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ABSTRACT Band selection is a direct and effective method to reduce the spectral dimension, which is one
of popular topics in hyperspectral remote sensing. Recently, a number of methods were proposed to deal
with the band selection problem. Motivated by the previous sparse representation methods, we present a
novel framework for band selection based on multi-dictionary sparse representation (MDSR). By obtaining
the sparse solutions for each band vector and the corresponding dictionary, the contribution of each band
to the raw image is derived. In terms of contribution, the appropriate band subset is selected. Although
the number of dictionaries is increasing, the efficiency of the algorithm is much higher than the previous
due to the reduction of the dictionary self-learning process. Five state-of-the-art band selection methods
are compared with the MDSR on three widely used hyperspectral datasets (Salinas-A, Pavia-U, and Indian
Pines). Experimental results show that the MDSR achieves marginally better performance in hyperspectral
image classification and better performance in average correlation coefficient and computational time.

INDEX TERMS Hyperspectral image, band selection, sparse representation.

I. INTRODUCTION

Hyperspectral data has both spectrum and spatial information
of observed material, and the number of spectral bands usu-
ally reaches hundreds or even thousands [1]. This powerful
advantage enhances and expands the potential application of
hyperspectral imaging (HSI), including environment mon-
itoring, precision agriculture, geological mapping, mineral
exploration and so on. However, there is some redundant
information in hyperspectral image cubes due to the spec-
tral reflectance of most materials’ changes only gradually
over certain spectral regions and many contiguous bands
are highly correlated [2]. In addition, some new challenging
problems exist in the imagery processing owing to high spec-
tral dimensionality, such as problem of storage and transmis-
sion, increment of computation, Hughes phenomenon (curse
of dimensionality) [3]-[9]. Furthermore, for a given problem,
not all spectral bands are useful and necessary in a hyper-
spectral image. Alternatively, a given spectral band may be a
useful feature in a problem, but not for others [10]. Therefore,
dimensionality reduction is a necessary method for efficient
HIS applications to dispose of the above issues.
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In general, there are two dimensionality reduction meth-
ods: feature extraction and band selection. The former usually
generates a low-dimensional spectral data by using a trans-
formation matrix based on a certain criteria. For instance,
the transformation criterion can be principal component anal-
ysis (PCA) [11], linear discriminant analysis (LDA) [12],
non-parametric weighted feature extraction (NWFE) [13],
and so on. However, aforementioned methods are classical
unsupervised or supervised feature extraction methods, and
they inevitably change the physical meaning of the original
bands. The latter is to identify the best subset of bands from
all the original bands based on an adaptive selection crite-
rion [10]. In this paper we focus on the band selection meth-
ods because they can preserve the spectral physical character-
istics which are extremely significant in some applications.

According to whether the priori information is used,
the band selection algorithm can also be divided into two cat-
egories: supervised and unsupervised. Supervised band selec-
tion methods require some prior knowledge about pixels’
labels or objects’ information [14]. For example, [15] derived
minimum misclassification canonical analysis (MMCA);
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Jeffries-Matusita distance and its extensions [16], contract
divergence [17], class space separability [18], maximum
likelihood classification accuracy [19], were adopted as the
selection criteria; Du and Younan [20] proposed particle
swarm optimization (PSO) based supervised band selection
algorithm; Yang er al. [21] adopt sequential forward selec-
tion (SFS) search strategy method to select bands based on
class spectral signatures only without performing classifi-
cation; Cao et al. [22] integrated the local spatial informa-
tion of the hyperspectral image into band selection method.
Although the selected bands obtained by the supervised tech-
niques are more effective than those obtained by unsupervised
techniques in some specific applications, the necessary prior
knowledge may be not easy to obtained in many cases. In
this study, we focus on unsupervised band selection tech-
niques because they are more practical than supervised ones
regardless of any prior knowledge on pixels or objects to
be analyzed. Concerning the unsupervised band selection
technologies, many researchers have made a lot of efforts,
and put forward some useful algorithms. Reference [14] com-
pared a series of early unsupervised band selection meth-
ods, including information entropy, first and second spectral
derivative, ratio, correlation and principal component analy-
sis ranking based algorithms. Some literatures applied end-
member extraction algorithms to band selection [23], [24].
In [23], the concept of NDINDR was applied to band selec-
tion and obtained promising results. Reference [24] proposed
the application of similarity based endmember extraction
algorithms: linear prediction (LP) and orthogonal subspace
projection (OSP) for band selection, and improve their per-
formance. Furthermore, [25] integrated graphics processing
unites (GPU) parallel implementations with [23] and [24]
to alleviate the computational burden. Sui et al. [26], [27]
proposed an unsupervised band selection method which inte-
grates the overall accuracy and redundancy into the band
selection process, and it designed a balance parameter to
trade off the overall accuracy and redundancy through an
optimization model.

Recently, the idea of sparse representation (SR) was
introduced into band selection [28]-[32]. There are mainly
two groups, some algorithms represent the original image
by multiplication of the dictionary and sparse coefficient
matrix which is derived by K-SVD or orthogonal matching
pursuit (OMP) [28], [31]; And other SR based meth-
ods pre-clustered basis bands with similar spectral proper-
ties [30], or pre-select bands using linear prediction (LP)
algorithm and further refine them [29]. However, there are
some issues existed in these BS methods. One is that the
preprocessing will consume time, since it needs to pre-
select or cluster the original bands. Another is that all dic-
tionaries should be overcomplete dictionaries. But in the
actual image, due to the length of the band vector is far
greater than the number of bands, it is necessary to ensure
that this is a part of the loss of image space information
Inspired from some previous work [28]-[34], in this paper
we propose a novel unsupervised band selection algorithm
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for hyperspectral image processing that utilizes the sparsity of
the input sample vector. Our proposed algorithm is based on
an effective sparse representation model in which the spatial
image of a band is approximately represented by linear com-
binations of a few spatial image group (called atoms) from the
entire hyperspectral image. The sparse vector, representing
the atoms and associated weights for the input sample, can
be obtained by solving an optimization problem constrained
by the sparsity level and reconstruction accuracy. The specific
bands can be determined by the value of associated weights
which are not zeros under multiple given overcomplete dic-
tionaries. We sort bands in descending order by the value
of non-zero weights, and the first several bands are selected
as the final reduced representation. In order to evaluate the
performance of the proposed method, extensive comparisons
against several unsupervised band selection methods are pre-
sented. These compared methods are well chosen to cover
recent tendencies in this field. Experimental results on three
widely used hyperspectral image classification datasets show
that our proposed algorithm achieves superior performance
and significantly outperforms other state-of-the-art unsuper-
vised band selection methods.

In summary, our work has three main contributions:

(1) A novel multi-dictionary sparse representation method
is proposed for hyperspectral band selection. The proposed
method formulates the band selection as the sparse solutions
for each band vector and the corresponding dictionary.

(2) We propose an effective method that can solve the
sparse coefficients of multiple dictionaries and improve the
computational efficiency.

(3) Extensive experiments on three benchmarks have vali-
dated the feasibility of our proposed methods, and show that
our approach performs favorably against other state-of-the-
art methods.

The rest of this paper is organized as follows. In Section II,
we introduce the proposed unsupervised band selection
method. Then we present the experimental results on some
well known hyperspectral images in Section III. Finally,
we make conclusions in Section I'V.

Il. SPARSE REPRESENTATION BASED BAND SELECTION

In recent years, sparse representation comes to be one of the
hotspots in digital signal processing. In brief, sparse repre-
sentation is the decomposition process of the original signal,
and in this decomposition process the input signal will be
represented as a linear approximation of the dictionary [35].
In the field of image processing, sparse representation has
been successfully applied in image denoising [36], image
restoration [37], [38], image recognition [39], [40] and so on.
In the same way, the sparse representation method has also
achieved great success in hyperspectral image processing,
such as classification and target detection. In this section,
we first introduce sparse representation based image process-
ing algorithm that represents the sample through a sparse
linear combination of samples from a dictionary. We then
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FIGURE 1. The schematic pipeline of the proposed band selection method. First, each band of the three-dimension hyperspectral data Y is
stretched into a high-dimension vector. Then, the dimension of the vector is reduced by random sampling, so that the dimension of the vector is
far less than the number of bands. Next, multi-dictionary learning is applied to the band vectors, and each band is approximately represented by
the linear combination of other bands. Finally, the weight of each band is calculated by the sparse coefficient. The first several bands with large

weights are selected as the final representation.

present the proposed multi-dictionary sparse representation
method to solve the band selection problem.

A. SPARSE REPRESENTATION

The sparsity of signals has become a particularly powerful
prior in many signal processing tasks, especially in the area
of computer vision and pattern recognition [41]. Recently,
sparse representation methods have been extended to the
field of hyperspectral image processing, such as hyperspec-
tral image classification [42]-[45] and hyperspectral object
detection [46]. In methods of hyperspectral image classi-
fication, pixels are the performed objects which can be
represented by a dictionary or basis with specific sparse con-
straints. A few coefficients derived from the representation
can carry important information of the pixels, and can be
treated as the feature of pixels. At last, a pixel can be signed a
label by searching the minimum reconstruction error through
the coefficients and dictionary elements. Formally, for the
hyperspectral images classification problem, the sparse rep-
resentation model can be casted as the following equation,

x~Ala! + A% + .+ AMaM
1

o
=[Al ... AM] - = Ac, (H
D e ———
A U

[04
where x is a pixel in a hyperspectral image, and A is the
dictionary including M sub-dictionaries. « is the coefficient
vector of this linear combination. With the selected sub-
dictionaries as inputs, naive classifiers, like random for-
est [47], SVM [48], Bayesian network [49], can be used for
further classification.

B. SPARSE REPRESENTATION MODEL FOR BAND
SELECTION

The main purpose of band selection is to find an opti-
mal or suboptimal band subset instead of the original
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hyperspectral image, which can be used in sequential appli-
cations. In another word, the subset of bands is the set that
can approximately represent the original bands under some
measures or the subset of bands is the collection of bands
which mainly contribute to the whole hyperspectral image.
Hence, we should find out the contribution of each band to
the whole image, and then choose the band according to its
contribution. Sparse representation is an effective method to
rank the contribution. When a band image is approximated
by a linear combination of a dictionary, which consists of
other band images, the sparse coefficients or weights will
represent the contribution of each dictionary atom to the
target band image. If the weight is large, the band will make
great contribution to the target band, while if the weight is
small, the band will make little contribution to the target
band. We calculate sparse representation for each band by
corresponding dictionaries and get a series of weights. The
contribution of each band to the whole image can be obtained
by statistical weights. As a result, the bands with larger
weights are the selected bands.

When we describe the band selection problem of hyper-
spectral images, the spatial image of each band becomes the
performed object. Figure 1 illustrates the schematic pipeline
of the proposed band selection method. Let ¥ € R *#*5 be
the original hyperspectral image. The spatial image of every
band is stretched into a real-value vector instead of a two-
dimensional matrix, thus we get

Y =y, y8l @)

wherey; € RE(i=1,2,...,B)is the image vector of the i-th
band, B is the number of spectral bands, L = W x H is the
number of pixels in the image, and W and H are the width and
height of the band image, respectively. The purpose of band
selection is to select a best subset from the original band set.
The resulting number of bands in that subset is less than B. If
there is a best subset which can be found from original band
set, the subset can approximately represent the original band
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set. We can use the following equation to present the relation,

yi~Dja;, D;CY, 3)

where D; is the band subset which is exclusive of y; and «; is
the linear combination coefficient for the i-th image vector
on the subset D;. It should be noted that there is a trivial
solution for the above equation. In the whole band set Y,
there is a column vector, e.g., y;, therefore, one can use the
whole band set Y as the basis, leading to the coefficient «; is
one, and others are zeros. As a result, the coefficient vector
a will be an identity vector which lead to same weights for
all band vectors. In order to avoid the case, we assign each
band vector to a band subset D; (also called sub-dictionary).
We will use the new sub-dictionaries D; hereafter. In addition,
if we describe all bands by the defined band subset, the above
equation can be represented as

Y ~ Da, 4

where D is the set {D;}(i = 1,2...,B) and « is the set of
coefficient weight «;.

According to the previous expressions, we can convert
every represented band vector as

yi =Dia; + B;, (5)

where B, is the approximation error vector. By evaluating the
value of «;, we can determine the contribution of each band
in D; to the target image vector y;. With sparse constraints on
o, which means that if y; is independent with the j-th column
of D, the value of j-th element in & is zero, we can select the
most important bands based on the approximation error. If we
calculate the sparse representation of all bands in Y, a sparse
coefficient matrix will be obtained. Each band vector’s weight
is the sum of the corresponding row in the coefficient matrix.
The best «; value can be found by the following optimization
problem. We will elaborate it in detail.

C. MULTI-DICTIONARY LEARNING

To find the optimal linear combination coefficients, we pro-
pose a novel multi-dictionary learning method. Formally,
the sparse coefficient «; can be derived by solving the con-
strained optimization problem,

& = arg min |le||o

s.ty; = Djo; + B; (6)
where || *]|g is the Ly norm, which is the total number of non-
zero elements in a vector. Because the approximation error
is usually restricted to a controllable interval in empirical
data, the constraint in previous equation can be relaxed to the

inequality form,

& = arg min ||e||o

st |Dii —yill2 <o (N
where o is the error tolerance. Thus, the above opti-

mization problem can be further interpreted as min-
imizing the approximation error at a certain sparse
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level,

@; = arg min ||D;e; — y;l2
s.t Jleeflo < Ko ®)

where || || is the Ly norm and Ky is an upper bound of given
sparsity degrees. Though this minimization problem is still
regarded as a NP-hard problem by computer scientists, and
almost impossible to solve, «; can be approximately derived
by greedy pursuit algorithms, such as orthogonal matching
pursuit (OMP) [50], [51] or subspace pursuit (SP) [52]. In
this paper, we use the OMP algorithm to solve the above
optimization problem. The OMP algorithm is a refinement
of the matching pursuit (MP) [53], and its basic idea is
described as follows. A sparse approximation is constructed
by selecting an atom matching the signal y; from a dictionary
matrix D;. The residual error of signals can be derived, then
the atom matching the residual error best is selected contigu-
ously. The iteration is carried on until the residual error is
negligible or the pre-defined iteration number is achieved. In
contrast to the MP algorithm, the OMP algorithm request that
all atoms selected at each step of the decomposition should
be orthogonal. The convergence speed of the OMP algorithm
is faster than the original matching pursuit when the same
accuracy is required.

For our band selection method, after each band image
is represented by the corresponding dictionaries, we get a
coefficient matrix X € RE*B. In X, most of entries would
be equal to zero, since the sparsity constraint Ky is added to
the equation (8). The greater the absolute value of coefficients
is, the more important the corresponding basis of dictionary
is in forming the original hyperspectral image. For each row
of the coefficient matrix X, we count the number of entries
which are not zero. Then we get a histogram of the corre-
sponding indices which are the band number. If / denotes the
histogram, it is computed by

B
h=) g@)/B ©)
i=1

where g(x) = 1 if x # 0, g(x) = 0if x = 0. The bands
with the first B greater values of histogram series should
be selected as the target bands. The following Algorithm 1
gives the overall computing workflow for our band selection
method.

Ill. EXPERIMENTS

In this section, we perform extensive experiments to verify
the effectiveness of the proposed band selection algorithm.
First, we introduce the evaluation metrics and several other
methods that achieve state-of-art performance in hyperspec-
tral image classification. Then, we present three widely used
hyperspectral image datasets for our comparison. Finally,
experimental results and detailed discussions are provided to
demonstrate the effectiveness and advantages of the proposed
band selection approach.
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Algorithm 1 Multi-Dictionary Sparse Representation
Method
Require:
Hyperspectral image Y € , number of pixels N
(N < B), sparsity level K, target band dimension B.
Ensure:
Reduced-band hyperspectral image Y €R
1: ConvertY intoY = [y,,y,,....ygl.y; € RVH,
2: Randomly select N pixels in ¥ to form a new sample set
Y =[51.52 .95l 3; € RV;
3: Construct a group of overcompleted dictionaries, i.e.,
Di=191,92, 31,0, Y41, - - -, ¥l
4: Apply OMP algorithm to Equ.(8) and find the coefficient
matrix X € RBXN;
: Count nonzero entries in every row of X by Equ.(9);
: Sort the number of nonzero entries in descending order.
. Select the bands with the first B indices.
. Build Y with selected bands.

RW><H><B

W xHxXB.
b

0 N N W

A. EVALUATION METRICS AND COMPARED METHODS

In this paper, the proposed band selection method is
mainly used for hyperspectral image classification. There-
fore, the overall classification accuracy (OCA) is the main
evaluation metric used in the experimental analysis. In addi-
tion, to compare the performance of each method in eliminat-
ing the data redundancy, the correlation coefficient of selected
bands and the time of computation are also calculated and
compared.

In order to fairly evaluate the performance of the proposed
method and other state-of-the-art techniques, unsupervised
comparison settings without using labeled information have
been made [24], [25]. More specifically, we compare several
classical band selection methods, i.e., linear prediction (LP)
based band selection [24], [25], orthogonal subspace pro-
jection (OSP) based band selection [24], cluster based band
selection [54], and sparse representation based band selection
(SpaBS) [28]. In addition, the comparison also includes the
traditional dimensionality reduction methods, such as PCA
based feature extraction.

1) LP-BASED BAND SELECTION [24]

This kind of band selection methods are based on the cri-
terion of band dissimilarity. Two bands are first selected
randomly or based on the dissimilarity among the original
band set. Using the selected bands, the methods estimate the
next candidate band by performing linear prediction and least
squares solution. The band that yields the maximum error is
considered as the most dissimilar band to the selected band
set, and can be selected for the next iteration.

2) OSP-BASED BAND SELECTION [24]

This kind of methods first compute the orthogonal subspace
of selected bands. Then it compute all other bands’ projec-
tion in this subspace. The band that yields the maximum

71636

(b)
Lettuce_romaine_4wk - Lettuce_romaine_6wk

- Brocoli_green_weeds_1

Corn_senesced_green_weeds - Lettuce_romaine_5wk

Lettuce_romaine_Twk

FIGURE 2. Sample image in the Salinas-A Scene dataset. (a) Grayscale
image. (b) Corresponding pseudo color ground truth.

orthogonal component is the most dissimilar band to the
selected bands, and can be selected as a new target band.

3) CLUSTER-BASED BAND SELECTION [54]

In this kind of methods, every band image is considered a
performed object. First, all bands are clustered using a hier-
archical clustering algorithm. Then, the methods select the
most representative band in every cluster based on divergence
measures. These representative bands can be considered as
the selected bands.

4) SpaBS [28]

In this method, a sparse representation of the hyperspectral
image data is pursued through an existing algorithm, K-SVD,
that decomposes the image data into the multiplication of an
overcomplete dictionary (or signature matrix) and the coeffi-
cient matrix. By calculating the histogram of the coefficient
matrix, the top K bands is selected.

B. HYPERSPECTRAL DATASETS

Three real-world hyperspectral image datasets [55] are
used for experimental verifications. All of images in these
three datasets are earth observation images taken from air-
bornes or satellites over some public available hyperspectral
scenes.

1) SALINAS-A SCENE DATASET

The Salinas-A Scene dataset is a subset of the Salinas Scene
dataset, gathered by AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer) sensor in 1998, over Salinas Valley
in California. It is characterized by a high spatial resolution
(3.7-meter pixels). The covered area comprises 512 lines by
217 samples. It includes vegetables, bare soils, and vineyard
fields. In Salinas-A, there are 86 x 83 pixels with 224 bands
including 20 bands of water abortion. Following previous
works [56], we discarded the 20 water absorption bands. The
groundtruth of this dataset contains 6 classes. Figure 2 shows
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FIGURE 3. Sample image in the Pavia University Scene dataset. (a) True
color image. (b) Corresponding pseudo color ground truth.

the Salinas-A grayscale image and its corresponding pseudo
color ground truth.

2) PAVIA UNIVERSITY SCENE DATASET

The Pavia University Scene dataset was acquired by the
ROSIS (Reflective Optics System Imaging Spectrometer)
sensor over the Engineering School, Pavia University, north-
ern Italy. The number of spectral bands is 103, and the number
of pixels is 610x340. The geometric resolution of this scene
is 1.3 meters. Pavia University Scene dataset employed in
this paper is the one with groundtruth land cover map, which
includes 9 classes. Figure 3 shows the image of this dataset
and its corresponding pseudo color ground truth.

3) INDIAN PINES SCENE DATASET

This dataset was also gathered by AVIRIS sensor in 1992,
over the Indian Pines test site in north-western Indiana. It con-
sists of 145x 145 pixels and 224 spectral reflectance bands
in the wavelength range of 0.4 - 2.5 um. The Indian Pines
Scene dataset contains two-thirds agriculture, and one-third
forest or other natural perennial vegetation. There are two
major dual lane highways, a rail line, as well as some low
density housing, other built structures, and smaller roads.
This scene is a subset of a larger scene. The ground truth
available is designated into 16 classes and is not all mutually
exclusive. In the experiments, 12 classes are selected. Follow-
ing previous works [42], [57], we also reduce the number of
bands to 200 by removing bands covering the region of water
absorption. Figure 4 shows this scene’s grayscale image and
its ground truth.
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FIGURE 4. Sample image in the Indian Pines Scene dataset. (a) Grayscale
image. (b) Corresponding pseudo color ground truth.

C. CLASSIFIER DESCRIPTION

In order to evaluate the classification performance of each
band selection method, we resort to the multi-class classifiers
with the labeled images and selected bands. Following previ-
ous works [15], [58], both K-nearest neighborhood (KNN)
and support vector machine (SVM) are used to compare
the classification performance of the selected image bands
obtained by various band selected methods. We use the KNN
and SVM methods proposed in [48] and [59]. The classifica-
tion process of hyperspectral images are introduced briefly as
follows.

1) K-NEAREST NEIGHBORHOOD (KNN) [59]

For a testing sample (a pixel in this paper), the K nearest
neighbor classification algorithm is to find K training sam-
ples which are closest to the testing sample. The category
of the testing sample is determined by a majority-voting
scheme, using the categories of the K training samples. When
sufficient training samples are available, the KNN algo-
rithm can achieve higher performance than vanilla supervised
classifiers.

2) SUPPORT VECTOR MACHINE (SVM) [48], [57]

SVM is a popular supervised learning model that can analyze
data, identify patterns, and be used for classification and
regression analysis. In our experiment, a set of one-vs-all
SVMs based on the polynomial and RBF kernels have been
tested. One of the advantages of SVMs is that it is not limited
by the number of samples and the dimensionality of samples.
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dataset. (b) Pavia university scene dataset. (c) Indian pines scene dataset.

D. SAMPLE NUMBER ANALYSIS

In the proposed band selection method, several dictionaries
should be created during the optimization process, meanwhile
these dictionaries must be overcompleted. Since the number
of pixels in hyperspectral images is often greater than the
number of bands, if all the pixels are involved in the opti-
mization, the dictionaries are not overcompleted definitely. In
order to ensure the completeness of the dictionaries, we select
a part of the pixels in the entire image as processing objects,
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omitting the rest before the optimization. The 2-6 steps of
Algorithm 1 show the optimization process. Therefore, what
we concern in this subsection is the effect of the sample
number on the band selection results, reflected on the OCA
metric.

To analyze the effect, we perform ablation studies on
three datasets. Specifically, we randomly pick out 20 samples
from each class to form the training set. Using our proposed
method, we select 10, 20, 30, 40 and 50 bands from all
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TABLE 1. Overall classification accuracy (OCA) with the specific number
of pixels on three datasets.

Number of pixels 15 25 35 45

Salinas-A(%) 97.1 96.47 |97.16 [97.25
Pavia-U(%) 92.15 [92.04 [92.20 |92.08
Indian-P(%) 70.03 [70.96 |70.46 |70.98
Number of pixels 55 65 75 85

Salinas-A(%) 97.46 |97.27 |97.17 [97.13
Pavia-U(%) 92.23 192.56 |92.07 |93.28
Indian-P(%) 71.02 |70.32 |70.545]|70.27

bands for the experiments. Thus, each dataset has five band
selection results. To investigate the effect of different num-
bers of samples on the classification accuracy, we change
the sample number from 5 to 100. Figure 5 illustrates the
classification results of the KNN classifiers (For Sailias-A,
K = 6; For Pavia-U, K = 9; For Indian-P, K = 12.)
using the OCA metric. From Figure 5, it can be seen that
the classification accuracy almost remains unchanged with
the increase of sample number, and only minor fluctuations
(the value is not greater than 2%) appear at several specific
locations. On the Salinas-A dataset, the changes in the num-
ber of pixels have little effect on the classification results. On
the other two datasets, the overall trend of the result curve
is still horizontal. In addition, on the Salina-A and Pavia-U
datasets, the classification accuracy of the band selection is
very close to the classification accuracy of the whole bands
during changing the number of sampling points. The variance
of classification accuracy on the Indian-P dataset is larger
than the other two datasets. The main reason may be that there
are more classes, and samples are more irregularly distributed
in the Indian-Pines dataset.

Table 1 provides more accurate classification results with
specific sampling settings when 10 bands are selected. From
the results in Figure 5 and Table 1, we can draw the con-
clusion that the number of sampling points has little effect
on the results of band selection. Thus, a small number of
sampling points can be selected for reducing the computation.
In the following experiments, we empirically set the number
of pixels to be 50 (N = 50) for classification evaluation,
without further parameter tuning.

E. SELECTED BAND ANALYSIS

In Algorithm 1, the coefficient matrix X is the key support of
band selection. To figure out which kind of bands our method
has selected, we draw bar diagrams which illustrate the ratio
of the count of non-zero entries to the count of all entries in
one column of coefficient matrix X. The calculation method
is given in Algorithm 1 and Equation (9). This ratio represents
the contribution of one band in the hyperspectral image to
the whole image, or the proportion of bands associated with
this band in the image. More specifically, in the coefficient
matrix X , the higher ratio of non-zero entries in the i-th
column means the larger contribution of the i-th band to the
whole image. Figure 6 illustrates the bar diagrams in which
50 sampling pixels are selected randomly and the sparsity
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TABLE 2. The TOP 5 Selected bands and their weights.

Salinas-A Bar}d Index | 32 45 3 153 39
Weight 0.985 | 0.980 | 0.525 | 0.485 | 0.446

Pavia-U Bar}d Index | 91 59 3 1 87
Weight 0.670 | 0.456 | 0.408 | 0.359 | 0.330

Indian-P Bar}d Index | 42 29 35 6 1
Weight 0.995 | 0.905 | 0.695 | 0.670 | 0.590

level Ky is 6 in solving the sparse optimization problem. In
Figure 6, we can see that the contribution of each band to the
original hyperspectral image is very different. In the Salinas-
A dataset, the weights of two specific bands are close to
one, and weights of most bands are below 0.5. In the Pavia-
U dataset, the weight of only one band is close to 0.7, and
weights of almost all bands are below 0.45. In the Indian-P
dataset, most weights of the bands are zeros. Table 2 lists the
top 5 weights of all bands in the three datasets. The weight
distribution is not uniform over the bands. These experimen-
tal results further indicate that there are many redundancies
in the hyperspectral bands and only a few bands are useful.
Therefore, it is reasonable to select appropriate bands for
specific applications.

F. SPARSE LEVEL ANALYSIS

In solving the coefficient matrix X, the sparsity level Ky
should be set appropriately. To investigate its impact, we eval-
uate a set of choices of Ky on the three datasets, where we use
the KNN classifier and K is set to be 6,9, 12, respectively.
Figure 7 shows the classification accuracy curves when the
sparsity level K changes from 1 to 50 on the three datasets.
There are several fundamental observations in Figure 7:
1) for the Salinas-A dataset, when Kj is less than 3, the clas-
sification accuracy is relatively low. When K is greater
than 3, the classification performance first increases, then
drops down slightly. The classification performance of the
model with 10 bands fluctuates more drastically than other
models. This indicates that the model with very few bands
is sensitive to the sparse level Kyg. The same trend can be
observed in other two datasets. 2) for the Pavia-U dataset,
the classification performance with different sparse levels and
selected bands remains almost unchanged (no more than 2%
fluctuation), even they vary locally. This result shows that our
method is very robust in this dataset under different sparse
levels. 3) for the Indian-P dataset, the models with more bands
are better in the classification performance. The models are
more fluctuated on this dataset under different Ky. Based on
above facts, we set Ky = 6 in the following experiments.

G. COMPARISON WITH OTHER METHODS

In order to fairly evaluate the performance of different band
selection algorithms, KNN and SVM classifiers are adopted
to classify the hyperspectral image after the band selection.
The value of K in KNN is set to 6, 9 and 12 for the Salinas-A,
Pavia-U and Indian-P datasets, respectively. The parame-
ters of the SVM classifier is obtained by the K-fold cross
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FIGURE 10. The Kappa coefficients of different band selection methods using the KNN classifier on the three datasets. (a) Salinas-A scene
dataset. (b) Pavia university scene dataset. (c) Indian pines scene dataset.

validation. The compared methods have been described in
section III. A.

1) OVERALL CLASSIFICATION PERFORMANCE

For the classification performance evaluation, 20 samples are
selected randomly in each classes. For our method, we set
Ko = 6.In order to reduce the randomness, we perform all the
compared methods with 10 trials and use the averaged results.
We report the results with different selected band number n,
ranging from 1 to 50. The Figure 8 and Figure 9 show the
classification performance of the proposed method and com-
pared algorithms on the three datasets. From the comparison
results, we can see that our proposed method consistently
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outperforms other methods by a large margin, especially
on the Salinas-A and Pavia-U datasets. More specifically,
the OSP method achieves the lowest recognition rate. The LP,
SpaBS and cluster based methods have similar classification
results, which are inferior to our method. Even though the
PCA method is superior to other methods, it is not better than
our proposed method.

2) KAPPA COEFFICIENT

To further verify the advantages of our proposed method,
we also calculate the Kappa coefficient, which measures the
agreement between two raters who each classify N items into
C mutually exclusive categories. The results with the KNN
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and SVM classifiers are shown in Figure 10 and Figure 11,
respectively. From the results, we can see that our method
also achieve better performance with the Kappa coefficient
measure. In summary, the proposed method is better than
most of compared methods in terms of both classification
accuracy and Kappa coefficient. Our method is inferior to
the PCA method in several cases on the Indian-P dataset,
however, the performance is still very comparative.

3) BAND CORRELATION ANALYSIS

To measure the separation of selected bands, we calculate the
correlation coefficient of bands selected by different methods.
Generally, the lower the correlation among spectral bands is,
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the better the subset of selected bands is. Figure 12 illustrates
the average correlation coefficient with the compared meth-
ods other than PCA. On the three data subsets, our method
ranks first or second in this metric, which is in agreement
with previous results shown in Figures 8-11. While, SpaBs’s
performance is a little bad. This further confirms that our
method is able to select the most informative and separative
bands for the real-world applications.

4) COMPUTATIONAL TIME

In order to assess the efficiency of the proposed method,
the computational time of each method is also provided. For
fair comparison, all compared methods are implemented in
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MATLAB2015, and are tested on an Intel Core i5-2400 CPU
with 12-GB random access memory. Figure 13 illustrates
the runtime of different band selection methods with varied
numbers of bands. From the results, we can see that the cluster
based method takes the least time. Although our method is not
the fastest, it is faster than most of the compared methods.
In addition, our method is not significantly affected by the
number of bands. While the runtime of LP and OSP methods
increases quickly as the number of bands ascends. Because of
the large number of iterations in the SpaBS method, the time
efficiency is also poor. Therefore, our method has a great
advantage in time efficiency.

IV. CONCLUSION

In this work, we propose a novel band selection method
based on the multi-dictionary sparse representation. The pro-
posed method is fully unsupervised and consists of three
main components: 1) creating multi-dictionaries; 2) optimiz-
ing sparse coefficients; 3) computing and sorting weights
of desire bands. Our proposed method not only reduces the
dimension of spectral bands, but also preserves the original
information of bands. Extensive experimental results show
that the proposed method is very effective and outperforms
other competitors. Of course, the method can be improved.
For example, because of the large number of dictionaries,
the amount of calculation increases. In the future, how to
design an effective framework to reduce the number of dic-
tionaries and the amount of calculation is the next work.
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