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ABSTRACT The prediction of pillar stability is of great importance because pillar failure can lead to large
disasters. In this paper, a stochastic gradient boosting (SGB) model was applied to classify pillar stability.
Five potentially relevant factors, including the pillar width, the pillar height, the ratio of the pillar width to
the pillar height, the uniaxial compressive strength of the rock, and the pillar stress, were chosen to establish
the evaluation index system. The 205 pillar samples were collected, and an SGB model was developed by
training 80% of original data (165 samples), and the optimal parameter values of the model were achieved
by the method of 10-fold cross-validation. The external testing set (with 40 samples) was used to validate
the feasibility of the SGB model. The accuracy and kappa analysis, together with the three within-class
classification metrics (recall, precision, and F-measure), and receiver operating characteristic curve were
utilized to evaluate the performance of the optimum SGB, random forest (RF), support vector machine
(SVM), and MLPNN models. The results revealed that the SGB model has higher credibility than the RF,
SVM, and MLPNNmodels. The sensitivity of the parameters was investigated based on the relative variable
importance, in which the pillar stress and the ratio of the pillar width to the pillar height were found to be
the major influencing variables for pillar stability.

INDEX TERMS Pillar stability, stochastic gradient boosting (SGB), 10-fold cross-validation, ROC curve,
relative variable importance.

I. INTRODUCTION
In long-term, large-scale undergroundmining, a large number
of goafs is one of the most important factors that endangers
mine production safety, and pillars are the main structural
columns that affect the stability of goafs. The instability of
a pillar will lead to the collapse of the roof in the goaf area,
resulting in a large number of casualties and serious property
losses [1]–[3]. Therefore, it is of great significance to increase
the stability of ore pillars to achieve efficient and safe mining
of underground mines.

Due to the importance of pillar stability, a large number
of publications on a variety of aspects of pillar stability
have been published, and many valuable methods have been
applied in the past several decades by many scholars for

understanding and predicting pillar failures. Overall, these
methods can be divided into two categories, namely, empiri-
cal methods [4], [5] and numerical simulation [6]–[8]. Empir-
ical methods are usually used for pillar strength estimation
based on empirical formulas [9]–[11]. Because it is difficult
to determine the actual stress of pillars in underground mines,
a factor of safety (FS) of a pillar, which is the ratio of
the average strength to the average stress of the pillar, was
introduced to evaluate pillar stability [6], [12]. Generally,
a pillar with FS>1.0 is stable, while FS<1.0 means the pillar
is unstable [6], [12]–[14]. With the emergence of numer-
ical simulation software, numerical simulation technology
has been gradually applied to pillar stability analysis. For
example, a pillar was designed by Deng et al. [6] using the
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combined methods of Monte-Carlo and FLAC. Using
FLAC3D software, a numerical calculation model was estab-
lished by Shnorhokian et al. [15] to analyze the safety
of different pillar sizes under different stopping sequences.
Mortazavi et al. [7] obtained the deformation and failure pro-
cess of ore pillars under natural conditions and analyzed the
influence of the geometry of the pillars and the mechanical
parameters of the rock mass based on UDEC software. All of
the studies have greatly improved our understanding of pillar
stability, but they are far from solving it completely because
of the following disadvantages of the above methods:

a. The stability of a pillar is affected by many parameters,
and it is difficult for these two methods to take into
account the influence of uncertainties.

b. The boundaries of the safety factor are indefinite and
unclear. Theoretically, a pillar with FS>1.0 is stable.
However, there have been failed pillars with FS>1.0 in
actual engineering scenarios [6], [12].

c. Due to the nonlinear behavior of pillars with high stress
in deep mines, the mechanism of pillar failure used in
the existing methods is not suitable.

In recent years, data-mining techniques and intelli-
gent evaluation models have been successfully applied
to pillar stability analysis and have achieved remarkable
results with the increasing availability of pillar parameters.
Cauvin et al. [16] proposed a probabilistic model for pillar
stability prediction based on the uncertainty of the data and
themodel. Tawadrous andKatsabanis [17] used artificial neu-
ral networks (ANN) to predict the stability of crown pillars
left over large excavations, and the result showed that the
cloud model is a feasible and reliable method for compre-
hensive stability evaluation of pillars. Logistic regression was
introduced by Wattimena [14] and Wattimena et al. [18] to
calculate the probability of pillar failure, and these authors
found that it is a useful tool for analyzing pillar stability.
Griffiths et al. [19] proposed a model for predicting the
stability of pillars combined with random field theory and
the Monte-Carlo method. Zhou et al. [20] applied supervised
learning methods, such as Fisher discriminant analysis, sup-
port vector machines (SVM), random forest (RF), linear dis-
criminant analysis (LDA) and multilayer perceptron neural
networks, to predict pillar stability and then analyzed the
performance of the algorithms by comparing the prediction
results. All of the above intelligent models can help us to
understand pillar failures, but each of them has its advantages
andweaknesses [20]–[22], and none can be applicable for any
engineering. Moreover, the focus of each evaluation index
is different. For example, Kappa and ROC curves are more
useful to unbalanced data. For pillar stability prediction, it is
particularly important to predict of failure and unstable cases
correctly, which address a need to introduce metrics to com-
pare and analyze the performance of models for cases subject
to different classes. Both of these address a need to propose
moremethods and evaluationmetrics to predict pillar stability
for underground mines.

Stochastic gradient boosting (SGB) is an improved
boosting machine learning algorithm proposed by
Friedman [23], [24] for regression and classification stud-
ies. The SGB algorithm has the ability to model nonlinear
relationships and remains robust in the absence of data and
outliers and is particularly suitable for processing high-
dimensional data [25]. Additionally, it is not necessary to pre-
select or transform predictor variables [26], and the prediction
accuracy can be increased based on a portion of the training
data, which also helps to avoid overfitting the data. The
SGB algorithm has been successfully applied in many fields,
such as in studies of rock bursts [27], landslides [28], res-
idential structure damage [29], digital imagery [26], time-
series data forecasting [30], and tree species [31]. Therefore,
it is of interest and motivating to predict pillar stability using
the SGB model. The objective of this study is to verify the
feasibility and reliability of the SGB algorithm on pillar
stability prediction, compare the performance of the SGB
and other three models using more evaluation indexes, and
investigate the relative importance of influencing variables.
It is hoped that the results can provide early warning to mine
management for appropriate actions to reduce damage and
save lives.

In this paper, pillar stability is predicted using the
SGB model. Considering the ambiguity and uncertainty of
the evaluation indexes, some typical representative indexes
are selected to establish the evaluation index system, and
a 10-fold CVmethod is introduced to optimize the parameters
of the model. The performance is evaluated by comparing
two global classification metrics (classification accuracy and
Cohen’s Kappa coefficient), three within-class classification
metrics (recall, precision, and F-measure) and ROC curves
of SGB, RF, SVM and MLPNN models. The sensitivity of
factors is also investigated by calculating the relative variable
importance.

II. DATABASE AND PARAMETERS
A. MECHANISMS OF PILLAR FAILURE
The overall response of a pillar to the loading caused by
mining depends on the pillar size, the geological structure
of the rock mass and the surface constraints imposed by the
surrounding rock on the pillar [4], [5]. The failure modes
of pillars can be divided into three types [32]: compression
shear failure, tensile failure and shear failure along the weak
surface. The compression shear failure is caused by a shear
fracture of the pillar along the joint crack under the action
of shear stress and continues to develop inside the pillar,
causing the bearing area of the pillar to gradually shrink and
eventually destroy the pillar. Tensile failure occurs when pil-
lars crack with longitudinal joint fissures under the effect of
transverse tensile stress. Tensile failure refers to the cracking
of pillars with longitudinal joint fractures under the action
of transverse tensile stress. The shear failure along the weak
surface is the failure of pillars with weak interlayers caused
by transverse shear stress, which is generated by the sandwich
extrusion under the effect of axial stress. Overall, the stability
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of pillar is closely related to geometric structures, geological
structures and the redistribution of pillar stress states caused
by mining activities.

B. PARAMETER ANALYSIS
To establish classification models, some pillar parameters
should be used. Meanwhile, to avoid overtraining the
model, three principles of choosing parameters need be
relied upon [33]. Firstly, the sensitive and stable parameters
reflecting properties of pillar stability should be used as the
discriminant indicators. Secondly, the parameters should be
physically independent of each other. Finally, the parameter
data should be obtained easily or readily available. The sta-
bility of a pillar is affected by many factors and the major
influencing factors are: 1) the loading of the pillar, 2) the size
of the pillar, 3) the geological structure and the strength of
the ore body itself. In general, the pillar width, pillar height
and the ratio of width to height can reflect the size of a
pillar, particularly, the ratio of pillar width to height affects
the potential for violent failure of pillars [34] and is the
main reference index for the design and strength estimation
of pillars in underground mines. The pillar stress can be
related to the stress state of the pillar, and the strength of
the ore body can be determined by the uniaxial compressive
strength of rock. Meanwhile, all or part of these parameters
have been utilized to predict the pillar stability and strength.
For example, the pillar width and depth were selected by
Esterhuizen et al. [35] to analyze pillar stability. The study of
Song et al. [36] showed that pillar width, mining depth and
room width have the most significant influence on the sta-
bility of the pillar. Wattimena [14] and Wattimena et al. [18]
predicted pillar stability by developing their model using the
ratio of pillar width to height and the ratio of pillar strength
to stress. Ghasemi et al. [37] developed their model using
parameters including depth, pillar width, pillar length and
loading condition. Zhou et al. [12] used five pillar parameters,
such as pillar width, pillar height, the ratio of pillar width to
pillar height, and the uniaxial compressive strength of rock
and pillar stress. Based on all of the above analysis, five
parameters, including pillar width (X1), pillar height (X2),
the ratio of pillar width to pillar height (X3), the uniaxial
compressive strength of rock (X4) and pillar stress (X5), were
selected in this study because they are widely used in pillar
stability prediction tasks with good results and the data can be
accessed easily. Note that the stability of pillar stability is also
affected by other factors, such as microseismic monitoring
signals and the characteristics of dynamic disturbances. But
the data of the two indicators are difficult to obtain, and
it can be found that the pillar stability can still be better
predicted without the two indicators based on the results
of [13], [14], [18], [19], and [37]. Therefore, microseis-
mic monitoring signals and the characteristics of dynamic
disturbances were not used as evaluation indicators in this
study.

TABLE 1. Descriptive statistics of the five indicators for the SGB model.

C. CASE DATA AND PRELIMINARY ANALYSIS
To measure and compare the performance of the SGB
model, 205 pillar cases (available in Table S1) from under-
ground mines were directly collected from some publica-
tions over the period of 1972-2017. The data of the pillar
cases were collected from eight different rock mines, which
are: Wengfu Phosphate Mine in China [32]; Stone mines in
USA [12], [35]; Westmin Resources Ltd.’s H-W mine
in Canada [5]; Zinkgruvan mine in Sweden [38]; open
stope mines in Canada [39]; Selebi-Phikwe mines in South
Africa [40]; Elliot Lake uranium mines in Canada [41]. All
data are from these literature and the sources are reliable
without any processing.

A box graph of all cases is shown in Fig. 1. Apart from
the ratio of pillar width to pillar height (X3), the medians of
most of the parameters are not in the center of the boxes,
indicating that the distribution of these parameters is not
symmetric. Meanwhile, there are several outliers with very
large or small values for all parameters except for the uniaxial
compressive strength of rock (X4). The statistical features
(maximum, minimum, mean and standard deviation) of the
reduced data set are shown in Table 1.

There are three types of pillar stability for the dataset:
stable (S, 73 cases), unstable (U, 37 cases) and failed
(F, 95 cases). Fig. 2 shows the scatterplot matrix of the
dataset. The distribution of each parameter is demonstrated
on the diagonal, and numbers in the upper panels represent
the correlation of two parameters. From Fig. 2, it can be
seen that most parameters have a relatively poor correlations
(R < 0.5) with one another [22]. We can also find that pillar
width is substantially correlated with pillar height and UCS is
moderately correlated with pillar stress. Additionally, it can
also be seen that the dataset is quiet widely distributed and the
distribution of most influencing variables is not symmetric.

The graph of pillar stability classification with respect to
each distinct indicator is shown in Fig. 3. Ideally, to be easily
and obviously classified, the values of all indicators should
have only one class label value in the figure. It is apparent that
the values of some indicators have more than one correspond-
ing value for the same pillar stability classification in some
events. This may be because the indicator values do not have
apparent limits among the classes of pillar stability. It can
also be concluded from Fig. 3 that none of the parameters
can distinguish the stability of the pillar well.
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FIGURE 1. Box plot of each variable for rock burst cases.

FIGURE 2. Scatter matrix of the five parameters of pillar stability.

III. METHODOLOGY
A. DETAILS OF THE SGB MODEL
The SGB algorithm was built by Friedman [24] by
introducing the idea of gradient descent into the boost-
ing algorithm. Gradient boosting is an ensemble learn-
ing algorithm combined with boosting and decision trees,

and the new model is built along the gradient descent
direction of the loss function of the previously estab-
lished model. The essence of the SGB algorithm is
to minimize the loss function between the classification
function and real function by training the classification
function F ∗ (X ).
The distribution of the loss function is the key to the

application of the SGB model [20], [24], and SGB algorithm
has applicability to all loss functions. For K -class problem,
surrogate loss function (multi-class log-loss) is the loss func-
tion suggested by Friedman [23], [24] and has been widely
applied in many fields [20], [22], [25], [27]–[29]. The loss
function can be expressed as

ψ(yk ,Fk (X )K1 ) = −
K∑
k=1

yk log pk (X )

= −

K∑
k=1

yk log[ exp(Fk (X ))/
K∑
l=1

exp(Fl(X ))]

(1)

where X = {x1, x2, ...xn} is the input variable, k is the
number of classes, y is the output variable, pk (X ) is the
probability.
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FIGURE 3. Pillar stability with respect to each indicator.

Then the following equation can be obtained

ỹim = −[
∂ψ(yi,Fj(xi))Kj=1

∂F(xi)
](Fj(X )=Fj,m−1(X ))K1

= yki − pk (xi) (2)

where yki − pk (xi) is the current residuals, and thus, K -trees
are induced and. Meanwhile, this will produce K trees each
with L-terminal nodes at iteration m, Rklm.

Then, each terminal node of each tree can be solved by a
separate line search, as shown in Eq. (3).

γlm = argmin
γ

∑
xi∈Rlm

ψ(yi,Fm−1(xi)+γ ) (3)

Each of the functions is updated and then the SGB is
established. The detailed description of SGB algorithm can be
found in [27], [29], and [42]. As mentioned in these studies,
there are three key parameters for the SGB algorithm: the
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number of trees (boosting interactions, M ), the interaction
depth (the max tree depth, J ) and the shrinkage (the learning
rate, v). These hyper-parameters have to be tuned to improve
the generalization and performance of an SGB model.

B. MODEL PERFORMANCE EVALUATION
One of the basic tools for assessing the confidence of the
classifiers is the confusion matrix. The confusion matrix is
an m × m matrix, as shown in Eq. (4). For each model, a
confusion matrix is presented [43]. To analyze the predictive
performance of the three models, two global classification
metrics of the classification accuracy and Cohen’s Kappa
index, and three within-class classification metrics of recall,
precision, and F-measure are utilized to analyze the predictive
performance and generalization ability of the algorithms.
Note that the symbols in this section are different to that in
section A.

matrix =


x11 x12 · · · x1m
x21 x22 · · · x2m
...

...
. . .

...

xm1 xm2 · · · xmm

 (4)

where xii on the main diagonal represents the number of
samples belonging to class i that are predicted, xij represents
the number of samples belonging to class i that are predicted
to class j, and m is the number of classes.
The discriminant ability of the models can be evaluated

according to the discriminant accuracy rate, and the accuracy
can be calculated as Eq. (5). Cohen’s Kappa is the index used
to assess inter-rater reliability when coding categorical vari-
ables. The statistic is also considered to be an improvement
over using percentage to evaluate the reliability [44]. The
Kappa can be given by Eq. (6).

Accuracy = (
1
n

m∑
i=1

xii)× 100% (5)

Kappa =

n
m∑
i=1

xii −
∑m(xi+ · x+i)

n2 −
m∑
i=1

(xi+ · x+i)
(6)

where n is the number of total samples in the dataset, xi+ is
the number of samples belonging to class i, and x+i is the
number of samples that are predicted to class j.

The range of the Kappa value is from -1 to 1 and can be
divided into six groups to represent different levels of consis-
tency (as shown in Table 2). In general, if the value of Kappa
is less than 0.4, it represents that the strength of agreement is
poor, and if the value of Kappa is greater than or equal to 0.4,
then the strength of agreement is good [33], [45].

For pillar stability problems, not only the predictive accu-
racy of classifiers for all samples, but also the predictive
performance on samples subject to a certain class should be
considered. Three within-class classification metrics, recall,
precision and the F-measure, are widely used to evaluate the

TABLE 2. The basic scale of agreement with the Kappa value.

discriminant power of models on cases with a certain grade.
Precision is defined as the ratio of the total number of samples
with a certain grade classified correctly to the total number
of cases of that grade assessed by a model. Recall is the ratio
of the total number of cases with a certain grade classified
correctly to the total number of cases of that grade [46]. The
two metrics are often selected to provide a single measure
called the F-measure. The three metrics are given as follows:

Recalli = (
xii

m∑
j=1

x+j

)× 100% (7)

Precisioni = (
xii

m∑
j=1

xj+

)× 100% (8)

F-measure =
2× Recall× Precision
Recall + Precision

(9)

A receiver operating characteristic (ROC) curve is a graph-
ical representation of true positives out of the positives
and false positives out of the negatives [33], [47]. The
ROC curve can be used to compare the performance of
different algorithms. Generally, a classifier has superior dis-
criminant performance when its ROC curve is in the upper-
left corner. The performance of different classifiers can also
be analyzed by the area under the ROC curve (AUC). The
larger the AUC is, the better the performance of the classifier
is. In this study, the method is also applied to evaluate and
compare the discriminant performance of the four models for
predicting pillar stability.

C. MODEL DEVELOPMENT AND PARAMETER
OPTIMIZATION
To train and validate the performance of classifiers, the orig-
inal dataset should be divided into two subsets: a training set
and a testing set. The selection of training data is important
for the training of the classifiers and the training set must be
representative of the whole dataset. For a small training set,
the relationship cannot be properly learned. For a too large
training set, the generalization capability cannot be verified
and over-fitting may occur [22], [48]. Thus, the training and
testing set is often determined by an optimization analysis.
In this study, 165 cases (80% of the original data) are used
as the training set, and the remaining 40 cases are taken as
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FIGURE 4. Tuning parameters for determining the optimal model of SGB. (a) Accuracy; (b) Kappa.

the testing set after optimization analysis and kennard-stone
sampling.

To optimize the key parameters of the SGB model
and to obtain better discriminant performance, the 10-fold
CV method, which is the number of folds recommended
by Rodriguez et al. [49], is used as the validation method.
During the process of 10-fold CV, the training set is randomly
divided into 10 folds: the training sub-set (9 folds) and
the validation set (the remaining one fold), as can be seen
in Fig. 5. The training sub-set is used for machine learning,
and then classifiers are established by matching some hyper-
parameters. The validation set is used to adjust the parameters
and validate the generalization capability of the classifiers.
The process is repeated 10 times on different training sub-
set, and at the end, every sample has been used for test-
ing exactly once and for training 9 times. The accuracy of
10-fold CV is calculated by simply averaging the
10 individual accuracy, and the whole 10-fold CV is also
repeated 10 times to obtain the reliable results. Then the
classifiers with the optimal hyper-parameters are trained
using the whole training set, and the testing set (which has
never been used to develop the classifiers) is used as an
independent testing set to test the predictive ability of the
optimal models.

It is generally considered that a model with better general-
ization capability can be obtained by 10-fold CVmethod. But
the generalization capability of models are obtained based
on the training set and considered to be able to generalize to

other unknown samples. The testing set is used as unknown
samples to test the generalization capability of models.

As described in section 3.1, the SGB algorithm has
three key parameters: the number of trees (boosting inter-
action, M ), the interaction depth (the max tree depth, J )
and the shrinkage (the learning rate, v). To obtain the best
performance of the SGB model, the parameters are examined
using 10-fold CV method. According to many literatures,
tuning parameters v = (0.001, 0.01, 0.1),M = (50, 100, 150,
. . ., 500), J = (1, 2, 3, . . ., 9) with a 10-fold CV process
in this paper. The accuracy and Cohen’s Kappa are used to
determine the best combination of the SGB model, and the
results are shown in Fig. 4. The final model can be selected
using the largest value of accuracy andKappa. As can be seen,
the range of accuracy of SGB models is from 60% to 81%,
and the value of Kappa falls into the range [0.35-0.65]. It also
can be found that the best choice of the three parameters is
M = 150, J = 8, v = 0.1, and the accuracy and Kappa of the
SGB model are 81.21% and 0.6420, respectively.

To verify the feasibility and reliability of the SGB model,
the performance of the SGB algorithm was compared
with the performance of SVM, RF and MLPNN models.
These algorithms were chosen because they are increas-
ingly used in pillar stability analysis, and all of them have
higher discriminant performance. SVM, RF and MLPNN
models are also optimized by the 10-fold CV method.
Details of the key parameters choice in this study are as
follows:
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FIGURE 5. Overall procedure for pillar stability prediction using supervised learning
methods.

(1) RFmodel: The algorithm has two parameters (one is the
number of classification trees ntree, the other is the number of
variables mtry) that need to be optimized. mtry is more sensi-
tive for discriminant accuracy, and the discriminant accuracy
is affected little by ntree. ntree and mtry are tested for the
number of input factors of the pillar cases. In this paper,
the tuning range for the number of trees is 100–1000 with
50 interval. Moreover, there are six indexes in this study, so
the values of mtry can be (1, 2, 3, 4, 5, 6). The best choice of
ntree and mtry is 500 and 3, respectively.

(2) SVM model: According to the research of
Zhou et al. [12], Dong et al. [50], and Samui [51], the key
parameters of the SVMalgorithm are the constraints violation
C and sigma. The sigma parameter can be approximately
estimated by using the R software ‘‘sigest’’ function. Based
on the 10-fold CV method, C is tuned for 10 values (2−1, 20,
21, 22, 23, 24, 25, 26, 27 and 28) to find the optimal parameter
in this study. Finally, C = 20 and sigma = 0.3525 are
identified as the best values.

(3) MLPNN model: The model tunes the number of hid-
den neurons H (1, 2, 3, 4, 5, 6, 7, 8, 9 and 10) and tries
10 random-weight initializations. The results show that the
optimal parameter values are as follows: hidden units H = 5,
decay = 0.1.

Thus, the over procedure for pillar stability prediction
using the SGBmodel in this study can be expressed as shown
in Fig. 5.

IV. RESULTS AND DISCUSSION
A. DISCRIMINANT RESULTS AND PERFORMANCE
ANALYSIS
The prediction results of the four optimum models are given
in Table 3. The values on the diagonal are the numbers of
samples that are correctly predicted. The number of samples

that are correctly predicted by the SGB model (with a total
number of 36) is the largest. Although the number is lower
than those of the SGB model, the RF (34 samples are cor-
rectly predicted), SVM (33 samples are correctly predicted)
and MLPNN (32 samples are correctly predicted) can also
achieve satisfactory results. Therefore, all of the four models
have high discriminant power for pillar stability, and the
performance of the SGB model is the best.

The value of accuracy and Kappa for each model are
shown in Table 4. For the training set, accuracy and Kappa
are calculated by 10 times 10-fold CV, and the accuracy of
the models falls into the range [71.52–93.33%], as shown
in Table 4. Obviously, the RF model exhibited the highest
average accuracy rate (93.33%), followed by the SVMmodel
with an average accuracy rate of 83.03%, then the SGB and
MLPNN models with average accuracy rates of 81.21% and
71.52%, respectively. Meanwhile, the Kappa values of the
four models fall into the range [0.5083–0.8930], and the
agreement strength of Kappa in the SGB, RF, SVM, and
MLPNN models is from moderate to perfect according to the
basic scale shown in Table 2. It is obvious that the Kappa
of the RF model is the highest with a value of 0.8930, and
then the SVM, SGB and MLPNN models rank successively.
The agreement strength of the SGB model is substantial. For
the testing set, the accuracy of the models is from 80.00 to
90.00%, and the SGB model has the highest accuracy rate
(90.00%), followed by the RF, SVM and MLPNN mod-
els with accuracy rates of 85.00%, 82.50% and 80.00%,
respectively. Meanwhile, the Kappa values fall into the range
[0.6548–0.8351]. The agreement strength of Kappa is from
substantial to perfect. It is obvious that the Kappa of the SGB
model is the highest with a value of 0.8351, and then the
RF, SVM and MLPNN models rank successively. Therefore,
the SGB model has superior generalization ability over the
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TABLE 3. Prediction results of the testing set across the three models.

TABLE 4. Comparison of accuracy and Kappa for the four models.

testing samples. As known, the performance of classifiers
mainly depend on the performance on yet-unseen data. Thus,
it can be concluded that the comprehensive prediction per-
formance of the SGB model is the best, and the model is
feasible and applicable for pillar stability prediction. Mean-
while, the results show that all four models have a relatively
balanced generalization ability for the training set and testing
set, which indicates that it is necessary to optimize the models
using the 10-fold CV method [22], [47].

The results obtained for three within-class classification
metrics based on the testing set are given in Table 5. Notably,
the recall, precision and F-measure of the four classifiers for
pillar stability prediction based on the testing set exhibit large
deviations (recall= 14.29–100%, precision= 75–100%, and
F-measure = 25.01–95%). For samples subject to class F
and U, the best discriminant performance is exhibited by
the SGB model, with recall of 100 and 71.43%, precision
of 90.48 and 100%, and an F-measure of 95 and 83.33%,
respectively. For samples subject to class S, the performance
of the four classifiers is similar. As known, it is important
to predict of failure and unstable cases correctly for pillar
stability prediction in underground mines. Thus, it can be
concluded that the SGBmodel is more suitable for the predic-
tion of pillar stability in underground mines. Moreover, the
RF and SVM models also achieve satisfactory results in all
cases. However, the generalization ability of MLPNN model
is poor for cases subject to class U.

For the testing set, the ROC curves of the four models are
obtained and shown in Fig. 6. From Fig, 6, it can be seen that
the shape of the ROC curves of SGB, RF, SVM and MLPNN
models are from right to left, successively, denoting that the
SGB model achieves higher overall performance. The AUC
values of the four classifiers are in the range of 0.791-0.871.
According to the classification standard of AUC value in [33],

FIGURE 6. ROC curves and AUC values of the four models on the testing
set.

the generalization of the four classifiers are from moderate to
good. It is obvious that the highest AUC is obtained by the
SGB model with an AUC equal to 0.891, followed by RF,
SVM and MLPNN models. Both of these indicate that the
performance of SGB model is the best and then RF, SVM
and MLPNN models, respectively.

Based on the above analysis, it can be concluded that
the SGB model with superior generalization is feasible and
reliable for the prediction of pillar stability in underground
mines.

B. RELATIVE VARIABLE IMPORTANCE
It is meaningful to analyze the sensitivity of parameters
when taking measures to prevent pillar failure in underground
mines. However, it is difficult to determine the sensitivity
because all of the parameters are sensitive to pillar stability
and the correlation effect of input parameters. Moreover,
there are many methods to obtain the sensitivity of param-
eters [33], [47], [52]–[56]. In this study, the sensitivity of
parameters was investigated using the method of relative
importance score based on the optimum SGB and RF mod-
els. The selection for these two models was based on their
outstanding performance on the testing set.

The generic function varImp () in the caret package
of R software can be used to calculate the importance
of parameters. The final variable importance was calculated
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TABLE 5. The values of three within-class classification metrics for each model.

FIGURE 7. Ranking variable importance associated with pillar stability
discrimination by SGB and RF.

by averaging the relative variable importance from the
optimum RF and SGB models. Variable importance scores
are normalized (the sum of all importance scores is one), and
the result is shown in Fig. 7.

It is obvious that pillar stress is the most sensitive factor
for pillar stability with the importance score of 0.407, indi-
cating that the factor has a significant influence on pillar
stability. The reason may be that the stability of a pillar is
mainly affected by the mechanical response of the pillar to
the load caused by mining, and the mechanical response is
directly related to the stress state of the pillar. It has also
been found that high pillar stress caused by high extraction
ratios can cause spalling of the pillar and spalling can initiate
when the average pillar stress exceeds about 10% of the
uniaxial compressive strength of the rock [35], [57]. The
importance of pillar stress is in accordance with that obtained
by Zhou et al. [20].
Second in sensitivity is the ratio of pillar width to pillar

height with an importance score of 0.360, illustrating that it is
also amajor influence factor on pillar stability. The ratio is the
main reference index for the design and strength estimation
of the pillars in underground mines. It was found that the
strength of a pillar decreased by nearly 60% when the ratio
of width to height changed from 1.0 to 0.5 [35]. Therefore,
the ratio of pillar width to pillar height should be considered
to predict the stability of pillars in underground mines.

The importance scores of pillar width is 0.169, suggesting
that the variable is also an important influence factor of pillar
stability. It can also be found that the uniaxial compressive
strength of rock (0.049) and pillar height (0.015) are not as
sensitive as the former three factors. This conclusion has also
been studied in [20].

As describe above, the pillar stress and the ratio of pil-
lar width to pillar height are the major influence variables
of pillar stability. Thus, the stability of pillars in under-
ground mines can be improved by improving the stress state
of pillars and optimizing the ratio of pillar width to pillar
height.

However, it should be noted that the relative importance
of variables depends on the dataset and models, and more
representative results can be obtained as more valid pillar
cases are available.

V. CONCLUSIONS
The SGB algorithm, along with RF, SVM and MLPNN
models were introduced in this study for the prediction of
pillar stability in underground mines. Five potential relevant
indicators, pillar width, pillar height, the ratio of pillar width
to pillar height, and the uniaxial compressive strength of rock
and pillar stress, were chosen as the prediction indicators.
10-fold CV method is applied to improve the generalization
ability of classification models. Based on the analysis above,
the following conclusions can be drawn:

(1) The shape of the ROC curve of the SGB model was
generally closer to the left and top axes than that of the other
models, and the accuracy, Kappa and AUC of the SGBmodel
on the testing sets were 90%, 0.8351 and 0.891, respectively,
indicating that the SGB can be considered to have outstand-
ing performance for pillar stability prediction. The order of
the performance of the four models is SGB, RF, SVM and
MLPNN successively.

(2) The SGB model with higher values of recall, precision
and F-measure can be a valuable tool for prediction of all
pillar cases in underground mines, particularly for the cases
subject to failure and unstable classes, followed by RF, SVM
and MLPNN models.

(3) Pillar stress and the ratio of pillar width to pillar height
were found to be the two most influential variables for the
prediction of pillar stability, which achieved 0.407 and 0.360
importance scores, respectively.
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In future research, more samples with other important
parameters can be introduced to develop the SGB model to
improve its feasibility and reliability, such as microseismic
monitoring signals and the characteristics of dynamic distur-
bances.
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