

, x ∈ [0, 20], n ∈ N+ (82)

{en}∞n=1 forms a complete orthonormal basis of K. B is a
mean zero Wiener process with covariance operator Q :
U → U satisfying Qen = 1

n2
en, Since

∑
∞

n=1
1
n2

< ∞,
so Q is a Hilbert-Schmidt operator. In other words, B =
∞∑
n=1

1
nβn(t)en(x), {βn}

∞

n=1 is a sequence of the standardWiener

motions.
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FIGURE 2. Surface of v in Example 17.

FIGURE 3. Frequency of u in Example 17.

FIGURE 4. Frequency of v in Example 17.

We can see that 0 is an equilibrium of (81) and since
H1-H3 are fulfilled for (81). By Theorem 16, the system
has an exponentially stable equilibrium 0 in the mean square
sense.

The finite difference method is used to discretize (81). The
uniformmesh is usedwith spacewidth1x = 1 and time scale
1t = 0.05. The second order centered difference scheme
is utilized to discrete the diffusion terms. The Runge-Kutta-
Chebyshev is used to discrete the time. We use the Matlab
to perform the code. For detailed information, please see
Fig. 1-Fig. 4. From Fig.1-Fig. 2, it can be seen that as time
t increases to the infinity, the surfaces of u and v converge to

the equilibrium 0. It coincides with the result of Theorem 16.
To present a more detailed information of u, v, we also give
the trajectory of u, v for some chosen x in Fig. 3 and Fig. 4.
It can be seen clearly that there is large oscillation due to the
existence of random noise, especially at the beginning of the
process. As the time increases, the trajectory becomes smooth
and converges to the equilibrium quickly. This analysis falls
in the expectation of our result, so the result is convincing and
will have a wider application.

VI. CONCLUSION
We have discussed the global existence and uniqueness of
reaction-diffusion BAMNNs driven by infinite dimensional
Wiener processes.We can see that global Lipschitz condition,
positiveness of diffusion coefficients, totally bounded varia-
tion of S-delays can ensure the existence and uniqueness of
this system. It is a general condition and easy to check. As to
the stability of this system, the criterion is given in the matrix
norm. It is also easy to check through the computer, and will
have a wider application.

The complex-valued neural networks (CVNNs) have
been extensively studied in recent decades since they
can solve problems which can’t be solved by real-valued
NNs [28]–[32]. The method used in this article can also be
utilized in CVNNs after preliminary investigation.We plan to
study this model in the future. By the way, the method used
in this paper even can be extended to some biological models
such as [33]–[40].

In the future, we will further relax the restriction for well-
posedness of this system. The criteria of stability will be
given in the form of LMIs as that in Zhang et al. [17],
Song et al. [29], in order to use YALMIP in Matlab.
At last, the asymptotic behavior will be studied by construct-
ing different Lyapunov-Krasovskii functional.
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