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ABSTRACT This paper introduces a planning model that can be used by an investor who would like to
provide ancillary services (AS) to electricity markets. The proposed model helps the investor evaluate two
potential options: aggregating distributed batteries in electric vehicles (EVs) or using a dedicated energy
storage system (ESS). For EV aggregations in AS markets, the targeted EV fleet size, which is a function of
energy tariff charged by the EV aggregator, is a key planning consideration. In the case of ESS, the physical
size is the main planning consideration. Using the proposed model, the two options for maximizing the
investor’s long-term payoffs are analyzed and compared by assuming the same initial investment cost for
both options. Accordingly, the investor’s daily bidding strategy in AS markets is optimized for each case.
The net present worth is used as the basis for comparing the two investment options, and sensitivity analyses
are carried out to study the impact of planning and operation variables on the feasibility of the two options.
Simulation results consider both options and discuss the results for providing AS to electricity markets.

INDEX TERMS Power system planning, EV aggregators, energy storage systems, V2G, electricity market

NOMENCLATURE
A. INDICES

it, d,w, y Indices for EV, hour, day, week and year numbers
p Index for trip number

B. PARAMETERS AND CONSTANTS

αD, αU , αR,
αRAD, αRAU

Estimated regulation down, regulation up,
responsive reserve, ramp down, ramp up
commands (as % of bid capacities).

δ Compensation factor for unplanned depar-
tures.

η Battery charging/discharging efficiency
ϕ and 8 Minimum andmaximum permissible SOC

limits (as % of MC)
π Probability that a random EV departs
πA Accumulated probability of random

departure
σE Forecasted energy price ($/kWh).

σD, σU , σR,
σRAD,

Forecasted price of regulation down, reg-
ulation up, responsive reserve, ramp down
and ramp up

σRAU ($/kWh).
τ p Trip time for p-th scheduled trip
v EV availability; 1 if EV is available,

0 otherwise
ω Expected % of EVs remaining to perform

V2G
r Discount rate
E Energy needed for scheduled trip at t = τ p

(kWh)
Kw Weighting factor of week w
BatC Battery replacement cost ($/kWh)
BiC Retrofit cost to support bidirectional V2G

($/kW)
ChC Battery charger cost ($/kW)
ComC Communications cost for each EV ($)
EnC Battery energy capacity cost ($/kWh)
SC Smart meter cost for each EV ($)
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NP Total number of scheduled trips per day
T Time span in operation day (hours).
NY ,NW Number of years and number of weeks
NT Total available EVs in the targeted

region
NA Number of participating EVs in

aggregation
NEV Number of EV usage profiles
MCMax Maximum energy rating (kWh)
MPMax Maximum power rating (kW)

C. VARIABLES
β Energy tariff charged to the cus-

tomer ($/kWh)
γ Percentage of EVs participating

in aggregation
DC Discharging cost ($/kWh)
SOC Estimated state of charge (kWh)
POP Preferred operating point (kW)
APD,APU Power capacity available for reg-

ulation down,
APR regulation up, reserves, ramp

down, and ramp up (kW).
APRAD, APRAU (kW).
E[·] Expected value
MP,MC Maximum power (kW) and

energy ratings (kWh)
RDRU ,RRRRAD, RRAU EVA’s capacity bid of regulation

down, regulation up, responsive
reserve, ramp down, and ramp up
(kW).

FP Final power draw (kW)
FP− A conservative estimation of the

final power draw
TP Project’s total payoff ($)
OpP Annual operation payoff ($)
InvC investment cost ($)
OpI ,OpC Expected daily operational

income and cost to EVA
g Battery depreciation cost paid by

EVA to EV owners

I. INTRODUCTION
THE last few years have witnessed a dramatic rise in the
adoption of electric vehicles (EVs). A major reason for this
rise is customer’ desire to reduce the emission of hazardous
gasses and air pollution that affect the environment [1]. It has
been reported that CO2 emissions drop by 2.2 tons/year for
each conventional car being replaced by an EV [2]. Reducing
dependency on fossil fuels is another driver of this trend,
especially since it is estimated that the usage of plug-in hybrid
electric vehicles (PHEVs) may reduce the global consump-
tion of gasoline by 6.5 million barrels a day [3].

EVs can also be charged using energy produced by renew-
able energy sources, which further reduces their environmen-

tal impact as the penetration of renewable energy grows in the
future [3]. Several examples of the increasing penetration of
EVs can be observed around the world. In China for example,
it is projected that 200 million EVs will be on the road by
2050 [4]. In Norway, the percentage of EVs and PHEVs that
were sold in 2015 was over 20% of all passenger cars sold
that year [5]. However, EVs have some disadvantages, such as
high capital costs compared to the internal combustion engine
(ICE) cars [6] and longer refueling times. There is also the
potential for negative impacts on the electrical grid if the EV
charging is unregulated [7].

One way proposed to mitigate negative charging impacts
of EVs and to lower their total lifetime cost is Vehicle-to-
Grid (V2G) [8]. V2G is defined as the provision of energy
and ancillary services from an EV to the grid [9]. There
are two types of proposed V2G operations [10]. The first
method is unidirectional V2G [11], in which EVs are treated
as controllable loads for providing grid operators with ancil-
lary services and charging at off-peak periods. The second
is bidirectional V2G, which allows the EVs to charge and
discharge their batteries to provide grid support.

A single EV does not have enough capacity to partici-
pate in most electricity markets [12]. Therefore, EV owner
participation in electricity markets needs to be facilitated
through aggregators [13], [14]. Aggregation also decreases
the forecasting uncertainty of the hourly EV availability for
delivering electric power to the market [15]. It provides the
additional flexibility for market participants to potentially
opt out during unforeseen conditions. The EV Aggregato’s
(EVA) main function is to act as an intermediary between
the market operator and EV owners. The EVA sends energy
bids to the futures energy market, purchases energy from the
energy market at market price and sells this energy to the EV
owners. The EVA can also use EV charging to participate
in ancillary services (AS) markets by offering regulation
up/down and responsive reserves. If the bids are accepted
by the AS markets, the EVAs respond in real-time to market
signals provided by system operators. In such cases, the EVAs
respond by adjusting EV charging.

The EVA’s objective is to maximize its payoffs while sat-
isfying operational and contractual constraints. Hence, it is
important to develop optimization models for the planning
and operations of EV aggregation in electricity markets. The
optimization of the operation process determines the optimal
hourly charging and discharging strategies by an EVA that
maximize the EVA’s payoffs. Several studies have attempted
to determine most suitable operational bidding strategies for
an EVA in electricity markets. In [16] and [17], unidirectional
V2G bidding regulation and responsive reserves were inves-
tigated. The work was extended in [18] to consider bidirec-
tional V2G, in which the depreciation cost of batteries was
taken into account. More recent works on operational bidding
strategies include [19]–[22]. These works demonstrated the
operational feasibility of an existing EVA. However, they
did not study the feasibility of investment in establishing
EVAs.
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Few researches have recently targeted EV planning. Their
focus has been mainly on optimally locating EV charging
stations [23–[25]. In [23], a multi-objective evolutionary
algorithm was used to locate the charging stations in a radial
distribution system for a known number of EVs. In [24],
renewable resources (wind and solar), ESS, and EV charging
stations were integrated into a second-order conic model
where the objective was to minimize the system’s power
losses. Reference [25] integrated ESS in the charging stations
to facilitate EV charging and considered the life cycle of the
ESS. Note that [23–[25] used non-linear models and assumed
the number of EVs to be pre-determined. Moreover, they did
not consider identifying the best incentives for EV owners
from the EVA’s perspective. Another option to provide AS
to the electricity markets is by using a dedicated energy
storage system (ESS) with sufficient energy and power capa-
bilities [26]. Few works have tackled the planning aspects of
ESS. In [27], ESS planning was approached from a central-
ized system operator’s standpoint. The intent was to find the
optimal ESS energy and power capacities that minimize the
system operator’s investment and operational costs. However,
the market-based environment was not considered and the
ESSwas notmeant to provideAS.A control strategy for using
ESS to support wind power plants in providing frequency
regulation service was proposed in [28] while reducing the
sizing and increasing the lifetime of the storage system. In
[29], the sizing of operation of an ESS that was used for pro-
viding spinning reserve and thus regulating the frequency in
an isolated system with low inertia was optimized. However,
the focus in [28] and [29] was in establishing the control strat-
egy that resulted in a reduced ESS size rather than proposing
a comprehensive ESS planning model. In [30], ESS was also
considered for participating in a primary frequency control
market with the aim of maximizing the payoffs by optimally
sizing and controlling ESS energy. However, ESS power
capacity sizing was neglected.

ESS can also contribute to dynamic support services, such
as flexible ramping product (FRP), due to its fast-responsive
characteristics. Reference [31] proposed a model for ESS
aggregators to maximize their profits by bidding ramping
up/down capacities in the day-ahead market. FRP services
are initially considered as a marketable product in the US by
some independent system operators (ISO), such as California
ISO (CAISO) and Midcontinent ISO (MISO) [32], [33]. FRP
aggregators submit either up or down capacities to the system
operator on a day-ahead basis. Those capacities are called
upon in real time by receiving a signal once each several
minutes, e.g. every five minutes in CAISO [31]

To the best of the authors’ knowledge, EVA and ESS
planning for AS provision in a market environment have
not yet been comprehensively studied. Therefore, the main
contributions of this paper are

1. A linear planning model that assists investors who con-
sider investing in EV aggregation for the purpose of AS
provision to electricitymarkets is proposed. Thismodel
aims to assess the investment feasibility in establishing

an EV aggregator. The planning model identifies as
decision variables the best incentives to be offered by
the EVA to EV owners and the number of targeted EVs.
It should be noted that none of the existing EV planning
models reported in the literature, e.g. [23]–[25], have
identified these two important planning decisions as
decision variables

2. The proposed EVA planning model considers various
factors, including communication infrastructure costs,
battery depreciation costs (which includes the cost of
battery degradation due to cycling), and the cost of
required additional hardware that enables bidirectional
V2G. It also takes technical and market constraints into
consideration.

3. A linear planning model for investing in a dedicated
ESS to participate in AS markets is proposed. The
aim is to decide on the best ESS power and energy
capacities, considering the investo’s budget constraints.
To ensure fair comparisons, both options (EVA and
ESS) are assumed to have the same investment costs

4. This is the first study that compares the two options
(EVs and ESS) from an investor’s standpoint and helps
decide which one is the most profitable. Sensitivity
analyses are also carried out in each case to study the
impact of key parameters on the investments.

5. In addition, the optimal operational decisions for the
EVs and ESS, including the optimal bidding capacities
and operating points, are also determined using the
proposed model.

6. This paper includes the modeling of dynamic support
services (DSS) bidding, namely flexible ramping prod-
uct (FRP), in the day-ahead market (DA). The effects
of including these services on the optimal profits are
also studied

The rest of the paper is organized as follows: The details of
the proposed planningmodel for EV aggregation are provided
in section III. The optimization model for ESS planning is
detailed in section IV. A case study that assesses the two
investment options in the electricity market in addition to the
proposed results are given in sections V and VI, respectively.
Finally, a few concluding remarks are given in Section VII.

II. PROPOSED PLANNING MODEL FOR EV AGGREGATION
In this section, the EV aggregation planning model is pre-
sented. The EVA planning optimization problem is presented
in Sections III.A and III.B. Since the optimization function
is non-convex, we develop a methodology to deal with this
non-convexity, as presented in Section III.C.

A. EV AGGREGATOR’S OBJECTIVE FUNCTION
It is assumed that the EVA intends to participate in a pool-
based market. It is expected to submit energy bids to the
day-ahead energy market, AS capacity, and dynamic support
services; namely FRP. Each bid is to be cleared in its con-
cerned pool-based market mechanism. The EVA’s expected
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daily income and cost are given in (1) and (2). The first
term in (1) represents the revenue from participating in AS
markets to provide regulation down, up, and reserve capac-
ities, in addition, to participate in DSS market by providing
ramping up/down. The second term represents the revenue
from selling energy to EV owners in order to charge their
EVs. This term turns negative when the EV is being dis-
charged. The first term in (2) represents the cost of buying
energy from the grid for EV charging (negative when EV
is being discharged). The second term is the cost paid to
EV owners to compensate them for EV battery depreciation
during discharging.

Each participating EV has a modeled weekday commute
profile that consists of a morning trip and an evening trip for
weekdays, and two random trip times on the weekend. Each
weekday trip is assumed to take place at approximately the
same time each day. Due to uncertainty in trip time, the EV is
unavailable during that whole scheduling hour. Additionally,
each EV has a chance of an unexpected departure which
makes them unavailable during a random number of future
hours. At 2 AM, all EVs are assumed to be plugged in and
charging until 6 AM. Note that v is defined for each EV
at each hour in order to restrict V2G services to whenever
the EV is available. The possibility of random hourly EV
departure is taken into account by calculating the percentage
of remaining EVs to perform V2G at each hour (ωt ). Note
thatωt is a function of the accumulated probability of random
departure of all EVs at hour t , πAit , which, in turn, is a function
of the time of scheduled trips for each EV during the day
(3), (4). In (4), πAit is reset at each scheduled trip time τ pi
because it is assumed that the availability of an EV at these
time slots is known with certainty. The EVA’s capacity of
providing regulation down, up, reserve, and ramping up/down
are given by (5),(6),(7),and (6). Similarly, RR is defined as
functions of APR in (9). The expected power draw is defined
in (10).

The constraint (11) implies that the EV battery depreci-
ation cost g (afforded to EV owners for performing V2G
services) is positive only when the EV is discharging. Oth-
erwise, it is zero. Note that a more conservative estimate for
the expected power draw, E

[
FP−itdw

]
defined in (12), is used

to obtain g, where the power draw is only affected by the
regulation up and responsive reserve services [18].

Using batteries to perform ancillary services reduces the
battery life due to the increased cycling. Additionally, the dis-
charge current rate and the current SOC at the time of dis-
charge also affect this degradation. As the ancillary services
dispatch cannot be known a priori, the costs associated with
ancillary service degradation are modeled as an average cost
per kW of energy discharged while performing ancillary
services (13). Equation (13) uses the average degradation
cost developed in [34] as its first term. This is a linear cost,
but it can be piecewise linear if more detailed, charge rate
dependent costs are available. The second term of (13) is
the cost of the lost energy due to cycling, developed in [18],

which must be paid by the aggregator.

OpIdw =
∑T

t=1
ωt

(
σDtdwR

D
tdw + σ

U
tdwR

U
tdw

+ σRtdwR
R
tdw + σ

RAU
tdw RRAUtdw + σ

RAD
tdw RRADtdw

)
+β

∑T

t=1
ωt
∑NA

i=1
E [FPitdw] (1)

OpCdw =
∑T

t=1
ωt
∑NA

i=1
σEtdwE [FPitdw]

+

∑T

t=1

∑NA

i=1
gitdw (2)

ωt = 1−
1
NA

∑NA

i=1
πAit (3)

πAit =
∑t

h=τ p−1i
πih, τ

p−1
i ≤ t < τ

p
i where

τ 0i = 1, p = 1, 2, . . . ,NP (4)

RDtdw =
∑NA

i=1
APDitdw (5)

RUtdw =
∑NA

i=1
APUitdw (6)

RRAUtdw =
∑NA

i=1
APRAUitdw (7)

RRADtdw =
∑NA

i=1
APRADitdw (8)

RRtdw =
∑NA

i=1
APRitdw (9)

E [FPitdw] = (POPitdw + αDitdwAP
D
itdw

+αRADitdw AP
RAD
itdw − α

U
itdwAP

U
itdw

−αRAUitdw AP
RAU
itdw − α

R
itdwAP

R
itdw)vit (10)

gitdw = max(−DC iE
[
FP−itdw

]
δit/ηi, 0) (11)

E
[
FP−itdw

]
= (POPitdw − α

U
itdwAP

U
itdw

−αRAUitdw AP
RAU
itdw − α

R
itdwAP

R
itdw)vit (12)

DC i = 0.042 (BatC/312)+ β
(
1− η2i

)
/ηi (13)

δit = (1− πit )−1 (14)

In order to estimate annual payoffs, weighted represen-
tative weeks are used [35]. Each representative week is
weighted by a factor Kw and the sum of all factors is equal
to the total number of weeks in a year. The annual payoff
for a number of representative weeks, NW , is given in (15).
The EVA’s investment includes the costs of communication
infrastructure, smart meter, and retrofitting the EV charger to
a new one that is capable of bi-directional power flow as given
in (16) [36]. Hence, the present worth of the total payoff from
investing in EV aggregation for the project time span is given
by (17), where r is the discount rate and NY is the project’s
time horizon. It is assumed that the investment cost is paid at
the start of the project.

OpPy =
∑NW

w=1
Kw

∑7

d=1
(OpIdw − OpCdw) (15)

InvC =
∑NEV

i=1
(SC + ComC + BiC ·MPi) (16)

TP =
∑NY

y=1
(1+ r)−y·OpPy − InvC (17)
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B. OPTIMIZATION MODEL FOR EVA PLANNING
The complete formulation of payoff maximization for the
EVA planning case is

Maximize TP (18)

Subject to SOC it = SOC i,t−1 + E [FPitdw] δitηi − Eit
(19)

ϕiMC i ≤ SOC it ≤ MC i, ∀t ≤ T − 1 (20)

8iMC i ≤ SOC iT ≤ MC i (21)(
POPitdw + APDitdw + AP

RAD
itdw

)
δitηi

≤ MC i − SOC it (22)(
POPitdw − APUitdw − AP

RAU
itdw − AP

R
itdw

)
δitηi

+ SOC it ≥ Eit (23)(
POPitdw + APDitdw + AP

RAD
itdw

)
δit ≤ MPivit

(24)

POPitdw − APRitdw − AP
U
itdw − AP

RAU
itdw

≥ −vitmax(MPiSOC it ) (25)

APDitdw,AP
U
itdw,AP

R
itdwAP

RAD
itdw AP

RAU
itdw ≥ 0 (26)

POPitdw ≥ −vitmax(MPiSOC it ) (27)∣∣SOC itdw − SOC i,t−1,d,w
∣∣ ≤ vitMPi/ηi (28)

In (19), the energy stored in the EV battery at hour t is
a function of the energy available in the battery from the
previous hour, the expected power draw to charge/discharge
the battery at t , and the energy used during a scheduled trip at
t (if any). It is assumed that when an EV undergoes a trip at
hour t , it won’t be available for charging/discharging at that
hour (i.e. if Eit > 0, vit = 0, and E [FPitdw] = 0). Relation
(20) states that the SOC of an EV battery will be, at all time,
within acceptable limits based on the battery energy capacity,
MC i, and customer-defined minimum SOC, ϕMC i, set for
driving purposes. Constraint (21) states that the final SOC
must be at least 8MC i, where 8 is also customer-defined;
0 ≤ ϕ ≤ 8 ≤ 1.
Constraint (22) represents the relation between EV energy

limits and battery decision variables. The relation limits the
EVA’s ability to bid regulation down capacity towithin energy
remaining in the battery. Relation (23) ensures that sufficient
charges are available for EVs’ scheduled trips. Constraints
(24)-(28) represent relations among battery power limit,MP,
and decision variables POP, APD, APU , APR, APRAD and
APRAU . Constraint (28) states that the EVs cannot violate the
charged power limit when performing V2G services.
The optimization problem stated in (1)-(28) includes two

sets of decision variables. The operation decision vari-
ables, POP,APD,APU ,APR,APRAD and APRAU are associ-
ated with each hour in the planning horizon. The Long-term
planning decision variables are β and NA only.
Note that (1)-(28) represents a non-convex optimization

problem. In (1), the tariff β, a decision variable, is multi-
plied by E [FPitdw], which is a function of the decision vari-
ables POP,APD,APU ,APR,APRAD and APRAU . A similar

issue appears in (11). In the next section, a methodology for
addressing this non-convex optimization issue is presented.

C. EVA’S SELECTION OF ENERGY TARIFF FOR
ENERGY PURCHASE (β)
The EVA decides on an energy tariff, β, to be collected from
the EV owners for their energy purchases. A higher tariff
results in a higher income from charging an EV. However,
higher tariffs reduce the percentage of EV owners who will
be willing to participate in the EV aggregation program, γ .
This affects the EVA’s profitability in AS markets, which is a
function of the total number of participating EVs.
The models that relate charging tariffs to EV owners’

willingness to participate in EV aggregation are often a func-
tion of the prevailing circumstances in specific markets and
mostly determined by societal and economic issues pertain-
ing to a region. In this work, it is assumed that there is a linear
relation between β and γ . It is assumed that the fixed charging
tariff ranges between βmin = 0 and βmax = 0.12 $/kWh [22].
It is also assumed that γ is zero at β = βmax , since there is
no incentive for the EV owners to participate. γ is assumed to
peak at β = βmin, which means that the EVA charges EVs at
no cost and depends solely onmarket revenues for its payoffs.
The proposed γ vs. β relation is given in (29), where m is

a negative slope, given in (30), and γo is the percentage of
EVs that would participate in aggregation if the EVA offered
to charge their vehicles for free. Figure 1 shows five possible
realizations of the proposed γ –β relation. For example, for
Line 1, γo = 0.2.

γ = γo + mβ (29)

m =
(

−γ o

βmax − βmin

)
(30)

Assuming that the EVA’s region contains NT number of EVs,
the number of participating EVs in aggregation, NA, is

NA = γNT (31)

In order to obtain the optimal β and NA, sequential lin-
earization is sought. The following procedure is performed:

1- Assume γo. Calculate m using (30)
2- Set β = 0.
3- Obtain γ using (29), then obtain NA using (31).
4- Solve (1)–(28) to obtain InvC(βNA) and TP(βNA)
5- Increase β by an increment of 1β
6- Repeat Steps 3–5. If γ = 0 is reached, go to step 7.
7- Compare TP obtained in Steps 1–6 and identify the

optimal β and NA corresponding to the assumed γo
8- Assume a new value for γo and calculate m. Repeat

Steps 2–7.
Note that this procedure turns the non-convex optimization

model presented in Section III.B into a sequence of linear pro-
grams. Specifically, by setting the value of β according to the
procedure described above prior to running the optimization,
the model (1)-(28) becomes linear. Thus, it can be efficiently
solved using any of the available commercial optimization
packages.
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To reduce the computational burden, an EV fleet that
consists of a reduced number of EVs, NEV , is used. The
reduced EV set is obtained by grouping EVs that behave simi-
larly. For scaling, the optimization problem (1)–(28) needs to
be modified. The fleet parameters (total energy and power
capacities) and the parameters of each EV (π , δit , ω) are
scaled to represent a larger fleet. The scaling factor, SF , for
scaling the EV fleet’s parameters is given as

SF =
NA
NEV

(32)

This scaling factor scales the probability of a random EV
departure at hour t stated as

Sπ i =
πi

SF
(33)

Therefore, in the down-scaled version of (1)–(28), πi is
replaced by Sπ i in (4) and (14), andNA is replaced byNEV in
(1)–(5). After the down-scaled version of (1)–(28) is solved,
the resulting total payoffs is scaled up by multiplying it
by SF .

III. OPTIMIZATION MODEL FOR ESS PLANNIN
For an investor choosing to use a dedicated ESS for provision
of AS in electricity markets, the planning optimization model
is presented in (34)-(54). This model is derived from the EVA
model presented in (1)-(28) after considering a number of
observations. First, this model assumes that a single ESS is
used i.e. i = 1. Since the ESS is stationary, it is available all
the time, or vit = 1 ∀t . In addition, the dedicated ESS makes
revenues only by participating in markets. Hence, the last
term in (1) is dropped. Moreover, since the ESS is stationary
and is always available for participation, there is no need to
consider random availability (that is, δt = 1 and ωt = 1∀t).
Therefore, the ESS daily expected income and cost are given
by (35) and (36), respectively.

The differences in energy storage constraints compared to
that of EVAs are rather minor. One difference is that there is
no need to include the energy for planned trips in the SOC
relation (compare (43) to (19)). The SOC of ESS does not
have to be almost fully charged at the end of the operation day,
as (21) and (45) imply. In this work, the ESS is at least half-
charged at the end of the operation day. Inequalities (53) and
(54) are to define the maximum energy and power capacity
limits

Note that the ESS investment cost represents the cost of
procuring ESS energy (MC) and power capacities (MP). The
ESS investment cost is, therefore, given by (42). As such, for
a fixed, pre-determined investment cost (InvC), an investment
in one capacity will limit the investment in the other. In this
work, the comparison of investment on ESS and EVA is based
on using the same fixed investment cost for both options.
To perform this comparison, the following procedure is fol-
lowed:

1- Obtain the ESS investment cost based on the EVA’s
planning optimization and use it as an input for the ESS
planning optimization. That is, equate InvC in (42) to

InvC(βNA) obtained from Step 4 of the EVA planning
procedure described in Section III-C.

2- Assume a small ESS energy capacity, MC .
3- Use (42) to obtain the related power capacity, MP.
4- Solve (34)–(54) to obtain TP(MCMP)
5- Increase MC
6- Repeat Steps 3–5. If MP = 0 is reached, go to step 7.
7- Compare TP obtained in Steps 1–6 and identify the

optimalMP andMC corresponding to this pre-set InvC

Maximize TP =
∑NY

y=1
(1+ r)−y·OpPy − InvC (34)

where

OpIdw =
∑

t

(
σDtdwAP

D
tdw + σ

U
tdwAP

U
tdw + σ

RAU
tdw APRAUtdw

+ σRADtdw APRADtdw + σ
R
tdwAP

R
tdw

)
(35)

OpCdw =
∑

t
σEtdwE [FPtdw]+

∑
t
gtdw (36)

E [FPtdw] = (POPtdw + αDtdwAP
D
tdw + α

RAD
tdw APRADtdw

−αUtdwAP
U
tdw − α

RAU
tdw APRAUtdw − α

R
tdwAP

R
tdw)

(37)

gtdw = max(−DC · E
[
FP−tdw

]
/η, 0) (38)

E
[
FP−tdw

]
= (POPtdw − α

U
tdwAP

U
tdw − α

RAU
tdw APRAUtdw

−αRtdwAP
R
tdw) (39)

DC = 0.042 (BatC/312) (40)

OpPy =
∑NW

w=1
Kw

∑7

d=1
(OpIdw − OpCdw) (41)

InvC = ChC ·MP+ EnC ·MC (42)

Subject to

SOC t = SOC t−1 + E [FPtdw] η (43)

ϕMC ≤ SOC t ≤ MC, ∀t ≤ T − 1 (44)

8MC ≤ SOCT ≤ MC (45)(
POPtdw + APDtdw + AP

RAD
tdw

)
η ≤ MC − SOC t (46)(

POPtdw−APUtdw−AP
RAU
tdw −AP

R
tdw

)
η+SOC t≥0 (47)(

POPtdw + APDtdw + AP
RAD
tdw

)
≤ MP (48)

POPitdw − APRtdw − AP
U
tdw − AP

RAU
tdw ≥ −MP (49)

APDtdw,AP
U
tdw,AP

R
tdwAP

RAD
tdw APRAUtdw ≥ 0 (50)

POPtdw ≥ −MP (51)∣∣SOC tdw − SOC t−1,d,w
∣∣ ≤ MP/η (52)

MP ≤ MPMax (53)

MC ≤ MCMax (54)

IV. CASE STUDY
The case study examines the two investment options in the
electricity market. Planning aspects, such as the investment
cost, discount rate and the project lifetime are also consid-
ered. A year is represented by representative weeks which
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are weighed by scaling factors and the sum of these factors
must equal 52. For this study, three representative weeks
are selected, and the three selected weeks are scaled by the
same factor (Kw = 17, ∀w). The selection of representative
weeks is based on the minimum Euclidean distance between
weekly energy prices and energy prices for the remaining
weeks. We choose the energy price as a criterion because
of its significant effect on bidding strategies and payoffs of
EVA/ESS. This market-based evaluation is assumed to be
for an investor who is based in Houston, Texas, with more
than 70,000 EVs by the year 2020 [37]. The EV fleet is
comprised of 50%Nissan Leaf, 20%Mitsubishi i-MiEVs and
30% Tesla Model S, all with η = 90%. Each EV is assigned
one of 50 different energy usage profiles based on statistical
driving behaviors in urban Texas [38]. The investment costs
are taken from [36] considering the costs of communication
infrastructure, smart meters, and retrofitting EV chargers to
handle bi-directional power flow for EVAs (assuming 1 euro
= $1.245). It is assumed that all EV owners are to set ϕ and
8 at 0.1, and 0.99, respectively.

All forecasted data is taken from the Electric Reliability
Council of Texas (ERCOT). Because the dynamic support
services, such as FRP, are still not supported in the studied
market, they are ignored in sections VI.A, B, and C. A case
study is included in sectionVI.D to show the result of the opti-
mization model if those services are introduced in ERCOT.
The ramping up/down prices are assumed to be 5 $/MWh and
the deployment signal to be 0.5.

The investment cost for the ESS is considered to be the
same as the bidirectional cost of EVAs. This is based on the
assumption that the cost of retrofitting the EV charger from
the unidirectional charging to bidirectional charging is equal
to the bidirectional inverter cost in the year 2020. The other
investment cost for ESS is the energy capacity cost at the
year 2020. Because all EVs use Lithium-ion batteries, it is
assumed that Lithium-ion batteries are also used for energy
storage. According to [39], the price range for Lithium-ion
batteries is expected to be between 200 and 400 $/kWh by
the year 2020. In the base case, the energy capacity price
of 200 $/kWh is used. A lifetime of 12 years and a discount
rate of 5% are used for both cases. This lifetime corresponds
to the approximate average age of the light duty vehicle
fleet in the USA [40]. While this number is slightly higher
than the current expected lifespan of Li-ion batteries, it is
expected to be attainable in the future with proper battery
management [41]. Table 1 summarizes the parameters used

TABLE 1. Parameters and constants.

in this study for the base case. The optimization problems
were solved using CVX, which is a MATLAB-based convex
optimization toolbox [42]. The simulations were carried out
on an intel core i7 2.9-GHz, 8-GB RAM PC.

V. RESULT
The comparison of the two investment options from planning
aspects is performed by finding the optimal fixed charging
tariff, β, that makes the highest payoffs, TP, for the EVA
case. This is done for five values of γo (0.2, 0.4, 0.6, 0.8, and
1.0), as shown in figure 1. For each assumed value of γo, the
sequential optimization outlined in Section III-C is performed
to obtain the optimal payoffs, TP, and the corresponding
investment costs, InvC , corresponding to that γo. This EVA’s
investment cost is used as an investment cost limit for the ESS
case. Then, the procedure outlined in Section IV is followed
to determine the optimal ESS payoffs and corresponding
power and energy capacities. The maximum payoffs of the
EVA and ESS for all cases are compared to decide on the
most profitable investment. Then, sensitivity analyses are
carried out to study the impact of key parameters on optimal
solutions.

FIGURE 1. Relation between the charging tariff and participation level for
γ o = 0.2,0.4,0.6,0.8, and 1.0.

A. EV AGGREGATOR CASE
In this sub-section, sample results obtained for the EVA
case are presented. These results are obtained from setting
γo = 0.6, then sequentially solving (1)-(28) following the
procedure presented in Section III-C, where the increment
1β is chosen to be 0.01. The simulation time needed to carry
out the sequential optimization procedure is about 36 hours.
Note that a smaller increment would give rise to more refined
results. However, that would increase the required compu-
tational time. The EVA’s payoffs vs. fixed charging tariffs
(TP vs. β) are shown in figure 2. It is clear that an EVAobtains
the highest payoffs when it charges EV owners at a moderate
fixed charging tariff. Low payoffs arise at very low or very
high charging tariffs. Figure 2 shows that the highest payoffs
occurs at β = 0.05 $/kWh and EV participation of γ = 35%.
The investment cost for this case is $41.06 million. This is
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FIGURE 2. EV’s payoffs vs. β for a max. participation of 60% (γ o = 06).

the cost of communication infrastructure, smart meter, and
retrofitting the EV charger to handle bi-directional power
flow, as stated in (16), for 24500 EVs (35% of the total
considered of 70000 EVs). Figure 3 and figure 4 show the
operational decision variables (APD, APU ,APR, SOC,POP)
in a typical day for one of the studied EV (Tesla Model S)
with an 85-kWh battery capacity and 20-kW bi-directional
charger.

B. ENERGY STORAGE SYSTEM CASE
The procedure outlined in Section IV is used next. The invest-
ment cost obtained from the EVA case ($41.06 million) is
used as an investment cost limit for the ESS case such that
(42) is met. If the investment cost is used for acquiring power
capacity only (with zero energy capacity), the resulting MP
is 219.9 MW. Therefore, the range of MP examined is 0.1 to
219.9 MW, with 0.1 MW increments. The maximum payoff
is obtained for each case and the corresponding MP and MC
for the case with the highest payoff is identified. The range of
energy and corresponding power capacities for all optimiza-
tion cases are shown in figure 5. The ESS optimization results
are shown in figure 6.

FIGURE 3. EV bidding capacity for (a) regulation up, (b) down, and
(c) reserve in a typical day for β = 0.05.

Figure 6 indicates that the payoffs are negative for low
power capacities. This is because a very low power capacity
leads to lowmarket bids, see (48) and (49). On the other hand,
extremely low energy capacities also result in negative or low
payoffs since AS bids will be constrained by the available
energy capacity, see (44)-(46). The optimal point is where the
energy and power capacities are 111MWh and 101MW,with
a payoff of $39.78 million.

Note that the payoff of the ESS ($39.78 million) is 84.4%
lower than that of EVA ($255 million) for the same invest-
ment cost. This result indicates that investing in EV aggrega-
tion is, in this case, more profitable than investing in ESS for
the participation in AS markets. The reason for the low ESS
payoffs are the limited power and energy capacities that can
be purchased by the investor.

The same procedures for the EVA and ESS cases are
repeated for γo = 0.2, 0.4, 0.8, and 1.0, and the corresponding
results are summarized in Table 2. These results indicate that
Investing in EVAs to provide ancillary services is consistently
more profitable than investing in ESS.

TABLE 2. Comparison of investing in EV aggregators and ESS.

C. SENSITIVITY ANALYSES
This section studies the effect of varying the assumed values
of key parameters on the results presented in the previous
two sub-sections. All comparisons are based on γo = 0.6.
Similar trends are observed when these analyses are done for
other values of γo, whose results are not reported due to space
limitations.

FIGURE 4. EV SOC and POP in a typical day for β =0.05.
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FIGURE 5. Energy vs. power capacities for an ESS, using a fixed
investment cost obtained from the EVA planning optimization with
γ o = 06.

FIGURE 6. ESS payoffs for different combinations of power and energy
capacities, using a fixed investment cost obtained from the EVA planning
case, γ o = 06.

1) EFFECT OF CHANGING THE POWER CAPACITY COST
In the base case, the power capacity cost used is 186.7 $/kW.
If the power capacity cost is doubled, the corresponding TP
vs. β is shown in figure 7. The results show that the optimal
payoffs drop by 14.9% from $255 million to $217 million.
It is interesting to note that the optimal β does not change.
The lower payoff can be explained by the increase in the
investment cost to $79 million, a 48.1% increase.

FIGURE 7. Aggregator’s payoffs vs. β after the power cost is doubled.

For the ESS case, the payoff curve is very similar in
shape to that of figure 6. However, the optimal ESS payoff
drops by 26.9% from $39.78 million to $29.07 million. The
optimal energy and power capacities for the new case are
162.3MWh and 124.8MW, which are larger than the original
optimal capacities because of the higher investment cost.
These results indicate that the investment on ESS is more
sensitive to changes in power capacity cost.

2) EFFECT OF CHANGING THE ENERGY CAPACITY COS
The energy capacity cost is also used in both cases. It repre-
sents the battery replacement cost for EVAs and the energy
capacity cost for ESS. The energy capacity cost is doubled
from that used in the base case. The results are shown
in figure 8. The EVA payoffs drop by only 0.78% from
$255 million to $253 million, indicating that changing the
battery replacement cost for EVAs does not affect the payoffs
significantly. This is because the battery replacement costs
are not included in the investment cost. Rather, it is included
in battery depreciation cost, g, and discharging is done only
occasionally in real-time, as shown in figure 9 (the hourly
expected power draw for all EVs on average).

FIGURE 8. Aggregator’s payoffs vs. β after the energy cost is doubled.

FIGURE 9. The average expected power draw by EVs for an average day
γ o = 06.

For the ESS case, doubling the energy cost has a significant
effect on payoffs, which drop by 75.3% from $39.78 mil-
lion to only $9.82 million. The optimal energy and power
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capacities are 69.3MWh and 71.4MW, respectively. This sig-
nificant drop in ESS payoffs is because energy cost directly
affects the investment cost of ESS.

3) EFFECT OF CHANGING THE MINIMUM ACCEPTABLE
SOC LEVE
This section studies the effect of assuming a higher mini-
mum acceptable SOC level, ϕ, on payoffs. The value of ϕ is
increased from 0.1 to 0.5. The results of this case for the EVA
are shown in figure 10, which demonstrates that the value
of ϕ has a major effect on the optimal EV charging tariff by
EVAs. β is reduced from 0.05 $/kWh in the original case to
0.03 $/kWh. This reduction reflects the fact that EVAs would
need to attract more EV owners (7000 EVs more than the
base case of 24500 EVs) to participate in aggregation because
the higher ϕ reduces the EVAs’ available AS capacities. This
forces the EVA to recruit a larger portion of available EV
owners to mitigate the effect of the higher ϕ. The payoffs in
this case drop by 12% from $255 million in the base case to
$224 million. For the ESS case, the payoffs are increased by
19% to $49.19million. This increment is explained by the fact
that the investment cost for EVAs has increased as a result of
reducing the EV charging cost, which increased the number
of participating EVs into the aggregation program. Since the
investment cost is fixed for the two case studies, the ESS pay-
offs have increased. The optimal energy and power capacities
are 144.6 MWh and 127.8 MW, respectively.

FIGURE 10. Aggregator’s payoffs vs. β for minimum acceptable SOC limit
(ϕ) of 50%.

FIGURE 11. The effect of changing the discount rate of the payoffs as
percentage from base case.

4) EFFECT OF CHANGING THE DISCOUNT RATE
In this section, the effect of changing the discount rate is
studied. Three different discount rates are examined: 0%,
5% (base case), and 10%. Figure 11 shows the change in
total payoffs (as a percentage of base case payoffs) due to
the change in discount rate for the EVA and corresponding
ESS cases. These results demonstrate that both EVA and ESS
payoffs are strongly affected by the value of discount rate.
However, EVA payoffs are relatively less sensitive to the
discount rate than ESS payoffs.

5) EFFECT OF UNCERTAINTIES IN PRICES AND AS SIGNALS
In this section, we consider the effect of ±10% uncertainty
in energy and AS prices (σD, σU , σR, σE ) and AS signal
(αD, αU , αR). Two cases are studied:

1. The worst-case scenario, where the AS prices are less
than expected by 10%, and the AS signals and energy
prices are higher by 10%.

2. The best-case scenario, where the AS prices are higher
than expected by 10%, and the AS signals and energy
prices are less by 10%.

FIGURE 12. EVA payoffs vs. β for the best-case (A) and worst-case (B)
scenarios.

The results of both cases are shown in figure 12. In the
worst-case scenario, the results show that the optimal payoffs
drop by 8.63% from $255 million to $233 million. The opti-
mal tariff β is increased from 0.05$/kWh in the base case to
0.06 $/kWh. This increase reflects the fact that the EVA will
try to attract less EVs (3500 less than the base case) due to the
increase in the energy prices and reduction in the regulation
prices and will offset this reduction by charging higher tariffs.
On the other hand, in the best case scenario, the tariff β is
decreased to 0.04 $/kWh and the optimal payoffs increase
by 9.8% to $280 million by increasing EVs participation to
28000 EVs (3500 higher than the base case).

D. EFFECTS OF INCLUDING DYNAMIC SUPPORT SERVICE
This section conducts a study on including FRP as dynamic
support services. This is done for the case where γo = 0.6,
corresponding to line 3 in figure 1, and β ranging between
0.03 and 0.06. As seen in figure 13, when the DSS are
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FIGURE 13. EVA payoffs vs. β when FRP is included for a max.
participation of 60% γ o = 0.6.

TABLE 3. Comparison of investing in EV aggregators and ESS when DSS is
included.

included, the optimal payoffs increase by about 13% (com-
pared with the case where those services are ignored, see
figure 2). However, the results indicate that the optimal tariff
has not changed, β = 0.05.
In the case of investing in ESS, including DSS yields a

140% increase in the optimal profits, as shown in Table 3.
These results should be compared to those given in Table 2,
where DSS are ignored. In addition, the results demonstrate
that a higher power capacity is needed in this case. This is
to be expected because FRP requires fast response in a short
period of time. Despite the improved profitability of ESS
considering FRP participation, the results indicate that EV
aggregation is still the more favorable option.

VI. CONCLUSIONS
In this paper, a planning model for the market-based evalua-
tion of two possible investment options on storage, i.e., aggre-
gation of EV batteries and procurement of dedicated energy
storage systems, is introduced. The two possible investment
options are used for bidding ancillary services and dynamic
support services in electricity markets. The proposed model
considers the planning and operation aspects of both cases.
The analyzed comparisons are based on selecting the option
with the highest payoffs over the same initial investment
costs, lifetime, and discount rate in both cases.

The results show that the EVA investment can be more
profitable than investing in ESS. This is mainly due to the
high energy capacity cost that must be paid as an initial
investment cost in the ESS case. Sensitivity analyses examine
the effects of variations of different parameters on the results
of both options. It is shown that the energy capacity cost

affects the ESS significantly while the minimum acceptable
SOC limit has a considerable impact on EV aggregation.
The effect of discount rate variations is milder in the EV
aggregation case.
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