
Received August 6, 2018, accepted October 24, 2018, date of publication November 12, 2018,
date of current version December 18, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2880741

Data Amount Reduction in Mosaic Image
Transmission Techniques for Digital
Interactive Television Applications
FREDDY R. ACOSTA-BUENAÑO 1,2, (Member, IEEE), INMACULADA MORA-JIMÉNEZ2,
GONZALO OLMEDO1, (Member, IEEE), AND
JOSÉ LUIS ROJO-ÁLVAREZ 2,3, (Senior Member, IEEE)
1Departamento de Eléctrica y Electrónica, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador
2Department of Signal Theory and Communications, Telematics and Computing Systems, Rey Juan Carlos University, 28943 Madrid, Spain
3Center for Computational Simulation, Universidad Politécnica de Madrid, 28223 Madrid, Spain

Corresponding author: Freddy R. Acosta-Buenaño (fracosta@espe.edu.ec)

This work was supported in part by the Research Projects Platform for Usability Analysis for Interactive Digital Television Applications
under Grant 2013-PIT-016, in part by the Energy Efficiency in Wireless Sensor Networks from the Universidad de las Fuerzas
Armadas ESPE, in part by the Spanish Government through the research KLINILYCS and FINALE under Grant TEC2016-75361-R and
Grant TEC2016-75161-C2-1-R, respectively, and in part by PRICAM under Grant S2013/ICE-2933 from the Comunidad de Madrid.

ABSTRACT Several images are used as a part of the interactive data in the Nipo-Brazilian digital TV system
that require good subjective quality while using the lowest possible bandwidth but the well-known traditional
compression systems are already applied by default to these images. The concept of a mosaic image (several
images forming one) has been formerly used in the steganography application field. The mosaic image is
obtained by reordering the image-blocks of a secret image disguised as another image, the so-called target
image, and then feeding both to a near reversible color-transformation algorithm. Its use is a possible solution
to this need in digital interactive television, for which the main challenge is to achieve this by using less
bandwidth for transmission. We propose here a procedure to reduce the amount of data needed to recover
the secret image from the mosaic image, as well as a criterion to select the target image and therefore improve
the quality of the recovered secret image in interactive data applications. The main objective is to efficiently
transmit two images as one using a lower bandwidth. On the one hand, the number of bits needed to recover a
given secret image is highly reduced by modeling the image-block standard deviation statistical distribution.
On the other hand, the entropy of the image-block means and standard deviations per color component are
used to identify the most convenient target image among the images set present in the interactive application
of interest. A series of experiments with a set of 20 mostly natural images showed a reduction in the number
of bits close to 3-to-1 with respect to techniques of reference. The proposed method allows us to improve the
bandwidth use by reducing the number of bits needed to recover the secret image, it preserves the subjective
quality of recovered secret images, and it gives the possibility to determine the best target images available
in several multimedia and digital terrestrial television applications.

INDEX TERMS Digital terrestrial television, interactive applications, mosaic image, image entropy, image
selection, nearly reversible color transformations.

I. INTRODUCTION
Digital Terrestrial Television (DTT) systems are imple-
mented in almost all the world. In Ecuador and most of
Latin America, part of Asia, and Africa, the Nipo-Brazilian
Digital TV System (SBTVD, short for Sistema Brasileiro
de Televisão Digital, also known as ISDB-Tb) has been
defined. In ISDB-Tb, middleware GINGA is established as
an intermediate software layer that allows the development

of interactive applications for DTT. GINGA is also an ITU-T
recommendation for Internet Protocol Television (IPTV)
Services [1], and it also allows to use MPEG and AVI
video, as well as JPEG, PNG and GIF images [2]. The data
carousel of DTT has limited bandwidth for the transmis-
sion of multimedia related to interactive applications, hence,
it becomes necessary to use it efficiently, in order to provide
enough quality on the presentation of interactive applications.
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Since images are the most commonly used multimedia ele-
ments in an interactive television application [3], a form to
transmit the image set of any interactive application with the
best bandwidth performance is still needed.

For this purpose, we propose to look for a method to
transmit various images at a time, and in this setting, image
blending techniques have been proposed for their use in Earth
Sciences, which allow us to overlay relevant information
from multiple images over a single one and view them in a
single image [4]. Also, in the traditional information security
system setting, the process of hiding information has been
widely studied, and it has been stated as embedding secret
data into different carriers of digital media, such as image,
audio, or video streams [5]–[10]. On the other hand, many
interactive applications work with image sets that could be
naturally used as carriers. A new type of computer art image,
called secret fragment-visible mosaic image, has been pro-
posed [11] and used in other types of applications. In this
precedent work, the mosaic image is automatically created by
composing small fragments (image-blocks) of a given image
(secret) to become a target image in a mosaic form, in which
the target image is preselected from a working database.
An improvement to the previously cited procedure has been
proposed to avoid the large database requirement [12] by
using the Nearly-Reversible Color Transformation (NRCT)
method proposed in [13]. NRCT was used to match the color
image-block statistics of a secret image with those of a target
image, and it was able to work with any arbitrarily selected
target image.

Furthermore, a new algorithm also based on [12] was
presented in [14], in which the recovered secret image qual-
ity was numerically quantified. For this purpose, the color
image-blocks were first characterized by their mean vectors
and covariance matrices, and the mosaic image then was cre-
ated by taking advantage of the description of the correlation
across color channels. The quality of the recovered secret
image was improved, but at the cost of more bits to embed.
Overall limitations for the above described methods often
come from the number of bits needed to recover a secret
image embedded in a mosaic image.

Aiming to reduce the number of transmitted bits when
using mosaic image techniques, in this work we propose
to modify the scheme in [12] for its application in DTT
interactive applications. For this purpose, we use Kullback-
Leibler Divergence (DKL) [15] to determine the parametric
probability density function (pdf) and associated parameters
most appropriate to represent the distribution of the standard
deviation in the secret image-blocks. Then, we estimate the
position indices of the target image-blocks in the receiver by
using the mosaic image information. A target image selection
stage is subsequently performed by using the distributions of
the image-block mean and standard deviation, together with
their entropies, to identify a convenient target image among
those available in a given multimedia application.

A specific experiment was addressed to characterize the
entropy of the image-block means and standard deviations

per color component, showing the usually close relationship
among RGB components and revealing several informative
uncorrelated cases. This motivated our proposal of a cri-
terion to know in advance the suitability of an image as
the most convenient target image, in comparison with the
rest of images in the multimedia database. Finally, and by
taking advantage of the preceding design and evaluation,
the mosaic image can be advantageously created. For this
analysis, a dataset of 20 different images was initially used in
the experiments. These images were selected to represent dif-
ferent scenarios in terms of their variability in shape, texture
or color. After this process, two images were selected as the
best target images in this dataset, and a new 12-image dataset
was collected by pursuing similar image properties in them,
in order to finally evaluate the system performance. A very
preliminary version of this work was presented in [16].

The structure of the paper is outlined as follows. In the next
section, the notation and the data volume reduction onmosaic
image techniques are presented. In Section III, the target
image selection approach is introduced, and an improvement
is proposed on the quality of the recovered secret image.
In Section IV, our image dataset and the testbed configuration
are presented. Besides, the conducted experiments and their
results yield the parameters of the pdf of the block standard
deviations, as well as the proposed criterion to identify the
most appropriate target image. Finally, Section V contains
conclusions and future perspectives.

II. DATA REDUCTION ON MOSAIC IMAGE TECHNIQUES
In this section, we establish the notation used throughout
this work, and then we summarize the previous fundamen-
tals of our proposal to reduce the data volume in mosaic
image techniques. Figure 1 shows the outline of the involved
procedure and images, which includes two main stages,
namely, the mosaic image creation stage (in transmission),
and the secret image recovery stage (in reception). The first
stage (transmission) considers two images of the same size,
namely, secret image S and target image T . The goal is
to obtain a mosaic image M , as similar as possible to T ,
embedding the necessary bits to recover in the receiver an
image that is very similar to S. For this purpose, a NRCT
is first made on S and T according to [12] and [13]. Then,
we propose here to take advantage of the distribution of some
statistics extracted from the image blocks in S and T , and to
construct a reduced-bit stream which can be embedded onM ,
hence obtainingMT . In the second stage (reception),MT can
be separated in M and the bit stream, and M is also divided
in blocks and some statistics are obtained from them. These
values are used to estimate the same statistics of the blocks
in T and to reverse the process applied in transmission, thus
obtaining Ŝ, which is a moderate-loss version of S.
Images are assumed to have the same size v × w, and

without loss of generality, we work here with 1024×768 size.
The image blocks are denoted with capital letters and sub-
indices, hence, secret image blocks set is {Si}bi=1, and target
image blocks set is {Ti}bi=1. Note that blocks do not overlap
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FIGURE 1. Outline for the use of Secret (S), Target (T ), and Mosaic (M) images in the proposed procedure, both in
transmission (upper panel) and in reception (bottom panel).

and subindices are extended according to

b =
⌈
v× w
u× u

⌉
(1)

where u is the length of the block side, that usually is consid-
ered as 8, 16, or 32 pixels.

A. MOSAIC IMAGE CREATION
For a better understanding of the procedure, an example is
presented in Figure 2 following the different stages. Secret
image S and target image T are shown in Panels (a) and (b),
respectively. They are divided into non-overlapping square
blocks with size u× u, providing a total of b blocks as given
in Eq. (1). For a comprehensible visualization, u = 256
has been used to present image blocks {Si}bi=1 and {Ti}bi=1
in Panels (c) and (d), respectively. For each block and color
component (red, green, blue), average intensity (µ) and stan-
dard deviation (σ ) values are computed, thus obtaining sets
of 3b cardinality, i.e., sets VµS and VσS for the secret image,
and sets VµT and VσT for the target image. Cardinality of
sets VσS and VσT is reduced by averaging the three standard
deviations associated to the three color components in the
same image block, obtaining reduced sets V r

σS
and V r

σT
. Then,

the reduced sets are sorted in ascending order, providing the
index vectors iσS and iσT . These vectors are used to sort blocks
in S and T accordingly, yielding images Ssort (see Panel (e))
and Tsort . The next step is to apply the NRCT color transfer

scheme so that the color components of image Ssort are as
similar as possible to those of Tsort .

Thus, for any color component c = {r, g, b}, the following
transformation is applied to pixels in the i-th image-block
of Ssort ,

ccMsorti
= qc,i

(
ccSsort,i − µ

c
Ssort,i

)
+ µcTsort,i (2)

for i = 1, · · · , b. Variables µcSsort,i and µ
c
Tsort,i are the average

intensity for pixels in component c of the i− th block images
Ssort and Tsort , respectively. Variable qc,i is the standard
deviation quotient, obtained as

qc,i = σ cTsort,i/σ
c
Ssort,i (3)

for i = 1, · · · , b, and where σ cSsort,i and σ
c
Tsort,i is the standard

deviation for values in component c of the i − th image
block in Ssort and Tsort , respectively. The resulting image
is denoted as Msort . This process is performed to get better
edges definition in the mosaic image, and in our work also to
support the contribution to the new parametrization presented
in Section II-B. Following the scheme in [12], every block of
Msort is rotated four angles {0, 90, 180, 270}. For each block
ofMsort , we select the angle associated to the minimum Root
Mean Square Error (RMSE) between the rotated block and
the block of Tsort in the same position, thus obtaining the
vector of rotation angles named Vθ . Image M ′sort is obtained
by applying rotation angles in Vθ to blocks inMsort , as shown
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FIGURE 2. Process to create the mosaic image: (a) Secret image S; (b) Target image T ; (c) Division of S in blocks with u = 256;
(d) Division of T in blocks with u = 256; (e) Ssort using u = 256; (f) and (g) M′sort using u = 256 and u = 8, respectively; (h) Mosaic
image M, created from (a) and (b) when u = 8. An example of wrong block-rearranging in M′sort is also shown: (i) Ssort using u = 8;
(j) M′sort using u = 8; (k) Rearranging M′sort using iσS ; (l) Binary edges of image in (k).

in Figure 2 (f) for u = 256 and in Panel (g) for a more
realistic situation with u = 8. Finally, Panel (h) shows mosaic
image M after the rearrangement of blocks in M ′sort using
position indices iσT . Note that M looks very similar to target
image T .
The importance of the block reordering in M ′sort to con-

struct M is also illustrated in Figure 2 when u = 8. For this
purpose, Panel (i) is the equivalent image to Panel (e) with
a reduced block size, and Panel (j) is the same as Panel (g).
When performing a different re-ordering of the image blocks
in Panel (j), the obtained mosaic image is very different to T .
This can be observed in Panel (k), which has considered
indices in iσS instead of those in iσT . This intentionally wrong
rearrangement of blocks inM ′sort makes the bird shape (secret
image) to appear in the new mosaic image. Only for better
understanding, binary edges of image in Panel (k) are shown
in Panel (l).

Since the final aim is to embed relevant information intoM ,
the next stage is to construct bit stream ET to be embedded.
Li and Tsai [12] proposed to create ET as a concatenation of
b bit streams {Ei}bi=1 to recover {Si}bi=1. The bit stream for
each block consists of five components, given by

Ei= [t1t2...tn]i[r1r2]i[m1m2...m48]i[q1q2...q21]i[d1d2...dk ]i
(4)

for i = 1, · · · , b, and where bit segment [t1t2...tn]i codes
the value of index vector iσT associated to the i − th block,
with n = dlog2(b)e; bit segment [r1r2]i codes the rotation

angle and needs two bits because there are four possible
rotation directions; bit segment [m1m2...m48]i has 48 bits
to represent the means of every component in Si and Ti,
8 bits per color component; bit segment [q1q2...q21]i codes
the standard deviation quotients with 21 bits, 7 bits per color
component; and segment [d1d2...dk ]i uses k bits to code the
residuals, depending on the number of overflows and under-
flows. Residuals were also considered in [12], and they were
handled by usingHuffman coding, but they are not considered
in the present work, so this detail has to be borne in mind in
the comparisons and experiments.

B. PROPOSED DATA REDUCTION
In order to reduce the number of bits required in [12],
we propose to eliminate from Ei the bit segments involving
data from the target image (i.e., t , q, d , and part of m). The
resulting bit stream is as follows:

E ′i = [r1r2]i[msort1msort2 ...msort24]i[s1s2...sn]i (5)

for i = 1, · · · , b, and where bit segments [r1r2]i,
[msort1msort2 ...msort24 ]i and [s1s2...sn]i code the rotation
angle, the average intensity per component, and the value
of the index vector iσS of block Si, respectively. Average
intensities in VµS are sorted by vector iσS , therefore, they are
denoted in the bits segment withmsort . To compensate for this
reduction in the bit stream, we propose several contributions.
Our first contribution includes into the reduced bit stream

a few number of bits to code parameters pσS of the parametric
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FIGURE 3. Normalized histograms of σS (in blue) and the best fit for
parametric distributions (in red): (a) Exponential; (b) Log-normal;
(c) Weibull; (d) Rayleigh. Also the empirical mean and standard deviation
distributions are shown for target and mosaic image blocks,
(e) ρσM vs. ρσT ; (f) ρµM vs. ρµT .

distribution best representing the empirical distribution of
V r
σS

(denoted as ρσS ). For this purpose, a predefined set of
parametric pdfs were considered, namely, Exponential, Log-
normal, Weibull, and Rayleigh. The best parameters for each
pdf were found according to the maximum likelihood crite-
rion and considering the three color components altogether.
As an example, panels (a)-(d) in Figure 3 show the normalized
histogram of V r

σS
(in blue) and the best approximation for

every parametric distribution (in red). The DKL was used to
select the best choice, and parameters pσS were also used in
reception to estimate Eq. (3).

Then, the new E ′T bit stream is the concatenation of bit
streams E ′i (i = 1 · · · b) and bit segment coding parame-
ters pσS . Bit stream E ′T is now obtained as

E ′T =
⋃
{E ′i }

b
i=1s1s2...sp, (6)

where
⋃

represents the segments concatenation, and sp is the
number of bits to code pσS . As we do not transmit all the
bits of Eq. (4), our second contribution takes advantage of the
similarity between M and T images to estimate in reception
the sets VµT and VσT using M , which together with E ′T , are
required to estimate Ŝ ′. Figure 3 also depicts the similarity
between empirical distributions ρσM ≈ ρσT and ρµM ≈ ρµT ,
in Panels (e) and (f), respectively.

For transmission, E ′T can be embedded into M by the
LSB replacement method used in [12] to obtain image MT .

Note that the mentioned previous works inserted the bit
stream in the mosaic image, whereas we are considering
that our bit stream can be sent by the data channel in a
number of different multimedia applications. Nevertheless,
the comparison in terms of the number of required bits can
be informative in terms of the reported performance herein.

C. SECRET IMAGE RECOVERY
Also following [12], both bit stream E ′T and mosaic imageM
can be obtained from MT . In summary, the stream E ′T is
segmented to get parameters pσS characterizing the empirical
distribution of V r

σS
, the rotation angle of every block inM ′sort

(from {[r1r2]i}bi=1), the mean value µcSsort for every block and
color component in Ssort (from {[msort1msort2 ...msort24]i}

b
i=1),

and the index vector iσS (from {[s1s2...sn]i}
b
i=1). Then, we ran-

domly generate b values according to the selected parametric
distribution using parameters pσS . These values are sorted
in descendant order and assigned to the standard deviation
of blocks obtaining V̂σSsort . According to the second con-
tribution presented in Section II-B, sets VµM and VσM are
estimated as V̂µT and V̂σT , because of the similarity between
T andM images. By averaging the standard deviations asso-
ciated to the three color components in the same image block,
we obtain from VσM the reduced set V r

σM
= {σM ,i}

b
i=1.

Values in V r
σM

are sorted in ascending order, providing the
vector of indices iσM necessary to construct M ′sort . Next, the
i − th block in M ′sort is rotated in the reverse direction using
Vθ to formMsort .

After previous steps, we have the information to estimate
{Ŝi}bi=1, i.e. the blocks of an estimation of the secret image.
For this purpose, we first apply a color conversion process
similar to that in transmission, so that pixels in blocks of
Msort have similar statistics to those in corresponding blocks
of Ŝsort . Thus, for every block we obtain quotient qr,i as

qr,i =
σ̂Ŝsort ,i

σM ,i
(7)

for i = 1, · · · , b, which, together with the mean values
µcMsort,i

andµcSsort,i , is used to find pixel values c
c
Ŝsort,i

for every

color component c = {r, g, b} in Ŝsort according to

cc
Ŝsort,i
= qr,i

(
ccMsort,i

− µcMsort,i

)
+ µcSsort,i (8)

where ccMsort,i
and µcMsort,i

are the c − th component of pixels
in Msort and the average intensity for the i-th block of Msort ,
respectively.

Finally, we build image Ŝ by rearranging blocks of Ŝsort
according to indices iσS .

III. PROPOSED METHOD FOR TARGET IMAGE SELECTION
Many multimedia applications work with an image set that
could be naturally used as possible target images, like in digi-
tal interactive television, military image databases, or medical
imaging systems. This is often the case of applications in
systems ensuring the total reception of data with parity check
process. Therefore, we propose a method that can be used

VOLUME 6, 2018 70287



F. R. Acosta-Buenaño et al.: Data Amount Reduction in Mosaic Image Transmission Techniques

for target image selection in this kind of scenarios. In general
terms, the content of an image can be described by features
like shape, texture, or color. Due to the use of image blocks in
the method proposed so far, it has been previously determined
that color is the most effective feature, given that it affects
the overall visual appearance of the resulting mosaic image.
We focus now on the statistical characteristics (µ and σ ) of
the color distributions from images-blocks in order to define
a similarity measure to be used in the target image selection.

Entropy is defined as the weighted average value of the
amount of information, which represents a measure of the
average uncertainty about a random variable x, and then about
the amount of information in it [17]. The entropy of x is
obtained as follows,

h(x) = −
∫
∞

−∞

ρ(x)log2ρ(x) dx, (9)

where ρ(x) is the pdf of x. In our case, we work with
random variables ρσS , ρσT , ρµS , and ρµT , whose entropies are
denoted as h(σS ), h(σT ), h(µS ), and h(µT ). The usefulness of
entropy to define image characteristics has been widely stud-
ied in the literature. Pluim et al. [18], Skilling and Gull [19],
Lee et al. [20], and Zhao et al. [21] different areas use it
for image processing via maximum entropy methods or to
register satellite images by block processing via entropy,
among others. Therefore, the entropy of the intensity levels
of each RGB component of the image can be used in the
comparisons between images. An image consisting of almost
a single intensity level will have a low entropy value and it
contains very little information. A high entropy value will
be yielded by an image with uniform quantities of many
different intensity levels, which is an image containing a lot
of information. In this manner, the entropy is also a measure
of dispersion of a random variable (the intensity level in our
setting).

One could think of addressing the process of recovery of
the S image with the T images by using a one-versus-all
calculation. However this would become non-operative from
a practical viewpoint. Therefore, our goal now is to create
a target-image selection stage, and we hypothesize that the
entropy of different statistical parameters of the image-blocks
could be used as a quantitative criterion for this stage. To this
aim, we empirical analyze the described entropies and their
relation with several quality measurements on the Ŝ. From
the experimental analysis presented in detail in Section IV-D,
we define the criterion by concluding that the most appropri-
ate images to be chosen as target images are those with values
of h(µ) ∈ (7.2, 7.6) and h(σ ) ∈ (4.3, 4.8)), respectively.
In our problem, we look for the specific image characteristics
that can help us to select the appropriate target image under
that quantitative criterion. Figure 4 shows examples of the
histograms of V r

µ and V r
σ for three different images, together

with their h(µ) and h(σ ) values. It can be visually noticed
therein the direct relation between the entropy and the image
statistic dispersions, i.e., the lower the entropy, the lower

the block statistic dispersion and vice-versa. This qualitative
observation will be further scrutinized in the experiments.

Let us denote the secret image that wewant to embed by So,
and the set of KT available target images in the system by
{T k}KTk=1. After embedding So into a given T k , we eventually
recover an estimated version denoted by Ŝo,k . The previously
explained procedure can be compactly denoted by opera-
tor 2, as follows:

Ŝo = 2
(
So, {T k}KTk=1

)
. (10)

Then, the estimation error is given by

Err = 8
(
So, Ŝo

)
(11)

where operator 8 denotes the quantitative quality measure-
ment of the reconstructed secret image in comparison with
the original one. The Err measurement can be here either the
RMSE or the Mean Structural Similarity (MSSIM). The for-
mer quality measurement is a quantitative performance one,
and it assesses how well a method performs to reconstruct an
image relative to the original one, meanwhile the latter is used
to determine the perceived and subjective quality, in terms of
the structural information between a recovered image and the
original one.

We are looking for an alternative criterion based on
entropies h(µ) and h(σ ) for each color component, which we
denote here as 3 operator. This operator is to be determined
in such a way that it allows us to identify the best image T oopt
among the available target ones that fits to embed our secret
image, without the need of using the operator 8 in all the
cases, this is,

T oopt = 3
(
So, {T k}KTk=1

)
. (12)

Accordingly, 3 operator should be designed to be capable
of a priori identifying which target image is appropriate for
our secret image, but only by performing simple calculations
of the entropy of the image statistics in the target image
available database. Based on the above description, T oopt is
the target image that reduces to a minimum the error between
the S image and the Ŝ image. The detailed algorithm for target
image selection is described as Algorithm 1.

IV. EXPERIMENTS AND RESULTS
Several experiments were performed in order to create and
test the proposed method. First, for a better presentation of
the experiments, we introduce in this section the image sets.
Then, the number of bits required to estimate S from M was
scrutinized in order to reduce it. For this purpose, a parametric
description of ρσS was obtained together with an estimation of
empirical distributions ρσT and ρµT . Finally, the suitability of
selecting the best T image with entropy criteria was analyzed.

A. SET OF IMAGES
For this work we compiled a set of 20 high-quality JPG color
images freely accessible and maybe of use in multimedia
applications. Images were cropped to work at one of the
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FIGURE 4. Histograms of V r
µ and V r

σ from three different images, with their corresponding entropy values h(σ ) and h(µ).

Algorithm 1 Target Image Selection

Input: secret image So, and target image set {T k}KTk=1
Output: the more suitable target image T oopt .
Step 1. Divide target images {T k}KTk=1 into b blocks,

with b as given in Eq. (1).
Step 2. Compute the average intensity (µ) and standard

deviation (σ ) values for each block and color
component, obtaining VµT and VσT sets of 3b
cardinality.

Step 3. Compute the entropy of each set VµT and VσT ,
getting h(µ) and h(σ ) for each color component.

Step 4. Check accomplishment of the criterion based in
entropy values for h(µ) and h(σ ).

Step 5. Select the most suitable target image T oopt .

typical resolutions for screen presentation, 1024×768 pixels.
All the images in this work were obtained from the Inter-
net [22]. In Figure 5 we show the images in alphabetic order
(from Image A to Image T) from top to bottom and from left
to right.

In order to carry out an operational number of experiments,
we worked with 190 image combinations in the following
way. We used ten possible secret images (from Image A to
Image J), and all the set of images as target ones, considering

that the same image was not used as secret and target at a
time. As an example, the first experiment is carried out by
using Image A as secret image and the remaining 19 as target
images.

After identification of the possible T oopt images in that set
using the Algorithm 1, a new set of 12 images (Figure 6) was
collected from the same source [22], to be used as target ones
in Section IV-C and thereafter. The selection of this set of
images was more specific this time, as it was based on the
simple calculations of the entropy related to Eq. (12). With
this new dataset, we analyzed how the quality of the recovered
image increased when using the same secret images as those
in the previous set.

B. IDENTIFICATION OF THE DISTRIBUTION AND THE
ASSOCIATED PARAMETERS FOR ρσS

In this experiment we determine the parametric distri-
bution (ρpdf ) best representing the empirical distribu-
tion ρσS among the following: Exponential, Log-normal,
Weibull, or Rayleigh. After, we construct the ρσS using each
possible image T , and we determine the best parameters
for each parametric distribution according to the maximum
likelihood criterion. The DKL(ρσS ||ρpdf ) was calculated to
determine the best parametric distribution in each case. This
provided a non-symmetric measure of dissimilarity or dif-
ference between distributions (DKL(ρσS ||ρpdf ) is different
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FIGURE 5. Set of used images. We denoted them from left to right and from top to bottom with capital letters
from A to T (e.g., Image A is the bird one, and Image T is the owl one).

FIGURE 6. Set of images collected according to the identified characteristics.

to DKL(ρpdf ||ρσS )). Note that distributions are more similar
when DKL is closer to zero. The values of DKL between
the empirical distributions of each image and the scrutinized

parametric distributions are shown in Table 1. The values of
DKL representing the closest similarity are shaded in gray, and
the second closest DKL are in green.
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TABLE 1. Kullback Leibler Divergence (DKL) for the parametric distributions (pdf, first row) when considering the first image dataset (first column). The
values of DKL representing the closest similarity are shaded in gray, and the second closest DKL are in green.

We can see that the Rayleigh pdf is systematically misfit
and never gets the best or the second best positions in the
conducted experiments, so that it is ruled out from now on.
The Log-normal pdf is the one which most adheres to our
ρσS distribution, with 12 (3) out of 20 results in advantage
(second choice). If the Log-normal pdf was not used, then
the second possibility should be the Weibull (6 and 7) or the
Exponential (2 and 10 as first and second, respectively) pdf.
We checked that the use of any of the second options instead
of the Log-normal pdf would represent in general a quality
decrease of the final recovery, which is not very considerable
in quantitative terms, but possible to detect visually. We also
checked that the Log-normal pdf works better on images
with high dispersion in the standard deviation of the image-
block, whereas the Weibull and Exponential ones suit better
to images with lower dispersion.

To confirm the Log-normal pdf as the most convenient
distribution to be used in our system, we further analyzed
subjectively several special cases, specifically, those in which
the Log-normal pdf was not the first option in Table 1. In this
setting, 4 groups were identified: (Group 1) Exponential pdf
as first option and Log-normal pdf as second option; (Group
2) Weibull pdf as first option and Log-normal pdf as second
option; (Group 3) Weibull pdf as first option and Exponential
pdf as second option; And (Group 4) Exponential pdf as first
option and Weibull pdf as second option. In Figure 7, we can
see the approximation of the ρσS distribution (in blue) towards
the closest pdf (in yellow) according to defined groups, and
the Log-normal pdf (in red). The Log-normal pdf was not
very far from the adjustments corresponding to each closest
case, therefore it can be considered to be still good-enough to
parametrize ρσS .
Once decided that the Log-normal pdf is used tomodel ρσS ,

we determine its parameters. Each parameter is assigned to

FIGURE 7. Special cases on fit quality of ρσS to several parametric
distributions: (a) Results for the F image (group 1); (b) Results for the
G image (group 2); (c) Results for the T image (group 3); (d) Results for
K image (group 4).

the nearest unsigned integer, so that 16 bits are needed (8 per
parameter), and we insert them in the stream E ′T as described
in Eq. (6). Recall that E ′T could be embedded into image M
in transmission to obtain imageMT to be sent. This stream is
extracted fromMT in reception, to allow the recovery process
of the secret image. It is important to emphasize at this point
that the experiments here performed have been considered
for scenarios with high signal-to-noise ratio (an expected
situation in DTT applications) with quality-control handling.
This means that the multimedia application will not present
the image until it has received all the packages related to it,
in order to perform the decoding process. Just for a compari-
son in the processing time for transmission, we also checked
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TABLE 2. DKL(ρµM ||ρµT ) and DKL(ρσM ||ρσT ) for T images with their respective M images (for the first experiment using Image A as secret one, and for
Image A as target we use Image B as secret).

FIGURE 8. Results of data reduction, number of bits required to retrieve a
S image S, and comparison between the proposed method (PM) and the
method of Li and Tsai (LT) [12].

that the time devoted by our approach is similar to that by the
Li and Tsai technique.

C. ESTIMATING THE T IMAGE PARAMETERS BASED
ON THE M IMAGE PARAMETERS
In order to further reduce the amount of bits to embed intoM ,
we took advantage of the similarity between imagesM and T
(see Section II-B) and estimated the block statistics µT and
σT at reception. Using the DKL , we determined a strong
similarity between ρσM and ρσT , and between ρµM and ρµT ,
for all images that acted as a T image, and for their respective
M images obtained in Section II-A. In Table 2 we present
as example the DKL obtained between the distributions cor-
responding to T and M for the experiment where Image A
is the secret one (for Image A as target we use Image B
as secret), which supports the strong similarity of ρσM /ρσT
and ρµM /ρµT distributions, and corroborates the good func-
tionality of the NRCT process when considering information
related to µ and σ in Eq. (2) and Eq. (3).

By putting together the experiments in Sec-
tions IV-B and IV-C, we present in Figure 8 the results of
reducing the number of bits required. Results of our approach
are in blue line (PM stands for Proposed Method) and results
of Li and Tsai method [12] are in yellow line (LT stands
for Li and Tsai method). The number of required bits is

FIGURE 9. Performance results in terms of RMSE and MSSIM. PM stands
for Proposed Method, LT stands for Li and Tsai method, and some
experiments randomly selected represented as Images-SecretTarget.
(a) RMSE between Ŝ and S images for different block sizes (8×8, 16×16,
32×32); (b) MSSIM between Ŝ and S images; (c) RMSE between M and T
images; (d) MSSIM between M and T images.

dramatically decreased (close to 3 to 1) with respect to the
results in Li and Tsaiwork [12]. Also, the smaller the u value,
the larger the required number of bits and the more functional
reduction ratio of our approach.

Several performance measurements were considered to
evaluate the differences between the Ŝ and the S images, and
also between the M and the T images. Figure 9(a-d) shows
the performance results, in terms of both RMSE andMSSIM,
by considering the average of the 190 experiments. Average
results of our approach are in blue line, besides, we also plot-
ted the average results in Li and Tsai [12] (yellow lines), and
some experiments randomly selected (represented as Images-
SecretTarget. i.e. I-GA stands for experiment with Image G
as Secret image and Image A as Target image).

In Panel (a), the RMSE values of the recovered secret
images with respect to the original ones show that our
method has an average RMSE below ' 15, which is subjec-
tively acceptable. The MSSIM values of the recovered secret
images with respect to the original ones when considering
different block image sizes are shown in Panel (b), and it
varies from ' 0.95 to ' 0.97 in average. This shows the
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FIGURE 10. Block entropy values h(µ) and h(σ ) (red and blue points),
jointly represented for RGB color components of the first image database
using u = 8. Magenta-colored line represents the region with the same
block-entropy for each color component.

FIGURE 11. Normalized histograms for the special cases in the relation
h(µ) and h(σ ) vs. Vσ and Vµ, respectively: (a) Image B histograms;
(b) Image A histograms; (c) Image O histograms.

good similarity of the details of the recovered secret image
with those of the original ones. Likewise, the RMSE values
of the mosaic images with respect to the target images are
shown in Panel (c), in which the mosaic image yielded by
the proposed method has RMSE below ' 35 with respect
to the target image. It can be seen from these panels that
the mosaic image retains more details of the target image
when u (the block size) is smaller. Hence, a mosaic image
created with smaller u value has smaller RMSE with respect
to the target image, what seems to be reasonably expected.
Panel (d) shows theMSSIM values of the mosaic images with
respect to the target images for different block sizes. Note that
MSSIM varies from ' 0.75 to ' 0.87 in average, showing
the high similarity between mosaic and target images.

D. SELECTING MORE SUITABLE T IMAGES
USING ENTROPY ANALYSIS
Figure 10 depicts a 3-dimensional representation of the
entropy values for each color component (in RGB) when
considering blocks of size 8 × 8. The entropy values from
Vµ (red points) and Vσ (blue points) are represented for

FIGURE 12. Entropy criterion analysis: Summary statistics when
comparing S and Ŝ generated with all T images, considering (a) RMSE;
(b) mean MSSIM; (c) RMSE and MSSIM using the whole set of images as
target; (d) RMSE and MSSIM using only Image S and Image M as target;
(e) Summary statistics for entropies h(µ) in Image S and Image M;
(f) Summary statistics for entropies h(σ ) in Image S and Image M;
Performance results in terms of RMSE and MSSIM. PM stands for
Proposed Method, LT stands for Li and Tsai method, and NS stands for
New Set. (g) Mean RMSE between S and Ŝ working with target images
coming from the new image set; (h) Mean RMSE between M and T
working with target images coming from the new image set.

all the images in the first dataset. We can distinguish three
different groups according to the entropy variation of the
block mean (5.5/5.5/5.5 < h(µ) < 7.8/7.8/7.7) and the
standard deviation (2.9/2.9/2.9 < h(σ ) < 5.5/5.5/5.5) per
color component. First, a group of images with low entropy
values are related to low information dispersion, whichmeans
that they tend to have slight intensity variation. Images
D (with h(µ) = 6.8/6.9/6.9 and h(σ ) = 3.9/3.9/4.0),
H (with h(µ) = 6.3/6.3/6.3 and h(σ ) = 3.4/3.4/3.4), and
K (with h(µ) = 5.5/5.5/5.5 and h(σ ) = 2.9/2.9/2.9) are
in this group. Second, images with high entropy values are
closely related to high information dispersion. In this group
we find cases with a very broad range of colors, and with
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FIGURE 13. Mosaic and recovered images with the same secret image (using u = 8). (a) Secret image; (b) Target image
One; (c) Target image Two; (d) and (f) Mosaic images, and (e) and (g) Recovered secret images from (a) and (b), and
(a) and (c), respectively.

intensities smoothly changing between low and high. Images
I (with h(µ) = 7.4/7.4/7.2 and h(σ ) = 4.8/4.8/4.7),
L (with h(µ) = 7.8/7.8/7.7 and h(σ ) = 5.3/5.3/5.3),
and Q (with h(µ) = 7.5/7.5/7.5 and h(σ ) = 4.9/4.9/4.9)
are in this group. Third, the other images are in an interval
of medium entropy values, and they are characterized by
variations in some color ranges and with varying intensities,
but not with very low or very high entropy values.

The normalized histograms of Vσ and Vµ for each color
component from some special cases (Image A,Image B, and
Image O) are presented in Figure 11, in Panels (a), (b) and (c),
respectively. The special behavior in Image B incur in a low
entropy for σ (h(σ ) = 3.1/3.1/3.1) and high entropy for
µ (h(µ) = 7.4/7.4/7.4). The special behavior in Image A
(with h(µ) = 7.6/7.6/6.9 and h(σ ) = 3.7/3.7/4.1) and
Image O (with h(µ) = 6.6/7.3/6.4 and hσ = 4.00/3.8/3.6)
takes place in Vµ dispersions of one color component, in one
case with the blue component, and in the another case with
the red component.

The summary statistics for RMSE values between Ŝ and
S images generated with all T images (first dataset) are pre-
sented in Figure 12 (a). Two notably good results can be seen,
which are related to Image S and Image M, with minimum

values for RMSE of 3.59 and 4.73, and with median RMSE
values of 7.45 and 8.43, respectively.

The median values related to MSSIM are also shown in
Panel (b). In this case, Image S and Image M also present the
two best values for MSSIM of 0.99 each one. We reinforce
this statement with Figure 12 (c), where a representation of
the relation between RMSE and MSSIM can be seen when
using the whole set of images as a target. In Panel (d), only
the Image S and Image M are considered as a target, thus
highlighting the concentration towards better quality mea-
sures with them. Aiming to define the alternative criterion 3
mentioned in Eq. (12), and based in some of our previous
analysis with the estimation errors, Figure 12 (e) and (f)
presents the summary statistics for entropies h(µ) and h(σ )
in Image S and Image M. The criterion based in entropy
values is empirically defined with: (1) h(σ ) values in the
interval (4.3, 4.8); (2) h(µ) values in the interval (7.2, 7.6).
According to this, a new set of target images was col-

lected, presented in Figure 6 of Section IV-A. Experiments
for computing the quality measurements between original
and recovered secret images were performed using this
new set of target images. An average improvement can
be seen in RMSE measurements about 18% with respect
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to experiments performed with the first image set (called
Mean PM), in Figure 12 (g) and (h) (NS stands for New Set
in Mean NS). The MSSIM quality measure is not presented
therein, as we had checked that its variation is very small and
in many cases practically negligible.

In order to show a final example of the flexibility of the
proposed method to choose the T oopt image, we selected the
secret image in Figure 13 (a) since it is the one with the lowest
performance, and the two target images in Panels (b) and (c),
which give the best and the lowest performance, respectively.
The resulting mosaic images are shown in Panels (d) and (f).
Note that the recovered secret images, in Panels (e) and (g),
look similar to the secret image, with some perceptible noise
addition that increases in the second case.

E. SUBJECTIVE EVALUATION OF Ŝ in a Real Scenario
The visual quality of the images used in this work was
evaluated over a DTT real scenario by an experiment with
a Mean Opinion Score (MOS) analysis. The experiment took
place in a laboratory setting, where a Transport Stream (TS)
was transmitted by using a VHF/UHF modulator. The TS
is a protocol for the transmission of audio, video, and data,
as specified in the MPEG-2 standard, which helps in the
multiplexing of audio, video and interactive applications by
combining all data in a single stream of synchronized bits for
its corresponding transmission. This signal was received by
different types of receiver equipment (LCD, LED, and CRT)
for the above-mentioned evaluation. Figure 14 shows the used
scenario.

FIGURE 14. Scenario of transmission of a TS with interactive application.

The purpose of the interactive application developed for
this analysis is to evaluate the quality of the received images
when displayed in different sizes on the reception screens,
i.e., when occupying 20% of the screen, 40% of the screen,
and others. Figure 15 shows the interface of the application,
where it can be selected the display options to evaluate
the images, and the presentations of the images in differ-
ent sizes, using the image carousel configuration for the
interactive-application presentation. Images used to evaluate
were included as M and Ŝ images obtained in the previous
subsections.

FIGURE 15. Interactive application interface. (a) Selection menu for Ŝ
image display size; (b) Display presentation occupying 20% of the screen;
(c) Display presentation occupying 40% of the screen; (d) Display
presentation occupying a ratio of 3.5:2 of the screen; (e) Display
presentation occupying a ratio of 4.5:3 of the screen.

FIGURE 16. Subjective Evaluation of Ŝ in a Real Scenario using MOS
method.

In Figure 16 we present the results obtained with the MOS
analysis in the experiment. A total of 30 people participated,
which were divided into groups of 10, so that each group
could evaluate the pre-processed images in each of the dif-
ferent above-mentioned receivers. As expected, there is a
relationship between the Ŝ quality and the block size. The
screen used in reception that presents the best results is the
LED technology. The image decoding at reception depends
on the type of viewer, as the same interactive application with
a single transmission can present different information.

V. DISCUSSION AND CONCLUSIONS
In this work, an algorithm to reduce the amount of bits
required to retrieve a secret image embedded in a mosaic
image, and to select the best target image, has been ana-
lyzed. On the one hand, we studied the empirical estimation
and parametrization of the statistical distributions related
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to image-block means and image-block standard deviations.
On the other hand, we scrutinized the properties of the
entropy of image-block means and of image-block standard
deviations. The large amount of bits required to retrieve a
secret image used in other applications is not practical for
applications with limited resources, in [12] we can see a num-
ber of bits around 1600000 working with u = 8, which influ-
ences on the details similarity between the mosaic and target
images. In the present work, we have developed this proposal
in order to make efficient use of the resource available for
interactive applications in the ISDB-Tb digital television sys-
tem, since the bandwidth allocated for the transmission of
multimedia information related to these applications is very
restricted. We did not embed the required bits in the mosaic
image because they can be transmitted externally at the same
time. The method would be feasible and readily adaptable for
gray scale images, though this direction was not scrutinized
here.

The use of the Log-normal probability distribution to
model the image-block standard deviations of the secret
image, together with the estimation of the statistics of the
blocks of the target image, allowed us to dramatically reduce
(close to 3 to 1) the number of required bits while two images
are transmitted in mosaic image format. Furthermore, a target
image selection scheme has been developed to identify the
most convenient one among a set of available target images.
This has been carried out by analyzing the entropy of their
image-block means and standard deviations in relation to
RMSE and MSSIM, and looking for the specific character-
istics of the images that help us in selecting the appropriate
target image. This criterion has been defined for T image
statistics entropy values, completely independent of the S
image statistics, by the following steps: (1) h(σ ) ∈ (4.3, 4.8);
(2) h(µ) ∈ (7.2, 7.6). The RMSE between the recovered and
original secret images was improved in average by 18% with
respect to the comparison of the results working with the first
images set vs. the second set.

The MSSIM measure represent a kind of subjective simi-
larity of the details, nevertheless, in digital television appli-
cations depending on the screen region assigned to image
presentation we can expand the allowed error range. Future
studies will be directed to apply further statistical simplifi-
cations to the position indices iσS and iσT and image-block
means, among other low-complexity options. Other distribu-
tions could be scrutinized, though they could be bringing little
significant advantage to the ones analyzed here. We currently
continue to study the implications and significance of the sub-
jective evaluation on the image visual quality in a laboratory
broadcast scenario and in terms of Mean Opinion Score. Also
within a DTT-research framework, we are currently using the
NRCT and steganography techniques to embed images and
data in a video stream. It would be very informative a larger-
scale study on the impact of the method on the system global
quality. Robustness to noise-caused critical errors in real-time
applications should be checked with a different experimental
design.

The proposed method allows us to reduce the number of
bits required to recover secret image in reception, hence to
improve the hiding capacity of mosaic images. It preserves
the quality of recovered secret images, and it gives the pos-
sibility to determine the best target images available in DTT
and in other multimedia application of interest.
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