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ABSTRACT This paper considers the problems of synchronous orthogonal frequency-hopping (FH) signals
separation and direction of arrival (DOA) estimation in the underdetermined situation. First of all, in order
to estimate the mixing matrix of the FH signals, we stack the two-dimensional covariance matrices of
the received FH signals into a third-order tensor, and then, an estimation approach based on the tensor
decomposition method is developed to calculate this mixing matrix. Next, to separate these FH signals,
a modified source recovery method is proposed. Finally, the DOAs of the FH signals are also obtained.
Numerical results demonstrate that compared with the existing algorithms, the proposed algorithm not only
presents superior performance but also requires less sparsity limitation and cost time.

INDEX TERMS Direction of arrival, frequency-hopping signals, mixing matrix, tensor decomposition.

I. INTRODUCTION
Frequency-hopping (FH) signal has been widely used in
communication and radar systems due to the advance
anti-jamming ability and low probability of interception
[1], [2]. FH signal also presents a severe challenge to
reconnaissance system in the realistic civilian and mil-
itary applications. The FH signal reconnaissance usu-
ally contains two steps: (i) parameters estimation and
(ii) signal sorting. Estimating parameters is the main task
in the practical applications [3]–[5]. Therefore, estimating
hop timing [10], frequency [11] and direction of arrival
(DOAs) [15], [19], [25] are vital to sort multiple users with-
out prior information. Time-frequency (TF) analysis is
widely used to estimate the FH signal parameters [6]–[8].
The TF analysis algorithm proposed in [8] used the
Wigner-Ville distribution (WVD), and it was shown that
this algorithm can achieve better resolution, but incur
severe cross-term interference. An algorithm based on
Smoothed Pseudo Wigner-Ville distribution (SPWVD) to
estimate the hopping period proposed in [7]. To estimate
the hop rate of the FH signal, an algorithm based on Reas-
signed Smoothed Pseudo Wigner-Ville distribution (RSP-
WVD) was proposed in [6]. Both algorithms proposed
in [6] and [7] can overcome the cross-term interference.
However, these algorithms can only handle one single
FH signal.

In order to deal with the parameters estimation of multi-
ple FH signals, many methods have been proposed [9], [10].
An algorithm was proposed in [9] based on the principle
of dynamic programming, which combines two-dimensional
harmonic retrieval and low-rank decomposition to estimate
FH signals parameters. A new approach based on sparse
linear regression to estimate the hop timing was proposed
in [10]. Although these algorithms can estimate the parame-
ters of multiple FH signals, the subsequent signal sorting can
be executed only when these FH signals are with different hop
timing rules.

In order to sort synchronous orthogonal FH signals, the hop
timings of which are with the same rule, Blind Source Sepa-
ration (BSS) technology is thus introduced [11], [12], which
has been widely used in audio signal processing, biomedical
signal processing, wireless communication, and radar signals
processing [13], [14], [16]–[18], [20]. In the most practical
situations, the number of the received signals is less than
that of source signals, which is called Underdetermined Blind
Source Separation (UBSS) problem. The UBSS problem can
be solved by two steps: (i) the mixing matrix estimation
and (ii) the source recovery. TF analysis is also an effec-
tive way to solve the UBSS problem [21]–[24], [26]–[30].
The algorithms in [11] and [12] separated FH signals in
the underdetermined situation via TF analysis. Specifically,
the algorithm in [11] constructed the TF ratio matrix, and
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it assumed that there exists only one FH signal at each TF
point. Particularly, it clusters the Euclidean distance between
different columns of the TF rationmatrix to calculate themix-
ing matrix. However, the clustering method in [11] not only
requires much cost time, but also ignores the time-varying
structure of the FHmixing matrix. The algorithm in [12] con-
sidered the time-varying structure of the FH mixing matrix,
and estimated the hop timings by calculating the number of
FH signals at each sample with the assumption that each TF
point is a single source point. However, the methods in [11]
and [12] are limited by the harsh sparse constraints, and thus
the performance is not satisfactory.

In order to improve the performance of separating FH
signals, this paper is inspired by using a multi-linear
algebra tool named Canonical Polyadic (CP) decomposi-
tion which is also known as Parallel Factor (PARAFAC)
decomposition [31], [32] to estimate the mixing matrix of FH
signals. In this paper, the two-dimensional covariance matri-
ces of FH signals are stacked into a third-order tensor, and
then the CP decomposition can deal with the UBSS problem
of FH signals. Next, an improved FH signals recoverymethod
is proposed to separate FH signals, and the parameters of
FH signals, including the frequencies and the DOAs, is also
estimated. Because the DOAs of hopping fragments in an
FH signal are the same, the FH signals can be sorted based
on the estimated DOAs. This paper aims to separate the
synchronous orthogonal FH signals and estimate the param-
eters of synchronous orthogonal FH signals. The proposed
work includes two contributions. The proposed method can
reduce the limitation of the signal sparsity. Also, the proposed
method can reduce the cost time while improves the estima-
tion performance.

The rest of the paper is organized as follows. The prob-
lem is formulated in Section II. In Section III, the proposed
method is introduced. In Section IV, the simulation results
are provided to demonstrate the validity of the proposed
algorithm. Finally, the conclusions are given in Section V.

Notation: a∗ denotes the conjugate of a. ◦ denotes the outer
product. � denotes the Khatri-Rao product. E [·] denotes
expectation operation. r (A) = N means that the rank of
the matrix A is equal to N . NA represents the submatrix of
A without the first row. NA represents the submatrix of A
without the last row. A (m : n, :) represents the submatrix of
A consisting of the rows from m to n of A. A∗, A−1, AH,
AT andA† denote as conjugate, inverse, conjugate-transpose,
transpose and Moore-Penrose pseudo-inverse of A. Im (a)
means the imaginary part of a. ‖A‖ denotes the l2 norm of A.

II. THE PROBLEM FORMULATION
Suppose that the FH signals s(t) = [s1(t), . . . , sN (t)]T

impinge instantaneously onto an M -element array. The nth
FH signal is written as:

sn(t) = bn(t)ej(2π fn(t)t+ϕn(t)), 0 < t ≤ T , (1)

where bn(t), fn(t) and ϕn(t) are the amplitude, instantaneous
frequency, and phase of the nth FH signal, respectively. T is

the observation time. The propagation time-delay from the
mth antenna to the first antenna of the nth source can be
formulated as follow:

τm,n =
1
c
(m− 1)r cos θn, m = 1, . . . ,M , n = 1, . . . ,N ,

(2)

where c denotes the speed of the light, r denotes the element
spacing, and θn denotes the DOA of the nth FH signal.
Assume that the FH signals are not hopping in the delay time,
thus

bn(t − τm,n) ≈ bn(t),

fn(t − τm,n) ≈ fn(t),

ϕn(t − τm,n) ≈ ϕn(t). (3)

The mth received signal can be formulated as:

xm(t) =
N∑
n=1

sn(t)e−j2π fn(t)τm,n + vm(t),m = 1, . . . ,M , (4)

where vm(t) is the additive Gaussian noise signal with mean
0 and variance σ 2. Then, the vector formulation of (4) can be
expressed as:

x (t) = A (t) s (t)+ v (t) , 0 < t ≤ T , (5)

where
x(t) = [x1(t), . . . , xM (t)]T, v(t) = [v1(t), . . . , vM (t)]T, and
s(t) = [s1(t), . . . , sN (t)]T. Also, A (t) is called the mixing
matrix, and formulated by:

A (t) =


e−j2π f1(t)τ1,1 · · · e−j2π fN (t)τ1,N

e−j2π f1(t)τ2,1 · · · e−j2π fN (t)τ2,N
...

. . .
...

e−j2π f1(t)τM ,1 · · · e−j2π fN (t)τM ,N

 . (6)

When the number of the receiving antennas M is smaller
than the number of the FH signals N , the mixing system is
underdetermined. In this situation, sorting the synchronous
orthogonal FH signals becomes a UBSS problem.

III. THE PROPOSED METHOD
To solve the UBSS problem, the proposed method consists of
two steps: (i) estimating the mixing matrix and (ii) recovering
the FH signals. In the following, we present the proposed
method in detail.

A. THE MIXING MATRIX ESTIMATION METHOD
In this subsection, the method to estimate the mixing matrix
of the synchronous orthogonal FH signals is introduced.
According to (2) and (6), it is noticed that the mixing matrix
A (t) is a Vandermonde factor. Because the carrier frequency
of the synchronous orthogonal FH signal is varying in each
hop duration, the mixing matrix also varies over the different
hop durations. If the hop timings are known, the mixing
matrix keeps constant in the hop duration. In this paper,
the hop timings are estimated firstly by the method in [35].
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Thus, in the pth hop duration, without considering the noise
interference, the mixing matrix and the received FH signals
can be respectively rewriter as follows:

A =


1 . . . 1
a2,1 . . . a2,N
...

. . .
...

aM−12,1 . . . aM−12,N

 , (7)

x (t) = As (t) =
N∑
n=1

ansn (t), tp−1 < t ≤ tp, (8)

where a2,n , e−j2π fnr cos θn/c is the second element in the nth
column of the mixing matrix, fn is the frequency of the nth FH

signal in this hop duration, and an =
[
1, a2,n . . . , a

M−1
2,n

]T
is

the nth column of the mixing matrix.
Suppose that N FH signals are independent of each other

in the time domain. The kth spatial covariance matrix of the
received FH signals is written as:

Ck = E
[
x(t)xH(t + γk )

]
= APkAH, (9)

where Pk = E
[
s(t)sH(t + γk )

]
∈ CN×N is a diagonal

matrix and γk is the kth delay time. Let {C1,C2 . . . ,CK }

denote K spatial covariance matrices with different delay
time and stack the matrixes {C1,C2 . . . ,CK } into a tensor
X ∈ CM×M×K . Thus, the element in X is represented as:

Xi,j,k = (Ck)i,j, (10)

where (Ck)i,j represents the ith element in the jth column
of the matrix Ck . Define a matrix D ∈ CK×N and the kth
element in the nth column dk,n is represented as:

dk,n = (Pk)n,n, k = 1, . . . ,K , n = 1, . . . ,N , (11)

where (Pk)n,n means the nth element in the nth column of
the matrix Pk , and N is the number of the FH signals. Then,
the tensor X can be written as [33]:

X =
N∑
n=1

an ◦ a∗n ◦ dn, (12)

where dn, an =

[
1, a2,n, . . . , a

M−1
2,n

]T
, and a∗n =[

1, a∗2,n, . . . , a
∗M−1
2,n

]T
are the nth columns of D, A and A∗,

respectively. If the rank of the tensor X is N , (12) is called
CP decomposition [34]. The element in the tensor can also
be written as:

Xi,j,k =

N∑
n=1

ai−12,n a
∗j−1
2,n dk,n. (13)

The mixing matrix A is considered as the first factor matrix
of the tensor X . The matrix A∗ and the matrix D are consid-
ered as the second and the third matrix factors, respectively.
In order to obtain the unique result of the mixing matrix esti-
mation, there exist some limitations. The unique result means
that (12) is the only possible combination of the tensor with

the exception of the elementary indeterminacies of scaling
and permutation. The unique mixing matrix estimator can be
obtained under the following conditions [31]:

r
(
A (1 : K1, :)� A∗ (1 : K2, :)

)
= N , (14)

r
(
A (1 : L1, :)� A∗ (1 : L2, :)� D

)
= N , (15)

where K1 + L1 = M + 1 and K2 + L2 = M + 1. M is
the number of antennas and N is the number of FH signals.
The process of obtaining the unique solution is shown in
Appendix. Construct a tensor Y ∈ CK1×K2×L1×L2×K as
follows:

Yk1,k2,l1,l2,k = Xk1+l1−1,k2+l2−1,k . (16)

The matrix representation of the tensor Y can be written as
follows:

Y =
(
A (1 : K1, :)� A∗ (1 : K2, :)

)
×
(
A (1 : L1, :)� A∗ (1 : L2, :)� D

)
=


Y1,1,1,1,1 Y1,1,1,1,2 · · · Y1,1,L1,L2,K
Y1,2,1,1,1 Y1,2,1,1,2 · · · Y1,2,L1,L2,K

...
...

. . .
...

YK1,K2,1,1,1 YK1,K2,1,1,2 · · · YK1,K2,L1,L2,K

 .
(17)

It means that when the matrix D is rank deficient, the unique
mixing matrix estimation can still be obtained. In summary,
the proposed algorithm is given in Algorithm 1.

Algorithm 1 The Mixing Matrix Estimation Algorithm
1: Input: The receiving FH signals x(t) =

[x1(t), · · · , xM (t)]T

2: Step1: Calculate the spatial covariance matrices
{C1,C2 . . . ,CK } based on (9) and stack these matrices
into the tensor X ∈ CM×M×K .

3: Step2: Construct the matrix Y in (17) based on (16).
4: Step3: Calculate the Singular Value Decomposition of

Y = U6VH.
5: Step4: Set U1 = U (1 : (K1 − 1)K2, :) ∈ C(K1−1)K2×N

and U2 = U (K2 + 1 : K1K2, :) ∈ C(K1−1)K2×N , and
calculate the eigenvector Z =

[
a2,1, . . . , a2,N

]
of U†

1U2
according to (26) and (31).

6: Step5: Estimate the mixing matrix Â based on (32).
7: Output: The mixing matrix estimation Â.

B. THE FH SIGNALS RECOVERY AND DOA
ESTIMATION METHOD
In this subsection, the FH signals recovery method is intro-
duced. Since the FH signals separation methods in [11]
and [12] are limited by the strict sparsity condition, a novel
method is exploited to reduce the sparse limitation.

The Short Time Fourier Transformation (STFT) is a linear
TF analysis method, and the STFT representation of (8) is
written as:

X (t, f ) = AS (t, f ) , (18)
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where X (t, f ) and S (t, f ) are the STFT of x (t) and s (t),
respectively.

Suppose that there exists g (g ≤ M) FH signals at each TF
point and g is a variable number. To improve the performance
of the recovery method, the residual power is considered at
each TF point. The orthogonal project matrix of the mixing
matrix is utilized to calculate the residual power, and a thresh-
old is set to approximate the residual power at each TF point.
If the residual power of g FH signals 0 (g) is less than the
set threshold, the corresponding g FH signals at this TF point
can be determined. If the residual power of a small number of
FH signals is already less than the threshold, it is unnecessary
to calculate the residual power of more FH signals, because
we only need to detect signals that make major contribution
to this TF point. The main steps of the proposed method
are summarized in Algorithm 2. The Algorithm 2 aims to
estimate the TF representation of g FH signals at the TF point
(t, f ). In Algorithm 2, A(i)g =

[
ai1 , . . . , aig

]
, 1 ≤ i ≤ Cg

N ,
Cg
N = N (N − 1) · · · (N − g+ 1)/N ! , and the columns are

arranged in ascending order of subscript, and the subscript is
a random integer in the set {1, 2, . . . ,N }. The threshold of
the residual power is calculated by ε‖X (t, f )‖2, where ε is
an experience value.

Algorithm 2 The FH Signals Recovery Algorithm
1: Input: the mixing matrix A
2: for g = 1 : M do

0 (g) = min
i

∥∥∥Q(i)g X (t, f )
∥∥∥
2
, where Q(i)g = I −

A(i)g
(
A(i)Hg A(i)g

)−1
A(i)Hg is the orthogonal project

matrix of the mixing matrix A(i)g .
3: if 0 (g) < ε‖X (t, f )‖2 then

Âg = argmin
∥∥∥Q(i)g X (t, f )

∥∥∥
2
, where Âg is the cor-

responding mixing matrix of the g FH signals.

Ŝg (t, f ) =
(
ÂH
g Âg

)−1
ÂgX (t, f ), where Ŝg (t, f ) is

the TF representation of the g estimated FH signals
at the TF point (t, f ).
break

4: end if
5: end for
6: Output: The TF representation Ŝg (t, f ).

Utilize inverse STFT to recover FH signals ŝ (t) =[
ŝ1 (t) , . . . , ŝN (t)

]T. Then, the frequencies f̂n, n ∈

{1, 2, . . . ,N } are estimated by the fast Fourier transforma-
tion (FFT) operator. According to (7), theDOAs of FH signals
in the hop duration are estimated by

θ̂n = arccos
− Im

(
ln â2,n

)
c

2π f̂nr
, (19)

where â2,n is the second value in the nth column of the
estimated mixing matrix Â. DOAs cannot change in a short
time. The DOAs of the segments belonging to the same FH
signal are the same. Therefore, comparing the DOAs of FH

TABLE 1. The parameters of FH signals.

signals in each hop duration is an effective way to sort FH
signals.

IV. SIMULATIONS
In this section, numerical simulation results are given to
demonstrate the advantages of the proposed algorithms. In all
simulations, the number of antenna M = 3. Suppose the
length of data L=256 and the number of FH signals N=4.
The parameters of FH signals are shown in Table 1. The hop
timings are estimated by the method in [35]. In the following
simulations, signal-to-noise ratio (SNR) is written as follow:

SNR = 10log10(
‖s(t)‖22
Nσ 2 ), (20)

where σ 2 is the variance of the additive Gaussian noise.
The performance of the proposed methods is evaluated by

using the following measures.
First, the Mean Square Error (MSE) of the estimated mix-

ing matrix is shown as follow:

MSE = 10log10


∥∥∥A− Â

∥∥∥2
2

N

 , (21)

where A and Â denote the true mixing matrix and the esti-
mated mixing matrix, respectively. A small MSE indicates
superior quality.

Second, the correlation coefficient between the source sig-
nals and the separated signals is shown as follow:

ζ =
1
N

N∑
n=1

∣∣E (sn (t) ŝ∗n (t))∣∣√
E
(
|sn (t)|2

)√
E
(∣∣ŝn (t)∣∣2) , (22)

where sn (t) and ŝn (t) denote the nth source signal and the
nth separated signal, respectively. A large ζ indicates superior
quality.

Third, the Normalized Mean Square Error (NMSE) of the
estimated frequencies is shown as follow:

NMSE =

√√√√√ 1
N

N∑
n=1

(
fn − f̂n

)2
f 2n

, (23)

where fn and f̂n denote the true frequency and the estimated
frequency of the nth FH signal, respectively. A small NMSE
represents high estimation accuracy.
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FIGURE 1. The MSE comparison of different methods.

Fourth, the Root Mean Square Error (RMSE) of the esti-
mated DOA is shown as follow:

RMSE=

√√√√√ N∑
n=1

(
θn − θ̂n

)2
N

, (24)

where θn and θ̂n denote the original DOA and the estimated
DOA of the nth signal, respectively. A small RMSE repre-
sents high estimation accuracy.

In the following simulations, the proposed method is
mainly compared with the methods in [11] and [12].

A. THE MIXING MATRIX ESTIMATION
First, the noiseless case is considered. The original mixing
matrix A and the estimated mixing matrix Â are shown at the
bottom of this page. It can be seen that Â is the same with
A. It means that the proposed method can exactly estimate
the mixing matrix in the noiseless case. It is because that
the proposed method does not exploit clustering methods to
approximate the result.

Second, the noise case is considered. The mean MSE
values over 100 Monte Carlo trails for varying SNR are
shown in Fig. 1. It can be seen that the proposed method
can get smaller MSE values than other algorithms. Due to
the limitation of the sparsity, the MSE performance of the
methods in [11] and [12] is not satisfactory. The methods
in [11] and [12] exploit clustering methods to approximate
the mixing matrix, and thus the MSE performance of the two
methods is smooth when SNR increases to a certain value.
The proposed method does not utilize the clustering methods
or iteration methods to approximate the mixing matrix, and it

TABLE 2. The CPU time (s) of the methods.

can exactly estimate the mixing matrix in the noiseless case.
So the MSE of the proposed algorithm is decreasing with the
increasing SNR.

Third, in order to analyze the complexity of these methods,
CPU time is calculated. Our simulations are performed in
MATLAB R2016b using Intel Xeon CPU E5-1620 3.50GHz
processor. The operating system is Microsoft Windows
10 and the memory is 32GB. The average CPU time (s)
against SNR level is shown in Table 2. The main cost step of
the methods in [11] and [12] is determining satisfactory TF
points. The method in [11] calculates the Euclidean distance
of the columns of the TF matrix to determine the TF points
belonging to the same FH signal, and it costs so much time at
this step. The proposed method costs less CPU time because
it is a simple algebraic operation, and it does not include the
steps of selecting TF points.

Fourth, the effect of hop timing error on the MSE of
the estimated mixing matrix is discussed. Fig. 2 shows the
impact of different hop timing errors on the mixing matrix
estimation with different data lengths. If the length of the
data L=256, the MSE is smaller than -20 dB when the hop
timing error is smaller than 10 samples. If the length of data
L=512, the MSE is smaller than -20 dB when the hop timing
error is smaller than 20 samples. Although the performance
is affected by the hop timing error, it can be concluded that
the proposedmethod can still obtain satisfactory performance
when the hop timing error is not large. When the hop timing
error is smaller than 10 samples with SNR from 10 dB to
40 dB, the proposed method is an effective way to separate
FH signals and estimate the parameters of FH signals. The
hop timing error which is calculated by the method in [35]
is shown in Fig. 3. The hop timing error is smaller than
4 samples when SNR is changing from 10 dB to 40 dB, and
it meets the requirement of the proposed method for the hop
timing accuracy.

B. THE FH SIGNALS RECOVERY AND PARAMETERS
ESTIMATION
First, the correlation coefficients of the separated signals
in the time domain are shown in Fig. 4. The correlation
coefficients of the proposed method are higher than that of

A =

 1 1 1 1
0.9700 + 0.2430i 0.8775 - 0.4795i -0.4926 - 0.8703i -0.9989 - 0.0477i
0.8819 + 0.4715i 0.5402 - 0.8415i -0.5147 + 0.8574i 0.9954 + 0.0953i


Â =

 1 1 1 1
0.9700 + 0.2430i 0.8775 - 0.4795i -0.4926 - 0.8703i -0.9989 - 0.0477i
0.8819 + 0.4715i 0.5402 - 0.8415i -0.5147 + 0.8574i 0.9954 + 0.0953i
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FIGURE 2. The effect of hop timing error on the mixing matrix estimation.

FIGURE 3. The hop timing error for different data lengths.

FIGURE 4. The correlation coefficient comparison of different methods.

other methods with SNR from 5 dB to 40 dB. The correlation
coefficients are closed to 1 with SNR from 25 dB to 40 dB.
It can be concluded that the signals recovered by the proposed
method are more similar to the original signals.

Second, the NMSE of the estimated frequencies is shown
in Fig. 5. It can be seen that the proposed method obtains
smaller NMSE of the estimated frequencies, and the proposed
method achieves better performance. The method in [11] has
the large NMSE in low SNR because it is difficult to select

FIGURE 5. The NMSE of the methods.

FIGURE 6. The RMSE comparison of different methods.

TABLE 3. The RMSE (degree) of the proposed method.

satisfactory TF points in low SNR, and this also leads to bad
mixing matrix estimation performance. The method in [12]
obtains large NMSE because this method clusters frequencies
at each sample in the TF domain and the frequency error is
large.

Third, the RMSE of DOA is shown in Fig. 6. Since the
performance of the estimated frequencies and the estimated
mixingmatrix is not satisfactory, themethods in [11] and [12]
achieve large RMES of the estimated DOAs. It can be seen
that the proposed method obtains smaller RMSE than other
methods. It means that the proposed method obtains more
accurate estimation.

Fourth, to sort FH signals, DOAs of different hop durations
are calculated. Table 3 lists the mean values of RMSE and
the estimated DOAs of two hop durations. It can be seen that
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the RMSE is smaller than 1 degree when SNR is higher than
15dB. The error of the estimatedDOA ismainly caused by the
error of the estimatedmixingmatrix in low SNR. In the future
work, it will be researched to estimate the mixing matrix in
low SNR.

V. CONCLUSIONS
This paper proposes a novel UBSS and parameters estima-
tion method of FH signals. The proposed method exploits
the tensor decomposition and an improved recovery method
to separate the FH signals and estimate the parameters of
FH signals in the underdetermined situation. The proposed
method obtains more accurate mixing matrix estimation and
higher correlation coefficient of separated FH signals with
less cost time. The estimated frequencies and DOAs are also
more satisfactory than other methods. In the future, how to
improve the performance of mixing matrix estimation in low
SNR will be researched.

APPENDIX
This part is shown how to estimate the mixing matrix from
the matrix Y.

Let Y = U6VH denotesthe Singular Value Decompo-
sition (SVD) of Y. If the conditions are satisfied in (14)
and (15), there exists a nonsingular matrix G ∈ CN×N such
that

UG = A (1 : K1, :)� A∗ (1 : K2, :) . (25)

According to the Vandermonde structure of the mixing
matrix A, it can be obtained as follow:(

Ā (1 : K1, :)� A* (1 : K2, :)
)
Z = Ā (1 : K1, :)� A*,(26)

where Z =
[
a2,1, . . . , a2,N

]
.

According to (25), it can be implied that

U1G = Ā (1 : K1, :)� A∗ (1 : K2, :) , (27)

U2G = Ā (1 : K1, :)� A∗ (1 : K2, :) , (28)

where U1 = U (1 : (K1 − 1)K2, :) ∈ C(K1−1)K2×N , U2 =

U (K2 + 1 : K1K2, :) ∈ C(K1−1)K2×N .
According to (26), (27) and (28), the following equalities

can be obtained

U2G = Ā (1 : K1, :)� A∗ (1 : K2, :)

=
(
Ā (1 : K1, :)� A∗ (1 : K2, :)

)
Z = U1GZ. (29)

Then, it can be obtained that

U2 = U1Ẑ, (30)

where Ẑ = GZG−1 is the EigenValueDecomposition (EVD)
of Ẑ.
Assume that r

(
Ā (1 : K1, :)� A∗ (1 : K2, :)

)
= N ,

the representation of Ẑ is written as follow:

Ẑ = U†
1U2. (31)

From EVD of Ẑ, the vector Z =
[
a2,1, . . . , a2,N

]
can be

obtained. According to the Vandermonder structure of the
mixing matrix A in (8), it can be obtained as follow:

A =


1 1 . . . 1
a2,1 a2,2 . . . a2,N
...

...
...

...

aM−12,1 aM−12,2 . . . aM−12,N

 ∈ CM×N . (32)

The proof is completed.
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