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ABSTRACT A new architecture based on deep data pipelining is proposed for implementing fractal
compression of high-resolution images in real time. The general idea is to partition an image into overlapping
range and domain blocks in which four range blocks constitute one domain block. In this way, two matching
operations can be performed simultaneously using two processor units. Further reduction in the encoding
time is achieved by exploiting the inherently high degree of correlation among pixels in the neighborhood
areas and restricting the search in the neighboring blocks only. The design is synthesized on Altera Stratix IV
field-programmable gate array and optimized at circuit level in order to achieve a high-speed implementation.
The proposed architecture is evaluated in terms of the peak signal-to-noise ratio (PSNR), the runtime,
the memory utilization, and the compression ratio (CR). Experimental results suggest that the proposed
architecture is able to encode a 1024× 1024 size image in 10.8 ms with PSNR and CR averaging at 27 dB
and 34:1, respectively. Meanwhile, the energy dissipation is approximately 0.5 W which is comparable to
the state-of-the-art fractal processors.

INDEX TERMS Digital circuits, field programmable gate arrays, fractal image compression, parallel
architectures, pipeline processing.

I. INTRODUCTION
Many organizations are now requiring video images from
closed-circuit television (CCTV) are recorded and archived
continuously for two weeks or more. For this purpose the
wireless-based high-resolution camera are becoming more
popular for CCTV application since this type of device offers
greater flexibility, better performance and easier installa-
tion. This flexibility comes with three major setbacks: huge
demand for storage, limited bandwidth and limited power
supply. Therefore image compression is an integral part of
the overall CCTV network. In this respect fractal image
compression (FIC) offers an alternative technology because
of its high compression efficiency, superior performance and
simplicity. The basic idea is to transform 2-D image into a
statistically uncorrelated dataset or fractals using the self-
similarity between image blocks prior to transmission or
storage [1]. Decoding is performed offline at some other
time to reconstruct the original image from its fractals. This
method was proposed first by Barnsley and Hurd [2] and
further developed by Jacquin [3]. Compared to existing lossy
techniques, FIC offers a high CR, especially when applied

to images produced from aerial photography or captured
by satellite imagery [3]. Owing to its popularity in digital
archiving, FIC has found numerous applications in other
fields of image processing such as character recognition [4]
and watermarking [5]. FIC also possesses other attractive
features like good PSNR performance and simple decoding
method [6], [7]. However, FIC suffers one major drawback
arising from the computational complexity of the algorithm.
Typically, FIC requires a very large number of searches in
order to find the best fractals which can accurately represent
the original image. Therefore, the encoding time is measured
in terms of minutes if not hours. Due to this reason, FIC is
rarely used for processing high-resolution images especially
those that contain small but multiple objects.

In an attempt to increase the speed-up and reduce
the runtime, many researchers have developed new
methods or improved techniques in implementing the
FIC [8]–[17]. In general most of these methods are
based in software in which the speed-up is achieved by
reducing or limiting the number of search. For instance,
Zheng et al. [8] andWu et al. [13] used the genetic algorithm,

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

71389

https://orcid.org/0000-0002-5747-9812


A.-M. H. Y. Saad and M. Z. Abdullah: High-Speed FIC Featuring Deep Data Pipelining Strategy

while Wang et al. [14] utilized the particle swarm opti-
mization. In another study the Hadamard transform was
investigated as means to speed-up the runtime [15].
In [12] and [16], prediction method is used along with the
fractal technique to improve the runtime. Meanwhile, other
research such as [9]–[11] implemented the classification
scheme to accelerate the coding process by classifying blocks
into groups, and applying matching search between blocks
in the same class only. Although these methods proved to
be useful, however, they suffer from two major weaknesses.
First, the quality of the reconstructed image is relatively low
because most of these techniques deployed partial search
schemes as means for shortening the encoding time. Sec-
ond, the runtime rarely reached a real-time speed even with
a search-less schemes since most of these techniques are
implemented in General Purpose Processors (GPPs) which
operate in a serial fashion [18]. A slight departure from this
trend are the work reported by Haque et al. [19], Erra [20],
and Ismail et al. [21]. These authors targeted Graphic Pro-
cessor Unit (GPU) for accelerating the algorithm by parallel
processing instead of serial computation in the previous
studies. Consequently, the encoding speed is significantly
improved. However, the best attainable runtime is approxi-
mately 1 s which is still too slow for most real-time appli-
cations. Solving this problem requires a dedicated hardware
which is far more superior in terms of speed compared
to software-based solutions. Examples of recent work of
FIC targeting the hardware implementation are published
elsewhere [22]–[24]. One such design is based on a full-
search scheme in which the entire image is examined for a
given range block [22], [24]. However, the encoding time
is generally slow. A significant improvement in speed is
obtained in the design proposed by Samavi et al. [23]. These
authors proposed an architecture using the classification
approach to partially search for similarity. A runtime of
approximately 0.8 ms has been reported when encoding a
256 × 256 greyscale image. Nevertheless, this approach
requires many logic elements and memory block units for
classification purpose. Hence the complexity of the hard-
ware increases further if it is applied to encode high-quality
images.

In this paper, a new high-speed FIC design is proposed
for coding a high-resolution image of 1024 × 1024 pixels
in size. This size is chosen since it supports the high end
CCTV recorder. There are four major improvements in the
design discussed in this paper compared to the work reported
in [25] and [26]. First the current design is oriented for com-
pressing high-resolution images compared to 256× 256 size
image previously. Second and more importantly, the scale
value in the present design is estimated heuristically instead
of been calculated empirically as in our previous work. This
resulted in completely new architecture leading to a much
more efficient design with remarkable improvement in the
hardware utilization. Third the current architecture imple-
ments the partial-search scheme compared to full-search
strategy in our previous designs. This leads to a significant

speed-up in the runtime which is very important when pro-
cessing high-resolution images. Finally, the current design
exploits inherent parallelism in FIC and the architecture is
implemented using deep data-pipelining compared to two-
stage pipelining previously. Furthermore the design is opti-
mized at circuit level, thus enabling the hardware to operate
at much higher frequency as well as lowering the utilization
of logic elements. By so doing the new design can compress
much larger image size while maintaining the runtime and
power consumption at relatively intact.

In summary, an image is partitioned into few sub-images,
where each sub-image comprises numbers of range and
domain blocks. For a given range block in each sub-image,
a search is performed on all domain blocks in that sub-image
only. In this way, a significant reduction can be achieved in
memory access and runtime. Also, an image is partitioned in
such a way that each range block is exactly one quarter of a
domain block. In other words, each domain block contains
4 range blocks. Thus, fetching a domain block also means
acquiring 4 range blocks simultaneously, or vice versa. As a
result, two matching operations can be performed in parallel.
This leads to an additional reduction in memory access, and
hence increases the speed-up by the same factor.

As a trade-off between runtime and PSNR, this paper
presents a new architecture based on the hardware-friendly
partial search scheme together with deep-data pipelining. The
new architecture is also optimized at gate level, thus ensuring
the efficient use of hardware resources as well as achieving
higher clock speed. These are two major contributions which
we wish to highlight in his paper.

This paper is organized as follows. Section II contains a
comprehensive review of the related hardware-based works.
Section III explains the encoding and decoding approach
of FIC method. Thereafter, the methodology applied in
this research is described in Section IV. Then, Section V
describes the proposed hardware architecture. This includes
the description of the memory organization, the design units’
functions and the data flow for the encoding process. The
performance of this proposed architecture is then discussed
in Section VI, including the comparison with the previous
works. Finally, the paper is concluded in Section VII.

II. RELATED WORKS
To date, there are few designs proposed to speed-up the frac-
tal calculations in hardware. Almost all the designs exploit
the inherent parallelism in FIC as means for speed-up. Few
designs minimize the computational complexity existing in
the coding operations by avoiding use of the high complex-
ity operations or reducing the operation precision or both.
An example is the design reported by Vidya et al. [22]. These
authors developed a parallel architecture based on 3-stage
pipeline strategy. Comprising of eight symmetrical elements
and a total of 434 bits of the functional units, such a design
improves the runtime as it takes less 14.15 s to encode
128× 128 size image. Nevertheless this speed is far too slow
for high-speed applications.
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Recently, Panigraphy et al. [24] introduced another
FIC hardware based on full-search architecture. This design
consists of many working units such as the range and domain
control unit, the mean computation unit, and the sum of abso-
lute differences (SAD) unit. In addition, the isometric trans-
formation is used in this architecture to increase the matching
probability. Unlike conventional FIC, however, only the range
blocks are processed, thereby, reducing the encoding time
remarkably since the transformations do not require addi-
tional clock cycle. Also, the encoding time is reduced by
terminating the search operation whenever the matching error
obtained is lower than the predetermined threshold limit.
Overall, their hardware resulted in 0.4 s runtime and 31 dB
PSNR when tested using 256 × 256 size image. Though the
PSNR is adequately acceptable, however, the runtime does
not meet the 30 fps real-time requirement.

In an attempt to improve the runtime, Samavi et al. [23]
present another architecture based on a partial search scheme.
These authors incorporated the binary classifier in their
design which groups 8 × 8 range and domain blocks into
32 distinct classes. In each class, only eight domain blocks
are available. They are compared with the range blocks of
the same class. For a given class, the image data from a given
domain blocks are fetched pixel-by-pixel, and loaded serially
into eight RAM blocks. Then, these data are compared with
every range block of the same class in parallel. This resulted
in the significant improvement in the speed-up. On average
their architecture takes approximately 0.8 ms to encode one
256 × 256 greyscale image. Although this design is very
promising, however, the architecture is tested using low-
resolution images only. It is expected that the complexity of
this hardware in terms of thememory utilization and logic ele-
ment will increase significantly since the design implements
image processing prior to coding.

Generally, the majority of the previous designs targeted
low-resolution applications with image size of 256 × 256
pixels maximum. Therefore, their performance for appli-
cations involving high-resolution images remains relatively
unknown. One of the factors which hinders compressing
high-resolution image arises from the complexity of the
architecture especially when an existing parallelism in the
algorithm is not amenably exploited. Therefore, in this paper,
we propose a novel architecture using efficient data pipelin-
ing strategy and inherent parallelism in both FIC and FPGA,
resulting in a significant improvement in the performance
compared to the previous designs.

III. FRACTAL IMAGE COMPRESSION
A. BACKGROUND
The basic idea of FIC is to arrive at a set of transformations
that can map an image into itself. It relies on the existence
of local self-similarities between sub-images and other parts
of the same image. In coding, an image is partitioned into
a set of small non-overlapping blocks of size n × n, known
as range blocks. Another set is produced by partitioning the

same image into larger c × c blocks referred to as domain
blocks. The domain blocks are usually overlapped and hav-
ing a double size of the range block, i.e., c = 2n. For a
range block, the algorithm searches the entire or part of the
domain pool until the best match is obtained. In searching, the
affine transformation is applied to each domain block, thus
producing the fractals which best describe the original image.
In general, the affine transformation involves a combination
of different types of transformations. First, the contracting
transformation shrinks the domain block to the same size of
the range block. This is achieved by averaging the intensity
values of each non-overlapping square block of 2 × 2 pixels
in the domain pool. Second, the geometric transformation
changes the pixels position in the contracted domain block
for producing eight symmetries. Third and last, the intensity
value of the contracted domain block is modified via an affine
transformation. For simplicity, we only consider the contrast
scaling and brightness shifting, while the geometric transfor-
mation is discarded. Therefore the affine transformation is
expressed as:

T (D) = s · D+ g · I (1)

where D is the contracted domain block, s and g are the
scaling and offset values, respectively, and I is the n×nmatrix
whose entries are equal to 1. Meanwhile The scaling factor
lies between −1 and 1 [27].

The similarity between two blocks can be measured by dif-
ferent metrics such as theMean Square Error (MSE), the Sum
of Absolute Differences (SAD), and the Least Square Error
(LSE). From hardware point of view, SAD is relatively less
complex since it uses simple operations compared to MSE
and LSEwhich require a number ofmultiplication operations.
In this case, SAD measures the distortion between range and
domain blocks defined as follows:

SAD (R,D)=
N∑
i=1

|Ri − T (Di)| =
N∑
i=1

|Ri − sDi − gI |

(2)

where Ri and Di are, respectively, the greyscale values of the
range block and the contracted domain block at ith location,
and N is the total number of pixels in the range block, i.e.,
N = n× n. The optimal values of s and g are given by:

s =
N
∑N

i RiDi −
∑N

i Ri
∑N

i Di
N
∑N

i D
2
i −

∑N
i Di

∑N
i Di

(3)

and,

g = µ (R)− s · µ(D) (4)

where µ (R) and µ(D) are, respectively, the mean values of
range and domain block. Since s is always quantized into
a few bits, in this case 2 to 5 bits [28], [29], therefore,
examining all possible combinations of s concurrently ismore
preferred scheme instead of using (3) directly. Furthermore,
the implementation of Equation (3) requires a divider IP core
since the divisional operation is not directly synthesizable
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in FPGA. In most applications, it is sufficient to represent s
in 2 bits. Therefore in this design, the value of s is one chosen
from four available options, i.e., 0.25, 0.5, −0.5 and 1. As a
result, scaling operation can be performed simply with right
shifting.

For each range block R, the algorithm searches
all or selected domain blocks until SAD is minimized.
The s and g values, i.e. Fractal Code (FC), corresponding to
minimum SAD are store together with the spatial information.
Here, g is quantized into 7 bits prior to storage.

B. DECODING PROCEDURE
The decoding method is an iterative process, starting from
any arbitrary image and then updating it until a convergence
is achieved. In the process, each range block is reconstructed
as follows:

R = sDx,y + gI (5)

where R is the reconstructed range block, Dx,y is the cor-
responding domain block at (x, y) coordinate, s and g are,
respectively, the stored scale and offset values. After each
iteration, the resulted image is used as an input for the next
iteration. Generally, the decoding requires not more than
10 iterations to faithfully reconstruct an image. The fidelity
of the reconstruction is calculated in terms of PSNR which is
defined as:

PSNR = 10 log10
255× 255

1
W×H

∑(
f − f̃

)2 (6)

where f and f̃ are the original and reconstructed images,
respectively, and W × H is the image size.

IV. METHODOLOGY
As previously discussed, the essence of FIC is the pairing
of each range block to a domain block so that the error
under affine transformation defined in (2) is minimum. This
procedure is very time consuming since it entails searching
all blocks in the domain pool and repeatedly performing the
affine calculations. Based on the fact that the correlation
degree among adjacent blocks is generally higher for images
captured from natural scenes [1], [30], the search can be
restricted to the neighboring area of the corresponding range
block only. This would lead to a significant speed-up in the
encoding time.

Exploiting the similarity between a set of pixels in the
image and an area surrounding it, an FIC search scheme is
proposed by partitioning an image in such a way that all range
blocks in K × K window have the same domain pool. This
allows matching of multiple range blocks in the same set
with their domain counterparts be performed in parallel. This
proposed scheme is different than the search scheme used
elsewhere [31], [32], where each range block has a distinct
domain pool.

In so doing, the image is segmented into sub-images of
size K × K pixels, where each sub-image is partitioned into

FIGURE 1. Image partitioning structure.

groups of non-overlapping range and domain blocks of n× n
and 2n × 2n pixels, respectively, as shown in Fig. 1. In this
case, each sub-image comprises K/n × K/n range blocks
and K/2n × K/2n domain blocks. Here, the range block
size is rigidly fixed to an appropriate size. Larger size leads
to higher degradation because of the lowering in the degree
of matching, while smaller size reduces the compression
efficiency. As a trade-off, the 8× 8 range size is selected for
this work. This corresponds to a compression efficiency of
at least 25, which is desirable especially when coding high-
resolution images.

Referring again to Fig. 1, each domain block comprises
of four non-overlapping range blocks. In other words, each
range block is exactly a quarter in size of a domain block.
Thus, reading 4 range blocks indirectly means acquiring
1 domain block. Similarly, reading a single domain block
corresponds to fetching 4 range blocks. Since these blocks
are already available in the system, therefore, they can also
be utilized for pairing and matching, thus saving the clock’s
cycles required for fetching them individually from memory.
This leads to a reduction in memory access and increases the
speed of compression.

The proposed algorithm is firstly investigated in software
in terms of K × K window size, starting from the smallest
window of K = 32 to the largest window of K = 1024
which is equivalent to full search. Since each domain block
is rigidly fixed to 16 × 16 pixels, therefore, the number of
domain blocks in each pool is (K/16)2, which is equivalent
to the number of matching operations required for each range
block. For smaller window size, the matching number is
reduced significantly. For instance the reduction in matching
increases sharply from 0 % to 74 % when K decreases from
1024 to 512 respectively. This trend continues in almost
linear fashion with decreasing K , and reaching almost 98 %
when K reaches 128. Further reduction in K results in no
significant change in the number of matching as evident from
Fig. 2(a). Since the runtime is directly proportional to the
number of matching, therefore, the runtime also decreases
by the same amount. Fig. 2(b) and 2(c) show the effect of
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FIGURE 2. The effect of varying window size on compression performance: (a) Window size vs number of matching, (b) Window size
vs PSNR, (c) Window size vs compression ratio.

varying the window size on compression performance using
four images, including natural and unnatural textured images
of size 1024×1024 each. Lena andMan images in Fig. 11 rep-
resent natural images, while Cat Fiddle and Wooden Struc-
ture images shown in Fig. 12 represent unnatural textured
images. Clearly from Fig. 2(b), the PSNR increases when
K is increased. In this case, the larger the window size
the more the information that is used in the compression
as depicted in Fig. 2(c), leading to the increased in num-
ber of matching, and subsequently PSNR. As a trade-off
between runtime and accuracy, the window size is rigidly
fixed to 128 × 128 pixels, yielding PSNR values which lie
between 25 dB to 30 dB, and averaging at 27 dB for four
given images.

In performing the compression, an image is first parti-
tioned into 8×8 non-overlapping sub-images, sub-imgk , k =
0 · · · 63. Shown in Fig. 3, each sub-image is 128×128 pixels
in size. Altogether, there are 64 sub-images for a 1024×1024
size image. Second, each sub-image is further divided into
8× 8 non-overlapping domain blocks of 16× 16 pixels size
each, i.e. Dj, j = 0 · · · 63. The assembly of all domain blocks
in one sub-image constitutes one domain pool. Therefore,
the total number of domain blocks in each domain pool

is 64 or 4096 for the entire image. Finally, each domain
block Dj is divided into four non-overlapping range blocks,
Rj,p : p = 0, 1, 2, 3 of 8 × 8 pixels size each. Each four
adjacent Ri,p, i = 0 · · · 63 is compared serially with all Ds
available in the sub-image pool. At each comparison between
Ri,p and Dj, the corresponding Rj,p and Di are also available
and subsequently another matching operation can thus be
performed. Thus both Rj,p − Di and Ri,p − Dj matchings
can be performed in parallel in hardware using one processor
each. From each matching, the fractal codes corresponding
to the best match are stored. In order to avoid repetition,
the Ri,p − Dj matching is performed in the first processor
and for j ≥ i while similar matching but for j < i is per-
formed in the second processor. For instance, in the first cycle
(i.e. i = 0) the first 4-range block from the first domain
R0,p is matched with all 64 domain blocks Dj : j = 0 · · · 63
by the first processor sequentially. At the same time Rj,p :
j = 1 · · · 63 is compared with D0 by the second processor.
In the second cycle, i.e. i = 1, the next 4-range block R1,p is
compared with Dj : j = 1 · · · 63 only because the R1,p − D0
matching has already been performed in the first cycle. Also
in this cycle the Rj,p:j= 2 · · · 63 is compared with D1 by
the second processor.
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FIGURE 3. Steps in image partitioning.

Therefore, for each new cycle, the number of domain
blocks need to be matched is 64 − i. Clearly in this case the
number ofmatching is reduced by one at eachmatching cycle,
resulting in a significant reduction in search time. For clearer
understanding, a flowchart of this proposed algorithm is given
in Fig. 4.

V. PROPOSED HARDWARE ARCHITECTURE
A new hardware architecture depicted in Fig. 5 is pro-
posed to implement the methods and procedures previously
discussed. The proposed design is optimized to work at
higher frequency. Parallelism and pipelining techniques are
also exploited in designing the principal units of the pro-
posed architecture. Essentially the system comprises of:
(i) Address Generation Unit (AGU), (ii) the Memory Control
Unit (MCU), (iii) the Mean and Contracted Domain Com-
putation Unit (MCDCU) and its control unit MCDCU-Ctrl,
(iv) the Offset Computation Unit (OCU), (v) the Sum of
Absolute Differences Computation Unit (SADCU) and its
control unit SADCU-Ctrl, (vi) the Storing Control unit
(SCtrl), and (vii) the Fractal Codes and SAD Storing Con-
trol unit (FC-SAD SCtrl). In this case the AGU is used to
generate the required addresses. Meanwhile the MCU is used
to control the main memory while the MCDCU, OCU and
SADCU are used to compute the mean, offset and sum of
absolute differences values respectively. The MCDCU-Ctrl,
SADCU-Ctrl, SCtrl and FC-SADSCtrl are used to control the
overall operation of the hardware. More details are discussed
in the following sub-sections.

A. MEMORY ORGANIZATION
Altogether, 1 megabyte of memory is needed for buffer-
ing 8-bit and 1024× 1024 size image. This is equivalent

to 217 memory locations of 8-byte size each. The image
is stored in the memory in a row-wise order. Altogether
17-bit addresses are required to address all memory loca-
tions. In order to read a particular domain or four adjacent
range blocks, both the block and the sub-image numbers
are required to generate the correct addresses. As explained
earlier, the image is partitioned into 64 sub-images, and each
sub-image contains 64 domain blocks. Therefore, addressing
each sub-image and domain require 6-bit address, resulting-
in a 12-bit long address. The remaining 5 bits are used to
address the domain block pixels. The 17-bit long address
(Addr) is formatted as follows: bits 16-14 (Addr16...14) and
bits 13-11 (Addr13...11) correspond to 3 most significant
bits of sub-image and domain block addresses respectively;
bits 6-4 (Addr6...4) and bits 3-1 (Addr3...1) correspond to
3 least significant bits of sub-image and domain block
addresses respectively; bits 10-7 (Addr10...7) and bit 0 (Addr0)
correspond to an address of domain pixel. Respectively,
the base addresses of each sub-image and domain block
are xxx-000-0000-xxx-000-0 and xxx-xxx-0000-xxx-xxx-0.

B. ADDRESS GENERATION UNIT (AGU)
The AGU is responsible for generating the correct addresses
of range and domain blocks. The range and domain blocks
should be read in orderly fashion as explained in Section IV.
Therefore, AGU employs four counters to generate the
required addresses as shown in Fig. 6. These counters are:
sub-image address counter S_Cr, 4-range block address
counter R_Cr, block address counter B_Cr, and block pixel
address counter P_Cr. The P_Cr generates the addresses
needed to read all pixels in each domain or 4-range block.
The vertical scanning mode is used in reading block pixels,
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FIGURE 4. Flowchart of the proposed algorithm.

starting from the top-left pixel and ending with bottom-right
pixel. In this case, the P_Cr is a 5-bit counter whose registers
are advanced by one step for each clock as long as the
GenerateAddEn remains high. Meanwhile, B_Cr generates
the base address of the required 4-range and domain blocks.
Once the P_Cr reaches the final count (P_Cr = 11111) then
B_Cr is either loaded with R_Cr value plus 1 corresponding
to the base address of the subsequent 4-range block or enabled
to generate the base address of the subsequent domain block
as long as B_Cr 6= 63. The value 63 signals the end of the
search for a specific 4-range block. The R_Cr is also enabled
concurrently while B_Cr is being loaded. The encoding of the
corresponding sub-image is completed when R_Cr, B_Cr and
P_Cr reach the maximum count. The S_Cr is then enabled
to generate the base address of the subsequent sub-image.
Hence, the fetching process of the range and domain blocks
continues in the same manner until all sub-images have been
processed.

C. MEAN AND CONTRACTED DOMAIN COMPUTATION
UNIT (MCDCU)
This MCDCU unit is designed to complete two tasks. The
first is to compute the mean value of the range and domain

blocks, and the second is to perform a geometric contraction
of the domain blocks needed in fractal calculations. The
structure of this unit is depicted in Fig. 7. These two tasks
are grouped together so that the hardware can be shared,
thus resulting in the reduction of logic elements. Mean value
computation is performed in 3-stage pipelining to increase
the maximum clock frequency and throughput. Pipeline reg-
isters and multiplexers existing in the unit are controlled by
MCDCU-Ctrl unit.

Once the block’s data, i.e. 8 pixels vector Pn:n = 0 · · · 7,
are available in the databus, they are added together pro-
ducing the sum values of range and domain blocks. The
sum values are then shifted to the right by 6 bits, producing
the average value of the range and the contracted domain
block, i.e. MeanR and MeanD respectively. These values are
available 3 clock cycles later owing to 3-stage pipelining, as
evident from Fig. 7. Altogether, 8 and 32 clock cycles are
needed to fetch each range and domain block, respectively.
Therefore, theMeanR andMeanD values are available in 11th
and 35th clock cycles, respectively.
A domain block is contracted in MCDCU by means of

2× 2 window averaging. For passing 2 × 2 pixels win-
dow into MCDCU unit, two consecutive rows of 8-pixels
(2× 8 pixels) need to be read. This enables four window aver-
aging be performed and the whole process requires 2 clock
cycles. Resultantly four contracted domain block values,
D_4Byte are produced in every two cycles. These values
are then used to calculate the mean value of the contracted
domain block, MeanD. Also the same values are stored in a
dual-port RAM for computing the matching error in the later
stage of image coding.

D. OFFSET COMPUTATION UNIT (OCU)
The OCU is responsible for computing four offset values gu
corresponding to the four predefined scale values su (s0 =
0.25, s1 = 0.5, s2 = −0.5 and s3 = 1). Both MeanR
and MeanD values are needed in the computation. The OCU
is only enabled after both MeanR and MeanD values are
available in the memory. Since s values are represented in
powers of 2, therefore, s × MeanD operand in (4) can be
performed easily by right-shiftingMeanD. This improves the
performance in terms of speed, logic elements and power.
In the implementation, the OCU needs four adder or subtrac-
tor elements.

E. SAD COMPUTATION UNIT (SCU)
The SCU is shown in Fig. 8 with 4-pipeline stages. In the
computation, the affine transformation described in (1) is
performed first to obtain T (D) and then subtracted from
R to produce the R − T (D) value in the first pipeline stage.
Since s has four values, therefore four R − T (D) values are
generated for each pixel in the range and domain blocks.
As shown in Fig. 8, altogether every 8 pixels in each range
(Pxr :x = 0 · · · 7) and domain blocks (Pxd :x = 0 · · · 7)
are passed to SCU along with the corresponding gu val-
ues in every cycle of Stage 1 in the pipeline. This means
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FIGURE 5. Overall hardware architecture of the proposed design.

32 difference values are produced in each cycle. Then,
the SAD value is computed according to (2). This is
performed in the following two cycles, corresponding to
Stage 2 and Stage 3 in the pipeline. Four SAD values,
SADu:u = 0, 1, 2, 3, are compared in order to select the
minimum SAD, MinSAD. The comparison is performed in
Stage 4. This value together with the corresponding s and g
values are stored for further processing.

F. DATA FLOW FOR THE ENCODING PROCESS
Fetching process of the image pixels is initiated by the
MCU once the start signal, start, is asserted. Simultaneously,
the AGU is enabled to generate the required addresses of the
range and domain blocks by asserting the control signal,Gen-
erateAddEn. MCU unit provides a control signal DataValid
which is asserted when the pixels data is available in the data
bus. This DataValid signal gives an indication to other com-
putational and control units to start receiving or processing
the data.

FIGURE 6. The architecture of the Address Generation Unit.

In the proposed architecture, there are two matching pro-
cessors, P1 and P2 working in parallel. Each processor
contains separate RAMs, OCU, SADCU and SADCU-Ctrl
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FIGURE 7. The architecture of the Mean and Contracted Domain Computation Unit.

units. Other units like MCDCU, MCDCU-Ctrl, SCtrl and
FC-SAD SCtrl are shared by both processors. During oper-
ation, P1 performs the matching operation between each
4-range block Ri and domain block Dj:j = i · · · 63, while
P2 performs the matching operation between each domain
block Di with every 4-range block Rj:j = i+1 · · · 63. Both
Di and Rj are constructed, respectively, from the 4-range
block Ri and the domain block Dj used in P1. Di and Rj
are denoted as DR and RD in the Fig. 5, respectively. Thus,
the second matching operation does not need any additional
clock cycle since all the information needed for computation
are already available in the memory. In each matching opera-
tion, the corresponding processor calculates g and SAD values
for a given value of s. The minimum SAD value along with
the corresponding fractal codes, s and g values, are stored for
further processing.

In order to match Ri,p=0,1,2,3 with Dj=i···63 in P1, four
adjacent range blocks Ri,p=0,1,2,3 are fetched sequentially in
the following order - Ri,0, Ri,1, Ri,2 and Ri,3. Then the domain
blocks Dj=i···63 are fetched in the following cycles. Since the
first domain block that needs to be compared is Di, which is
also equivalent to 4-range block Ri has already been fetched,
therefore reading the subsequent domain blocks starts from
i + 1. The mean values of Ri,p=0,1,2,3 and Dj=i···63 are com-
puted by MCDCU and the results are presented in µ (R)
and µ (D) outputs respectively. As previously explained in
the Sub-section C, MCDCU needs 3 clock cycles to cal-
culate the mean, due to 3-stage pipeline strategy. In this
case, µ

(
Ri,p

)
andµ(Dj) are available after (NR × p+3)th

and (ND+3)th clock cycle respectively. NR and ND are the

number of clock cycles required to fetch the range and
domain block respectively, i.e. NR = 8 and ND = 32.
The µ

(
Ri,p=0,1,2,3

)
are then stored in four registers µ(Rp),

while µ(Dj) is stored in µ (D) for offset calculation. Timing
diagram in Fig. 9 summarizes the overall sequence of these
operations.

During the computation, both Ri and contracted domain
block Dj are stored in two dual-port RAMs with an 8-byte
word size, and named as 4-R and D, respectively. These infor-
mation are later used to calculate the SAD value. Altogether
16× 64 bits are needed to store two consecutive domain
blocks since the contracted Dj needs to be read four times
for computing SAD(Ri,0,Dj), SAD(Ri,1,Dj), SAD(Ri,2,Dj)
and SAD(Ri,3,Dj) sequentially, while the next domain block
Dj+1is being written. Once µ (Di) is stored in µ(D) register,
P1 is enabled to start matching operations. As seen from
Fig.9,µ (Di) is only available at 36th clock cycle. The match-
ing process starts by firstly computing the offset values gu of
Ri,0 and Di, and secondly passing the results together with
the blocks’ pixels stored in dual port RAM to SADCU unit
for calculating the SAD values. SADCU needs 4 cycles to
produce the minimum value of SADu, MinSAD. This value
is then stored with its corresponding fractal codes in two
registers, i.e. SAD1 and FC1. This operation is repeated for
every 8 clock cycles for each one of Ri,1, Ri,2 and Ri,3. Every
time the SAD1 value is compared with the previously stored
SAD, i.e. the minimum SAD obtained from the previous
matching operations for the same range block. The result
from this comparison is written into FC-SAD RAM of size
256× 29 bits. The FC-SAD SCtrl unit controls the reading
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FIGURE 8. The architecture of the Sum of Absolute Difference Computation Unit.

and writing operations of the FC-SAD memory. In the same
way, Ri,p=0,1,2,3 are also compared with each Dj as soon as
µ
(
Dj
)
is available. The timing diagram in Fig. 10 (a) shows

important sequences needed in the computation of minimum
SAD value by P1.

While P1 is performing the calculation, the matching
between Rj,p=0,1,2,3:j = i+1 · · · 63 and Di is executed in P2
in parallel, utilizing the range and domain blocks used in P1.
In operation, µ

(
Rj,p

)
is computed at the same time with

µ
(
Dj
)
and the results are stored in µ (DR). Similarly µ (Di)

is also computed at the same timewithµ
(
Ri,p

)
and the results

are stored in µ (RD) as shown in Fig. 9. Both computations
are performed by MCDCU. Unlike P1, however, the range
block mean values are calculated after the calculation of
mean value of the domain block. The matching starts once
µ
(
Ri+1,0

)
is available in µ (RD) register. As shown in the

timing diagram in Fig. 9, µ
(
Ri+1,0

)
is stored in µ (RD)

register at 44th cycle. at the same time OCU computes gu
of Ri+1,0 and Di, and stores the results in their respective
register in the following cycles. Following this process the
SADCU is enabled to calculate the SAD values. In so doing
the SADCU requires the corresponding range and domain

block, i.e. Ri+1,0 and Di. Prior to calculation the Ri+1,0 is
stored in 64 12-bit shift register. Meanwhile the contractedDi
is stored in a dual-port RAM, DR of size 8× 64 bits. The out-
puts from SADCU are stored in two registers, i.e. SAD2 and
FC2. These operations are repeated for each Rj,p=0,1,2,3:j =
i+1 · · · 6. Both SAD1 and SAD2 are examined together with
their corresponding minimum SAD value stored in FC-SAD
RAM to select the minimum SAD value. To avoid reading
two individual memory locations at the same time, therefore,
the minimum SAD value corresponds to SAD1 is read first,
and followed by the minimum SAD corresponds to SAD2.
Thus, SAD2 is examined one cycle later after the examination
of SAD1. Fig. 10 (b) shows the overall sequence in SAD
calculations by P2.

VI. EXPERIMENTAL RESULTS
The proposed architecture is coded in VHDL and compiled
by Altera Quartus II software package. Altera Stratix IV
(EP4SGX230KF40C2) FPGA device is used to implement
the hardware design. Table 1 summarizes the hardware uti-
lizations and other important information. As can be seen
from this table, the proposed design consumes 4799 logic
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FIGURE 9. Timing diagram for reading range and domain blocks, and calculating the mean values.

FIGURE 10. Timing diagrams of (a) P1 and (b) P2 processors.

elements (LEs) only. This corresponds to the hardware uti-
lization of about 2%. On average the proposed architecture
consumes power less than 0.5 W which makes it a very

energy efficient hardware. Also, the design is capable of
operating at a clock speed of 395 MHz. This is only possible
by partitioning larger operations into smaller tasks via deep
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FIGURE 11. Example of encoding 1024 × 1024 size Lena and Man images, where (a), (c) original images, (b), (d) reconstructed images.

FIGURE 12. Example of encoding 1024 × 1024 size Cat Fiddle and Wooden Structure images, where (a), (c) original images, (b), (d) reconstructed images.

TABLE 1. Hardware utilization.

pipelining as previously explained.Moreover, the use of more
complicated operations like multiplication and division are
avoided, which results in faster operating speed.

The running time can be also calculated based on the time
needed to encode all 64 sub-images. As previously explained,
a sub-image contains 64 non-overlapping Ri blocks of
16× 16 pixels size each. Each Ri needs to be matched with
64 domain blocks. For each Ri, altogether (64−i) domain
blocks are compared in the first processor while the rest are
matched concurrently in the second processor without any
additional clock cycle. Since the second processor exploits
the data fetched for the first processor, therefore, the run-
time depends entirely on the time taken by first processor
only. Also the number of comparison decreases continu-
ously by 1 as Ri increases by 1. Thus, the total number of

domain blocks compared for all Ri′s can be simply calcu-
lated using the sum of sequence formula x(x+1)/2, where
x is the number of terms in the series, which is 64 in this
case. Hence, the total number comparison for each sub-image
is (64× 65)/2. Each comparison requires 32 clock cycles.
Also 2 clock cycles are required before fetching another Ri
(see Fig. 9). Therefore, processing one sub-image requires
((64× 65)/2)× 32+ (64× 2) = 66688 clock cycles. This
corresponds to 64× 66688×T= 10.8 ms encoding time for
1024× 1024 size image.

The PSNR is used to evaluate the performance of the
hardware. Altogether, four greyscale images, including the
famous Lena image are used in the evaluation. These images
are encoded in the hardware while the decoding is performed
using MATLAB running on 3.4 GHz Intel core i7 processor
and 8 GB of RAM. On average it takes 1 s to decode one
image on this machine. The results for Lena and Man are
shown in Fig. 11, while the results for another two images,
Cat Fiddle andWooden Structure, are shown in Fig. 12. In this
case, the Lena image resulted in 30.3 dB PSNR. In all cases,
the PSNR values ranged between 25.3 and 30.3 dB, and
averaging at 27 dB. These figures are sufficiently adequate,
considering that the compression ratio (CR) is well above 30.
In this case the CR is calculated as the ratio between the
original and compressed size images. In this case each range
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FIGURE 13. Compression of Lena image of two different sizes: (a) 256 × 256 original image, (b) 256 × 256 reconstructed image, (c) 512 × 512 original
image, (d) 512 × 512 reconstructed image.

TABLE 2. Comparison between the proposed and selected designs.

block is compressed into 15 bits, comprising of 6-bit address
of best domain block, 2-bit scale and 7-bit offset. Since
each sub-image has 256 range blocks, therefore, the size of
compressed image is 64× 256× 15 bits. This is equivalent a
CR of 34.1.

For the completeness of the investigation, the performance
of the proposed architecture is also compared with eight
previous works as shown in Table 2. In addition to FPGA,
results obtained from other platforms, namely standard dual-
core CPU and GPU are also included in the comparison.
With the exception of the work by Vidya et al. [22], clearly
from this table, the CPU and GPU are generally much slower
compared to FPGA. For instance the GPU runtime of 45 s
reported byHaque et al. [19] is the slowest, and followed 8.5 s
da Rosa Righi et al. [17], 1 s Erra [20], and 455 ms
Ismail et al. [21]. In contrast the proposed method takes
less than 10.8 ms to encode 1024 × 1024 size image.
This corresponds to speed-ups of approximately 4167x,

787x, 93x and 42x compared to Haque et al. [19],
da Rosa Righi et al. [17], Erra [20], and Ismail et al. [21]
respectively. The significant increased in the speed-up is
due to the ability of FPGA to process large amount of
data in parallel. Generally this trend holds for most cases
except the results published by Vidya et al. [22]. The 14 s
runtime achieved by these authors is considerably slow by
FPGA standard. In fact this runtime is the slowest among
the FPGA based designs as evident from Table 2. Among
the partial search scheme the fastest architecture is the result
from Samavi et al. [23]. On average their design takes less
than 1 ms compared to 10.8 ms in the proposed archi-
tecture. However Samavi et al. [23] measured the run-
time using 256× 256 size image compared to 1024× 1024
in the proposed scheme. Therefore, the runtime from
Samavi et al.’s [23] design is expected to increase dramat-
ically when encoding a much bigger size image. Moreover
the performance of Samavi et al.’s [23] design is slightly low

VOLUME 6, 2018 71401



A.-M. H. Y. Saad and M. Z. Abdullah: High-Speed FIC Featuring Deep Data Pipelining Strategy

FIGURE 14. Memory usage comparison between proposed and current
designs.

in terms of PSNR compared to the proposed scheme. In this
case the proposed architecture resulted in PSNR of 30.3 dB
compared Samavi et al. [23] 25.3 dB.

The same with 34.1 CR resulted by the proposed architec-
ture which is the highest compared to 26 Samavi et al. [23],
12.8 Jackson et al. [33], 5.1 Panigrahy et al. [24], and
4 Vidya et al. [22]. The runtime is also computed using dif-
ferent sizes of Lena image in order to make an objective com-
parison with other designs that encoded different image sizes.
The results are shown in Fig. 13. The proposed architecture
takes approximately 2.7 ms and 0.67 ms to encode 512× 512
and 256× 256 size images, respectively. Comparing with
existing designs using similar image sizes, these results indi-
cates the proposed architecture is the fastest among the full-
search and partial-search designs as evident from Table 2.
In terms of PSNR, Samavi et al. [23] and Jackson et al. [33]
registered slightly higher PSNR values compared with the
proposed design. However, these designs resulted in much
lower CRs. Also, the clock and encoding speeds from their
designs are slightly inferior than the proposed hardware.
Thus, the proposed architecture is more competitive in terms
of image size support, runtime and CR.

For further evaluation, the proposed architecture is also
compared in terms of memory usage, and the results are
summarized in Fig. 14. From this figure, it can be seen
that the proposed architecture requires reasonable memory
size, and averaging at 13 kb compared to 434 bits for
Vidya et al. [22], 1878 bits for Panigrahy et al. [24], 15.5 kb
for Samavi et al. [23], and 59kb for Jackson et al. [33].
In terms of the hardware complexity, clearly, the proposed
architecture is the third lowest compared to other designs.
Jackson et al. [33] present a huge memory usage, since part
of the image needs to be stored in internal memory prior
to matching. Reference [23] is the second most complicated
design that requires more than 15000 bits of memory. Clearly,
in terms of the memory utilization, the proposed architecture
is significantly less complex compared to Jackson et al. [33],

but relatively the same compared to Samavi et al. [23]. Com-
pared to Samavi et al. [23], however, the proposed hardware
outperforms this design on both PSNR and CR. Meanwhile,
Vidya et al. [22] and Panigrahy et al. [24] are the most effi-
cient in terms of memory usage. However, the performance
in term of speed and CR is the lowest as clearly shown
in Table 2. In summary, the proposed design is relatively less
complex but offers superiority in term of speed and CR.

In terms of flexibility, the proposed architecture can handle
other images with some slight modifications to the hardware
as long as their size are divisible by 128× 128. For other
image sizes the proposed architecture may require substantial
modifications especially the memory organization, registers,
data structures, and control units. We believe such modifi-
cations can easily be accomplished with experience digital
designers or competent hardware architects.

VII. CONCLUSION
A new partial search FIC algorithm is presented in the hard-
ware. The new design is evaluated using high resolution
images of size 1024× 1024. Neighborhood-search scheme
is implemented to speed-up the runtime. Fixing the search
space for each set of range blocks leads to an efficient parallel
operation. The encoding time is reduced by a factor of 2
by performing matching operation using blocks constructed
from range and domain blocks available from previous pro-
cessing. The deep pipelining adopted in the design ensures
high-speed operation at sustainable frequency of 395 MHz.
On average the hardware takes approximately 10.8 ms to
encode one image with PSNR 27 dB and CR 34.1. These
promising results lead us to further develop the hardware
for compressing color images. This work is actively being
pursued in our laboratory and results will be published in our
future paper.
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