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ABSTRACT Deep neural networks are difficult to train due to the large number of unknown parameters.
To increase the trainable performance, we present a novel network model with moderate depth for three-
dimensional reconstruction. The proposed networkmodel, called SFResNet, only has eight layers, and sparse
feedbacks were added in the middle and last layers, which is mainly used to add the constraints and improve
the stability of the network model. In addition, a joint strategy is proposed to reduce the artificial Mosaic
trace at the seam of the patches; hence, SFResNet can also evaluate an input image of any size. Visually
pleasing output results can be produced with a reconstructed shape and normal surface. The experimental
results show the effectiveness of the proposed method.

INDEX TERMS 3D reconstruction, surface normal, residual network, sparse feedback.

I. INTRODUCTION
In recent years, many difficult problems in computer vision
have been solved by using the deep learning method, and
the accuracy and robustness of these methods have been
considerably improved. This is especially true in the fields
of image classification, object detection and identification.

Until now, many types of neural network structures have
been proposed, such as LeNet 5 [3], AlexNet 8 [4], VGG [6],
GoogleNet [5], ResNet [7], and GAN [8]. These networks
have been gradually deepened, and the training data set is also
becoming larger. Although the technology of deep learning is
especially effective for issues of classification, there are still
many problems that cannot be solved with 3D reconstruction.
The main reason is due to two aspects: first, collecting a large
number of training pairs for an image and its corresponding
3D shape is not easy; second, CNN is good at classification
and probability estimation; but, the 3D shape is a continu-
ously changing surface, and it is difficult to directly fit these
functions. Therefore, when using a deep neural network to
solve these problems, the training set is not usually large
enough to train the deep neural network model.

In this study, we improve the network structure of
ResNet [7] and propose a sparse feedback residual net-
work called SFResNet, which includes 8 layers with sparse
‘‘shortcut connections’’ (in this article, we call the ‘‘short-
cut connections’’ forward feedback). Figure 1 shows the
structure of SFResNet. SFResNet only includes two for-
ward feedbacks, which are derived from the input layer. One
feedback is connected to the middle layer, and the other is
connected to the last layer. The two feedbacks can provide
an effective constraint for the loss function and help to train
reasonable network parameters. Experimental results show
that the feedbacks in SFResNet can accelerate the conver-
gence speed of the loss function and improve the model’s
robustness.

II. RELATED WORKS
Surface height map estimation is an important task in
3D reconstruction. This task differs from the general scene
depth estimation, and it contains more details and high-
frequency characteristics. The existing methods, such as
radar or others equipment methods, can only reconstruct a
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FIGURE 1. The Architecture of SFResNet.

large scale scene depth but will not work in a 3D reconstruc-
tion of small scale objects. Of course, there are manymethods
that have been used in 3D surface reconstruction, such as
photometric stereo [12], laser triangulation [27] and shape
from X [1]. These methods always establish a prior-based
model for the optical imaging. Moreover, most of the prior-
based methods built the objective function by simplifying
the mechanism of object imaging and have not considered
the effect of noise or other factors. Hence, they only can
restore a height map from clean and multiple images. The
surface height map estimation from one single image is still
a challenging issue in computer vision. In addition, the prior-
based methods involve a complex optimization problem, and
most of the prior-based methods can scarcely achieve a high
performance without sacrificing computational efficiency.
Furthermore, the prior-based models in general are non-
convex and involve several manually chosen parameters [2].

In recent years, the deep convolution neural network
(CNN) [10], [11] has undergone a series of breakthroughs
in many applications of computer vision [12], [13], such as
image classification, recognition and target detection. The
features of CNN are mainly obtained by increasing the depth
of the network model; then, the lower, middle, and advanced
features can be gradually obtained. In general, the advanced
features will be used to connect with one or several fully
connected layers. The reason for obtaining the advanced
achievement in computer vision is mainly because many rich
characteristics of different levels can be extracted by training
the deep neural network.

Liu et al. proposed a method based on deep CNN
[21] and CRF to estimate the depth from a single input

image [25], [28]. David et al. predicted depth, the surface
normal and semantic labels by using a common multi-scale
convolutional architecture [29]. These methods are mainly
used to estimate the large scale scene depth, such as for
streets or natural scenes. In ICCV2017, George Trigeorgis
pursued a data-driven approach to estimate the surface normal
from a single intensity image [26], focusing in particular on
human faces, and he trained a fully convolutional network
to accurately recover facial normals. Another study [25] pre-
sented a novel method based on CNN to directly estimate
the height map from a single texture image. The methods
from these two references are different from the general scene
depth estimation, and their estimated height maps contain
more high-frequency characteristics or details.

Recent studies also revealed many visual
tasks [14], [16], [17], especially low-level vision problems,
which have considerably benefited from a very deep network.
There are several studies [18]–[20] that have performed
denoising problems using deep neural networks. Refer-
ence [18] found that a convolutional network offered similar
performance using the blind denoising setting compared with
other techniques using the non-blind setting. However, train-
ing a convolutional network architecture requires substantial
computation and many thousands of updates to converge.

In a deep network structure, can all these extracted fea-
tures be used in the best way? There may be many useless
layers or useless parameters and some high-level features that
may be actually useless for low-level applications of image
processing. Reference [22] claimed that training a multi-
layer perceptron (MLP) with many hidden layers can lead
to problems, such as vanishing gradients and over-fitting,
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and [22] also found that back propagation will work well and
concluded that deep learning techniques are not necessary.
Therefore, a moderate depth neural network is proposed in
this paper, which is an 8-layered deep residual network with
sparse feedback loops. Details of the proposed network will
be introduced as following.

III. DEEP RESIDUAL NETWORK WITH
SPARSE FEEDBACKS
In the design and application of a neural network, researchers
are only required to focus on the input and output, the number
of hidden layers, and the initial parameters. As the network
depth gradually increases, the parameters for the neural net-
work are also difficult to tune. There are also no relevant
theories that have been presented on how to tune these param-
eters. Moreover, updating neuron parameters depends on the
gradient: the more far away from the output layer, the more
difficult it is to update the neuron parameters. It will be
invariant or will dramatically change, which is called gradient
disappearance or the gradient explosion problem. Although
a dropout strategy or batch normalization has been adopted
to reduce explosion problems, it still often occurs, and with
more layers for a neural network, the gradient disappear-
ance or explosion problem is more obvious.

This question reminds us of the amplifier cascade problem
in electronics. When connecting a circuit, the output signal
is usually unstable. A single negative feedback or inter-stage
negative feedback will generally be added to stabilize the
output signal. We found that this idea has been used in [7].
The residual learning framework (ResNet) in [7] is very
similar to the negative feedback in the amplifier cascade
and considerably improves the performance of the convo-
lution neural network. Moreover, it won the first place for
ILSVRC & COCO classification, ImageNet detection, Ima-
geNet positioning, COCO detection and COCO segmentation
in 2015.

However, the results of ResNet are not better than that
of a convolution neural network without feedback for the
problem of removing noise. For example, DnCNN [9] is good
at removing Gaussian noise. Therefore, we combine the net-
work structure of ResNet with DnCNN, and propose a deep
residual network with sparse feedback loops for 3D recon-
struction, which is called SFResNet. The proposed network
structure is shown in Fig. 1.

The main function of the structure in Fig. 1 is to obtain
the object’s surface normal from its input image. Since the
surface normal contains three values, the architecture shown
in Fig. 1 contains three parallel branches, and each branch
estimates one parameter of the surface normal. The training
process can be modeled as the loss function to learn the
trainable parameters, 4, of SFResNet as follows:

f (4) =
1
N

N∑
i=1

‖R(ni, xi, 4)− xi‖2 (1)

where {(xi,ni)} represents N image-normal training (patch)
pairs; SFResNet aims to learn a mapping function
R(ni, xi) = yi, to predict the surface normal of the input
image. R also represents the residual network structure,
whose parameters, 4, must be trained. Next, we introduce
the details of the proposed network structure.

A. NETWORK STRUCTURE
Inspired by the residual learning structure, we propose a deep
residual network with sparse feedbacks for 3D reconstruc-
tion, and the structure of the SFResNet is shown in Fig. 1.
Figure 1 contains three parallel branches, and each branch
has the same network structure; however, the function of
every branch is different, which is responsible for estimating
a parameter of the surface normal. Each branch in Fig. 1 con-
sists of eight layers. ‘‘Convolution’’ block is in the first layer.
This layer has no ‘‘Batch Normal’’ or ‘‘ReLU’’, i.e., the
information produced by this layer is the original information
after filtering the input image. Then, it is used to estimate the
residual information by feeding back to the middle and to the
last layer. Six ‘‘Convolution+Batch Normalization+ReLU’’
blocks are in the middle layers. The numbers behind each
middle layer are the dilation factors, which are set to 1, 2, 3,
3, 2 and 1, respectively. By using increasing dilated factors,
the first half layers can learn the residual information using
an enlarged receptive field, and the latter half layers can
refine the residual information using the decreasing dilation
factors. To ensure that the estimated information does not
considerably deviate, two forward feedbacks from the first
layer were added. The first is connected to the middle of
the dilation convolution. The second is connected to the last
layer. The main task of SFResNet is to estimate the residual
information between the input image and the output surface
normal.

B. IMPLEMENTATION
Due to the limitation of training pairs, we must reduce the
size and parameters of the neural network. We cut the input
training image into small patches to increase the number of
training pairs and added the patches into the network for train-
ing. Of note, the dilated convolution with dilatation factor 3
pads 3 symmetrical pixels in the boundaries of each feature
map. Batch normalization (BN) is adopted right after each
convolution and before the activation function. We initialized
the weights as in [15], and Adam is used as the minimiz-
ing function with a mini-batch size of 32. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus.
We use a weight decay of 0.001 and a momentum of 0.9. The
dropout is not used in the training phase.

C. JOINT STRATEGY
Since the input of the neural network is an image patch,
the input image at the test stage also needs to be divided into
small patches. Then, the output surface normal patches are
required to be jointed together. If the surface normal patches
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FIGURE 2. Human eye perception model and the joint templates (From
left to right: human eye perception function, positive joint template and
negative joint template.)

FIGURE 3. Joint strategy for the surface normal patches (The left shows
the dividing strategy, and the right shows the joint strategy.)

FIGURE 4. Estimated surface normal (On the left is the directly jointed
surface normal, in the middle is the weighted fused surface normal, and
on the right is the ground truth.)

are directly jointed, the restored surface normal may cause an
annoying artifact boundary, shown in the left image in Fig. 4.
There are twomethods to deal with this problem: symmetrical
padding and zero padding. We used the symmetrical padding
strategy. Although this strategy is good for an image with
a rich texture, it is not useful for a surface normal with a
high continuity. To reduce the artifact boundary, we propose
a new joint strategy based on the perception model of human
eyes [23]. Physiological research has shown that the human
visual system has characteristics of rapid perception, and
the Gabor function can well simulate these mechanisms of
human eye perception. The 2D Gabor function is defined as
follows:

Gabor(u, v, δ) =
1

2πδ2
e−

u2+v2

δ2 (2)

where δ is the variance of the Gabor function, and (u, v)
represents the direction of the Gabor function. The left image
in Fig. 2 shows the 2D Gabor function. To reduce the artifact
boundary of patches, such as those shown in the left image
in Fig. 4, we produced positive and negative joint templates
along the seams of the patches, as shown in the last two
images in Fig. 2. Then, the operation of dividing patches,

which will cut up along the black border and the red border,
respectively, as shown in the left image in Fig. 3, is performed
twice for one input image. Each patch is put in SFResNet to
obtain the estimated patch surface normal. According to the
above dividing principle, the estimated patch surface normals
will be jointed to obtain two surface normal images. The
surface normal jointed along the black border is defined
as n1, and the surface normal jointed along the red border
is defined as n2. The new surface normal vector is generated
by the weighted sum of n1 and n2 according to the following
equation:

nnew = w1n1 + w2n2 (3)

where w1 represents the positive template, w2 represents the
negative template (w1 + w2 = 1), and the weighted sum is
determined according to the principle of Fig. 3. The weighted
fused nnew is shown in the middle image of Fig. 4. The left
image in Fig. 4 is the surface normal that is directly jointed
using patch surfaces, and the right image is the ground truth of
the input image. As shown, nnew is more similar to the ground
truth visual effects.

IV. DEEP RESIDUAL NETWORK
WITH SPARSE FEEDBACKS
In our opinion, a very deep network architecture requires
a huge training set; however, for many computer vision
tasks, a large number of training samples are not easy to
obtain. Nevertheless, small training samples can be easily
constructed.

To verify the effectiveness of the proposed SFResNet,
we evaluated our proposed model and method on Photex
texture database. The image in the Photext database is
monochrome. Many intensity images in different lighting
directions were captured in this database, and rock images
with resolution of 512× 512 were used in these experiments.
There are ten types of rock images, which include aab,
aaf, aai, aaj, aam, aan, aao,aap, aar and aas. We divided
each rock image into 16 pieces (each piece had a resolution
of 128× 128).
Since the input image size of SFResNet is small,

we divided each image piece into 32 × 32 patches. Then,
we could obtain 2685 patches; 2560 were used for training,
and 125 were used for testing.

Based on the joint strategy, SFResNet can receive images
of any size, which must be greater than or equal to 32 × 32.
Figure 5 shows the estimated surface normals for an input
image size of 128× 128. The image in the first column is the
input image, the second column shows the directly jointed
surface normals, the third column shows the weighted fused
surface normal, and the last column shows the ground truth.
From the reconstructed results, we observed that the weighted
fused surface normal reduced the artificial Mosaic trace at the
seam of patches, and more visually pleasing output results
were produced compared with that of the surface normal that
was directly jointed.
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FIGURE 5. Reconstructed surface normal (The first column shows the input images, the second column
shows the directly jointed surface normals, the third column shows the weighted fused surface normal,
and the last column shows the ground truth.)

FIGURE 6. Reconstructed height maps (The first column shows the input images, the second column shows the
reconstructed 3D shapes integrated with the weighted fused surface normals, the third column shows the 3D shapes of
the ground truth, and the last column shows the relative error maps.)

Figure 6 shows the reconstructed height maps, which
were integrated [24] from the reconstructed surface nor-
mals in Fig. 5. The first column shows the input images

of SFResNet; the second column shows the reconstructed
3D shapes, which are integrated from the weighted fused
surface normals, and we call them fused 3D shapes; the third
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FIGURE 7. Angular error statistics for the tested images.

FIGURE 8. Angular error statistics of less than 15 degrees for the tested images.

column shows the 3D shapes for the ground truth; the last
column show the relative error maps between the fused
3D shapes and the ground truth. The relative error map is
defined as:

err_map =
|z(x, y)− zgt (x, y)|

zgt (x, y)
|x,y∈� × 100% (4)

where x and y represent the Cartesian coordinates of one
pixel in the input image; � represents the total pixels in
each image. Z (x,y) and Zgt (x,y) represent the reconstructed
3D shape and the ground truth, respectively. Because the error
value is small, the relative error map computed according
to equation (4) looks slightly dark. To more clearly show
the error map, the intensity of the error map in Fig. 6 was
magnified ten times. The number on the right of the error
map represents the percentage distribution of the error map;
of course, these numbers were also magnified ten times.

The height error map in Fig. 6 consists of two parts: one
is the normal vector estimation error, and the other is the
height error caused by the integration of the surface normal.
To measure the estimated accuracy of SFResNet, we only
show the error statistics for the estimated surface normal
of SFResNet, and the angle error was used as the criterion
judgment, which is defined as:

angular_err(n, ngt ) = arccos
n · ngt
‖n‖

∥∥ngt∥∥ (5)

where arccos represents the anticotangent function of the
estimated surface normal and that of the ground truth. If the
difference between n and ngt is small, there will be a small
angular error. Figures 7 and 8 show the statistics for the angu-
lar errors for the 125 tested images. The vertical coordinate of
Fig. 7 represents the degree of angular error of the estimated
surface normal, and the horizontal coordinate represents the
number of tested images. As shown in Fig. 7, most of the
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angular error is less than 15 degrees. To show a percent of less
than 15 degrees, we re-ran the statistics, as shown in Fig. 8.
The meaning of the horizontal coordinate is same as with
Fig. 7, and the vertical coordinate of Fig. 8 represents a
percent of less than 15 degrees for the angular_err. As shown
by the distribution in Fig. 8, an angular error of less than
15 degrees is high and robust except for in a few images. The
reason for the large error for these few images may be that our
training data are not sufficient; however, the correctness of
most of the data verifies the rationality of our network model.

V. CONCLUSION
In this study, we designed and trained a deep residual network
with sparse feedbacks for 3D reconstruction from one image.
The surface normal of the input image was first estimated
by using the proposed SFResNet, and then the 3D surface
shape of the object was integrated from the estimated surface
normal. By using the method of estimating the surface nor-
mal, we produced a smoother surface height map than that
produced via direct estimation of the height map.

Our network can receive a random size image by using a
segmentation strategy for the input image, and the proposed
joint strategy can seamlessly connect the segmented small
patches. In addition, the forward sparse feedback improves
the convergence speed and the training stability of the net-
work model. Hence, visually pleasing output results can be
produced for different input images.
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