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ABSTRACT In recent publications, we presented a novel formal symbolic process virtual machine (FSPVM)
framework that combined higher-order logic theorem proving and symbolic execution for verifying the
reliability and security of smart contracts developed in the Ethereum blockchain system without suffering
from standard issues surrounding reusability, consistency, and automation. A specific FSPVM, denoted as
FSPVM-E, was developed in Coq based on a general, extensible, and reusable formal memory framework,
an extensible and universal formal intermediate programming language, denoted as Lolisa, and a correspond-
ing formally verified interpreter for Lolisa, denoted as FEther. However, our past work has demonstrated
that the execution efficiency of the standard development of FEther is extremely low. As a result, FSPVM-E
fails to achieve its expected verification effect. This paper addresses this issue by first identifying three
root causes of the low execution efficiency of formal interpreters. We then build abstract models of these
causes, and present respective optimization schemes for rectifying the identified conditions. Finally, we apply
these optimization schemes to FEther, and demonstrate that its execution efficiency has been improved
significantly.

INDEX TERMS Formal verification, smart contracts, evaluation strategy, interpreter, higher-order logic
theorem proving, security.

I. INTRODUCTION
Blockchain technology [1], such as the Ethereum blockchain
system, has been adopted in a wide variety of applications
such as cryptocurrency [2] and distributed storage [3]. Among
the most widely adopted blockchain systems, Ethereum
implements a general-purpose Turing-complete program-
ming language known as Solidity [4]. Solidity allows the
development of arbitrary applications and scripts (i.e., pro-
grams) that are collectively denoted as smart contracts,
which can be executed in a virtual runtime environment
named as the ethereum virtual machine (EVM) to conduct
blockchain transactions automatically. In addition to smart
contracts, a number of other lightweight programs have been
recently deployed in critical domains. The growing use of
these lightweight programs has led to increased scrutiny of
their security because they include properties ranging from
transaction-ordering dependencies to mishandled exceptions
thatmake them susceptible to deliberate attacks that can result
in direct economic loss [5]–[7]. Therefore, it is crucial to
verify the security and reliability of such programs in themost

rigorous manner available. Among the available verification
approaches, higher-order logic theorem proving is one of the
most rigorous technologies for verifying the properties of pro-
grams. This approach involves establishing a formal model of
a software system, and then verifying the system according
to a mathematical proof of the formal model. However, this
process suffers from problems associated with consistency,
reusability, and automation. One of the available solutions
for addressing these problems involves designing a formal
symbolic process virtual machine (FSPVM) based on higher-
order logic theorem proving technique.

The design and building of a general and powerful FSPVM
for certifying and verifying smart contracts operating on
multiple blockchain platforms has been an ongoing project
undertaken by the present authors for some time. In our recent
work [8], we presented a theoretical FSPVM framework
based on our proposed extension of Curry-Howard isomor-
phism, known as execution-verification isomorphism (EVI),
for automatically verifying lightweight programs and solv-
ing the issues associated with reusability, consistency, and
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automation in higher-order logic theorem proving technique.
Specifically, the proposed theoretical FSPVM framework
contains four key elements: (i) EVI, (ii) a general memory
formal model, (iii) a high-level formal intermediate language
that is equivalent to high level programming languages in the
real world, and (iv) a respective formally verified definitional
interpreter. Subsequently, we adopted the proposed theoret-
ical FSPVM framework to build an FSPVM, denoted as
FSPVM-E, in Coq for the verification of Ethereum smart con-
tracts [9]. FSPVM-E was constructed using a general, exten-
sible, and reusable formal memory (GERM) framework,
an extensible intermediate programming language denoted
as Lolisa [10], which is a large subset of the Solidity pro-
gramming language with a mechanized syntax and seman-
tics, and a respective formal interpreter denoted as FEther.
The FEther interpreter is the final critical component of
FSPVM-E that integrates the trusted core of Coq, GERM,
and Lolisa. However, our past work has demonstrated that,
if FEther is designed according to the standard approach
recommended by most relevant research studies and tutori-
als regarding programming language formalism and inter-
preter design (e.g., [11]), its symbolic execution efficiency
is extremely low. This low execution efficiency of FEther
directly influences the verification efficiency and the automa-
tion level of FSPVM-E because FEther is employed for pars-
ing the domain specific language (i.e., Lolisa in the present
development), implementing program behavior, modifying
the formal memory space, and generating the final logic
memory state for program verification, and therefore serves
as the proof engine of the overall FSPVM-E framework.
As such, this is a crucial issue that must be addressed.

The present work addresses this crucial issue associated
with FEther by building a general abstract formal interpreter
model to analyze and optimize the design of formal inter-
preters built in higher-order logic theorem proving assistants.
Analysis identifies three essential causes of the low execution
efficiency of FEther, which are call-by-name termination
(CBNT), information redundancy explosion (IRE), and con-
current reduction (CR). Next, we build abstract models cor-
responding to CBNT, IRE, and CR, and analyze the models
in detail to provide respective methods for addressing each
of these issues. Finally, we apply these schemes to optimize
FEther, and demonstrate that the execution and verification
efficiency of FSPVM-E are improved significantly.

The remainder of this paper is structured as follows.
Section 2 introduces relevant past studies regarding the
formal verification of virtual machines and programs.
Section 3 provides some foundational concepts and def-
initions required for understanding the present work.
Section 4 presents the respective abstract models and anal-
yses specific to CBNT, IRE, and CR. Section 5 describes
the solutions established for each issue, and presents experi-
mental verification results based on example smart contracts
obtained using FEther after optimization. Section 6 presents
the conclusions of our work and the directions of our future
efforts.

II. RELATED WORK
Thework of this paper was primarily inspired by the symbolic
process virtual machine KLEE [12], which is a well-known
and successful certification tool based on symbolic exe-
cution. However, it must be noted that many recent tools
are based on symbolic execution [13], but most of them
adopt model checking technology as their foundation, and
few are developed in a higher-order logic theorem prov-
ing system to enable real-world programs to be symboli-
cally executed, and their properties verified automatically
using the execution result. However, FSVPM-E supports the
higher-order logic based verification of complex properties.
In addition, while the verification efficiency of these pre-
viously developed symbolic execution tools is reasonably
high, we can expect that FSVPM-E will provide a simi-
larly high verification efficiency when properly optimized.
Moreover, FEther is based on a type of higher-order pred-
icate logic that can inductively express all execution states
of a program. Therefore, FEther satisfies the condition of
completeness in contrast to conventional static or dynamic
testing technologies relying on an enumeration of test
cases.

In addition to general verification tools, a number of well-
known frameworks have been developed for the verifica-
tion of Ethereum smart contracts. For example, the formal
semantic known as KEVM [14] was developed for the for-
mal low-level programming verification of Solidity byte-
code on the EVM platform using the K-framework, like
the formalization conducted in Lem [15]. Since KEVM
is executable, it can run the validation test suite pro-
vided by the Ethereum foundation. However, the low-
level verification conducted by KEVM makes it poorly
suited to high-level programming languages, such as Solid-
ity, which was a primary motivation for the development
of FSVPM-E.

A number of interesting projects have been undertaken
that employ higher-order logic theorem proving assistants
as the fundamental platform. For example, Frama-C [16]
is an extensible and collaborative platform dedicated to the
source-code analysis of software written in the C program-
ming language. In addition, VST [17] is one of the power-
ful program verification toolchains based on the CompCert
project [18], and SMTCoq [19] is another interesting project
for developing automatic theorem proving tools. Unfortu-
nately, these platforms also fail to provide a suitable combi-
nation of symbolic execution and higher-order logic theorem
proving. Moreover, these studies fail to discuss the verifi-
cation efficiencies obtained and the optimization schemes
employed in their work.

In light of the above analysis of the past studies, we note
that the present work represents the first systematic dis-
cussion regarding the optimization of symbolic execution
efficiency in higher-order logic theorem proving assistants,
such as Coq and Isabelle. Moreover, the effect of these opti-
mization schemes is also confirmed by their application to a
formally verified interpreter.
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FIGURE 1. Equivalence between the execution of a real world program (RWprogram) written in a higher-order
programming language L and execution in a logic environment using a high-level formal intermediate
language FL, which is equivalent to L, to rewrite RWprogram as a formal RWprogram (FRWprogram) in
conjunction with a formal memory framework (FMemory) as the memory space and a respective formally
verified interpreter (FI).

III. FOUNDATIONAL CONCEPTS AND DEFINITIONS
Real world virtual machines of high-level programming lan-
guages, such as Smalltalk, Java, and. Net, typically sup-
port bytecode as their instruction set architecture (ISA)
and are implemented by translating the bytecode for com-
monly used code paths into native machine code. In contrast,
an FSPVM takes the specification functional programming
language (FPL) provided by a higher-order theorem proof
assistant, such as Gallina in Coq, as the bytecode, the formal
memory framework (FMemory) as the memory space, and
the trusted core of the proof assistant as the CPU. However,
the trusted core of a proof assistant has only two func-
tions, i.e., evaluating and proving. Since, the fundamental
environment provided by Coq is not sufficient to symboli-
cally execute programs written by a mainstream higher-order
programming language L, and thereby obtain logic mem-
ory states. Therefore, the proof environment of higher-order
theorem proof assistants must be extended. A blueprint for
the previously proposed logic memory state generation pro-
cess [8] is illustrated in Fig. 1, where a high-level formal inter-
mediate language FL, which is equivalent to L, is adopted
for rewriting a real-world program (RWprogram) as a for-
mal RWprogram (FRWprogram), and the respective formally
verified interpreter (FI) is formalized in the FSPVM. The
executable semantics of FL play the role of the ISA of FI.
In addition, FI plays the role of the core of the execution
engine in the FSPVM whose task is to simulate the real exe-
cution process of FRWprograms and generate logic memory
states. FSPVM-E is totally developed in Coq with FMemory
based on the GERM model, FL specified as Lolisa, and FI

specified as FEther.
The abstract syntax of Lolisa includes contract declaration

(Contract), modifier declaration (Modifier), variable declara-
tion (Var), structure declaration (Struct), assignment (Assign),
return (Return), multi-value return (Returns), throw (Throw),
skip (Snil), function definition (Fun), while loop (Loopwhile),
for loop (Loopfor ), function call (Funcall), conditional (If),
and sequence (Seq) statements. However, the issues spe-
cific to CBNT, IRE, and CR, which form the basis of the
present work, are exclusively related to only Seq statements.
Therefore, only the syntax details of the Seq constructor

FIGURE 2. Abstract syntax of Lolisa sequence (Seq) statements.

are explicitly defined in Fig. 2. Details regarding the other
statements employed by Lolisa are reported in our previ-
ous work [10]. In addition, the development of FEther in
Coq and its verification process will be simplified if the
FRWprograms written in Lolisa are maintained as structural
programs. To ensure this condition, the semantics of Lolisa
are made to adhere to the following pointer counter axiom.
Axiom (Program Counter): Suppose that, for all state-

ments s, if s is the next execution statement, it must be the
head of the statement sequence in the next execution iteration.

TABLE 1. State functions.

Table 1 summarizes the state functions used in the dynamic
semantic definitions. Table 2 lists the helper functions used
to calculate commonly needed values from the current state
of programs. All of these state functions are encountered
in the following discussion. Components of specific states
are denoted by the appropriate Greek letter subscripted by
the state of interest. As shown in Table 2, the context of
the formal memory space is denoted by M , where σ is
employed to denote a specific memory state, and the context
of the execution environment is represented as E. Further-
more, we assign � as the native value set of the basic logic
system. Also, the proof evaluation will execute in the proof
contexts, which we will denote as 0, 01, etc. For brevity in
the following discussion, we assign F to represent the overall
formal system. All the following sections present semantics
evaluation relations of the form σ0 ⇓stt 〈σ1〉, where σ0
and σ1 are the initial and final memory states, respectively,
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TABLE 2. Helper functions.

FIGURE 3. Evaluation time required for Example 1 by the non-optimized FEther.

v0 represents the form of Lolisa syntax being defined, and the
nature of v1 depends on the precise evaluation relation being
defined. The terms env and fenv represent the current exe-
cution environment and the super environment, respectively,
defined in [10].

IV. PROBLEM ANALYSIS
As discussed, the computational efficiency of the previous
development of FEther was not sufficiently high to exe-
cute and verify formal programs written in Lolisa. A simple
example of this is illustrated by the conditional statement as
follows:

ifthrow
def
= ∀

(
s, s′ : statement

)
, if (true) {throw(); }

else {s; } s′ (Example 1)

where throw() is a widely defined special function in pro-
gramming languages like JavaScript that is called to throw out
an executing program. This simple code segment will execute
throw() to throw out an executing program and return the
initial memory state minit . However, as shown in the Fig. 3,
executing (i.e., verifying) this very simple code segment
using the non-optimized development of FEther requires an
execution time of 92.546 s, which is unacceptably long.

First, we must obtain an objective appraisal of the com-
putational efficiency of FEther. To this end, we employed
the example smart contracts given in [4] as the testing data
set, and evaluated the maximum execution time required
by FEther. These example smart contracts include about
300 lines. We employed 5 identical personal computers
with equivalent hardware of 8 G memory and a 3.20 GHz
CPU, and equivalent software, including Windows 10 and
CoqIDE 8.6. Each computer executed the same data set
100 times to obtain the peak execution times of the FEther
evaluation process. In addition, we set an execution time
limitation of 3600 s to obtain enough experimental informa-
tion. The results are shown in Fig. 4. If the initial arguments
of the programs are defined inductively using quantifiers

(such as ∀ and ∃) to logically express all possibilities of the
arguments, programs will exceed the time limitation after
executing more than about 15 lines. If the initial arguments
are defined as specific values, programs that are greater than
30 lines will exceed the limitation.

After analyzing the results given in Fig. 4, we can deter-
mine that the standard implementation of FEther, which
requires that sequence statements be defined explicitly, will
generate a volume of logic information in the current context
0c that will exceed the affordable range of higher-order logic
theorem proving assistants, making the evaluation efficiency
extremely low. As discussed, the extremely low computa-
tional efficiency is specifically caused and exacerbated by the
three crucial problems CBNT, IRE, and CR. These problems
are analyzed and defined in the following sections.
Problem 1 (Call-by-Name Termination): The root of

CBNT is caused by the evaluation strategy of lambda calculus
while FEther is evaluating the semantics of Seq statements.

First, we note that the essence of a formal interpreter FI
employed as part of an FSPVM framework is a large recursive
function written in the specification language provided by a
higher-order logic theorem proving system. The type of FI
can be abstractly defined as follows.

FI :: args → optional memory→ FRWprogram

→ optional memory (1)

Because almost all mainstream higher-order logic theorem
proving systems adopt higher-order lambda calculus as the
fundamental theory of their specification language, the sym-
bolic execution process Pexe is equivalent with the process
of evaluating recursive functions Peval in a theorem proving
system following higher-order lambda calculus, as indicated
by the following expression.

�,M ,F `ins Pexe ≡ Peval (2)

Next, we note that the sequence (Seq) statement is one of
the most essential statements that is used in formal semantics,
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FIGURE 4. Maximum evaluation times of FEther for example smart contracts given in [4].

including operational semantics, denotational semantics and
axiom semantics, to connect the remaining types of state-
ments. In most relevant research studies and tutorials regard-
ing programming language formalism and interpreter design
(e.g., [11]), it is standard to explicitly define the abstract
syntax and semantics of Seq statements using Seq construc-
tors. For example, the formal semantics of Seq statements
in Lolisa are defined explicitly according to rules EVAL-
STT-SEQ1 and EVAL-STT-SEQ2 below [9]. In Coq, state-
ments are mechanized as an inductive type statement that is
constructed by specific statement constructors, representing
statement tokens. Therefore, an FRWprogram can be sum-
marized according to expression (3), as shown at the bottom
of this page.

According to EVAL-STT-SEQ1 and EVAL-STT-SEQ2,
using the standard approach to evaluate a valid Seq statement
s, where s ≡ Seqs0s1, s0 and s1 represent two arbitrary
statements, and s0 6= Seq (∗), requires that s be processed
according to the algorithm given in Table 3, where FI is

defined as a partial function that returns an option type to
indicate success or failure.

Since FRWprograms are guaranteed to be structural pro-
grams by applying the Program Counter axiom, we can
directly employ a pattern matching mechanism to obtain the
next instruction. However, as shown in Fig. 2, Seq is also a
constructor of the statement type. Therefore, FI must first
determine whether the head statement in the current context
0c is a Seq statement. If this is the case, FI must evaluate
the statement s0 stored in Seq again by recursively calling
itself. In higher-order logic theorem proving assistants, such
as Coq, a recursive function will create a new logic proof
context 0′ each time a β-reduction is applied. Therefore,
the current FI evaluation belongs to 0c, and the expression
FI ([[mstate]] , env, fenv, args, s0) in Step2 of the algorithm
in Table 3 belongs to 0′. Most specification languages based
on higher-order lambda calculus, such as Gallina, are a type
of non-Turing-complete FPL that supports passing functions
as arguments to other functions, returning functions as the

M ` σE,M ,F ` s0, s1
s0 6= Seq

(
s, s′

)
∧ σ ⇓s0

(
σ ′, normal

)
envcheck (env, fenv) ↪→ true ∧ setgas (Seq (s0, s1) , env) ↪→ Someenv′

E,M ,F ` 〈σ, env, fenv, seq(s0, s1)〉 ⇒ 〈σ ′ ⇓s1 , env′, fenv, normal〉
(EVAL-STT-SEQ1)

M ` σE,M ,F ` s0, s1
s0 6= Seq

(
s, s′

)
∧ σ ⇓s0

(
σ ′, error

)
envcheck (env, fenv) ↪→ false ∨ setgas (Seq (s0, s1) , env) ↪→ None

E,M ,F ` 〈σ, env, fenv, seq(s0, s1)〉 ⇒ 〈σ ′, env′, fenv, error〉
(EVAL-STT-SEQ2)

FRWprogram def
= (Seqs0 (Seqs1 (. . . (Seqsn−1 (SeqsnSnil))))), (si 6= Seq (∗) , i ∈ N) (3)
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TABLE 3. Standard algorithm defining FI evaluation.

values from other functions, and storing them in data struc-
tures [20]. In other words, these specification languages treat
all essential components as functions, and have no mutable
state like that usually applied in imperative programming lan-
guages to store the result generated in 0′. The standard solu-
tion for addressing this condition in functional programming
is to employ a let expression to connect contexts 0c and 0′,
and temporarily store the new memory state σ ′ generated by
the process of executing s0. In this way, σ ′ can be taken as
the initial memory state in the next iteration cycle for execut-
ing s1. However, implementing FI according to the standard
approach given in Table 3 includes a hidden problem, in that
the actual order of expression evaluation is the opposite to
that expected. Specifically, if FRWprogram is a statement
stream connected by a Seq constructor, as defined by the
expression (4), as shown at the bottom of this page.
the ideal order ofFRWprogram evaluation should be identical
with the order in the real world, as follows:

1) Get the current execution statement scurrent ;
2) Evaluate scurrent and generate the new memory state[[

m′state
]]
using FI;

3) Call the next statement s1 in FI recursively.
Because of the fundamental processing of FI, the ideal

evaluation order is that the next instruction will not be exe-
cuted until the current instruction is simplified as a β-normal
form [21], where a λ-expression cannot be further simpli-
fied by β-reduction. According to the operational semantics,
the β-normal form of a instruction in this ideal evaluation
process refers to a basic intermediate state that is represented
by a formal memory value mstate in FI.
Nonetheless, the standard solution of employing a let

expression to obtain an ideal evaluation order encounters dif-
ficulties with respect to the evaluation strategy of lambda cal-
culus adopted as the fundamental theory bymost higher-order
logic theorem proving systems. Here, the let expression is
defined in lambda calculus as a lambda abstraction [22].

For example, let fx = y in zmeans that a function f is defined
by fx = y, which is equivalent with the lambda expression
(λf .z) (λx.y), where λ represents the abstraction. The formal
definition of the let expression is based on the following rule.

let x : T in y ≡ (λx.y) (LET-ABS)

In addition, the let expression allows application and sub-
stitution to be applied to other expressions according to the
respective rules as follows:

x /∈ FV (y) H⇒ ((let (x : T ) := N in y)⇔ (let x := N in y)

≡ (λx.y)N ) (LET-APP)

x /∈ FV (y) H⇒ (let (x : T ) := N in y) ≡ (λx.y)N

H⇒ y[x := M ] (LET-SUB)

In rule LET-APP, if x /∈ FV (y), where ∀E .FV (E) repre-
sents the free variable set of expression E , then expression
N can be applied to expression (x : T ) bound in expres-
sion y. According to the substitution rule of lambda cal-
culus [23], we can simplify rule LET-APP to obtain rule
LET-SUB. Thus, the computational formal semantics given
in Table 3 can be abstracted as Table 4, and, according to rules
LET-ABS, LET-APP, and LET-SUB, the implementations
in Tables 3 and 4 are identical.

As discussed, FI is essentially a large recursive function
written in a specification language. Therefore, according to
rules LET-APP and LET-SUB, the let expression for sub-
statement s0 given in (5) below can be converted into (6), and
then evaluated as (7) using the evaluation tactic simpl or cbn
provided by the Coq tactic mechanism.

let m′state
::= FI (mstate, env, fenv, parss, s0) in

FI
(
m′state, , env, fenv, parss, s1

)
(5)(

λ
(
m′state :memory

)
.FI
(
m′state, setenv (env) , fenv, input, s1

))
M ` mstateE,M ,F ` FRWprogramE,M ,F ` parsF ` K

FRWprogram
matches
−−−−−→ Seq (scurrent , s1)

matches
−−−−−→ scurrent ∧ s1

(env.K ,[[mstate]],env,fenv,pars,FRWprogram)⇓P(scurrent )
yields
−→[[m′state]]

FI
([[
m′state

]]
, setenv (env) , fenv, pars, s1

) , (4)
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TABLE 4. Abstract definition of FI evaluation in lambda form.

(FI (mstate, env, fenv, input, s0)) (6)

(FI ((FI (gas,mstate, input, setenv (env) , fenv, s0)),

env, fenv, input, s1)) (7)

TABLE 5. Simple example of a Call-by-name evaluation strategy.

Here, we can determine that the expression (FI(mstate, env,
fenv, input, s0)) is applied directly instead of unfolding FI

and reducing this expression to a normal form as a new mem-
ory state. Therefore, the ideal evaluation order is violated.
As such, the root cause of results like (7) is the evaluation
order of lambda calculus. In Coq, the evaluation tactics cbn
and simpl adopt the call-by-name evaluation strategy [24],
which means that the λ-expressions under lambda abstraction
will not be reduced, and the arguments to a function call
will not be evaluated, even though the λ-expressions are not
normal forms. A simple example of the call-by-name eval-
uation strategy is illustrated in Table 5, which demonstrates
that the expression (λy : int. (λx : int.y+ x)) (1+ 3) cannot
be reduced to λx : int.4 + x using this strategy. The only
method of simplifying the expression λx : int.1 + 3 + x
is to specify x in such a way as to make the expression free
of λ-expressions. Moreover, according to [25], the evaluation
tactics cbn and simpl will attempt first to apply β-reduction
and ι-reduction, and will then attempt to apply σ -reductions
if necessary. Notice that only transparent constants whose
identifier can be reused in the recursive calls are possibly
unfolded by simpl and cbn. Accordingly, the evaluation pro-
cess is illustrated in Table 6. We note from the table that
the logical expression generated by the recursive function
will not be simplified until the entire FRWprogram connected
by the Seq constructor has been unfolded completely, which
yields the following expression:

(FIn (FIn−1 (. . . (FI1 (FI0 (m0, s0, ∗)))))) (8)

TABLE 6. Iterations associated with FI evaluation.

where FIi(i ∈ N) represents the ith recursive call of FI,
and the wildcard ∗ represents irrelevant parameters. Here,
all let expressions of FI (mstate,FRWprograms, ∗) have been
applied and λ-abstraction has been eliminated. Therefore,
expression (8) is free of λ-expressions, and can be unfolded
and simplified from the outside to the inside.

According to the above analysis, the result cannot be sim-
plified and evaluated in the actual execution process until
all recursive calls of FI are completed. Therefore, the actual
evaluation order is given (9), as shown at the bottom of the
next page.

This order can be explicitly stated as follows:
1) Get the current execution statement scurrent;
2) Call the next statement s1 in FI recursively with the

function call of scurrent;
3) Evaluate the entire FRWprogram and generate the final

memory state [[mfinal]] with FI.
Obviously, in the actual evaluation process, FI takes the

entireFRWprogram rather than a single statement as an evalu-
ation unit. Thus, the information generated from the iterations
cannot be directly simplified in normal form, and the volume
of information of the current context will be too great to
simplify. The majority of this information is the statements
and respective arguments stored in the massive expression
defined by expression (8). The length of this expression
is equivalent to the number of statements in an FRWpro-
gram. Therefore, we define the size of an FRWprogram and
the arguments that will occupy the computing resource as
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size (FRWprogram), which can be abstracted as follows.

inforsize ≡ size (FRWprogram) (10)

In addition, the above analysis indicates that an arbitrary
statement within an FRWprogram composed of n statements
can be evaluated after 2n iterations. Thus, the average number
of iterations is n ∗ 2n

n . Hence, the time complexity of this
process is O(n).

FIGURE 5. Embedded execution result of FEther in Coq.

The results presented in Fig. 5 verify that the execution
process in Coq is identical to the above analysis. Accordingly,
the space resource of higher-order logic theorem proving
assistants, such as Coq, will be consumed by a large volume
of non-normal form logic expressions like that given in (8).
Therefore, the size of an FRWprogram directly decreases the
evaluation efficiency of the proof engine, and may even result
in the failure of symbolic execution due to overload.

FIGURE 6. An abstract data type that illustrates the call-by-name
termination (CBNT) problem.

To further clarify this issue, we define an abstract recursive
type ident in Fig. 6. Here, the identifier ident is its name
and sort is its type. The identifiers base0 to basen are the
names of the ident recursive base constructors, and consi is

the rule that reduces all other cases toward the base con-
structors. The binders binder0 to bindern are the quantifiers
(such as ∀ and ∃), and τ i represents the type set of the
other inductive types of respective quantifiers. These terms
are optional, which is indicated by placing the terms within
square brackets. An inspection of Fig. 6 reveals that Seq :
statement → statement → statement is obviously a special
case of ident, in that consi : [[binderi] τi] → ident →
ident → [. . .] → ident is specified as the form consseq :
identstatement → identstatement → identstatement . As discussed
above, the absence of a mutable state in most FPLs requires
that, if the parameters in the constructor, which must be
evaluated in0c, and are therefore denoted as base parameters,
cannot be evaluated, we can only transmit the base parame-
ters into the next recursive circle or discard them. However,
it is also clear that the transmission of base parameters is
limited because, if the current recursion period transmits n
base parameters into the next recursion period, then the next
recursion period must in turn transmit 2n base parameters.
Therefore, themth recursion period will need to transmitm∗n
base parameters into the next recursion period. The strict type
system employed by higher-order lambda calculus requires
that the number of parameters and the respective types of
each function must be defined explicitly, and the functions
can receive only a fixed number of parameters. However,
according to the above analysis, the number of remaining
base parameters is dynamic. Hence, it is impossible to trans-
mit the remaining base parameters into the next recursion
period.

Unfortunately, most higher-order logic theorem proving
assistants adopt call-by-name as their essential evaluation
strategy. Thus, CBNT is a common problem in all studies
where researchers have followed the standard approach for
designing a computational proof engine in these higher-order
logic theorem proving assistants to evaluate formal programs
at the code level, or when researchers have defined very large
recursive functions to evaluate recursive datatypes like the
abstract datatype given in Fig. 6.
Problem 2 (Information Redundancy Explosion): The

cause of IRE is primarily the result of a common program-
ming style, and IRE is exacerbated by CBNT. In most cases,
the major component of functions written in FPLs consists of
conditional statements defined by a pattern matching mech-
anism. In general, the programming style involves defin-
ing these conditions explicitly in the function body rather
than encapsulating these conditions as a function interface.
In fact, higher-order logic theorem proving assistants actually
encourage users to apply this type of programming style
in programs. To this end, proof assistants provide wildcard

M ` mstate E,M ,F ` FRWprogram E,M ,F ` par F ` K

FRWprograms
matches
−−−−−→ Seq (scurrent , s1)

matches
−−−−−→ scurrent ∧ s1

setargs(par)↪→par ′

FI (FI ([[mstate]], env, fenv, par, scurrent), env, fenv, par ′, s1)
. (9)
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TABLE 7. Simple example of pattern matching definition in Coq. The definition with wildcards is given on the left, while the actual definition completed
by the core of Coq is given on the right.

syntactic sugar to simplify the manual definition, and the
built-in interpreter will automatically fill the wildcard during
the evaluation process. A simple example of this process
is given in Table 7 for an inductive type T that has three
constructors A, B, and C . Here, wildcards have been used to
define a function on the left side of the table, and the trusted
core of the proof assistant automatically fills the wildcards,
as shown on the right side of the table.

In addition, as discussed above, the evaluation tactics cbn
and simpl can only be successfully applied to transparent
logic expressions free of λ-abstraction [25]. In other words,
proof assistants like Coq only apply β-reduction rules for
λ-expressions when the top-level structure [26] of the terms
of the λ-expressions is deconstructed as specific constructors
without λ-abstraction. This is illustrated by the simple exam-
ple given in Table 7 based on the process. Here, researchers
seeking to prove the theorem ∀ (a : T ) , test a∧ false = false
in a proof assistant like Coq requires the completion of two
basic steps. First, according to higher-order lambda calculus,
the theorem ∀ (a : T ) , test a ∧ false = false is equivalent
with λ (a : T ) , test a∧false = false. Hence, the λ-abstraction
should be specified with a term of type T . To avoid confusion,
the specific term is bound with the name a0. Therefore,
λ (a : T ) , test a ∧ false = false is transformed as (a0 : T ) `
test a0 ∧ false = false. Second, the test will be unfolded in
0c as follows.

(match a0 with|A⇒ true|_⇒ false end)∧ false = false (11)

Here, a0 is the guard clause (also denoted as the matching
guard) [27] of the pattern matching in test. Because a0 is
a top-level structure term, the expression given in expres-
sion (11) cannot be simplified directly. Therefore, a0 should
be deconstructed according to its constructors A, B, and C ,
which generates three subgoals of the proof, respectively.
Each subgoal can be proven easily, where the subgoal of A
can be evaluated as true, while the subgoals of B and C can
be evaluated as false.

The evaluation and verification process illustrated by the
above example is equivalent to that conducted by the pro-
posed FSPVM-E. As discussed previously, FEther is a recur-
sive function that is constructed entirely based on the GERM
framework in Coq, so the sum total of logic information,
such as λ-expressions and proof terms, must be evaluated and
verified in 0c by the trusted core of the proof assistant, which
contrasts with the process conducted in a real world virtual
machine using actual hardware. Therefore, during the ideal

process of evaluating FRWprograms and generating the new
memory state

[[
m′state

]]
using FI, the entire FI structure is

treated as a function definition, and unfolded in 0c.
However, this process includes a hidden problem.

A higher-order logic theorem proving system must display
all logic information in the same level context to maintain
logical consistency. In other words, all logic expressions
defined explicitly according to the standard programming
style, rather than being encapsulated as a function interface,
will be displayed in 0c by the proof assistant. Therefore, as
discussed above, all wildcards in the definition of FI will be
automatically filled, and pattern matching conducted without
definition encapsulation will be unfolded in 0c. However,
because the logic information in 0c cannot be simplified
and evaluated by tactics prior to deconstructing the top-level
structure terms of the λ-expressions as specific constructors
without λ-abstraction, very large formal programs like the
non-optimized version of FEther will generate more than
5000 lines of logic expressions in 0c during a single recursive
cycle.

In addition, as shown in expression (8), the first step is
to recursively apply FI for the next statement and nestedly
unfold FIi in 0c, rather than simplifying the terms of 0c.
Therefore, pattern matching in the function body cannot
be simplified promptly, and all definitions in all branches
will be unfolded in 0c. Unfortunately, most branches need
not be unfolded in 0c because the natural deduction sys-
tems of higher-order logic theorem proving theory can prune
irrelevant branches. Specifically, according to the inductive
datatype principle, all constructors of a datatype are mutu-
ally exclusive with each other. This is illustrated by expres-
sion (11), where it is impossible to generate constructors
A and B by evaluating the matching guard of test simulta-
neously. Hence, a single branch at most of a pattern matching
process can be derived by a deterministic state8i of0c during
the forward reasoning deduction process, and other branches
will be filtered out. This is abstracted as follows.

0c (8i) F (B0,B1, . . . ,Bn)
[[Bi]]

(12)

As such, the definitions belonging to these irrelevant
branches will not be unfolded in 0c. This condition is illus-
trated by the test shown in Fig. 7. Here, when ifthrow is
evaluated in Coq, the statement s is bound with a univer-
sal quantifier, which is an unknown top-level value term.
Therefore, for s, which has type statement, all its possible
pattern matching combinations, including all branches and
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FIGURE 7. Example illustrating irrelevant logic information unfolding in the proof context.

sub-branches, will be explicitly presented in the current logic
context of Coq. This process generated 10,736 lines of logic
information in the current proof context. However, according
to the logic process of ifthrow, if the condition expression
is true, the result of ifthrow is fixed as initm and indepen-
dent of s. As such, the frustrating truth is that most of the
logic information details in the 10,736 lines are redundant
and irrelevant. Therefore, although the conditional statement
given in Example 1 is very simple, s is a top-level term
that cannot be simplified directly, and, because s is unfolded
first, but is evaluated last, CBNT exacerbates the problem of
IRE, resulting in an excessive volume of unnecessary logic
expressions that must be handled by the trusted core of the
proof assistant.

We also note that, in addition to the size of FRWprograms,
the size and complexity of the FI structure are also elements
influencing the computational efficiency because the func-
tion evaluation process typically generates a large volume of
logic information combinations, particularly for a very large
recursive function like FI. Therefore, we redefine (10) as
follows.

inforsize ≡ (num (FRWprogram) ∗ size (FI))

+ size (FRWprogram) (13)

As mentioned previously, the number of recursion steps
required by FI is equivalent to the number of statements in an
FRWprogram, so num (FRWprogram) represents the nested
depth of FI iterations. In addition, size (FI) is mainly deter-
mined by the branches of pattern matching clauses. Thus,
it can be summarized as follows.

size (FI) ≡
(
cnosub1 + csub1 ∗

(
cnosub2 + csub2

∗
(
. . .
(
cnosubi + csubi ∗ (. . .)

))))
(14)

Here, cnosub represents the average number of constructors
without sub-branches, csub represents the average number of
constructors with sub-branches, and csubj and cnosubj represent

the number of sub-branches of csubi (i, j ∈ N, 0 ≤ i ≤ j).
Obviously, (13) can be summarized as follows:

inforsize ≡
(
num(FRWprogram)∗

(∑n

i=1
cnosubi ∗ csubi−1 !

))
+ size (FRWprogram) (15)

where we use csubn ! to represent the factorial expression
csub1 ∗ csub2 ∗ . . . ∗ csubn , and csub0 ! = 1.
In addition, for the FSPVM-E framework proposed herein,

FEther is based on our GERM framework, which is defined
as a large data structure with a memory space abstracted as
a special record type memory. Therefore, a memory state σ
is treated as a very large record value with a memory type
in the trusted core of Coq. As such, σ is treated in the Coq
computation process as an unknown top-level structure that
must be unfolded and deconstructed according to its specific
constructors during its evaluation process, and all information
stored in the currentmemory state will be shown in the current
context while waiting to be simplified. This is illustrated by
the Coq evaluation process shown in Fig. 8 for a simple
example. According to the calculus of inductive construction,
all identical value terms in the same level context must be
deconstructed or unfolded simultaneously to maintain logical
consistency. This is defined for FEther as follows.

size (FEther)

≡ cnosub1 + (m1 + a1) ∗ msize + csub1
∗
(
cnosub2 + (m2 + a2) ∗ msize + csub2
∗
(
. . .
(
cnosubi + (mi + ai) ∗ msize + csubi ∗ (. . .)

)))
(16)

Here, the values in all branches, such as memory space
terms m and memory address terms a, which are respectively
defined as a massive record type and enumeration type, and
which must be generally used in nearly all function modules,
will be unfolded simultaneously. We use mi and ai to repre-
sent the average number of memory space and address value
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FIGURE 8. Example of the unfolding of memory space terms in the proof context.

terms in a branch, respectively. Because types memory and
address have the same number of constructors, their sizes
are identically defined as msize. Therefore, the size of FEther
in the current logic context during the evaluation process is
summarized as follows.

inforFEther

≡

(
num (FRWprogram) ∗

(∑n

i=0

(
cnosubi + (mi + ai)

∗msize) ∗ csubi−1 !
))
+ size (FRWprogram) (17)

Clearly, this represents an exponential growth in the vol-
ume of information in a given logic context, which results in a
very large volume of logic information that must be evaluated
in a current proving context by proof assistants. Therefore,
the burden of computation is very large, even if FRWprogram
is a very simple code segment.

Finally, because IRE is caused by the programming style
and the basic features of higher-order proof assistants,
we note that normal large programs developed in higher-order
logic theorem proving assistants will also cause this problem.
Hence, the final inforsize can be abstracted as follows.

inforsize

≡

num (FRWprogram) ∗ (∑n

i=0

(
esi + dsi + cnosubi

+
[
r0 . . . ri

]
∗

 size0. . .

sizei

 ∗ csubi−1 !


+ size (FRWprogram) (18)

Here, r0 to ri represent the number of values constructed
by different datatypes, and size0 to sizei represent the num-
ber of constructors for each respective datatype. In addition,
inforsize also contains basic expressions and definitions that
can be evaluated directly, and the average number of these
basic expressions and definitions are defined as esi and dsi,
respectively.
Problem 3 (Concurrent Reduction): The present imple-

mentation of FSPVM-E seeks to combine the advantages of

model checking and theorem proving in proof loops and avoid
halting problems. To this end, we have employed Bounded
Model Checking (BMC) [28] in EVI by allowing FEther
to unfold and execute FRWprograms only K times. This
approach, which is known as fuel or pump, avoids functions
invoking infinite loops, and corresponds to the gas approach
employed by Ethereum [29], where the evaluation process of
semantics are halted if the level of gas fails to pass the gas
checking function.

In the standard FEther design, an equivalent K -limitation
is employed to limit the symbolic execution in the statement,
expression, and value semantic layers simultaneously, rather
than using different K values in different layers. However,
as discussed previously, all identical value terms in the same
context must be deconstructed or unfolded simultaneously to
maintain logical consistency. Therefore, the value of K will
be modified and shared among all layers, and the layers that
await the execution result will also be forced to be unfolded,
as illustrated in Fig. 9. While this process will not cause data
corruption owing to the forward reasoning of higher-order
logic theorem proving, it will cause IRE to occur more fre-
quently because cnosubi will become csubi in (14).

FIGURE 9. Illustration of how the shared K-limitation influences all layers
simultaneously.

The simple example given as Example 1 above is employed
to illustrate the CR problem in Fig. 10. Here, because the
different layers share an equivalent K -limitation (i.e., pump),
when pump in the first matching guard, which belongs to the
statement layer, is deconstructed, the functionfun_expr_addr,
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FIGURE 10. Example based on Example 1 illustrating the concurrent reduction (CR) problem.

which takes pump as its limitation in the Fun branch, will
be unfolded at the same time. However, the second match-
ing guard cannot simplify the stt in this step. Therefore,
fun_expr_addr also cannot be simplified after unfolding, and
the logic information will remain in the proof context. Unfor-
tunately, this condition will exist in other branches, but most
of the branches are irrelevant after the stt is deconstructed.
This means that a large volume of irrelevant logic information
will be generated before the stt is deconstructed.

Finally, it should be noted that all functions developed
according to BMC in higher-order logic theorem proving
assistants will also suffer from CR.

V. OPTIMIZATION
A. SOLUTIONS FOR EACH PROBLEM
According to the above analysis, FI, like all large programs
written by a specification language in higher-order logic the-
orem proving assistants that adopt the call-by-name strategy
and BMC, will be subject to CBNT, IRE, and CR problems.
We therefore present three general optimization methods for
addressing each of these problems respectively.
Solution 1 (call-by-Name Termination): To clarify the

present discussion, we summarize the cause of CBNT as
follows. If the Seq cell constructor is defined explicitly in FI,
the execution of FI requires that the pattern matching mech-
anism successively obtain the Seq result and s0 in the current
context 0c. Subsequently, CBNT occurs during the evalu-
ation process where s0 is evaluated in 0′ and the result is
bound in 0c by the let expression. However, this summary
indicates that the CBNTproblem can be solved directly if s0 is
directly evaluated in 0c rather than in 0′. One of the available
solutions is that Seq can be defined implicitly. Specifically,
this solution involves removing the Seq constructor from the
statement inductive datatype, and defining the sequence state-
ment implicitly using the list datatype. The new semantics of
the proposed sequence statement are defined in rules NEW-
STT-SEQ1 and NEW-STT-SEQ2 below. Here, we use list
to connect the value constructed by the new statement type

statement’, which does not have the Seq constructor. Because
no other semantics are modified, the σ ⇓stt process is still
adopted in the new sequence statement semantics. Based
on the above definitions, the equivalence between the stan-
dard sequence statement semantics and the new semantics is
proven by the Theorem Sequence Equivalence given below.
However, we first require an intermediate function T to equiv-
alently translate an FRWprogram from the statement type to
the statement’ type. The abstract definition of the translation
function is assigned as T :: statement → liststatement ′.
Its expected function is redefining, where, if FRWprogram
is (Seqs0 (Seqs1 (. . . (Seqsn−1 (Seqsnsnil))))), the new FRW-
program should be s0 :: s1 :: . . . :: sn−1 :: sn :: nil. The
correctness of T can be guaranteed by the following lemma,
where we assume that the implementation of T is correct.
Lemma (Translation):

∀ (K : nat) (FRWprogram : statement)

(m : memory) (env, fenv : environment).

∀ (s0s1 : statement), FRWprogram = Seq (s0, s1)

→ s0 6= Seq (∗).

Goal: FRWprogram = T−1 (T (FRWprogram)).
Theorem (Sequence Equivalence): ∀ (K: nat) (FRW

program: statement) (m: memory) (env, fenv: environment).
Judgment 1: (∀(s0s1 : statement),FRWprogram =

Seq(s0, s1)→ s0 6= Seq(∗)).
Goal:Estt (m, env, fenv,FRWprogram) = E′stt (m, env, fenv,

T (FRWprogram)).
Proof: An FRWprogram is defined with an inductive

type. Therefore, it can be inducted as the basic Seq statement
sb, where sb 6= Seq (∗) and Seq (s0, s1). According to the
definition of T , T (sb) can be evaluated as sb :: nil, and
T (Seq (s0, s1)) can be evaluated as s0 :: s′1, where s

′

1 has type
list statement ′.
First, the proof goal above is converted for s to

prove Estt (m, env, fenv, sb) = E′stt (m, env, fenv, sb :: nil).
For the left side, Estt (m, env, fenv, sb) = m ⇓sb
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according to the rule EVAL-STT-SEQ1. For the right side,
E′stt (m, env, fenv,T (FRWprogram)) = m ⇓(sb::nil).head=
m ⇓sb according to rule NEW-STT-SEQ1. Therefore,
Estt (m, env, fenv, sb) = E′stt (m, env, fenv, sb :: nil) is true,
which yields the following judgment.
Judgment2: Judgment1

` ∀ (s : statement) ,Estt (m, env, fenv, s)

= E′stt (m, env, fenv,T (s)) .

Second, the original proof goal is converted as follows.
Goal’: ∀ (ss2 : statement) ,Estt (m, env, fenv, Seq (s2, s))
= E′stt (m, env, fenv,T (Seq (s2, s))).

We simplify Goal’ according to the definition
of T as ∀ (ss2 : statement) ,Estt (m, env, fenv, Seq (s2, s)) =
E′stt (m, env, fenv, s2 :: s). For the left side of Goal’, s2 6=
Seq (∗) according to Judgment 1. Therefore, the left side
can be evaluated according to the rule EVAL-STT-SEQ1 as
follows.

Estt
(
Estt (m, env, fenv, s2) , env′, fenv, s

)
(H1)

Similarly, we can follow the process defined in the rule
EVAL-STT-SEQ2 to evaluate the right side of Goal’ as
follows.

E′stt
(
E′stt (m, env, fenv, s2 :: nil) , env

′, fenv, s
)

(H2)

According to Judgment 2, s can be specified as s2. Hence,
H1 : Estt (m, env, fenv, s2) = E′stt (m, env, fenv, s2 :: nil).
If the output state ofH1 is an error,Estt

(
Estt (m, env, fenv, s2) ,

env′, fenv, s
)
= E′stt

(
E′stt (m, env, fenv, s2 :: nil) , env

′,

fenv, s
)
= error . Otherwise, H1 can be assigned as

m′. Hence, the left side of Goal’ is Estt
(
m′, env′, fenv, s

)
and the right side is E′stt

(
m′, env′, fenv, s

)
. Furthermore,

s′ can be specified as s according to Judgment 2. There-
fore, E′stt

(
m′, env′, fenv, s

)
= Estt

(
m′, env′, fenv, s

)
. Hence,

we successfully prove the Theorem Sequence Equivalence.
Because the old semantics are equivalent to the new seman-

tics, and the new semantics also satisfy the Axiom Pointer
Counter, the new evaluation algorithm for FI can be rede-
fined according to that given in Table 8 based on the rules
NEW-STT-SEQ1 and NEW-STT-SEQ2, where FI′ repre-
sents the optimized interpreter. Because the semantics of all
other statement types are not modified, the ⇓P(FRWprogram)
process still represents the process of evaluation.

First and foremost, this modification solves the CBNT
problem. This is illustrated in Table 8 by the fact that the
evaluation unit at each step is a single statement rather than
the entire FRWprogram. The list datatype is an individual
polymorphic recursive type, so the list datatype can take the
statement datatype as its parameter and be specified as a
list {statement} datatype whose list elements are values with
the statement datatype. If an FRWprogram is a statement list,
the head of FRWprogram is the next executed statement, and
it can be evaluated by ⇓P(s) directly in 0c, rather than first
employing ⇓P(s) to evaluate sequence statement semantics.
Therefore, FI′ will not be employed again to evaluate s0,
and this process will also not be bounded by λ-abstraction
due to the let expression. Thus, as illustrated in Table 9,
the actual evaluation order is the same as the expected order,
which takes a statement as an evaluation unit. Therefore,
the specification num (FRWprogram) in (18) is simplified
to the specification num (statement), where num (statement)
can be viewed as the special case of num (FRWprogram)
for an FRWprogram with only a single statement. As such,
num (statement) = 1. Hence, the new inforsize is optimized
as follows.

Here, we note that the component size (FI) corresponding
to the first term on the right will not be recursively called,
and the time complexity for evaluating a sequence statement
is reduced as O (1).
Second, the new definition not only reduces inforsize,

but it also strengthens the typing judgment of sequence
statements. This can be explained as follows. In contrast
to the original definition, the new definitions NEW-STT-
SEQ1 and NEW-STT-SEQ2 are not essential for defining the
side condition ∀s : statemnt, if s = Seq (s0, s1) then s0 6=
Seq

(
s, s′

)
because the Seq constructor is removed from the

new statement, and the remaining statement constructor is
a typing parameter of list type, where, according to the list
type [30], the connection constructor is cons {statement} ::
statement → list statement → list statement . Hence,
if the first parameter is not a statement type, the list typing
judgment aids the type-checking mechanism in the trusted
core of proof assistants to locate errors, such that the side
condition need not be defined in the new sequence statement
typing judgment.

It should also be noted that another available solu-
tion would appear to be defining pattern matching for
each parameter of the Seq constructor explicitly as

M ` σE,M ,F ` s : liststatement ′

σ ⇓s.head
(
σ ′, normal

)
envcheck (env, fenv) ↪→ true ∧ set ′gas (s.head :: nil, env) ↪→ Some env′

E,M ,F ` 〈σ, env, fenv〉 ⇒ 〈σ ′ ⇓s.tail, env′, fenv, normal〉
(NEW-STT-SEQ1)

M ` σE,M ,F ` s : liststatement ′

σ ⇓s.head
(
σ ′, error

)
envcheck (env, fenv) ↪→ truefalse ∨ set ′gas (s.head :: nil, env) ↪→ None

E,M ,F ` 〈σ, env, fenv, s〉 ⇒ 〈σ ′, env′, fenv, error〉
(NEW-STT-SEQ2)
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TABLE 8. New algorithm defining evaluation in the revised FI (i.e., FI′).

TABLE 9. Abstract evaluation process of an FRWprogram in the revised
FI (i.e., FI′).

follows.

match s with
∣∣sttc0 ⇒ ES0

(
minput , . . . , s0

)∣∣ sttc1
⇒ ES1

(
minput , . . . , s0

)
|. . .| Seqs0s1

⇒ match s0 with∣∣sttc0 ⇒ FI
(
ES0

(
minput , . . . , s0

)
, . . . , s1

)∣∣ sttc1
⇒ FI

(
ES1

(
minput , . . . , s0

)
, . . . , s1

)
| . . .

(EXP-PATTERN)

However, this scheme will actually make the problem
more serious. This can be illustrated by the abstract recursive
datatype given in Fig. 6. Compared with Seq, the number
of parameters is arbitrary rather than including only s0, and,
if the number of parameters is n, the function must explic-
itly define pattern matching similar to the pattern match-
ing expression of s0 in EXP-PATTERN for n − 1 param-
eters in the function body. However, the pattern match-
ing for each parameter is identical to the pattern matching
results of all other parameters. Therefore, the new size of
FI can be expressed as sizenew (FI) ≡ size (FI) ∗ n, which

correspondingly increases inforsize, and makes this solution
counterproductive.

Finally, we note that Solution 1 is also a generic solution for
the CBNT problem for all large programs. The abstract recur-
sive datatype given in Fig. 6 can further illustrate how our
proposed solution of defining a new higher level connection
datatype is one of the best solutions for the CBNT problem.
As mentioned in the discussion of Problem 1, the feature
of functional programming provided by higher-order logic
theorem proving assistants requires that the base parameters
in the constructor consi : [[binderi] τi]→ ident → ident →
[. . .] → ident be evaluated in the current context; other-
wise, the information will be lost. However, because the term
consi id0 id1 id2 . . . ids can be equivalently redefined as the
term cons (id0 cons (id1 cons (id2 . . . nil)))⊕ ids, where the
symbol⊕ represents combination, for all datatypes specified
from the abstract datatype ident in Fig. 6, the CBNT problem
can be avoided by employing the list {ident} datatype to
replace consi. As such, we need only evaluate the head of the
list {ident} in the current recursion period, and the remaining
base parameters can be completely transmitted to the next
recursion period within the list. Although this increases the
number of recursion periods, it solves Problem 1 completely
without any other side effects, and the correctness of the
translation can be easily proven by defining a lemma like
Translation.
Solution 2 (Information Redundancy Explosion): While

CBNT is solved by Solution 1, the size (FI) component given
in (19), as shown at the bottom of this page, remains very
large, and this will import an excessive volume of logic
information in 0c, resulting in IRE.
Under ideal conditions, only necessary information would

be included in 0c, and the pattern matching results in 0c

inforsize ≡ (size (statement) ∗ num (FI))+ size (FRWprogram)

≡

size (statement) ∗
 n∑
i=0

esi + dsi + cnosubi + [ r0 . . . ri
]
∗

 size0. . .

sizei

 ∗ csubi−1 !
+size (FRWprogram)

≡

∑n

i=0

esi + dsi + cnosubi + [ r0 . . . ri
]
∗

 size0. . .

sizei

 ∗ csubi−1 !
+ size (FRWprogram) (19)
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FIGURE 11. Deeply embedded structure for large functions.

could be simplified directly, rather than being held in 0c.
This would eliminate the factorial term in (19), and thereby
maintain a manageable volume of information in 0c. These
ideal conditions can be achieved through classification and
prioritization, and the best scheme to achieve this end is
dynamic programming based on the call-by-name evalua-
tion strategy. This is an interesting finding, in that, although
CBNT is caused by the evaluation order of the call-by-
name strategy used by tactics in higher-order logic theorem
proving assistants, this strategy can be used to solve the
IRE problem. According to this strategy, the bodies of all
definitions, including functions and values, are stored in their
own contexts, and are not evaluated until they are needed
in 0c. Therefore, this feature can be taken advantage of to
hide information not required for use in 0c.
The specific process for achieving this end is illustrated

in Fig. 11, where the surface context 0, which is usually 0c,
consists only of basic expressions ε whose results are the
basic constructors that can be evaluated in pattern matching
directly. The matching results, their sub-matching results,
functions, and special values, such as memory states and
addresses, are separately encapsulated into definitions. In par-
ticular, the super-matching results must be separated from
the sub-matching results. For example, if definitioni is a
definition body that contains two pattern matching levels,
the sub-pattern matching should be separately defined in a
new definition dl . If the super-pattern matching of definitionj
contains two results of sub-pattern matching that are at
identical level, the two sub-pattern matching results should
encapsulated in definitions dm and dn separately. In this way,
an optimal evaluation process for FI can be obtained based
on dynamic programming by breaking the process into sub-
processes, and then recursively evaluating the simple results
of all sub-processes. This can be abstracted as follows.

0 FD
(
d0, 0′ FD

(
d0′ , 0′′ FD(d0′′ , . . .)

))
`ε

reduction
−−−−−−→εnf

0′ FD (d0′ , 0′′ FD (d0′′ , . . .)) ` εnf ⊕ d0
(20)

Because of the particular feature associated with
the call-by-name evaluation strategy, the process 0′ F

D
(
di, dj, . . . , 0′′ FD (dm, dn, . . .)

)
in (20) is not applied

until all ε in 0 have been eliminated completely.
In addition, we also note that Solution 2 improves the level

of reusability because general definitions, such as address
mapping, can be reused by other definitions rather than being

FIGURE 12. New K-limitation structure for FEther to alleviate the CR
problem.

redefined. The rules for building definitions can be summa-
rized by the following Principle.
Principle (Classification): A pattern matching result

should not contain any explicit sub-matching results, and
any top-level structure terms should not be transformed as
parameters in function calls.

According to Classification, the surface pattern match-
ing results can be evaluated directly, so the surface pattern
matching results are classified into the basic expression.
The sub-pattern matching results are also encapsulated into
definitions in different contexts. Hence, cnosubi and csubi
are eliminated from size (FI). Similarly, the essential val-
ues ri should be encapsulated into the general definitions,
and esi, dsi, and ei are classified into different context levels.
The effect of this process on size (FI) is illustrated as
follows.

Here, we assign es0i as the number of basic optimal expres-
sions in the context 0i, and assign ds0i as the number of all
bound names of definitions, which are the entry points of
the respective definition bodies. The term dsg represents the
number of general definitions called by the current context,
and esg represents the respective definition bodies of dsg.
Finally, size (FI) is further simplified using 0d , which rep-
resents the set of deep contexts given in expression (21), as
shown at the bottom of the next page.

According to the call-by-name evaluation strategy, defini-
tions in context0 (d0) do not occupy the computing resource.
Moreover, the body of the definitions d0i , which is defined
in the x0iG0d

process, will not be unfolded until either the
expressions of 0i (e0i ) are eliminated as the β-normal form
or the definitions in d0i are necessary. This is defined as
follows.

infor0 ≡ e0 ⊕ d0 ⊕ dg ⊕ statement (22)
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FIGURE 13. Simple example for testing the execution efficiency of FEther after optimization.

FIGURE 14. Maximum evaluation times of FEther after optimization for example smart contracts given in [4].

In this way, only the basic expressions e0i , the definition
entry points d0i in context 0i, and the necessary general
definitions will be evaluated in the current context, and
only e0i will occupy the computing resource. The bodies
of the definitions in d0i and deeper level logic terms, such
as d0i+n and e0i+m , will be recursively hidden in the deeper
contexts 0d , and the trusted core of proof assistants needs
only evaluate e0i . Accordingly, the value of inforsize for 0c
can be simplified as follows.

inforsize ≡ es0 + ds0 + dsg + size (statement) (23)

Although this process will increase the number of times
the unfold operation must be conducted, the influence of this
increase on the computational efficiency of FI is negligible
because the unfold operation is one of the simplest atomic
operations. Therefore, the computational load of the unfold

operation in 0c on the computing resource is much less than
the original evaluation process. In addition, the number of
times the unfold operation must be conducted is less than or
equal to the number of definitions d0 in 0c, and the number
of e0⊕d0 operations in 0c for any FI is practically fixed at a
constant value. Thus, the value of inforsize for0c is influenced
only by the complexity of a single statement, which is denoted
by size (statement). Moreover, the requirement that e0 be
simplified as the normal form eliminates irrelevant logic
expressions from the computational load. Therefore, inforsize
is significantly reduced, such that the computational load of
the trusted core remains within a manageable range. Thus,
the IRE problem is solved.
Solution 3 (Concurrent Reduction): Finally, the cause of

CR can be easily solved by defining different pump limita-
tions for every layer, as shown in Fig. 12. Here, we modify

size (FI) ≡

 n∑
i=0

esi + dsi + cnosubi + [ r0 . . . ri ] ∗
 size0. . .

sizei

 ∗ csubi−1 ! + n∑
i=0

ei


⇒
([
es00 + ds00

]
x00G01

([
es01 + ds01

]
x01G02

(
. . .
([
es0i + ds0i

]
x0iG0i+1 (. . .)

))))
+ dsg x0callG0g

(
esg
)

⇒

([
es00 + ds00

]
x00G0d

)
+ dsg x0callG0g (21)
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the K -limitation structure adopted in each layer, respectively,
which solves the CR problem completely.

B. CASE STUDY
We applied the three proposed optimization schemes in
the development process of a new version of FEther for
FSPVM-E, and employed FSPVM-E to execute (i.e., verify)
the very simple code segment in Example 1. Compared with
the result given in Fig. 3 for the non-optimized version of
FEther, the results in Fig. 13 indicate that the execution
time decreased substantially from 92.546 s to 0.033 s for
the optimized version of FEther. As such, the optimized
version requires just 3/10000 of the time required by the non-
optimized version. The details regarding this new version
of FEther will be introduced in a subsequent technological
report.

In addition, we also tested the optimized version of FEther
under an identical experimental environment and with an
equivalent data set as those employed for the results obtained
in Fig. 4 by the non-optimized version of FEther. As shown
in Fig. 14, the purple line is the peak execution times of
FRWprograms constructed using specific instructions, and
the red line is the peak execution times of FRWprograms
constructed using abstract instructions. Compared with the
results in Fig. 4, we note that both program types exhibit a
linear increase in execution time with respect to an increasing
number of lines, rather than exponentially, as was obtained
using the non-optimized version of FEther.

These experimental results verify that the optimization
schemes provide results that conform with our analyses of
the causes of CBNT, IRE, and CR. Moreover, the experi-
ments certify that these schemes can optimize FEther, and
improve the execution efficiency of the proposed FSPVM-E
significantly.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we presented analyses of the issues denoted
as call-by-name termination, information redundancy explo-
sion, and concurrent reduction that reduce the evaluation
efficiency of formal interpreters adopted in an FSPVM frame-
work and other large programs developed in higher-order
logic theorem proving assistants. We then built abstract
models based on these analyses, and developed respective
optimization schemes for each issue. Finally, we applied
the proposed schemes to optimize the FEther interpreter
employed in FSPVM-E. Experimental results verified that the
execution efficiency of FEther was improved significantly.
We are presently pursuing the optimization and certification
of FSPVM-E. Then, we will extend FSPVM-E to support the
formal verification of smart contracts on the EOS blockchain
platform, which includes the formalization of a subset of the
C++ language and the respective interpreter based on the
GERM framework.
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