
Received October 14, 2018, accepted October 29, 2018, date of publication November 12, 2018,
date of current version December 18, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2880794

Smart Space Concepts, Properties
and Architectures
SACHIN BHARDWAJ1, TANIR OZCELEBI2, (Member, IEEE),
JOHAN J. LUKKIEN2, (Member, IEEE), AND KEON MYUNG LEE 1, (Member, IEEE)
1Department of Computer Science, Chungbuk National University, Cheongju 28644, South Korea
2Department of Computer Science and Mathematics, Eindhoven University of Technology, 5612 Eindhoven, The Netherlands

Corresponding author: Keon Myung Lee (kmlee@cbnu.ac.kr)

This work was supported by the Next-Generation Information Computing Development Program through the National Research
Foundation of Korea, South Korea, under Grant NRF-2017M3C4A7069432.

ABSTRACT Smart spaces have been actively emerging recently, and researchers are working on developing
and testing smart spaces in the real world. They facilitate smart applications that are adaptive to user
preferences and contexts. In doing so they must satisfy applications’ dynamically changing resource needs.
These objectives are achievable by cooperation among connected devices and ubiquitous interaction. Smart
space architecture designs in the literature are mostly application specific, their concepts and components
defined based on the specific needs of one application. In this paper, we formally define general smart space
concepts and architectural models rigorously and discuss related architectural components (both hardware
and software) in detail. Based on a literature review we summarize the discriminating properties that a
smart space must possess, and its basic components and services to realize these properties. We present
a comparative analysis of the architectural designs proposed thus far. A comprehensive smart space
architecture is proposed and its semantic interoperability is discussed in detail. In addition, we provide a
case study of a smart lighting system, where the properties of smart spaces are analyzed. Finally, we provide
a roadmap for future smart space development.

INDEX TERMS Adaptive behavior, smart space, smart space architecture, semantic interoperability, smart
lighting.

I. INTRODUCTION
As we enter the era of the Internet of Things (IoT), where
devices communicate with one another to support human
tasks, the ubiquitous interaction envisioned by Weiser [1] is
becoming a reality. Many strongly believe that user needs
constitute the main driving force behind technological devel-
opment, but sometimes it is the other way around. Techno-
logical advancements change the ways that people interact,
perform activities, and connect with their environments. For
example, a smart television can now do much more than
simply receive and display video signals. With internet con-
nectivity, advanced software, and plenty of computational
power, smart televisions allow users to surf the Internet,
browse movie libraries of local media servers, stream and
play movies in various encoding formats, play online games,
join video chat sessions, and much more. Similarly, touch-
screen-enabled smart phones with 3G (and now 4G) con-
nectivity have changed not only the way mobile users view
cellular phones, but also their interactions and methods of

working, evenmore dramatically. Smart spaces also represent
an area in which the driving force is mainly a technological
push, i.e., the functionality is not called for by a globally
widespread ‘‘killer application’’ and the utility of such spaces
must be understood over time by experimentation. The tech-
nological push in this instance is the increased prevalence of
electronic devices around and on people combined with the
fact that the devices are networked and produce information.
Smartness here refers to the ability of these devices to perform
(collective) behaviors perceived as advanced and useful in
some sense. Since the number of devices is rapidly exceeding
the number of human users, this smartness implies (self-)
management and configuration capabilities.

Augusto et al. [2] introduced an intelligent environ-
ment and provided the basic conceptual view of a smart
space in the scope of intelligent environments. Although
smart spaces have not been established very precisely,
smart (space) applications have been developed both
as project showcases [3]–[6] and for real deployments.

70088
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-4939-8550


S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

These applications are characterized by the fact that the
hardware and software elements of the system are dedicated
to and specifically developed for the application at hand.
Examples can be found in health care (e.g., patient monitor-
ing, home monitoring), intelligent lighting, media use, and
environmental monitoring. Special-purpose systems, how-
ever, are costly and do not lead to the commoditization of
the system components.

Using the analogy of a smart phone, a smart space can be
regarded as a programmable platform for various concurrent
applications. This platform concept using an open interface
has been recognized by many authors and in numerous recent
projects, and it is generally seen as essential for making
progress. Among the examples, multimedia has developed
the farthest in this direction through the use of Digital Living
Network Alliance (DLNA) [7] technology. There are thus
more stakeholders than just end users and more criteria than
just functionality. Instead, we argue for smart space design
considering multiple stakeholders and multiple qualities cap-
tured by different metrics.

In this paper, we define the characteristic properties of
smart spaces and propose general architectural designs with
physical and logical deployment alternatives for providing
this set of properties. The proposed architectures were devel-
oped based on the iterative process employed in our various
experiments related to smart lighting applications and smart
spaces in [8]–[12]. We make a comparative analysis of the
designs reported in the literature in relation to the presented
properties of smart spaces and propose a comprehensive
smart space architecture. We argue that semantic interoper-
ability, a smart space property, needs particular attention and
we discuss it in detail. Finally, we choose a smart lighting
system discussion and provide an analysis of smart space
properties.

This paper is organized as follows. Section II provides
an overview of smart space concepts, as well as the fun-
damental properties of smart spaces. Section III outlines
common generic architectures for smart space designs.
Section IV presents a comparative analysis of various smart
space designs in the literature with their distinctive compo-
nents, as well as a comprehensive smart space architecture.
Section V discusses semantic interoperability and adapta-
tion in detail. Section VI provides a discussion on a case
study. Finally, Section VII concludes the paper with future
directions.

II. SMART SPACE CONCEPTS AND PROPERTIES
In this section, we first define the terminology regarding
smart space concepts and then introduce the fundamental
properties of a smart space.

A smart space delivers context-aware information
services [13], [14], as well as physical services through
actuation. It is defined by its physical extent, embedded elec-
tronics, embedded networks, and software. In the literature
of networked embedded systems an object is a combination
of an embedded networked device (node) with the software

running on top. Such an object is a producer and/or con-
sumer of digital information through its software logic, has
a (dynamic) state and can communicate with other objects.
Changes in the state of an object can be autonomous, which
models a sensing capability. Similarly, some changes of an
object state can result in changes in the physical world, which
models an actuation capability.

A node or an embedded device is referred to as a smart
object in [15]. In this paper for clarity of presentation we
distinguish between smart nodes (hardware) and the software
modules running on top that produce and consume infor-
mation. We refer to the software modules hosted by smart
nodes as information objects (iOs). Each iO of a smart space
has a local state that may change over time and a set of
(timed) events in which it can engage. Events are changes
of state and include sensing, actuation, user interface events,
and communication with other iOs.
Definition (iO Behavior): The series of messages sent and

received by an iO, its state changes (events), actuations and
the associated timing relations together form its behavior.

We still have not answered the most important question:
What makes a smart space smart? The dictionary definition
of ‘‘smart’’ commonly refers to possessing a mental state
that enables human beings (or animals) to demonstrate quick
thinking and intelligence as an individual. Hence, the ability
to react to changes adequately and timely is embedded in
the notion of smartness. The perception of smartness in this
sense in a smart space typically comes from the interactions
between iOs, i.e. a certain behavior of an iO that leads to
a particular behavior of another iO as a reaction and so on.
An example is the detection of occupancy in a room by a
presence sensor, triggering a state change of the detecting iO
followed by message transmissions to a light controller iO,
which in turn sends actuation commands to an actuator iO on
a light source.

Note that such relations are possible to realize even with
very resource-poor smart nodes. In fact, even the so-called
passive nodes that require external power sources to become
active (e.g. RFID tags) are considered to be smart nodes in
this sense. Nowadays a single smart node can contain many
sensors and actuators, act as both a producer and consumer of
several types of information and participate in multiple appli-
cations. Smart nodes exhibit node-to-node, node-to-cloud,
node-to-gateway, and back-end communication patterns.

A smart space is further characterized by its scenarios,
which are sequences of timed events (state changes). We refer
to these scenarios as the (potential) behaviors of a smart
space.
Definition (Smart Application): A smart (space) applica-

tion A is a set of communicating iOs that together aim to serve
and interact with smart space users and the electronics these
users carry.
Definition (Application Context): The context c(A) of a

smart application A is the collective state of all iOs constitut-
ing A, including external states monitored by these iOs that
may influence the behavior of A.

VOLUME 6, 2018 70089



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

Definition (Application Behavior): The collective behav-
ior of iOs that form and influence A define the application
behavior b(A).

Thus, b(A) depends on c(A) and is, in fact, fully defined
by it. In interactions between the stakeholders and A, events
are triggered, e.g. a button is pressed, some user interface
input or output is given, or some action is performed. These
events affect the corresponding iOs that are part of c(A).
We refer to these as interface objects, which form a subset
of c(A). Whether an iO is an interface object is subjective, but
we typically restrict ourselves to iOs that affect the function
of A. If b(A) is fully defined by these interface objects, we say
that the application is context-independent; otherwise, we call
it context-dependent.
A metric m in this setting is a mapping from smart appli-

cation behaviors to a non-negative real number. When a
lower value is better, the metric is called a cost function.
Smartness and other qualities are perceived by stakeholders
through interactions and state observations and are therefore
properties of behaviors. We associate these properties with
metrics. A is called adequate with respect to a metric m if A
satisfies a certain requirement on m, for all behaviors of A.
We can now define what we mean by a smart space.
Definition (Smart Space):A smart space is a physical space

enriched with embedded information and communication
technologies running a set of smart applications.

Common properties of smart space designs in the lit-
erature are shown in Table 1. Based on our definitions
of a smart application and a smart space, the first three
properties listed, namely adaptation, communication interop-
erability and semantic interoperability, are primary proper-
ties of all smart spaces. Communication interoperability is
mainly solvable by using standardized communication proto-
col stacks. However, adaptation and semantic interoperability
pose challenges as devices that come from multiple ven-
dors and domains differ in their default behaviors, semantics
and ontologies. The last three properties, namely openness,
extendibility and self-management, are secondary properties
that are good to have, but a smart space design may lack
these properties. In the following, we discuss smart space
properties in more detail.

When an application A is context-dependent it may
adapt b(A) and trigger new or existing services as required
by the scenario in question. Let the context space of A in its
physical environment be given by CA such that c(A) ∈ CA.
It is possible to dynamically change b(A) at runtime to cope
with performance issues that are stemming from changes
in c(A).
Definition (Adaptation): A is said to exhibit adaptation

with respect to m if its behavior b(A) is designed to change
dynamically over time to guard A’s adequacy with respect to
m as a response to changes in A’s context c(A).
Adaptation may be active or passive. The changes in b(A)

are due to the direct interactions of the users with smart nodes
when the adaptation is active, and the users are only notified
about the variations in c(A) in the case of passive adaptation.

TABLE 1. Properties of smart space solutions in the literature.

For example, active adaptation occurs when a user enters a
building: a sensor identifies the presence of the user and sends
a command to turn the lights on. In this example, the user
directly interacts with the smart nodes in the smart space.
In contrast, passive adaptation occurs when a music player
changes the light presets based on the music that is playing
in the background. In this example, the users do not interact
directly but may be directly or indirectly notified about the
changes.
iOs need to adapt b(A)adequately within a limited time

interval. One of the main reasons is that long adaptation
actions taken by any iO may prevent timely adaptations of
other iOs of A, effectively leading to inadequate execution
of A. Therefore, for adaptive applications, latency of reaction
to changes in context is many times an important performance
metric, i.e. a cost function to be minimized. Latency is the
time interval between a stimulation of an iO belonging to A
and the time at which the corresponding changes take effect
in b(A). In computing the total adaptation latency we need to
account for the latencies added by all iO tasks. iOs perform
the following tasks for adaptation: i) monitor contexts in the
application environment, ii) analyze the contexts and find
the needs for adaptation, iii) execute the adaptation. These
three steps followed by any iO will result in changes of b(A).

70090 VOLUME 6, 2018



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

A may adapt and reconfigure according to variations in c(A)
as demanded by the scenarios encountered. Note that learning
(as in artificial intelligence) is a specific case of adaptation.

Smart nodes consist of diverse hardware and software
platforms and interoperability among these is a requirement.
Interoperability between two iOs depends on the hardware
and software platforms used by the iOs. A smart node is only
able to exchange information if its hardware and software
platforms are harmonious to integrate with other nodes.
Definition (Communication Interoperability): The ability

of iOs in a smart space to share information over a network,
i.e. by following certain (communication) protocols, message
formats and syntax, is called communication interoperability.
Definition (Semantic Interoperability): The ability of iOs

in a smart space to extract a common meaning (semantics)
from the information that is shared is called semantic inter-
operability. Semantic interoperability of iOs is built on top of
communication interoperability and is typically achieved by
using a shared ontology.

The hardware and software platforms of smart nodes in a
smart space should allow third parties to develop and imple-
ment iOs that can be used in the smart space. The smart
space architecture must support portability of iOs and enable
interoperability in heterogeneous networks of smart nodes.
Let the set of protocols, message formats and syntax in smart
space SSi be denoted by Si. Consider a new iO, iOnew, that has
just joined SSi. Let the set of protocols, message formats and
syntax required by iOnew be given by Onew. For communi-
cation interoperability Onew needs to be a subset of Si (called
full communication interoperability) or the smart space needs
to facilitate a translation between Si and Oi (e.g. by means
of a communication gateway). Semantic interoperability is
achieved if the additional condition that the ontologies of
iOnew are a subset of the ontologies of SSi holds.
Definition (Openness): A smart space architecture is said

to be open if its protocols, data formats and syntax are well-
described, generally available to public.

A smart space architecture must also be extendible to
allow for additions to the smart space, e.g., to enable smart
nodes to access the smart space easily in new applications.
The smart space architecture must enable programmers to
develop applications dynamically without having to interact
with the physical world of embedded devices. In other words,
the smart space must provide an interface that can decou-
ple programming and application development from physical
infrastructure deployment and integration. Extendibility indi-
cates that new nodes and applications can easily inserted into
a smart space; meaning installation and bootstrapping should
be with minimal technical expertise involvement.
Definition (Extendibility): A smart space is said to be

extendible if new smart nodes can connect and new appli-
cations can be installed to the smart space with ease.

A smart space is typically composed heterogeneous smart
nodes and networks. Smart nodes have varying capabilities
in terms of resources such as communication bandwidth,
computational power, memory and energy. The iOs taking

part in smart applications not only require access to sensitive
data and services, but also insert their own data and services
into the smart space, which calls for security measures to be
taken (e.g. using encryption). Protecting privacy properties
related to its users is an important concern for a smart space.
A privacy property is a mapping from an information receiver
R and a data item d to a data handling property P: ‘‘R will
only do P with d’’. A smart space should therefore aim to
guarantee and enforce privacy properties while exchanging
contextual knowledge with iOs. Therefore, self-management
of the smart space, including its networks, smart nodes is
required for adequate responses in smart spaces.
Definition (Self-Management): Self-management is the

capability of smart space to monitor and manage its resources
and services.

Self-management services, such as energy manage-
ment or security and privacy management, can be assigned
to a particular smart node to be accessed by all iOs. Alterna-
tively, these services can also be distributed. A smart space
should give ample of opportunities to the associated appli-
cations for enhancing their persistence by self-management
as failure-free (dependable) operation of smart space appli-
cations is key to user satisfaction.

III. SMART SPACE BUILDING BLOCKS AND
ARCHITECTURAL DESIGNS
As a platform, a smart spacemust contain and build up knowl-
edge about its capabilities and resources, its state (contexts)
and history. To do so, it employs sensing, user interaction,
resource monitoring, communication, computation, cooper-
ation, and services on the Internet. Furthermore, a smart
space utilizes a variety of architectural components tomanage
applications and the available resources as well as to provide
security and ensure the privacy of the smart space knowledge
considering access rights. This section presents i) the funda-
mental hardware and software building blocks that make up
smart spaces and enable their properties (see Section I), and
ii) an overview of the generic architectural designs employed
to realize these properties.

A. CLASSIFICATION OF SMART NODES
The available device classes in networks of resource-
constrained devices were defined in [8] and [9] based on an
investigation of the commercially available chips and embed-
ded system designs. In this taxonomy, class 0 (C0) devices
are strictly constrained in terms of processing and memory
(dynamic memory and permanent storage much less than
10 KiB and 100KiB respectively) capabilities. Therefore,
these devices are not able to run the Internet protocol stack.
We call some devices belonging to this class passive devices
since they depend on event-based energy harvesting for send-
ing a few messages back-to-back into the network before
their harvested energy is fully depleted again. A battery-
less wireless light switch is an example of this. C0 passive
devices typically do not facilitate any management or secu-
rity services other than pairing with other devices over

VOLUME 6, 2018 70091



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

a trusted proxy. C0 devices that are not passive can han-
dle keep-alive messages and provide basic device state
information.
C1 devices have roughly 10 KiB of memory space and

100 KiB of storage space, and they are mostly battery pow-
ered. Such resource limitations still do not allow running of
the full protocol stack of the Internet. Nevertheless, there
are low-resource (lightweight) protocol stacks specifically
designed for this device class. For example, these devices can
use CoAP (Constrained Application Protocol) [33] over UDP
(User Datagram Protocol) and employ 6LoWPAN (IPv6 over
Low power Wireless Personal Area Networks) as adaptation
layers to communicate directly with the Internet. Functionally
(including security), with very careful use of resources, they
would act like ordinary IP endpoints. However, in terms
of network latency, throughput, and computational perfor-
mance, these devices perform poorly due to resource opti-
mization techniques such as radio duty cycling.

With around 50 KiB of memory and 250 KiB of storage
space, C2 devices can run conventional network protocol
stacks. However, in practice, C2 devices also employ low-
resource protocol stacks as a performance precaution.

Naturally, such taxonomy needs frequent updates as the
classes and their capabilities change continually thanks to
developments in silicon technology. With this in mind and
based on the architectural requirements for involvement in a
smart space, we define three broad categories of smart nodes
with respect to the available resources and communication
capabilities: high-capacity smart node (HSN), low-capacity
smart node (LSN), and passive smart node (PSN). HSNs are
members ofC2 (or more capable). Typical examples of HSNs
are smart phones, tablets, personal computers, and other high-
capacity embedded devices. Contrary to LSNs, HSNs can
employ complex services and protocols and perform high-
level and complex reasoning. PSNs are resource-poor passive
devices (a subclass of C0), such as RFID tags and battery-
less switches. LSNs are the remaining members of C0 plus
the members of C1.

B. LOGICAL STRUCTURE OF iOs
A smart space allows seamless information sharing
among iOs, i.e. information such as application contexts and
management data. Smart space applications are composed of
sets of data and actuation services provided by their iOs. The
relations between various logical components and iOs in a
smart space architecture are depicted in Fig. 1. The types
of iOs shown in Fig. 1 are described in Table 2.
A smart application has application-specific contexts,

logic, and ontology. The application contexts are the
contexts captured from the environment (such as user ID,
location, activity, and resource attribute value) and are sup-
plied to the application logic. The application logic can exe-
cute application-specific scenarios. The application ontology
defines the set of concepts that are relevant, allowing to
provide a flexible and up-to-date description of application
contexts. An application has an application specific ontology,

FIGURE 1. A diagram depicting the logical relations of iOs in a smart
space.

TABLE 2. Types of iOs shown in Fig. 1.

logic and a notion of its context. It realizes its application
behaviors, i.e. showSmartBehavior(). A smart node has its
own capabilities, resources, and network address to associate
with other smart nodes, and to provide sense(), actuate(), and
communicate() services.

A context interpreter gathers raw data from one or more
iOs of an application, summarizes them as application
contexts and converts the results into the established
semantics [34] of the smart space. For example, a context

70092 VOLUME 6, 2018



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

interpreter participating in an application involving user inter-
action can take raw accelerometer data and convert them into
gesture semantics (such as ‘‘pointing upwards’’) and further
into corresponding control semantics (e.g., increasing the
light intensity by 10%). It can also perform conversion in the
reverse direction, i.e., from semantics to contexts. Semantics
are represented using a high-level description language such
as the Resource Description Framework (RDF) [35]. Con-
texts are expressed in a standard way and can be exchanged
between iOs without loss of meaning. The semantics are
then stored by a semantics broker iO (SBiO), where they are
accessible by iOs that can perform reasoning on high-level
application data. The stored semantics are also accessible
by manager iOs (MiOs), whose instances are application
manager iOs (AMiOs), resource manager iOs (RMiOs), and
security and privacy manager iOs (SPMiOs).
The semantic reasoning associated with SBiOs refers to

inferring logical rules from input semantics in the form of
validation (e.g. to avoid conflicts) and deduction (e.g. to
deduce complex semantics from simple ones).When the infer-
ence of logical rules (i.e. inferSemantics()) is expressed by
validations, one instance of validations is employed to check
whether a set of semantics SA is a subset of a second set of
semantics SB, denoted as SA ⊆ SB. Similarly, the conflicts
in the querying semantics need to be resolved (i.e. resolve-
Conflict()). Output semantics (i.e. outputs of semantic rea-
soning) that result from validation and deduction may trigger
new iO behaviors, and thus, new application behaviors. This
gives a perception of smartness. In the semantic web [36],
new relationships and semantics can be discovered based on
the existing semantics. These semantics and inferred logical
rules can be shown in a graphical way as in an ontology
language. The Web Ontology Language (OWL) [37] is the
most commonly used ontology language. There are many
semantic reasoners available, such as Pallet [38], Flora-2 [39],
Jena [40], and the ELK reasoner [41], to name a few. Ontol-
ogy graphs and their semantic representations are edited by
semantics editors such as Protégé [42], OWLGrEd [43], and
VocBench [44].

Smart spaces employ management to deal with factors
that may cause applications to fail, such as attacks, lack
of resources, hardware and software failures, and network
topology changes. As trusted systems [45], they must ensure
data privacy and enforce security measures by employing
SPMiOs. The tasks of resource and application management
are performed by RMiOs and AMiOs. The former monitors
the available resources and allocates them to iOs as necessary.
The latter not only orchestrates the iOs that participate in
smart applications, but also re-orchestrates themwhen certain
iOs fail, change their behavior, or leave the smart space.
In this way, failures are handled at the iO level before they
cause smart application failure. ‘‘Failure’’ also includes poor
application behavior or, equivalently, failure to adhere to
specifications. Producer iOs (PiOs), e.g., on a smart sensor,
produce knowledge in a smart space, whereas consumer iOs
(CiOs), e.g., on a smart light source, utilize such knowledge.

FIGURE 2. Activity diagram illustrating the process of a PiO joining a
smart space and participating in an application.

Producer–consumer iOs (PCiOs), e.g., on an input–output
device such as a smart touch display, can both produce and
utilize knowledge.

C. PROCESSES AND DEPENDENCIES AMONG iOs
The (simplified) process of an iO joining a smart space and
participating in a smart application is shown in Fig. 2. A PiO
sends a request to join a smart space application and the
request is verified by an SPMiO to obtain permission. The
new PiO is then registered and can insert data into an SBiO.
An AMiO requests resources to (re)configure the application
that may utilize the newPiO. If the resources can be allocated,
then the newPiO becomes part of the smart space application.
The process through which a PiO inserts data into an SBiO
is shown in Fig. 3. For example, consider a PiO as part of an
application that gathers contextual data from the environment
through sensing. The context interpreter converts this con-
textual data into the smart space semantics. These semantics
are further stored at the SBiO for information sharing. The
semantics may be dynamic; thus, the dependencies among
iOs must be able to modify their processing of ever-changing
semantics. The dependencies among the iOs in a smart space
are depicted in Fig. 4, which explains the various issues
to be resolved, such as context interpreter, representation
as semantics, semantic reasoning, application performance,
smart space management, application management, access
control, security and privacy, and their management.

The changes in semantics must follow the conditions
defined for semantic interactions.

D. PHYSICAL DEPLOYMENT
The physical part of a smart space entails the physical com-
ponents (i.e., smart nodes), the connections between them,
the deployment of iOs and the corresponding allocation of
functionality to a smart node. We discriminate between three
types of smart spaces with respect to the physical deployment

VOLUME 6, 2018 70093



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

FIGURE 3. Activity diagram illustrating a PiO inserting data into the SBiO.

FIGURE 4. Package diagram showing the dependencies among iOs in a
smart space.

of iOs on smart nodes, i.e., centralized, decentralized, and
distributed smart spaces.

Table 3 gives a summary of the smart node types used
in smart space architectural designs. In a centralized smart
space, most of the iOs do little or no computation (perhaps
some pre-processing or post-processing), and they merely
realize the tasks of input, output, sensing, and actuation. Most
of the computation, including management, is performed at
a central iO (CTiO), which is typically placed on the same
device as an SBiO, as shown in Fig. 5. A CTiO must be able

TABLE 3. Types of smart nodes.

FIGURE 5. Physical deployment of a centralized smart space. Each CTiO
corresponds to an application in the smart space. A smart node is
associated with one or more CTiOs. Each CTiO running an application is
associated with one or more smart nodes.

to interpret the contexts of other iOs that depend on it and
convert them into the semantics of the smart space, which are
then stored in the SBiO. Adaptive and adequate application
behavior is then imposed by the CTiO. PSNs do no pre-
processing or post-processing. Instead, they are connected to

70094 VOLUME 6, 2018



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

the central smart node (CSN) over a trusted proxy (PXSN),
which also does pre- and post-processing on behalf of the
PSN. In practice, the tasks of the proxy can be moved to
the CSN. Therefore, the CSN and the CTiO are involved in
almost all communications and computations, which creates
a performance bottleneck in the architecture.

The dependency on the CTiO is a concern for open-
ness and extendibility: deploying an iO at the CSN requires
either reservation of the needed resources and admission con-
trol or compatibility of the iO with a dynamic resource man-
agement regime. In the latter application adequacy depends
on the availability of resources and may be jeopardized when
more iOs are deployed.

A decentralized smart space is one in which the networked
smart nodes do most of the computations necessary to realize
user applications in a distributed way. For adequacy, the iOs
involved must be able not only to communicate, i.e., have
communication interoperability, but also to operate with the
same meanings (semantics) of data, i.e., have semantic inter-
operability. To realize this, it is important that iOs utilize
shared communication standards and have access to suf-
ficient computational resources. Clearly, the resources and
communication capabilities depend on the hardware design
and the loads on the various smart nodes. A (sub-) network
of LSNs in a smart space mostly runs resource efficient
communication protocols such as ZigBee [46] and Bluetooth
Low Energy [47]. LSNs typically require a gateway smart
node (GSN) between themselves and an SBSN for commu-
nication interoperability and translation of semantics. Smart
spaces typically support wireless communication andmust be
able to deal with multiple communication standards. A GSN
implements the communication standards in all networks
that it bridges together. It is also responsible for context
interpretation for LSNs [48] into semantics using a gateway
iO (GWiO). AGWiO is a specific type of PCiO on a GSN that
translates contexts into semantics and vice versa between an
LSN and an SBSN. Fig. 6 shows the physical deployment of
a decentralized heterogeneous smart space with HSNs and
LSNs. SBiOs play an important role in decision making with
the help of MSNs. Each SBiO contains a semantic reasoner
to produce output semantics. The smart nodes and iOs are
partially independent and thus can make decisions locally
and perform computations accordingly. They do not always
depend on a central unit to make application-level decisions,
making it easier to achieve openness, and extendibility.

Services supported by the cloud are becoming increasingly
popular and can be utilized in decentralized smart spaces
directly or indirectly. In direct utilization [49], the cloud
services must have the same ontology format and semantics
as the smart space itself and each cloud service acts as an iO.
Furthermore, the smart devices that communicate directly
with the cloud services must be individually reachable
(e.g., IP-to-the-leaves using 6LoWPAN [50]). In indirect uti-
lization [51], a gateway between the cloud and smart space
runs an iO that provides the semantic interface to cloud
services, as shown in Fig. 7.

FIGURE 6. Physical deployment of a heterogeneous, decentralized smart
space with HSNs and LSNs. Communication interoperability and semantic
interoperability with LSNs are achieved by means of GSN.

FIGURE 7. Cloud services for smart spaces.

A distributed smart space consists of smart devices without
a certain hierarchical structure. Each device contains the
software components necessary to realize self-management,
semantic reasoning, and distributed application logic as
shown in Fig. 8. This architectural design is strongly depen-
dent on the application requirements and is loosely coupled
with the components. The components are not dependent for
any decision to be made within specific boundaries.

Smart space management must involve a concept of mem-
bership, perhaps with different authorization levels. Based
on this structure, privacy and security models and policies
are built. Service and device discovery are integral parts of

VOLUME 6, 2018 70095



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

FIGURE 8. Physical deployment of a distributed smart space.

this management system. Numerous software stacks for ser-
vice discovery exist [8], some of which are communication-
standard specific and have various weights. A similar remark
can be made about interoperability standards [52]. These
must be seen as representing a more abstract concept of
device and service discovery defined at the smart-space archi-
tectural designs. For example, when a smart node leaves from
the application then their services are supposed to handover
at another smart node in the application. A suitable sys-
tem architecture design must be chosen based on the target
applications, their goals, and the corresponding performance
metrics.

IV. COMPARATIVE ANALYSIS OF SMART SPACES
Many architectural designs for smart spaces have been pro-
posed by many researchers. In this section we compare a
selection among them, specifically those that that provide
nearly complete solutions with respect to the smart space
concepts that we have enlisted. This comparison is given
in Table 4. An immediate observation is that most of the
smart space architectures in the literature are decentralized
by design, while fully centralized or fully distributed archi-
tectures are very rare.

An example centralized smart space architecture is called
PERSIST [18], which provides the overall design of a per-
sonal smart space (PSS). PSSs are smart spaces based on
personal area networks that follow the user as she moves.
PSSs consist of various smart nodes such as personal com-
puters, mobile devices, wearable sensors, or other wearable
devices. They ensure a minimum level of basic pervasive-
ness and context-awareness facilities anytime and anywhere.
To provide connectivity to PSS owners, PSSs can operate
in both infrastructure and ad-hoc network modes, allowing

wide integration of a multitude of smart nodes. PSSs can
interoperate with other smart spaces, which allows them
to adapt to new environments automatically in satisfying
their users’ needs. Interoperability is established based on
context sharing using semantic web technologies, where a
context management system implemented in an AMiO stores
and retrieves context information in a distributed manner.
PERSIST, which consists of several PSSs, is the only archi-
tecture in Table 4 with a distributed design. The facilities
it provides to integrate multiple applications, however, are
limited.

A centralized smart space design is given in [17]. In this
design all contexts from the smart space and its physical
environment are collected at a central unit. The received con-
texts are processed by a central reasoning module to provide
outputs to the iOs, which also reside in the same central unit.
The main focus of [17] is on the use of an ontology graph to
enable a reasoning component for various scenarios. For this
purpose, a user can select the services by querying the central
unit and can make subscriptions for service updates.

Most of the decentralized architectural designs
from [19] to [32] in Table 4 employ AMiOs and SBiOs,
while RMiOs and SPMiOs are mostly not considered in these
designs. In the following we elaborate on two examples,
SPITFIRE [22] and CISE [16]. There are two issues that
should be noted in this decentralized architecture solution
of SPITFIRE. Firstly, it involves a semi-automatic process
of creating semantic sensor descriptions for LSNs. Note that
our proposed architectural model for decentralized smart
spaces allows the semantics to be fetched directly and auto-
matically through the GWiO, without requiring manual or
semi-automatic creation of semantics. Secondly, SPITFIRE
directly connects sensors to the semantics repository, and
the sensor data are updated frequently, which causes heavy
network traffic and leads to performance issues. In our
decentralized architectural design this is easily solvable by
locally processing the sensor data and sharing only the high-
level semantics in the smart space over the GWiO. A similar
solution is provided in the Context-Based Infrastructure for
Smart Environments (CISE), which focuses on the require-
ments for dealing with smart space contexts. It provides
an architectural solution with the following components:
contexts, a context server (which is responsible for context
aggregation), a context interpreter (which is responsible
for context interpretation), and a communication module
for information sharing. CISE hides the context details of
LSNs and LSNs such as sensors can be replaced and added
without affecting the smart application. It also facilitates
the addition of contexts to existing applications. Although
this solution provides many facilities for building smart
spaces, it does not support high-level semantic interoper-
ability for generic infrastructures suitable for any applica-
tion in smart spaces. The information shared only includes
the basic descriptions of devices. A common ontology lan-
guage based on a semantic web is required for large-scale
applications.

70096 VOLUME 6, 2018



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

TABLE 4. Comparison of architectural designs of smart spaces.

VOLUME 6, 2018 70097



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

TABLE 4. Comparison of architectural designs of smart spaces.

In [53], a semantic approach for providing intelligent sup-
port into a large IoT-based smart space is introduced where
semantically driven information shared among IoT devices
and services are provided to the users. Several examples of
smart space applications are also discussed such as smart
mobile assistant for history-oriented tourists, personalized
mobile health system and smart room system for conferences

and meetings. An integrated approach of combining smart
spaces and IoT is presented in [26]. Although this approach
is effective and facilitates the division of the worldwide IoT
into manageable smart spaces, abstractions for LSNs are
not considered, resulting in poor performance. A common
platform for the abstraction of heterogeneous devices, tech-
nologies, and protocols is presented. This platform provides

70098 VOLUME 6, 2018



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

semantic-level interoperability, enabling the creation of appli-
cations for pervasive computing and the IoT together.

The main goal of semantic-level interoperability is the
integration of devices in the semantic web by using web
technologies such as the RDF and OWL. These technologies
were originally designed for web resources but were later
used also in open-source-based projects such as OpenIoT [54]
and Smart Objects for Intelligent Applications (SOFIA) [55].
OpenIoT provides a framework for connecting users and
IoT devices to establish a global ecosystem for the IoT. The
objectives of this framework are twofold. Firstly, it provides
facilities for the development of open software architectures
and gathering of innovative IoT services. Secondly, these
services can be quickly searched by users. Numerous users
can benefit from the framework by rapidly searching for
results using web technologies for IoT-related services, appli-
cations, and products. Meanwhile, SOFIA provides a Smart-
M3 platform for interoperability across domains, devices,
and vendors. It allows integration of information domains
that take part in smart applications using web technologies.
The Smart-M3 platform is implemented and its usage is
discussed in [56]. The research is focused on service formal-
ism based on Smart-M3 for developing smart space appli-
cations, where smart spaces are concluded as an emerging
paradigm for future IoT based smart software. Moreover, the
researchers and developers are encouraged in [57] to develop
smart spaces using the Smart-M3 platform. The research
challenges are discussed in detail for the development of
smart spaces. A good set of questions is discussed related to
the development properties of any smart space. These ques-
tionnaires can help to classify the smart space concepts and
implementations.

In [20], [23]–[26], and [29]–[31], this interoperability
approach employing Smart-M3 was utilized to share and
access local semantic information easily. In Smart-M3, the
performance metric of the queries and subscriptions at an
SBiO depends on the reasoning component and network
delay. We performed a Smart-M3 experiment involving a
smart lighting application in [58] to measure the delay per-
formance with semantic-level interoperability.

Zeng et al. [59] presented a coarse-grained computation
model called HyperspaceFlow where a smart space is mod-
eled using physical flow, data flow, and human flow com-
ponents. The physical flow specifies the relations between
cyberspace and the physical space; the data flow involves
the computations and communication related to cyberspace.
The human flow is utilized to model the interaction between
the cyberspace and the human space. In addition, a system-
level smart space design method using the HyperspaceFlow
model was proposed. The feasibility and effectiveness of this
method were examined in a healthcare case study, which indi-
cated that the specifications of a smart space can be further
transformed into the underlying architecture by employing
the HyperspaceFlow model. This approach allows modeling
of a smart space only for a single user. Further, it is enhanced
for Cyber-Physical-Social Systems (CPSS) [60], [61], where

a system-level design optimization approach is introduced
for security, energy consumption and user satisfaction.
The approach is examined by the case study of a smart
office, which satisfied the design optimization requirements.
Ovaska and Kuusijärvi [26] introduced a piecemeal service
engineering approach to smart space design and tested it for
intelligent applications. The piecemeal service engineering
approach enables maximum use of the existing design and
technical resources in the development of new smart space
applications.

Some researchers have tried to explain smart space archi-
tectures using hierarchal models as in MavHome [62]. The
smart space architecture in MavHome is realized by provid-
ing a complete solution to a smart home and collaborates to
meet the goals of the overall home. It contains four layers: a
decision layer, an information layer, a communication layer
and a physical layer. The decision layer selects the actions
for an object to execute based on the information supplied
by the other layers. The information layer gathers, stores,
and generates knowledge useful for decision making. The
communication layer facilitates the communication of infor-
mation, requests, and queries between devices. The physical
layer corresponds to the devices within the smart home.
These layers provide the features necessary for self-managing
smart home automation. MavHome was implemented using a
Common Object Request Broker Architecture [63] interface
between software components and powerline technologies
such as X10 [64] and Lon Works [65] as electric devices.
Although this architecture enables the integration of several
technologies in a smart home, it fails to provide a solution
for LSNs and efficient interoperability. It addresses only
context-based interoperability and avoids anymanagement of
resources and services.

Similarly, in ISHEWS [66], a smart home environment
is introduced with five main sub-systems: surveillance and
access control, home automation systems, digital entertain-
ment systems, assistive computing systems, and an energy
management system. These sub-systems interoperate in three
levels: basic connectivity interoperability, network interop-
erability, and syntactic interoperability. The basic connec-
tivity interoperability provides a common standard for data
exchange between two sub-systems and establishes commu-
nication links. It represents the physical and data-link layers
of the standard Open Systems Interconnection (OSI) model.
Ethernet, Wi-Fi, and PPP are the common standards for
basic connectivity interoperability. Network interoperability
enables message exchange between systems across a variety
of networks in a smart home environment. It is represented
by the network, transport, session, and application layers of
the OSImodel. Transport Control Protocol (TCP), User Data-
gram Protocol (UDP), File Transfer Protocol (FTP), Address
Resolution Protocol (ARP), and IP/IPv6 are the common
standards for network interoperability. Syntactic interoper-
ability refers to the agreement of rules that manage the for-
mat and structure for encoding information exchange among
the sub-systems. Simple Object Access Protocol (SOAP)

VOLUME 6, 2018 70099



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

TABLE 5. Smart nodes considered in various smart space designs.

encoding, Representational State Transfer (REST) [67]
encoding, and message exchange patterns such as asyn-
chronous publish/subscribe patterns are the common stan-
dards for syntactic interoperability. These interoperability
solutions increase the complexity of integrating all three lev-
els in a single smart space. Our proposed architectural design
alternatives avoid this complexity and provide a solution for
integration at the semantic level.

The smart nodes considered in various smart space designs
are summarized in Table 5, which shows that HSNs are used
dominantly in most smart space designs. Improved gateway
approaches are necessary to accommodate large numbers of
LSNs in smart spaces, which is an area for future development
(initial approaches available in [25] and [26]).

It can also be seen from the comparison of various smart
space architectures that resource and security/privacy man-
agement information objects are rarely ever considered. This
is a huge problem for mainstream adoption of smart spaces,
considering ethical aspects and gradually introduced laws
enforcing privacy of data in many countries, especially in
developed countries. Dependability of smart space applica-
tions is also a main concern for user experience, i.e. chang-
ing an electric circuit (manual) light switch that is almost
100 percent reliable with a smart switch that is 99 percent
of the time reliable is not acceptable. For this it is essential to
integrate resource and service management mechanisms into
smart spaces, which is also an area for improvement.

Based on the comparative study, we now propose a
comprehensive smart space architectural design as shown

FIGURE 9. Comprehensive smart space architecture.

in Fig. 9. The smart space architectures given in Section III
are particular instantiations of this design. In the proposed
comprehensive architecture GSNs enable the inclusion of
networks of LSNs. We introduce a two-level SBSN hierar-
chy for load balancing and performance improvement where
a special type of SBSN (G-S) is able to share semantics
between other SBSNs and delegate its brokering.We consider
a singleMiO component where developers can implement the
tasks of AMiOs, SPMiOs and RMiOs as needed based on the
application’s requirements.

The GWiO component at a GSN has two handlers for
LSNs, i.e. a sensor handler for sensor nodes (SNs) and an
actuator handler for actuator nodes (ANs). These handlers are
controlling the input and output information from sensors and
actuators respectively. The contexts received from SNs are
transferred to the application logic and ANs receive the actu-
ation commands from the application logic. The application
logic infers the actuation commands based on the SNs con-
texts and semantics received from SBiO, where the semantics
received from SBiO is translated into contexts before being
used by the application logic.

Each SBSN contains an SBiO and an MiO. Similarly,
as discussed in the previous sections an SBiO does semantic
reasoning on the input semantics to produce output semantics.
TheMiOmonitors and manages the resources and services of
the respective SBSN. The G-S helps to collaborate with other
SBSNs in a smart space with the help of an MiO. The MiO
makes subscriptions and updates for semantics at the G-S.
Therefore, by means of the G-S any HSN in an SBSN can
communicate with other HSNs at other SBSNs.

Our survey of the literature resulted in a list of properties
that are specified in fair detail in all smart space implemen-
tations. We call these three properties, namely adaptation,
communication interoperability and semantic interoperabil-
ity, the primary properties of a smart space. Secondary smart
space properties, namely openness, extendibility and self-
management can be implemented as needed based on appli-
cation requirements.

70100 VOLUME 6, 2018



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

The primary properties are essential for the proposed com-
prehensive smart space architecture because of the following
reasons:
i.) The behavior of each iO needs to adapt according to the

state changes of smart applications. This requirement
comes from our definition of a smart space.

ii.) Communication is needed to exchange information
among smart nodes that produce and consume it.

iii.) Semantic interoperability is needed to establish
a shared meaning of the information that is
exchanged.

Communication interoperability can easily be established
by using standard network protocols or by using a gateway to
connect with LSNs. Example standards are powerline tech-
nologies such as X10 and LonWorks, wireless technologies
such as IEEE 802.15.4 for wireless sensor networks, and
CAT5 for audio, video or data communication. Furthermore,
middleware such as Jini [68], HAVi [69] and UPnP [70] may
be employed to connect to smart nodes. Therefore, we focus
on adaptation and semantic interoperability properties for the
proposed comprehensive architecture in the next section and
give a detailed discussion.

V. SEMANTIC INTEROPERABILITY AND ADAPTATION
In this section we first discuss how semantic interoperabil-
ity is realized by the semantic interactions among iOs and
smart objects. Then, we discuss how adaptation of smart
applications is achieved by the adaptive behaviors of iOs that
constitute these smart space applications.

A. SEMANTIC INTERACTIONS AMONG iOs
The format and syntax of transactions among iOs are depen-
dent on smart node hardware and software specifications,
which are heterogeneous by nature. Themain challenge in the
presence of such heterogeneity is achieving semantic inter-
operability such that multiple iOs can cooperatively realize
execution of smart space applications.

A source iO and a destination iO can interact meaning-
fully through semantics of their smart space when there is
an onto mapping between contexts and semantics. Seman-
tics are typically represented using ontology graphs that
facilitate complex queries. A smart space architecture must
enable mechanisms capable of representing, modifying, and
updating the semantics to produce meaningful and valid
results. Our earlier experiments for semantic interoperability
in [9]–[12], [48], and [56] were in the context of the SOFIA
project, where we used Smart Space Access Protocol (SSAP)
to establish semantic interoperability. In this work, we take
SSAP as the baseline for semantic interoperability for trans-
actions in the proposed architecture. SSAP transactions are
used in information exchanges between an SBiO and iOs. The
SSAP transactions are: JOIN, INSERT, REMOVE,UPDATE,
SUBSCRIBE, UNSUBSCRIBE and QUERY. The JOIN and
LEAVE transactions are used for joining and leaving a smart
space respectively, where SBiO associates the connection
with the identity and authority verified by the credentials

through an MiO at the SBSN. An iO starts a session with
an SBiO with a JOIN transaction and ends the session by
using a LEAVE transaction. By using an INSERT transaction,
an iO inserts semantics σ (a tuple) at an SBiO, causing the
SBiO to generate a blank node in the RDF graph with a
specified URI. Furthermore, an iO can remove and update
the RDF graph at the SBiO by REMOVE and UPDATE
transactions, respectively. An iO can make a query for σ at
the SBiO by using a QUERY transaction and get results from
the SBiO in reply. Any iO in a smart space may subscribe
for σ , i.e. a persistent query for σ stored at the SBiO by
using the SUBSCRIPTION transaction. In that case, the iO is
notified of changes in σ . Similarly, an UNSUBSCRIPTION
transaction terminates the persistent query from the SBiO.
All transactions must be executed in an atomic fashion, i.e.
the information content of the smart space is not changed
by any other transaction during the execution of the trans-
action. This is especially important for the queries, which
may require several accesses to the underlying data structures
within the SBiO. Only two entities, iO and SBiO, are involved
in any single transaction. Any iO in a smart space can join
and enjoy the facilities provided by the SBiO through the
given SSAP transactions, depending on their requirements.
JOIN and LEAVE are transactions (eventually) employed by
all iOs.

SSAP semantic interactions among smart nodes consist of
i) PiO, CiO, and PCiO semantic interactions at the SBiO,
ii) GWiO semantic interactions at the SBiO, iii) semantic
interactions between theMiO and the SBiO at the SBSN and
iv) the semantic interaction steps between two SBiOs.

1) PiO, CiO, AND PCiO SEMANTIC INTERACTIONS
The semantic interactions for PiO, CiO and PCiO at the
SBiO are described in Table 6 and Fig. 10. The JOIN and
LEAVE transactions for semantic interactions are performed
by all PiOs, CiOs and PCiOs. The INSERT, UPDATE and
REMOVE transactions are performed by PiOs and PCiOs,
while QUERY SUBSCRIPTION and UNSUBSCRIPTION
transactions are performed by CiOs and PCiOs.
iOs communicate input semantics σi to the SBiO where

semantic reasoning is performed, resulting in output seman-
tics σj, which is communicated to the iOs in reply. When a
new σ is inserted and updated at the SBiO then an ontol-
ogy graph is extended with the new entry. Subsequently,
if any iO is subscribed to insertions and updates of σ then
it will be notified with the extended entry in the ontology
graph.

A smart space application is equipped with heterogeneous
smart nodes. These nodes can exchange information by using
the iO’s semantic interactions. Any smart node in an appli-
cation can share semantics with other nodes by using these
transactions in an appropriate method and the requirements
in the application. To achieve the objectives in an application,
these semantic interoperability interactions are the primary
and basic things to be established first.

VOLUME 6, 2018 70101



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

TABLE 6. PiO, CiO, and PCiO semantic interactions at the SBiO.

2) GWiO SEMANTIC INTERACTIONS AT THE SBiO
An SN gets contextual information from the environment
and produces data for further analysis, typically for deci-
sion making (e.g. related to user notification or actua-
tion). In order for SNs to integrate with smart spaces, they
need to produce meaningful information to exchange with
other nodes in a smart space application. A big challenge
is that SNs are typically not capable of doing complex
computations due to power and memory constraints and
there is a long list of potential applications such as those
in smart homes [71], smart healthcare [72], transport and

FIGURE 10. Sequence diagram of semantic interactions by iOs at SBiO for
the following transactions: (a) RJ , RL and insert tuples, (b) RS , RU and
RQ, and (c) RD and RR .

logistics management [73], inventory and product manage-
ment [74], firefighting systems [75], social networks [76],
smart cities [77], and smart lighting systems [78], just to name

70102 VOLUME 6, 2018



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

a few. Thus, information representation in semantics appears
as a bottleneck to SNs.

In some infrastructures [79]–[84], SNs are capable of
sharing information with semantic web technologies, e.g.
by using the Sensor Web Enablement (SWE) specification.
SWE specifies sensor data semantics in Sensor Model Lan-
guage (SensorML), which uses the XML-based structure.
SensorML describes the semantics and relationships between
different data elements of sensor nodes using XML represen-
tations. SWE provides models and interfaces to deal with sen-
sor data in heterogeneous sensor network applications. It tries
to improve the practicability of producing semantics for smart
nodes and to establish interoperability with the semantic web.
There are similar approaches for SNs to comply with the
semantic web such as Sensorpedia [85], SensorWare [86], and
SensorMap [87]. However, while these approaches are good
at integrating SNs with the semantic web, their results are
unfavorable when semantics are represented by sensor nodes
themselves, as this requires double the power consumption
of SNs. In addition, memory constraints mean that SNs are
unable to process multiple parallel transactions. This results
in a short battery lifespan of SNs in the network. Such a
tradeoff between the lifespans and computations of sensor
nodes provides a scope for integrating an external unit—a
gateway node—which can provide the capability to execute
the complex computations and semantic representations nec-
essary to share information with other smart nodes. The GSN
provides a good solution to resolve the computation bottle-
neck of SNs. It can compute the semantic representations
for SNs and ANs and process them for further improved
results. Therefore, the GSN is a powerful smart node that can
perform computations and semantic representations on behalf
of resource poor SNs and ANs.

Consider a service for actuating ANs based on the com-
mands given by the GSN, for which the possible seman-
tic interactions are explained in Table 7 and the message
sequence diagram is shown in Fig. 11. Firstly, the services
related to initialization are installed by the GSN to SNs and
ANs. Then the GSN is subscribed for the information of
SNs and ANs (i.e. IS and IA respectively). IS and IA are
processed by the GWiO at the GSN to transform them into
semantics i.e. σ Si and σAi , stored at the SBiO. The GWiO is
also subscribed for any update related to actuating the AN, for
example, a preference tuple (σp). There are three possibilities
when ANs can receive actuation commands from GWiO: i)
when the actuation command is based only on SN tuples, ii)
when the actuation command is based on tuples received from
the SBiO, i.e. σp only, and iii) when the actuation command
is based on SN tuples and σp both.

3) MiO AND SBiO SEMANTIC INTERACTIONS AT SBSN
The semantic interactions between the SBiO and the MiO
at the SBSN are explained in Table 8. Any iO residing on
an LSN, an HSN and a GSN interacting with the SBSN
needs permission to access the SBSN through theMiO. Their
credentials are verified at the SBSN and the confirmation

TABLE 7. Execution of a service from SNs to ANs.

FIGURE 11. Sequence diagram of service execution from sensing to
actuation.

messages are given in return. For example, a PCiO sends their
credentials of joining to the SBiO and then the SBiO sends a
request to MiO for the credential verification of the PCiO.
TheMiO gives confirmation to the SBiO for valid credentials
and a confirmation is sent to the PCiO subsequently. In case
of invalid credentials, the PCiO cannot join the SBiO and
receives exit confirmation. The joining transaction is only
completed for all iOs from LSNs, HSNs, and GSNs once the
MiO gives confirmation to the SBiO for their valid creden-
tials. Integrating the MiO with the SBiO at the SBSN is an
optional feature of any smart space because there are several
applications where strict security and privacy policies may
not be required. The MiO at the SBSN manages resources in
a smart space. We have proposed and implemented resources

VOLUME 6, 2018 70103



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

TABLE 8. Semantic interactions between MiO and SBiO.

and services management mechanisms in [9] for LSN and
in [11] for HSN. In this paper, we combine these mecha-
nisms for LSNs and HSNs into a single management mech-
anism realized by the MiO. The MiO performs two tasks as
described in Table 8: i) services management of LSN, HSN,
GSN and SBSN, (A, B, and C in the table) and ii) resource
management of the SBSN (D in the table).

A Presence Signal (PS) is introduced to monitor the state
of existence of nodes in the smart space. The HSNs and
LSNs update by sending PS messages periodically (e.g. a
user specified period) to the SBSN and the GSN, respectively.
Furthermore, the GSN also updates the presence state at
the SBSN after receiving a PS as the MiO at the SBSN
has subscription for PS updates. In case the updates are not
delivered within a defined period of time the particular node
is classified by the MiO as ‘‘failed’’. Moreover, a new HSN
and GSN joining the SBSN can be provided suggestions for
other SBSNs based on their service requirements through
the MiO. When a new LSN joins at the GSN, the services of
the new LSN are updated at the SBSN. TheMiO at the SBSN
offers the newly available service instances of a new smart
node to other HSNs or LSNs (service subscribers) that need
them. The MiO also replaces the services of a leaving smart
node (e.g. upon failure or decommissioning) with those of
remaining smart nodes still connected to the SBSN. LSNs are
more prone to failure due to resource constraints, e.g. memory
and battery.We can evaluate the states of memory and battery,
for example, such that if any one of them is below 25% level
then it is classified as a critical-node. If any LSN is classified
as a critical-node then theMiO transfers its services to another
LSN that is not in a critical condition.

FIGURE 12. Physical deployment of two SBSNs in the smart space
architecture.

The performance of a single SBSN is dependent on the
number of iOs connected to it, representing either a ‘‘nor-
mal’’ or an ‘‘overloaded’’ state of the SBSN. If the CPU
usage, already allocated memory space and network capacity
usage of the SBSN are all below 75% then the SBSN is
categorized as being in the ‘‘normal’’ state, and otherwise it is
in the ‘‘overloaded’’ state. In case of the overloaded situation,
there is a possibility of delay in transactions and increased
chances of service failure. A MiO monitors its associated
SBSN’s resource availability such as CPU usage, free mem-
ory space and network usage, and updates this information
at the G-S. The MiO also has access to the G-S for other
SBSNs resource availability information. Therefore, theMiO
can provide suggestions to HSNs and GSN for another SBSN
in the case of an overload situation.

4) SEMANTIC INTERACTIONS BETWEEN TWO SBiOs
The semantic interactions between two SBiOs (i.e. SBiOa and
SBiOb, residing at two different SBSNs) are possible via the
MiOs of the respective SBSNs and a SBiOg at G-S as shown
in Fig. 12. The SBiOg at the G-S acts as a bridge between
SBiOa and SBiOb via their corresponding MiOs.
SBiOa is connected with HSNs that host PCiOs such as
{PCiOa1, . . . ,PCiOan} and a GWiO for several LSNs. The
set {PCiOa1, . . . ,PCiOan} ofPCiOs joined to SBiOamake up
a local subdomain of a smart space. Similarly, SBiOb serves
a set of {PCiOb1, . . . ,PCiObn} and makes up a local subdo-
main of the smart space. If anyPCiOwants to share semantics
from one subdomain to another then it needs to interact
with the SBiOg. This interaction is possible via the MiOs of
the respective subdomains, making it possible to exchange
semantics between PCiOa1 with PCiOb1 through the SBiOg.
Let us take an example of semantic interactions between two
SBiOs. Consider the event that PCiOa1 updates σx , where σx
is an arbitrary piece of semantics; and PCiOb1 is subscribed
for the updates by PCiOa1 (Sub_PCiOa1). Note, it is assumed
that the necessary transactions such as JOIN and LEAVE
according to Table 6 have already taken place for PCiOa1
and PCiOb1 at their respective SBiOs. The semantic interac-
tions between PCiOa1 and PCiOb1 are explained in Table 9

70104 VOLUME 6, 2018



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

TABLE 9. Semantic interactions from PCiOa1 to PCiOb1.

FIGURE 13. Sequence diagram for subscription between PCiOa1
and PCiOb1.

and the corresponding message sequence diagram is shown
in Fig. 13. Once σx is updated at SBiOa1 by PCiOa1 then
PCiOb1 receives σxafter several steps followed by MiOs in
the sequence, where MiOa, MiOb and MiOg are associated
with SBiOa, SBiOb and SBiOg respectively.

B. ADAPTATION OF iO AND APPLICATION BEHAVIORS
In a smart spacemany iOs collaborate to achieve certain goals
of an application and there are adaptation requirements for
different iOs, derived from these goals. These iOs adapt their
behaviors at run time without the need of prior configuration.
We classify the adaptation of iO behavior into the following
three types:
1.) Periodic Adaptive iO Behavior: Gathering contex-

tual information from an environment and periodically
updating it to the iO, potentially changing its state and
behavior.

2.) Triggered Adaptive iO Behavior: Triggering a cer-
tain event based on context information received from
another iO, the result of which may change the receiv-
ing iO’s state and behavior.

3.) Controlled Adaptive iO Behavior: Controlling the iO
state explicitly for achieving a certain application goal.

A set of joint adaptive behaviors of iOs of an applica-
tion for realizing a common goal is referred to as adaptive
application behavior. This is shown in Fig.14, following an
intelligent adaptive lighting example. The lighting example
has the assumptions and requirements as follows:
Assumptions: iOs at SN andAN are connected to theGWiO

at GSN, where SN is a light sensor and AN is a light source.

FIGURE 14. Adaptive application behavior by cumulative adaptive
behaviors of iOs.

FIGURE 15. Semantic interactions for adaptive behaviors of iOs in a
lighting example.

FIGURE 16. A case study scenario architecture.

The light sensor updates current light intensity values period-
ically every 10 seconds. The light source needs to control its
light output based on the commands given by the GSN, where
the preference of light intensity is set by a user at the GSN.
Requirements: The example system needs to achieve the

goal of maintaining (measured) light intensity according
to the user preferences. The HSN, which is subscribed at
the SBSN, needs to get informed about any updates to the
current light intensity state.

The semantic interactions executed for adaptive behav-
iors are shown in Fig.15. A piece of contextual information
IS is generated by the SN based on sensing the environment.
The SN updates IS periodically (e.g. every 10 seconds) at
the GSN, allowing the iO at the GSN to show a periodic

VOLUME 6, 2018 70105



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

FIGURE 17. Case 1: Semantic interactions in case of external light changes in HPR.

TABLE 10. Smart nodes description for Figure 16.

adaptive iO behavior. This information is further processed
at the GSN and translated into semantics, i.e. IS → σ Si . The
GSN further updates σ Si at the SBSN upon an RD transac-
tion. Consequently, σ Si is also updated at the HSN because

TABLE 11. Interactions steps for Power managed smart lighting system.

the HSN is subscribed to updates made to σ Si semantics
at the SBSN. Therefore, the PCiO at the HSN shows the
triggered adaptive iO behavior. The GSN is also subscribed
for the preference semantics σp at the SBSN and accordingly
receives σp updates from the SBSN. The command for steer-
ing an actuator i.e. IA is calculated by the GSN and is issued
to the AN to actuate accordingly. The GWiO at the GSN and
SBiO at the SBSN show the control adaptive iO behavior.
Therefore, the goal of the lighting example is achieved by
maintaining light intensity at the desired level, defined by the
user preferences.

The above example explains the realization of adap-
tive behaviors for a lighting application. All three adaptive
iO behaviors work together to make an adaptive smart space
application behavior.

VI. CASE STUDY FOR SMART SPACES
There are many case studies for smart spaces in the lit-
erature, one of which is given in [88]. In this case study,

70106 VOLUME 6, 2018



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

FIGURE 18. Case 2: Semantic interactions in case of external light changes in LPR.

FIGURE 19. Case 3: Semantic interactions of a new SN joins and SN1 fails in LPR.

a successful cultural heritage e-tourism scheme is discussed,
which is based on the smart services provided by a human
interactive device i.e. a mobile device. A system design
solution for developing smart services in a smart space is
provided.

In this paper, we considered a case study of a smart lighting
application whose architecture is shown in Fig. 16. The smart
nodes included are described in Table 10. The case study
is based on the application scenario of a power-managed
smart lighting system introduced and experimented in [48].
We consider two classes of rooms: high priority room (HPR)
and low priority room (LPR).
Scenario: The rooms (HPR and LPR) in a building aim

to consume power according to a quota (Q) assigned. HPRs
get priority and, therefore, LPRs can use only the leftover
power budget from the quota after subtracting the consump-
tion in HPR. The scenario requires establishing semantic

interoperability in and between LPR and HPR that contain
smart nodes from various suppliers.

SBSNA, SBSNB and G-S perform semantic reasoning
using Pellet semantic reasoner and OWL semantic editor. The
semantic interactions between the nodes in the scenario are
explained in Table 11.

For this case study, we discuss the smart space properties,
i.e., adaptation, interoperability, openness, extendibility and
self-management, based on the following possible cases.
Case 1 (External Light Changes in HPR):When the exter-

nal light changes in HPR the changed illumination is sensed
by HSNSn. The possible interactions followed by the external
light changes are shown in Fig. 17.

The commands of the brightness level for luminaries in
HPR (i.e. BH ) are sent to HSNAn (n ∈ {1, 2, 3, 4}) based
on the desired illumination in HPR (i.e. DHI ) as defined
by the subscription results from SBiOA. Information on the

VOLUME 6, 2018 70107



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

FIGURE 20. Case 4: Semantic interactions for a new HSN joins and HSN1 fails in HPR.

FIGURE 21. Case 5: Semantic interactions in case of a temperature service to be extended in the scenario.

power consumption in HPR (Ph) as a semantic representa-
tion (i.e. σPh ) is updated at SBiOA. In LPR, SNs regularly
sense the illumination (IS ) and update this at the GWiO

of the GSN. Furthermore, IS is translated into semantics
(i.e. IS → σ Si ) by the GWiO and is stored at the SBiOA
of SBSNA. The GWiO is also subscribed for σPh and the

70108 VOLUME 6, 2018



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

TABLE 12. Smart space properties and the scenario cases.

quotaQ. The commands for the brightness level of luminaries
in LPR (BL) are computed at the GWiO based on Q, Ph,
IS and the desired illumination in LPR (DLI ). If a change is
required in lighting of LPR as per the computation then theBL

command is sent to ANs in LPR accordingly. Furthermore,
the power consumption in LPR (Pl) is sent to the GWiO,
where Pl is converted into semantics σPl and are stored
at SBiOA. The semantics σPh and σPl are also further stored
at G-S by SBSNA, allowing to share them with SBSNB.
Finally, HSNM is subscribed to any update about power con-
sumption in both LPR and HPR; and consequently receives
σPh and σPl as subscription results once they are updated
at SBSNB.
In this case, we see the adaptive behavior of the scenario

is achieved based on the objective set while the external light
changes in HPR which accordingly results in the changes in

both LPR and HPR accordingly. This means that the behav-
iors of iOs in HPR trigger changes in the behaviors of iOs in
both LPR and HPR.
Case 2 (External Light Changes in LPR):When the exter-

nal light changes in LPR the changed illumination is sensed
by the corresponding SNs. Figure 18 explains the semantic
interactions followed by an external light change in LPR. The
BL command is computed based on the subscription results of
DLI from SBiOA and the leftover quota for LPR fromHPR (Ql)
and it is sent to LPR ANs. Meanwhile, the σPl consumption
semantics are updated at SBiOA. Any change of illumination
in HPR is not required until a change is detected in external
light, Q, and DHI . Moreover, the semantics σPh and σPl are
updated at SBSNA. Similar to Case 1, HSNM receives σPh and
σPl as subscription results once they are updated at SBSNB.

In this case, the adaptive behavior of iOs in the scenario is
achieved according to the desired illumination in LPR. This
means that the behaviors of iOs in LPR are triggering the
changes in other iOs’ behaviors in LPR without any effect
in the behaviors of iOs in HPR.
Case 3 (Joining of a New SN and SN1 Fails in LPR):

Consider a new SN, where the communication technology is
compatible with IEEE.802.15.4 and the services are installed
by theGSN. The newSNupdates IS as before, similar to other
SNs, and executes the interactions as in Case 1 and 2.

If SN1 stops working (e.g. due to hardware or network fail-
ure, or decommissioning from the network) then the GWiO
transfers services provided by SN1 to the new SN or to
any other SN. The interaction steps for transferring the
services from SN1 to another SN are performed according
to Table 8 and are shown in Fig. 19.

In this case, the joining or failure of SNs in LPR are
performed without affecting the nodes and services in HPR.
Therefore, the joining or leaving of smart nodes in the sce-
nario is independent from the installed nodes in another
priority rooms.
Case 4 (Joining of a NewHSN and HSNS1 Leaves in HPR):

For a new HSN to join, it needs to support the underlying
communication technology, i.e. SSAP over TCP/IP. Once the
joining of a newHSN is established in the network it canwork
and perform any task like other HSNs in HPR.

If HSNS1 leaves the network (e.g. due to hardware or
network failure, or decommissioning from the network) then
the MiO manages to transfer the services of HSNS1 to the
new HSN or any other node that is capable of providing the
same services. The semantic interactions to manage services
are performed according to Table 8 and are shown in Fig. 20.

As in Case 3, the joining or leaving of a HSN in HPR
is performed without affecting nodes in LPR. Therefore,
the joining or leaving of smart nodes is independent from the
installed nodes in another priority rooms.
Case 5 (Adding a New Application With a New Smart

Node): In the existing scenario, consider an extension to
integrate a temperature measurement application in both LPR
and HPR. For this a temperature sensor needs to be added in
each room. The two temperature sensors provide the service

VOLUME 6, 2018 70109



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

of measuring temperatures from both rooms and updating
the corresponding semantics at SBSNA. The joining of the
temperature sensors in LPR and HPR is established as in the
cases 3 and 4, respectively.

The GSN introduces the new application information at
SBSNA and updates the temperature information periodically
which is able to be used by other iOs if required. Similar for
HSNs, they need to first introduce their temperature services
in HPR. Thereafter the temperatures of the rooms are mea-
sured and updated periodically at SBSNA. The semantics of
the temperature sensors from both LPR and HPR are shared
with SBSNB via G-S. If HSNM is subscribed to the temper-
ature information then it will get the notification once the
temperature information is updated at SBSNB. The possible
semantic interactions are shown in Fig. 21.

In this case, we showed the possibility of adding a new
application by introducing a new smart node.

These cases were discussed to cover all of the smart space
properties of the proposed solutions. We can relate and dis-
cuss the properties in detail in Table 12.

The study and discussion of several cases of the power-
managed smart lighting scenario explained the use of our
comprehensive smart space architecture in a real scenario.
The smart space properties of adaptation, interoperability,
openness, extendibility and self-management performed well
and contributed to the comprehensive smart space architec-
ture. The power-managed smart lighting system based on
the comprehensive smart space architecture shows that it
is possible to develop a smart space that establishes inter-
operability using various types of smart nodes and their
technologies.

VII. CONCLUSIONS
In this paper, fundamental smart space concepts, components
making up a smart space and the smart space itself were
formally defined. We introduced the role and importance
of information objects in the development of smart space
designs. Five general properties of smart space were pro-
posed (adaptation, interoperability, openness, extendibility
and self-management) based on a literature survey. A com-
parison of state-of-the-art smart space designs with respect
to the availability of general smart space components and the
smart space properties was provided. Furthermore, generic
architectural models for smart spaces were presented and
discussed in relation to the other designs described in the
literature. Finally, we proposed a comprehensive smart space
architecture as a contemporary solution for smart spaces and
instantiated it on a power managed smart lighting system.

As future work, a scalability, reliability and availabil-
ity analysis and optimizations considering these aspects are
needed for better smart space design. Scalability refers to
the capability of a smart space to accommodate numerous
information objects, smart nodes, and applications. Relia-
bility refers to the mean time between failures of a smart
space application. Availability refers to the probability of
failure-free smart application operation at any given time.

In addition, the tradeoff between these concerns and the size
of a smart space (number of smart nodes) is also worth
investigating.

REFERENCES
[1] M.Weiser, ‘‘The computer for the 21 st century,’’ Sci. Amer., vol. 265, no. 3,

pp. 94–105, Sep. 1991.
[2] J. C. Augusto, V. Callaghan, D. Cook, A. Kameas, and I. Satoh, ‘‘Intelligent

environments: A manifesto,’’ in Human-Centric Computing and Informa-
tion Sciences. Berlin, Germany: Springer, 2013.

[3] S. B. Baker, W. Xiang, and I. Atkinson, ‘‘Internet of Things for smart
healthcare: Technologies, challenges, and opportunities,’’ IEEE Access,
vol. 5, pp. 26521–26544, 2017.

[4] H. Jiang, C. Cai, X. Ma, Y. Yang, and J. Liu, ‘‘Smart home based on WiFi
sensing: A survey,’’ IEEE Access, vol. 6, pp. 13317–13325, 2018.

[5] L. Qiu, Q. Lei, and Z. Zhang, ‘‘Advanced sentiment classification of
tibetan microblogs on smart campuses based on multi-feature fusion,’’
IEEE Access, vol. 6, pp. 17896–17904, 2018.

[6] E.Mathews, S. S. Guclu, Q. Liu, T. Özçelebi, and J. J. Lukkien, ‘‘The Inter-
net of lights: An open reference architecture and implementation for intel-
ligent solid state lighting systems,’’ Energies, vol. 10, no. 8, p. 1187, 2017.

[7] (Mar. 2014). DLNA Guidelines. [Online]. Available: http://www.dlna.org/
guidelines/

[8] T. Özçelebi, J. Lukkien, R. Bosman, and Ö. Uzun, ‘‘Discovery, monitoring
and management in smart spaces composed of low capacity nodes,’’ IEEE
Trans. Consum. Electron., vol. 56, no. 2, pp. 570–578, May 2010.

[9] S. Bhardwaj, T. Ozcelebi, J. Lukkien, and C. Uysal, ‘‘Resource and service
management architecture of a low capacity network for smart spaces,’’
IEEE Trans. Consum. Electron., vol. 58, no. 2, pp. 389–396, May 2012.

[10] S. Bhardwaj, T. Ozcelebi, J. J. Lukkien, and K. M. Lee, ‘‘Semantic inter-
operability architecture for smart spaces,’’ Int. J. Fuzzy Logic Intell. Syst.,
vol. 18, no. 1, pp. 50–57, Mar. 2018.

[11] S. Bhardwaj, T. Ozcelebi, A. A. Syed, J. J. Lukkien, and O. Ozunlu,
‘‘Increasing reliability and availability in smart spaces: A novel archi-
tecture for resource and service management,’’ IEEE Trans. Consum.
Electron., vol. 58, no. 3, pp. 787–793, Aug. 2012.

[12] S. Bhardwaj, T. Ozcelebi, R. Verhoeven, and J. Lukkien, ‘‘Smart indoor
solid state lighting based on a novel illumination model and implemen-
tation,’’ IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1612–1621,
Nov. 2011.

[13] K. Scott and R. Benlamri, ‘‘Context-aware services for smart learn-
ing spaces,’’ IEEE Trans. Learn. Technol., vol. 3, no. 3, pp. 214–227,
Jul./Sep. 2010.

[14] N. D. Rodriguez, ‘‘A framework for context-aware applications for smart
spaces,’’ in Proc. IEEE/IPSJ Int. Symp. Appl. Internet, Munich, Bavaria,
Jul. 2011, pp. 218–221.

[15] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy, ‘‘Smart objects
as building blocks for the Internet of Things,’’ IEEE Internet Comput.,
vol. 14, no. 1, pp. 44–51, Jan./Feb. 2010.

[16] A. K. Dey, G. D. Abowd, and G. D. Salber, ‘‘A context-based infras-
tructure for smart environments,’’ Georgia Inst. Technol., Atlanta, GA,
USA, GVU Tech. Rep. GIT-GVU-99-39, 1999. [Online]. Available:
http://hdl.handle.net/1853/3406

[17] E. Goh, D. Chieng, A. K. Mustapha, Y. C. Ngeow, and H. K. Low,
‘‘A context-aware architecture for smart space environment,’’ in Proc.
Int. Conf. Multimedia Ubiquitous Eng. (MUE), Seoul, South Korea, 2007,
pp. 908–913.

[18] I. G. Roussaki et al., ‘‘Self-improving personal smart spaces for pervasive
service provision,’’ in Future Internet Assembly. Amsterdam, The Nether-
lands: IOS Press, 2010, pp. 193–203, doi: 10.3233/978-1-60750-539-6-
193.

[19] T. Kawashima, J.Ma, R. Huang, and B. O. Apduhan, ‘‘GUPSS: A gateway-
based ubiquitous platform for smart spaces,’’ in Proc. Int. Conf. Comput.
Sci. Eng., Vancouver, BC, Canada, Aug. 2009, pp. 213–220.

[20] B. J. J. van der Vlist, G. Niezen, J. Hu, and L. M. G. Feijs, ‘‘Semantic
connections: Exploring and manipulating connections in smart spaces,’’ in
Proc. IEEE Symp. Comput. Commun., Riccione, Italy, Jun. 2010, pp. 1–4.

[21] Z. Song, A. A. Cárdenas, and R. Masuoka, ‘‘Semantic middleware for the
Internet of Things,’’ in Proc. IEEE Internet Things (IOT), Tokyo, Japan,
Nov./Dec. 2010, pp. 1–8.

[22] D. Pfisterer et al., ‘‘SPITFIRE: Toward a semantic Web of things,’’ IEEE
Commun. Mag., vol. 49, no. 11, pp. 40–48, Nov. 2011.

70110 VOLUME 6, 2018

http://dx.doi.org/10.3233/978-1-60750-539-6-193
http://dx.doi.org/10.3233/978-1-60750-539-6-193


S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

[23] H. Abdullah, M. Rinne, S. Törmä, and E. Nuutila, ‘‘Efficient matching of
SPARQL subscriptions using rete,’’ in Proc 27th Annu. ACM Symp. Appl.
Comput., New York, NY, USA, 2012, pp. 372–377.

[24] F. Morandi, L. Roffia, A. D’Elia, F. Vergari, and T. S. Cinotti, ‘‘RedSib:
A smart-M3 semantic information broker implementation,’’ in Proc. 12th
Conf. Open Innov. Assoc. (FRUCT), Oulu, Finland, 2012, pp. 1–13.

[25] N. D. Rodríguez, J. Lilius, M. P. Cuéllar, and M. D. Calvo-Flores,
‘‘An approach to improve semantics in Smart Spaces using reactive
fuzzy rules,’’ in Proc. Joint IFSA World Congr. NAFIPS Annu. Meeting
(IFSA/NAFIPS), Edmonton, AB, Canada, 2013, pp. 436–441.

[26] E. Ovaska and J. Kuusijarvi, ‘‘Piecemeal development of intelligent appli-
cations for smart spaces,’’ IEEE Access, vol. 2, pp. 199–214, 2014.

[27] J. Kiljander et al., ‘‘Semantic interoperability architecture for pervasive
computing and Internet of Things,’’ IEEE Access, vol. 2, pp. 856–873,
2014.

[28] J. Zeng, L. T. Yang, H. Ning, and J. Ma, ‘‘A systematic methodology for
augmenting quality of experience in smart space design,’’ IEEE Wireless
Commun., vol. 22, no. 4, pp. 81–87, Aug. 2015.

[29] S. A. Marchenkov, D. G. Korzun, A. I. Shabaev, and A. V. Voronin,
‘‘On applicability of wireless routers to deployment of smart spaces in
Internet of Things environments,’’ in Proc. 9th IEEE Int. Conf. Intell.
Data Acquisition Adv. Comput. Syst., Technol. Appl. (IDAACS), Bucharest,
Romania, Sep. 2017, pp. 1000–1005.

[30] A. S. Vdovenko, D. G. Korzun, and I. V. Galov, ‘‘Simulation performance
evaluation of Smart-M3 applications for Internet of Things environments,’’
in Proc. 9th IEEE Int. Conf. Intell. Data Acquisition Adv. Comput. Syst.,
Technol. Appl. (IDAACS), Bucharest, Romania, Sep. 2017, pp. 994–999.

[31] A. S. Vdovenko, O. I. Bogoiavlenskaia, and D. G. Korzun, ‘‘Study of active
subscription control parameters in large-scale smart spaces,’’ in Proc. 21st
Conf. Open Innov. Assoc. (FRUCT), Helsinki, Finland, 2017, pp. 344–350.

[32] S. Ahmad, L. Hang, and D. H. Kim, ‘‘Design and implementation of
cloud-centric configuration repository for DIY IoT applications,’’ Sensors,
vol. 18, no. 2, p. 474, 2018.

[33] Z. Shelby, B. Frank, and D. Sturek. (2011). Constrained Application
Protocol (CoAP) (CoREWorking Group). Accessed: Jul. 7, 2011. [Online].
Available: http://www.ietf.org/id/draft-ietf-core-coap-06.txt

[34] H. He, T. Watson, C. Maple, J. Mehnen, and A. Tiwari, ‘‘A new semantic
attribute deep learning with a linguistic attribute hierarchy for spam detec-
tion,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Anchorage, AK,
USA, 2017, pp. 3862–3869.

[35] P. Maillot, T. Raimbault, D. Genest, and S. Loiseau, ‘‘Consistency eval-
uation of RDF data: How data and updates are relevant,’’ Proc. 10th Int.
Conf. Signal-Image Technol. Internet-Based Syst., Marrakech, Morocco,
2014, pp. 187–193.

[36] B. Cheng, S. Zhao, C. Li, and J. Chen, ‘‘AWeb services discovery approach
based on mining underlying interface semantics,’’ IEEE Trans. Knowl.
Data Eng., vol. 29, no. 5, pp. 950–962, May 2017.

[37] OWL (WebOntology Language). Accessed: Nov. 13, 2018. [Online]. Avail-
able: https://www.w3.org/OWL/

[38] B. Parsia and E. Sirin, ‘‘Pellet: An OWL-DL reasoner,’’ in Proc. 3rd Int.
Semantic Web Conf. (ISWC), Hiroshima, Japan, Nov. 2004.

[39] G. Yang, M. Kifer, and C. Zhao. (Jun. 2002). Flora-2: User’s Manual.
[Online]. Available: http://flora.sourceforge.net/

[40] Jena 2.7.3—A Semantic Web Framework. Accessed: Nov. 13, 2018.
[Online]. Available: http://downloads.sourceforge.net/jena/jena-2.7.3

[41] Y. Kazakov, M. Krötzsch, and F. Simancík, ‘‘ELK reasoner: Architecture
and evaluation,’’ in Proc. 1st Int. Workshop OWL Reasoner Eval. (ORE),
CEUR Workshop, Manchester, U.K., 2012, pp. 1–12.

[42] J. H. Gennari et al., ‘‘The evolution of Protégé: An environment for
knowledge-based systems development,’’ Int. J. Hum.-Comput. Stud.,
vol. 58, no. 1, pp. 89–123, 2003.

[43] J. Bārzdiņš, G. Bārzdiņš, K. Čerāns, R. Liepiņš, and A. Sroǵis, ‘‘UML
style graphical notation and editor for OWL 2,’’ in Perspectives in Business
Informatics Research (Lecture Notes in Business Information Processing),
vol. 64, no. 2. Berlin, Germany: Springer, 2010, pp. 102–114.

[44] A. Stellato et al., ‘‘VocBench: A Web application for collaborative devel-
opment of multilingual thesauri,’’ in The Semantic Web. Latest Advances
and New Domains (Lecture Notes in Computer Science), vol. 9088. Cham,
Switzerland: Springer, 2015, pp. 38–53.

[45] K. A. Taipale, ‘‘The trusted systems problem: Security envelopes, sta-
tistical threat analysis, and the presumption of innocence,’’ in Proc.
IEEE Intell. Syst. Homeland Secur.-Trends Controversies, Sep./Oct. 2005,
vol. 20, no. 5, pp. 80–83.

[46] D.-M. Han and J.-H. Lim, ‘‘Smart home energy management system using
IEEE 802.15.4 and ZigBee,’’ IEEE Trans. Consum. Electron., vol. 56,
no. 3, pp. 1403–1410, Aug. 2010.

[47] M. Honkanen, A. Lappetelainen, and K. Kivekas, ‘‘Low end extension for
Bluetooth,’’ in Proc. IEEE Radio Wireless Conf., Atlanta, GA, USA, 2004,
pp. 199–202.

[48] S. Bhardwaj, A. A. Syed, T. Ozcelebi, and J. J. Lukkien, ‘‘Power-
managed smart lighting using a semantic interoperability architec-
ture,’’ IEEE Trans. Consum. Electron., vol. 57, no. 2, pp. 420–427,
May 2011.

[49] E. Carlini, M. Coppola, P. Dazzi, M. Mordacchini, and A. Passarella,
‘‘Self-optimising decentralised service placement in heterogeneous cloud
federation,’’ in Proc. IEEE 10th Int. Conf. Self-Adapt. Self-Organizing
Syst. (SASO), Augsburg, Germany, Sep. 2016, pp. 110–119.

[50] X. Wang and Y. Mu, ‘‘Addressing and privacy support for 6LoWPAN,’’ in
IEEE Sensors J., vol. 15, no. 9, pp. 5193–5201, Sep. 2015.

[51] F. Wu, C. Rüdiger, J.-M. Redouté, and M. R. Yuce, ‘‘WE-Safe: A wear-
able IoT sensor node for safety applications via LoRa,’’ in Proc. IEEE
4th World Forum Internet of Things (WF-IoT), Singapore, Feb. 2018,
pp. 144–148.

[52] IEEE Standard for Service Composition Protocols of Next Genera-
tion Service Overlay Network, IEEE Standard 1903.2-2017, May 2018,
pp. 1–54.

[53] D. Korzun, ‘‘On the smart spaces approach to semantic-driven design of
service-oriented information systems,’’ in Communications in Computer
and Information Science, vol. 615. Cham, Switzerland: Springer, 2016,
pp. 181–195.

[54] J. Kim and J.-W. Lee, ‘‘OpenIoT: An open service framework for the
Internet of Things,’’ in Proc. IEEEWorld Forum Internet Things (WF-IoT),
Seoul, South Korea, Mar. 2014, pp. 89–93.

[55] J. Fernández, G. Pimpollo, and R. Otaolea, ‘‘Smart objects for intelli-
gent applications—ADK,’’ in Proc. IEEE Symp. Vis. Lang. Hum.-Centric
Comput., Leganes, Spain, Sep. 2010, pp. 267–268.

[56] D. G. Korzun, ‘‘Service formalism and architectural abstractions for smart
space applications,’’ in Proc. 10th Central Eastern Eur. Softw. Eng. Conf.
(CEE-SECR), Moscow, Russia, Oct. 2014.

[57] S. Balandin and H. Waris, ‘‘Key properties in the development of smart
spaces,’’ in Universal Access in Human-Computer Interaction. Intelligent
and Ubiquitous Interaction Environments (Lecture Notes in Computer
Science), vol. 5615. Berlin, Germany: Springer, 2009, pp. 3–12.

[58] S. Bhardwaj, T. Özcelebi, R. Verhoeven, and J. J. Lukkien, ‘‘Delay
performance in a semantic interoperability architecture,’’ in Proc.
IEEE/IPSJ Int. Symp. Appl. Internet, Munich, Germany, Jul. 2011,
pp. 280–285.

[59] J. Zeng, L. T. Yang, J. Ma, and M. Guo, ‘‘HyperspaceFlow: A system-
level design methodology for smart space,’’ IEEE Trans. Emerg. Topics
Comput., vol. 4, no. 4, pp. 568–583, Oct./Dec. 2016.

[60] J. Zeng, L. T. Yang, and J. Ma, ‘‘A system-level modeling and design
for cyber-physical-social systems,’’ ACM Trans. Embedded Comput. Syst.,
vol. 15, no. 2, May 2016, Art. no. 35.

[61] J. Zeng, L. T. Yang, M. Lin, Z. Shao, and D. Zhu, ‘‘System-level design
optimization for security-critical cyber-physical-social systems,’’ ACM
Trans. Embedded Comput. Syst., vol. 16, no. 2, Apr. 2017, Art. no. 39.

[62] D. J. Cook et al., ‘‘MavHome: An agent-based smart home,’’ in Proc. 1st
IEEE Int. Conf. Pervasive Comput. Commun., (PerCom), Fort Worth, TX,
USA, Mar. 2003, pp. 521–524.

[63] S. Sukalikar, S. Kumar, and N. Baliyan, ‘‘Analysing cohesion and coupling
for modular ontologies,’’ in Proc. Int. Conf. Adv. Comput., Commun.
Inform. (ICACCI), New Delhi, India, 2014, pp. 2063–2066.

[64] W. Lumpkins, ‘‘Home Automation: Insteon (X10 meets powerline) [prod-
uct reviews],’’ IEEE Consum. Electron. Mag., , vol. 4, no. 4, pp. 140–144,
Oct. 2015.

[65] M. Neugebauer, J. Plonnigs, K. Kabitzsch, and P. Buchholz, ‘‘Auto-
mated modeling of LonWorks building automation networks,’’ in Proc.
IEEE Int. Workshop Factory Commun. Syst., Vienna, Austria, Sep. 2004,
pp. 113–118.

[66] T. Perumal, A. R. Ramli, C. Y. Leong, and S. Mansor, ‘‘Interoperability for
smart home environment using Web services,’’ Int. J. Smart Home, vol. 2,
no. 4, pp. 1–16, Oct. 2008.

[67] R. T. Fielding, ‘‘Architectural styles and the design of network-based
software architectures,’’ Ph.D. dissertation, Dept. Inf. Comput. Sci., Univ.
California, Irvine, Newport Beach, CA, USA, 2000. [Online]. Available:
https://www.ics.uci.edu/?fielding/pubs/dissertation/top.htm

VOLUME 6, 2018 70111



S. Bhardwaj et al.: Smart Space Concepts, Properties and Architectures

[68] S. Lee, Y. Lee, and H. Lee, ‘‘Jini-based ubiquitous computing middleware
supporting event and context management services,’’ in Ubiquitous Intel-
ligence and Computing (Lecture Notes in Computer Science), vol. 4159,
J. Ma, H. Jin, L. T. Yang, and J. J. P. Tsai, Eds. Berlin, Germany: Springer,
2006.

[69] R. Lea, S. Gibbs, A. Dara-Abrams, and E. Eytchison, ‘‘Networking home
entertainment devices with HAVi,’’ Computer, vol. 33, no. 9, pp. 35–43,
Sep. 2000.

[70] L. Yiqin, F. Fang, and L. Wei, ‘‘Home networking and control based on
UPnP: An implementation,’’ in Proc. 2nd Int. Workshop Comput. Sci. Eng.,
Qingdao, China, 2009, pp. 385–389.

[71] M. Khan, S. Din, S. Jabbar, M. Gohar, H. Ghayvat, and S. C. Mukhopad-
hyay, ‘‘Context-aware low power intelligent SmartHome based on the
Internet of Things,’’ Comput. Elect. Eng., vol. 52, pp. 208–222, May 2016.

[72] S. R. Moosavi et al., ‘‘SEA: A secure and efficient authentication and
authorization architecture for IoT-based healthcare using smart gateways,’’
Procedia Comput. Sci., vol. 52, pp. 452–459, 2015.

[73] S. Jabbar, M. Khan, B. Nathali Silva, and K. Han, ‘‘A REST-based indus-
trial Web of things’ framework for smart warehousing,’’ J. Supercomput.,
vol. 74, no. 9, pp. 4419–4433, 2016.

[74] A. Agra, M. Christiansen, K. S. Ivarsøy, I. E. Solhaug, and A. Tomasgard,
‘‘Combined ship routing and inventory management in the salmon farming
industry,’’ Ann. Oper. Res., vol. 253, no. 2, pp. 799–823, 2016.

[75] C. C. Grant, A. Jones, A. Hamins, and N. Bryner, ‘‘Realizing the vision of
smart fire fighting,’’ IEEE Potentials, vol. 34, no. 1, pp. 35–40, Jan. 2015.

[76] A. Paul, A. Ahmad,M.M. Rathore, and S. Jabbar, ‘‘SmartBuddy: Defining
human behaviors using big data analytics in social Internet of Things,’’
IEEE Wireless Commun., vol. 23, no. 5, pp. 68–74, May 2016.

[77] R. Zhang, S. Newman, M. Ortolani, and S. Silvestri, ‘‘A network tomog-
raphy approach for traffic monitoring in smart cities,’’ IEEE Trans. Intell.
Transp. Syst., vol. 19, no. 7, pp. 2268–2278, Jul. 2018.

[78] D. M. L. Escriva, J. Torres-Sospedra, and R. Berlanga-Llavori, ‘‘Smart
outdoor light desktop central management system,’’ IEEE Intell. Transp.
Syst. Mag., vol. 10, no. 2, pp. 58–68, Apr. 2018.

[79] X. Su, H. Zhang, J. Riekki, A. Keränen, J. K. Nurminen, and L. Du,
‘‘Connecting IoT sensors to knowledge-based systems by transforming
SenML to RDF,’’ Procedia Comput. Sci., vol. 32, pp. 215–222, Jun. 2014.

[80] J. J. Jung, ‘‘Semantic preprocessing for mining sensor streams from hetero-
geneous environments,’’ Expert Syst. Appl., vol. 38, no. 5, pp. 6107–6111,
May 2011.

[81] F. Amato, V. Casola, A. Gaglione, and A. Mazzeo, ‘‘A semantic enriched
data model for sensor network interoperability,’’ Simul. Model. Pract.
Theory, vol. 19, no. 8, pp. 1745–1757, Sep. 2011.

[82] S. Jabbar, F. Ullah, S. Khalid, M. Khan, and K. Han, ‘‘Semantic inter-
operability in heterogeneous IoT infrastructure for healthcare,’’ Wireless
Commun. Mobile Comput., vol. 2017, Mar. 2017, Art. no. 9731806.

[83] C. Malewski, A. Bröring, P. Maué, and K. Janowicz, ‘‘Semantic match-
making &mediation for sensors on the sensorWeb,’’ in IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 7, no. 3, pp. 929–934, Mar. 2014.

[84] H. Dibowski, J. Ploennigs, and M. Wollschlaeger, ‘‘Semantic device and
system modeling for automation systems and sensor networks,’’ in IEEE
Trans. Ind. Informat., vol. 14, no. 4, pp. 1298–1311, Apr. 2018.

[85] B. L. Gorman, D. R. Resseguie, and C. Tomkins-Tinch, ‘‘Sensorpe-
dia: Information sharing across incompatible sensor systems,’’ in Proc.
Int. Symp. Collaborative Technol. Syst., Baltimore, MD, USA, 2009,
pp. 448–454.

[86] K. A. Delin and E. Small, ‘‘The sensor Web: Advanced technology for
situational awareness,’’ in Wiley Handbook of Science and Technology for
Homeland Security. Hoboken, NJ, USA: Wiley, 2009. [Online]. Available:
http://www.sensorwaresystems.com/historical/resources/briefings.shtml

[87] S. Nath, J. Liu, and F. Zhao, ‘‘SensorMap for wide-area sensor Webs,’’
Computer, vol. 40, no. 7, pp. 90–93, Jul. 2007.

[88] K. A. Kulakov, O. B. Petřina, D. G. Korzun, and A. G. Varfolomeyev,
‘‘Towards an understanding of smart service: The case study for cultural
heritage e-Tourism,’’ in Proc. 18th Conf. Open Innov. Assoc. Seminar Inf.
Secur. Protection Inf. Technol. (FRUCT-ISPIT), St. Petersburg, Russia,
Apr. 2016, pp. 145–152.

SACHIN BHARDWAJ received the B.Tech.
degree in computer science and engineering from
Dr. A. P. J. Abdul Kalam Technical Univer-
sity, India, in 2004, and the M.S. degree in
ubiquitous and network engineering fromDongseo
University, Pusan, South Korea, in 2007. He is cur-
rently a Researcher with the Artificial Intelligence
Lab, Department of Computer Science, Chungbuk
National University, South Korea. His research
interest lies in smart spaces, artificial intelligence,
semantic interoperability, and deep learning.

TANIR OZCELEBI received the Ph.D. degree in
electrical engineering from Koç University, Istan-
bul, in 2006. During his Ph.D. studies, he devel-
oped multiple objective optimization models for
content adaptive online streaming of below enter-
tainment quality videos. In 2006, he joined the
research group System Architecture and Network-
ing (SAN), Eindhoven University of Technol-
ogy (TU/e), The Netherlands, as a Post-Doctoral
Researcher. For two years he did research on

enhancing the Quality of Service for streamed multimedia in Next Gener-
ation Networks and IP Multimedia Subsystem. He is currently an Assistant
Professor with TU/e SAN and also the ProgramManager for the Bright Envi-
ronments, a Research Program of the TU/e Intelligent Lighting Institute. His
main research interests are life-cycle management for resource-constrained
embedded devices, architecture development for smart spaces and Internet of
Things, and resource andQoSmanagement, and data analytics for networked
services.

JOHAN J. LUKKIEN received the M.Sc. and
Ph.D. degrees from Groningen University, The
Netherlands. In 1991, he joined Eindhoven Uni-
versity after a two years leave at the California
Institute of Technology. He has been the Head
of the System Architecture and Networking
Research Group, Eindhoven University of Tech-
nology (TU/e), since 2002, and also has been the
Dean of the TU/e Department of Mathematics and
Computer Science since 2017. His research inter-

ests include the design, architecture, and performance analysis of parallel and
distributed systems. Until 2000, he was involved in large-scale simulations in
physics and chemistry. Since 2000, his research focus has shifted to the appli-
cation domain of networked resource-constrained embedded systems which
includes the field of IoT Contributions of the SAN group are in the area of
component-based middleware for resource-constrained devices, distributed
coordination, quality of service in networked systems, and schedulability
analysis in real-time systems.

KEON MYUNG LEE received the B.S., M.S., and
Ph.D. degrees in computer science from KAIST,
South Korea. He was a Post-Doctoral Fellow with
INSA de Lyon, France. He was a Visiting Profes-
sor with the University of Colorado at Denver and
a Visiting Scholar with Indiana University, USA.
He is currently a Professor and the Head with
the Department of Computer Science, Chungbuk
National University, South Korea. His principal
research interests are data mining, machine learn-

ing, soft computing, big data processing, and intelligent service systems.

70112 VOLUME 6, 2018


	INTRODUCTION
	SMART SPACE CONCEPTS AND PROPERTIES
	SMART SPACE BUILDING BLOCKS AND ARCHITECTURAL DESIGNS
	CLASSIFICATION OF SMART NODES
	LOGICAL STRUCTURE OF iOs
	PROCESSES AND DEPENDENCIES AMONG iOs
	PHYSICAL DEPLOYMENT

	COMPARATIVE ANALYSIS OF SMART SPACES
	SEMANTIC INTEROPERABILITY AND ADAPTATION
	SEMANTIC INTERACTIONS AMONG iOs
	PiO, CiO, AND PCiO SEMANTIC INTERACTIONS
	GWiO SEMANTIC INTERACTIONS AT THE SBiO
	MiO AND SBiO SEMANTIC INTERACTIONS AT SBSN
	SEMANTIC INTERACTIONS BETWEEN TWO SBiOs

	ADAPTATION OF iO AND APPLICATION BEHAVIORS

	CASE STUDY FOR SMART SPACES
	CONCLUSIONS
	REFERENCES
	Biographies
	SACHIN BHARDWAJ
	TANIR OZCELEBI
	JOHAN J. LUKKIEN
	KEON MYUNG LEE


