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ABSTRACT Cluster analysis is important in data mining and clustering algorithms and has gained much
attention during the last decade. However, it is a challenge to extract significant features from high-
dimensional data and to rapidly provide satisfactory clustering results. This paper presents a new affinity
propagation (AP) clustering method based on a hybrid kernel function with locally linear embedding, called
LLE-HKAP, for the classification of gene expression datasets and standard UCI datasets. First, the locally
linear embedding algorithm is used to reduce the dimension of the original dataset. Then, a novel AP
clustering method based on a similarity measure with the hybrid kernel function is proposed. In this method,
a new global kernel is defined that has high generalization ability. Meanwhile, a hybrid kernel function
that linearly combines the proposed global kernel and the Gaussian kernel is defined to further enhance the
learning ability of the global kernel. Moreover, the novel hybrid kernel is introduced to define a similarity
measure and construct a similarity matrix of the AP clustering. Finally, the improved AP clustering algorithm
is implemented on eight public gene expression datasets and eight standard UCI datasets for comparison with
other related algorithms. The experimental results validate that our proposed clustering algorithm is efficient
in terms of clustering accuracy and outperforms the currently available approaches with which it is compared.

INDEX TERMS Granular computing, cluster, reduction, affinity propagation, kernel function.

I. INTRODUCTION
Cluster analysis is one of the most important unsupervised
learning techniques for extracting information from data.
This type of analysis is widely used in a number of fields such
as granular computing, data mining, machine learning, and
bioinformatics [1], [2]. Granular computing as an important
mathematical method has been introduced in cluster analysis
to reveal the uncertainty of structured datasets, and it groups
similar objects in clusters called information granules [3].
The aim of clustering analysis is to cluster datasets into
categories that contain different information granules bymin-
imizing the similarity between clusters and maximizing the
similarity within clusters [4]. The purpose of clustering is to
effectively eliminate redundancy in high-dimensional data,
so that the most significant data can be identified [3], [5].

With the development of clustering techniques, many clus-
tering algorithms have been reported. Kumar and Reddy [6]
introduced an efficient initial seed selection method for
improving the performance of the K -means filtering method
by locating the seed points in dense areas of the dataset and
ensuring that they are well separated. Xu et al. [7] performed
a self-adaptive extreme learning machine algorithm based
on rough set theory and affinity propagation (AP) clustering
for finding the appropriate and universal number of hid-
den nodes. Truong et al. [8] developed an advanced fuzzy
possibilistic C-means clustering method based on granular
computing to select features as a preprocessing method for
clustering problems. Pagnuco et al. [9] studied a method
based on cluster validation indices and hierarchical cluster-
ing for identifying sets of coexpressed genes. Xu et al. [10]
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calculated a hierarchical clustering method based on
density peaks for directly generating clusters in each possible
clustering layer. Denoeux et al. [11] developed an eviden-
tial clustering algorithm based on the iterative row-wise
quadratic programming method for problems of dissimi-
lar data. Ding et al. [12] presented an entropy-based den-
sity peaks clustering algorithm for dealing with numerical,
categorical, and mixed type data. However, when tackling
complex high-dimensional data, these methods cannot yield
accurate clustering results. At present, many cluster ensemble
algorithms can effectively handle high-dimensional data [13].
Hu et al. [14] constructed cluster ensemble models based
on knowledge granulation and rough set theory for solving
the cluster ensemble problem as well as an ensemble learn-
ing application of knowledge granulation. Meng et al. [15]
offered a classifier ensemble selection method based on AP
clustering. Zhao et al. [16] investigated a clustering ensemble
selection algorithm for improving the quality of clustering
results and retaining the information of the original data.
However, some of these methods still have shortcomings;
for example, the number of clusters and the initial cluster
centers must be determined in advance. Although ensemble
clustering algorithms can perform well when using high-
dimensional datasets, a large number of experiments need to
be implemented to determine the number and the quality of
the base classifiers, which has a great effect on the clustering
results [16].

To solve the problem of dimensionality and achieve
satisfactory clustering results, it is necessary to combine
dimension reduction with cluster analysis. Commonly used
dimension reduction methods include principle component
analysis [17], linear discriminant analysis [18], isometric
feature mapping [19], Laplacian eigenmap [20], and local
linear embedding (LLE) [21]. LLE, a dimension reduc-
tion algorithm for high-dimensional data, was proposed by
Roweis and Sual [21]. The LLE algorithm is used to reduce
the dimensionality of nonlinear data [22]. Globally nonlin-
ear data are converted into locally linear data, and global
structure information is obtained by overlapping local areas.
After linear dimension reduction of each local area, low-
dimensional global coordinates are obtained by combining
the results, according to certain rules [23], [24]. Therefore,
the LLE algorithm has some advantages; for example, it is
easy to operate, and the processed low-dimensional data can
maintain the original topology [25].

The AP presented by Frey and Dueck [26] is an exemplar-
based clustering method. In contrast to traditional cluster-
ing methods, AP simultaneously considers all data points
as potential cluster centers, and does not require the spec-
ification of initial cluster centers; the number of clusters
is unknown [3], [27]–[29]. In recent years, many improved
methods and extensions of AP algorithms have been applied
in many domains [3]. Givoni et al. [30] performed a hier-
archical AP algorithm for solving hierarchical clustering
problems. Shang et al. [31] described a fast AP clustering
approach that simultaneously considered both local and

global structure information in datasets. Wang and Chen [32]
developed an AP algorithm to control the number of clus-
ters and identify multiple exemplars that can represent each
cluster automatically. Zhang and Gu [33] introduced an adap-
tive AP clustering algorithm for clustering mixed datasets.
Hang et al. [34] designed a transfer AP algorithm for iden-
tifying the appropriate number of clusters. However, both
AP and extended AP suffer from poor performance in clus-
tering accuracy when processing complex high-dimensional
data. Therefore, in this study, an improved AP algorithm is
combined with the LLE algorithm for dimension reduction
to increase efficiency while guaranteeing clustering perfor-
mance. Another shortcoming of the AP algorithm is that
data point similarity is defined as a negative squared error,
i.e., Euclidean distance. Thus, similarity is larger if the dis-
tance between points is smaller. However, in practice, sim-
ilarity can be defined according to specific issues without
satisfying Euclidean space constraints [35]. The Euclidean
distance can also lead to misclassification and reduce clus-
tering performance. To solve this issue, in this study, a new
kernel function is introduced to develop a similarity measure
for the AP algorithm.

The kernel-based learning method developed from statisti-
cal theory is an essentially nonlinear information processing
tool [36]. Compared with other learning methods, the kernel-
based learning methods have many advantages for addressing
complex high-dimensional pattern recognition tasks [37]. In
recent years, because single kernel functions possess only
strong generalization ability or strong learning ability, hybrid
kernel functions consider the global and local properties of
base kernels and can provide both strong generalization abil-
ity and strong learning ability [38]. Yeh et al. [39] provided
a two-stage multiple-kernel learning algorithm based on a
linear combination of the radial basis kernel function with
different hyperparameters to decrease the amount of time and
space required.Wang et al. [40] defined a kernel function that
combines the global and local information of base kernels
and presented an alternative algorithm with proven conver-
gence to identifymultiple kernel coefficients. Thus, this paper
focuses on creating a new hybrid kernel function. To over-
come the challenge of extracting relevant and significant
features from high-dimensional data and to rapidly provide
satisfactory clustering results, an improved AP algorithm that
uses a hybrid kernel function with LLE is proposed. First,
the LLE algorithm is used to map high-dimensional data into
a low-dimensional space for linear dimension reduction. It is
effective to reduce the dimensionality of high-dimensional
datasets and retain the potential information in the data. Then,
to overcome the problem of misclassification caused by the
Euclidean distance and maintain the original structure of the
data, a new global kernel function is defined and a novel
hybrid kernel function that provides both strong generaliza-
tion ability and strong learning ability is constructed by lin-
early combining the proposed global kernel and the Gaussian
kernel. The proposed hybrid kernel function is introduced
into a similarity measure of the AP algorithm to form a new
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similaritymatrix. Finally, the proposed hybrid kernel function
AP (HKAP) algorithm is used to cluster low-dimensional
data. The experimental results pertaining to several gene
expression datasets and standard UCI datasets demonstrate
that the proposed method has better classification accuracy
and effectiveness than the other related methods.

The rest of this paper is structured as follows.
Section 2 briefly reviews the basic theories of the AP
clustering algorithm and LLE-based dimension reduction.
In Section 3, a novel global kernel function and a hybrid
kernel function are developed, and a similarity measure and
its similarity matrix are constructed. Then, the LLE-HKAP
algorithm is presented. The experimental results and analysis
are described in Section 4. Finally, Section 5 presents the
conclusion.

II. RELATED WORK
In this section, the basic notions of the AP clustering
algorithm and LLE-based dimension reduction are briefly
reviewed [15], [27], [35], [41], [42].

A. AP CLUSTERING ALGORITHM
The AP clustering algorithm takes the similarities between
pairs of data points as its input. The similarity matrix, denoted
as SN×N , where the similarity measure s(i, j) = − ‖ xi −
xj ‖2 is described by the Euclidean distance between two data
points, is fundamental to AP.

Responsibility and availability are two significant fac-
tors of AP; the former is denoted as r(i, k) = s(i, k) −
max
k ′ 6=k
{a(i, k ′)+ s(i, k ′)} and the latter is expressed as

a(i, k) =


min{0, r(k, k)+

∑
i′ /∈{i,k}

max{0, r(i′, k)}},

if i 6= k∑
i′ 6=k

max{0, r(i′, k)}, if i = k

The AP algorithm searches for clusters through an itera-
tive process until a high-quality set of exemplars and corre-
sponding clusters are assembled. Meng et al. [15] introduced
a damping factor λ into iterations to overcome the problems
of oscillation and convergence failure. The iterative formulas
are respectively described as

r t (i, k) = (1− λ) ∗ r t (i, k)+ λ ∗ r t−1(i, k), (1)

at (i, k) = (1− λ) ∗ at (i, k)+ λ ∗ at−1(i, k), (2)

where t indicates the tth iteration.

B. LLE-BASED DIMENSION REDUCTION
The LLE maps a dataset X ∈ RN globally to a dataset Y ∈
RM , where X = {x1, x2, · · · , xn} and Y = {y1, y2, · · · , ym}.
The basic principle of LLE is to minimize the reconstruction
error of the set of all local neighborhoods in the dataset [41].
An original data point xij with D-dimension is input, where
1 ≤ i ≤ n, 1 ≤ j ≤ n and the distance measure of k

neighboring points for every sample point is calculated using
the Euclidean distance. This measure is denoted bydij = 2

√∑D

k=1
|xik − xjk |2, if i 6= j

dij = 0, if i = j,
(3)

where 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ D, and k is
set according to experience to a value that is greater than
the output dimension of the samples. Then, the k nearest
neighbors Nk (xi) of the ith point are selected to calculate the
reconstructed weight vectors [42].

For each input point, the optimal linearly reconstructed
weight vectors can be calculated by

εi(w) = min ||xi −
∑k

j=1,j6=i
wijxj||2

= min ‖
∑

j,j 6=i
wij(xi − xj)‖2

=

∑
j,k
wjwkGjk , (4)

where εi is an error function of the linear reconstruction
between xi and k neighboring points x1, x2, . . . , xk , and
Gjk = (xi − xj)T (xi − xk ) is a local Gramian matrix, and
wij is a linearly reconstructed weight that is subject to the
following constraint condition:

∑
wij = 1, where wij = 1

if xj is a neighboring point of xi and wij = 0 otherwise.
Additionally, an optimal weight wj is calculated using the

Lagrange multiplier approach, i.e., wj =
∑

k G
–1
jk∑

bm G
–1
bm
, where b,

m = 1, 2, · · · , k .
These reconstructed weights are used to find the low-

dimensional embedding matrix Y , which is defined as

ε(Y ) = min
∑k

i=1
||yi −

∑k

j=1
wijyj||2

= min ||Y (I −W T )||2

= min trYMY T , (5)

where i, j = 1, 2, . . . , k , yi ∈ Y , yi satisfies
∑N

i=1 yi = 0 and∑N
i=1 yiyi

T

N = I , where I is a d×d unit matrix, andM is a sparse
symmetric positive semi-definite matrix and that equals (I −
W )T (I −W ).

III. HYBRID KERNEL FUNCTION-BASED AP CLUSTERING
METHOD WITH LLE
For high-dimensional and large-scale data, the traditional
distance-based clustering method cannot effectively avoid
the curse of dimensionality. Thus, it is necessary to com-
bine dimension reduction methods with cluster analysis to
achieve better clustering results. In this study, the improved
AP algorithm is combined with the LLE algorithm to solve
this problem. First, the LLE algorithm is used tomap the orig-
inal high-dimensional dataset into a low-dimensional space
for dimension reduction. Then, a new global kernel function
is defined, and a novel hybrid kernel function is obtained
by combining the global kernel with the Gaussian kernel to
develop a similarity measure. A similarity matrix of the AP
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algorithm is constructed using the similarity measure. Thus,
the LLE-HKAP algorithm is presented.

A. GLOBAL KERNEL FUNCTION
The kernel function K (x, y) is defined as a dot product
of the feature space: 8(x)∗8(y) = K (x, y). The symmet-
ric kernel K (x, y) must satisfy the Mercer condition. The
kernel functions include the global kernel function and the
local kernel function. If the global kernel function allows
distant data to significantly impact the value of the kernel
function, then such functions have stronger generalization
ability but weaker learning ability. If the local kernel function
allows nearby data to significantly impact the value of the
kernel function, then such functions have stronger learning
ability but weaker generalization ability [38]. The two types
of kernel functions are combined so that they complement
each other and achieve better results than traditional kernel
functions. With the advantages of the global kernel function,
a new global kernel function is introduced. Here, a global
function is given as follows:
Definition 1: A new global function is defined as

f (x) =
1

1+ exp(− x2
a2
)
, (6)

where x, a ∈ R.
If a function satisfies the conditions of Mercer’s theorem,

then it can be called as a kernel function. Mercer’s theo-
rem [43] is described as follows.
Proposition 1: Suppose that k(x, x ′) is a continuous sym-

metric function. Then k(x, x ′) is a support vector machine
(SVM) kernel function if and only if

∫
Rd g

2(ξ )dξ < ∞ for
∀g 6= 0, when

∫∫
k(x, x ′)g(x)g(x ′)dxdx ′ ≥ 0 holds.

If a kernel function is translation-invariant (for example,
k(x, x ′) = k(x − x ′)), then it is challenging to prove that
the function satisfiesMercer’s theorem. The following lemma
provides necessary and sufficient conditions for a translation-
invariant kernel function.
Lemma 1: Let k(x) be a translation-invariant ker-

nel function whose Fourier transform is F[k(ω)] =

(2π )−
d
2
∫
Rd exp(−jωx)k(x)dx. Then, k(x) is an SVM ker-

nel function if and only if the Fourier transform satisfies
F[k(ω)] ≥ 0.
Definition 2: Given a dataset X ∈ RN , where X = {x1, x2,
· · · , xn}, a global kernel function is defined as

K (xi, xj) =
1

1+ exp(− (xi−xj)2

a2
)
, (7)

where xi, xj ∈ X, 1 ≤ i ≤ n, 1 ≤ j ≤ n, and a ∈ R.
From Definitions 1 and 2, the following proposition can be

obtained.
Proposition 2: The global kernel function is an SVM ker-

nel function.

FIGURE 1. The functional behavior of the global kernel.

Proof: The Fourier transform of the global kernel func-
tion is as follows:

F[k(ω)] = (2π )−
d
2

∫
Rd

exp(−jωx)
1

1+ exp(− x2
a2
)
dx ≥ 0.

This expression can be rewritten as

F[k(ω)] = (2π )−
d
2

∫
Rd

exp(−jωx)

1+ exp(− x2
a2
)
dx

= (2π )−
d
2

∫
+∞

−∞

exp(−jωx)

1+ exp(− x2
a2
)
dx.

It follows that exp(−jωx) > 0 and 1+ exp(− x2

a2
) > 0. Then,

F[k(ω)]>0. When x is close to ∞, the integral is approxi-
mately 0. Thus, the integral is an improper integral, and its
value is 0; that is, F[k(ω)] = 0. In conclusion, the Fourier
transform of the global kernel satisfies F[k(ω)] ≥ 0. Hence,
the proposed global kernel can be called an SVM kernel
function.

The functional behavior of our proposed global kernel is
shown in Fig. 1, where the parameter is set to different values
(i.e., a = 2, 2.5, 3, and 3.5). It can be seen from Fig. 1 that
our proposed global kernel function has better generalization
ability, and its generalization ability that changes with the size
of parameter a.

B. HYBRID KERNEL FUNCTION
Asmentioned in Section 3.1, the proposed global kernel func-
tion has strong generalization ability and the local kernel
function has strong learning ability. A new hybrid kernel
function that combines the global kernel function with the
local kernel function has both strong generalization ability
and strong learning ability. The linear combination of the
global kernel and the local kernel is also called a kernel
function. The hybrid kernel functions consider the global
and local properties of the base kernels and can provide
both strong generalization ability and strong learning ability.
Yeh et al. [39] and Wang et al. [40] proposed several hybrid
kernel functions and made good applications, respectively.
Then, in this study, by borrowing that idea of hybrid kernel
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FIGURE 2. The functional behavior of the Gaussian kernel.

FIGURE 3. The functional behavior of the hybrid kernel.

functions in [39] and [40], the global kernel function and
the local kernel function of the new hybrid kernel function
can be given different linear weights. The Gaussian kernel
function can map the input space to a feature space with infi-
nite dimension, and this function has a simple structure, fast
convergence and strong learning ability [36]; the Gaussian

kernel K (xi, xj) = exp
(
−
‖xi−xj‖2

2σ 2

)
. Because of the above

advantages, the Gaussian kernel function is selected as the
local kernel function. The functional behavior of theGaussian
kernel is shown in Fig. 2.
Definition 3: By linearly combining the global kernel

function with the Gaussian kernel function, a new hybrid
kernel function KH is defined as

KH = µKGK + (1− µ)KG, (8)

where KGK is the proposed global kernel, KG is the Gaussian
kernel, and µ is used to adjust the effects of the two kernels,
with 0 ≤ µ ≤ 1.
When µ = 1, the hybrid kernel becomes the global kernel.

When µ = 0, the hybrid kernel becomes the local kernel.
Fig. 3 shows the functional behavior of the hybrid kernel for
various values of µ.
Then, following the computation approach to similarity

measure in [30], [33], and [34], the proposed hybrid kernel
function KH is used as a new similarity measure s(i, j) of AP
algorithm, i.e., s(i, j) = KH .

Algorithm 1 LLE
Input: Original dataset X = {x1, x2, · · · , xn}, the number of

nearest neighbor points K , and the dimensions d
Output: Low-dimensional embedding matrix Y
1: for each data point xi in X do
2: Find K nearest neighbors Nk (xi)
3: Compute the weights that best reconstructed from

Nk (xi) using Eq. 4
4: end for //compute the reconstructed weight vectors
5: Find the weight matrixw using the reconstructed weights

6: Compute the low-dimensional embedding vector Y using
Eq. 5

7: return Y

Definition 4: A similarity measure s(i, j) in the AP algo-
rithm is defined as

s(i, j) =
µ

1+ exp(− (xi−xj)2

a2
)
+ (1−µ) exp

(
−
‖ xi − xj‖2

2σ 2

)
,

(9)

where xi, xj ∈ X, 1 ≤ i ≤ n, 1 ≤ j ≤ n, 0 ≤ µ ≤ 1, and a,
σ ∈ R.
From the above analysis, since the kernel function and

its parameters directly determine the nonlinear mapping of
feature space, the performance of the kernel depends on its
parameters. If the kernel function parameters are improp-
erly chosen, poor results will be obtained. Therefore, it is
important to determine the adjustable parameters µ, a, and
σ correctly.
Definition 5: A similarity matrix Sn×n in the AP algorithm

is defined as

S = [s(i, j)]n×n, (10)

where s(i, j) denotes a similarity measure, 1 ≤ i ≤ n, and
1 ≤ j ≤ n.

C. THE LLE-HKAP ALGORITHM
The goal of this section is to combine the proposed AP
algorithm with the LLE algorithm for the analysis of high-
dimensional and large-scale data. Fig. 4 illustrates the special
procedures of the LLE-HKAP algorithm. As we can see
from Fig. 4, the LLE algorithm is first used to map the
original high-dimensional dataset into low-dimensional space
for dimension reduction; the specific steps of the LLE algo-
rithm are shown in Algorithm 1. Then, a new hybrid kernel
function is used as a similarity measure, and a similarity
matrix is constructed. Based on the similarity matrix, HKAP
updates the responsibility and availability for each point,
selects the cluster centers, and allocates the other data points
based on the nearest cluster centers; the specific steps of the
LLE-HKAP algorithm are depicted in Algorithm 2.
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FIGURE 4. Flowchart of the LLE-HKAP algorithm.

Algorithm 2 LLE-HKAP
Input: Original dataset X = {x1, x2, · · · , xn}, the biased

parameter p, the damping factor λ, and the number of
iterations t

Output: Clustered C .
1: Initialize r(i, k) = 0 and a(i, k) = 0
2: Compute the low-dimensional embeddingmatrix Y using

Algorithm 1 //reduce dimensionality based on LLE
3: for each data point yi in Y do
4: Compute the distance between two points
5: end for
6: Compute the similarity matrix S using Eq. 10 //con-

struct the similarity measure
7: for t = 1:1000 do
8: Based on matrix S, compute r(i, k) and a(i, k) using

Eqs. 1 and 2, respectively //update responsibility
and availability

9: Compute the value of r(i, k)+ a(i, k)
10: Find the cluster centers, and compute the number of

cluster centers as paper [15]
11: if converge then
12: break
13: end if
14: end for //cluster based on HKAP
15: if correct cluster number then
16: break
17: else
18: Change the value of the biased parameter P
19: Repeat
20: Until obtain correct cluster number
21: end if //adjust the biased parameter
22: return Clustered C

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENT PREPARATION
In this section, the performances of our proposed
LLE-HKAP algorithm described in Section 3.3 is

demonstrated by evaluating our algorithm in terms of the
number of clusters, the number of iterations, the operation
time, and the clustering accuracy. Our experiments can be
divided into three parts as follows. The LLE-HKAP algorithm
is run on eight public gene expression datasets to evaluate
the performances of the LLE algorithm, the kernel-function-
basedAP algorithms and the related classification algorithms.
For the final part, LLE-HKAP is run on eight standard UCI
datasets to evaluate classification accuracy and precision.
These experiments are performed on a personal computer
running Windows 7 with an Intel(R) Core(TM) i5-3470 CPU
operating at 3.2 GHz and 4 GB of memory.

Five indices [15], [44], [45], i.e., silhouette index (Sil),
precision (P), specificity (S), F-measure (FM), and accuracy
(AC), are introduced to evaluate the clustering effect of the
LLE-HKAP algorithm. Their formulas are expressed as fol-
lows

Sil(t) =
[b(t)− a(t)]

max{a(t), b(t)}
, (11)

where t denotes the samples of a dataset, t = 1, 2, . . . , n,
a(t) is the average dissimilarity of t to all other samples in a
clusterCi (i = 1, 2, . . . , k), b(t)=min{d(t ,Ci)}, where i, j =
1, 2, . . . , k , and i 6= j, and d(t ,Ci) is the average dissimilarity
of t in Cj to all samples in another cluster Ci.

P =
TP

TP+ FP
, (12)

R =
TP

TP+ FN
, (13)

S =
TN

TN + FP
, (14)

FM =
2× P× R
P+ R

, (15)

AC =
TP+ TN

TP+ FP+ FN + TN
, (16)

where True Positive (TP), True Negative (TN), False Posi-
tive (FP), and False Negative (FN) are metrics.

B. THE EFFECT OF LLE AND THE HYBRID KERNEL
FUNCTION
It is known that accurate cancer classification directly
using original gene expression profiles remains challeng-
ing due to the intrinsic high-dimensional features and the
small number of samples [28]. The objective of the fol-
lowing experiments is to show the clustering efficiency of
the proposed general framework on eight types of pub-
lic gene expression datasets. To evaluate the effective-
ness of the dimension reduction of the LLE algorithm
on high-dimensional gene expression datasets, the Colon,
Leukemia, DLBCL and Prostate datasets are selected
from http://csse.szu.edu.cn/staff/zhuzx/Datasets.html, and
the SRBCT, Leukemia1, 9-Tumor and Prostate1 datasets
are selected from http://www.gems-system.org/. The basic
information of these eight datasets is described in Table 1.
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TABLE 1. Description of the eight gene expression datasets.

FIGURE 5. The dimension reduction results of the eight gene expression
datasets. (a) Colon dataset. (b) Leukemia dataset. (c) DLBCL dataset.
(d) Prostate dataset. (e) SRBCT dataset. (f) Leukemia1 dataset.
(g) 9-Tumor dataset. (h) Prostate1 dataset.

The first part of this experiment testing the proposed algo-
rithm is to investigate the validity of the dimension reduc-
tion results of the LLE algorithm on eight gene expression
datasets. The results are shown in Fig. 5. It is easily seen
in Fig. 5 that the dimensions of the eight gene expression
datasets are greatly reduced.

TABLE 2. Clustering results of the six algorithms for the colon dataset.

The second part of this experiment is to illustrate the
efficiency of our proposed hybrid kernel function. The
LLE-HKAP algorithm is compared with five combined AP
algorithms: (1) the traditional AP algorithm [26]; (2) the
Gaussian kernel AP (GAP) algorithm, whose similarity mea-
sure is calculated using the Gaussian kernel; (3) the global
kernel AP (GKAP) algorithm, whose similarity measure is
calculated using the proposed global kernel; (4) the GP kernel
AP (GPAP) algorithm, whose similarity measure is calcu-
lated by combining the Gaussian kernel and polynomial ker-
nel [38]; and (5) the GS kernel AP (GSAP) algorithm, whose
similarity measure is calculated by combining the Gaussian
kernel and sigmoid kernel [43]. Here, the selected kernel
functions are the Gaussian kernel of GAP, the global kernel
of GKAP, the Gaussian kernel and polynomial kernel [38],
and the Gaussian kernel and sigmoid kernel [43]. For the
eight reduced datasets illustrated in Fig. 5, the correspond-
ing experimental parameters and results are summarized
in Tables 2 to 9 and Figs. 6 to 14. Since gene expression data
usually consist of thousands of genes and a small number of
samples (that is, the data generally have high dimensionality
and a small sample size), any attempt tomine knowledge from
gene expression data may result in very poor performance
without dimension reduction [46]. It follows that for the tradi-
tional AP algorithm [26], the AP with the Euclidean distance
and without the LLE cannot obtain effective clustering results
and is very time consuming to simulate. Thus, the comparison
of the AP algorithmwith the other six algorithms was ignored
in Tables 2 to 9. Following the experimental techniques used
in [27], the operation time (in seconds) and the number of
iterations are employed to test the performance measures of
the six algorithms in Tables 2 to 9, and the operation time
is correlated with the number of iterations. It should be noted
that, to determine the appropriate parameters of the algorithm
and obtain more accurate properties, numerous experiments
were performed. Then, the parameters of the algorithm were
set as follows: the maximum number of iterations t = 1000,
damping factor λ = 0.8, biased parameter p is set initially
by the median diagonal value of the similarity matrix [15],
and, for the hybrid kernel, the adjustable parameters µ, a,
and σ of the eight datasets are shown in Fig. 6. Valida-
tion was conducted using 5-fold cross validation, i.e., the
dataset was randomly divided into five groups with equal
sample sizes, and in each validation process, four groups
were used as training sets and one group was used as a test
set.
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FIGURE 6. The adjustable parameters µ, a, and σ of the eight gene
expression datasets.

FIGURE 7. The iterations of the six algorithms for the Colon dataset.
(a) AP algorithm. (b) GAP algorithm. (c) GKAP algorithm. (d) GPAP
algorithm. (e) GSAP algorithm. (f) HKAP algorithm.

From Table 2, we find that, although the operation time
of the six algorithms increases in turn, the cluster num-
ber obtained by the AP algorithm is much larger than that
of the kernel-based AP algorithms. The performance of
hybrid-kernel AP algorithms is highlighted in iterations, and
the GSAP algorithm performs the best, although it cannot
obtain the correct number of clusters. The HKAP algo-
rithm performs well in terms of cluster numbers, and the
result is the same as the correct number of clusters. More-
over, the values of two indices indicate the effectiveness of
the HKAP algorithm. The experimental results verify that
HKAP can provide the most efficient results. Meanwhile,

TABLE 3. Clustering results of the six algorithms for the Leukemia
dataset.

FIGURE 8. The iterations of the six algorithms for the Leukemia dataset.
(a) AP algorithm. (b) GAP algorithm. (c) GKAP algorithm. (d) GPAP
algorithm. (e) GSAP algorithm. (f) HKAP algorithm.

Fig. 7 illustrates the iterations of the six algorithms for the
Colon dataset. The ordinate represents the net similarity of the
clustering solution. Fig. 7 shows that the number of iterations
tends to decrease when using the different similarity mea-
sure for the six algorithms; in other words, the kernel-based
AP algorithms perform better than the Euclidean distance-
based AP algorithm, and the hybrid kernel-based AP algo-
rithms have better performance than the single kernel-based
AP algorithms. Compared with the other two hybrid-kernel
algorithms (GPAP and GSAP), the results obtained by the
HKAP algorithm prove that similarity measure based on the
hybrid of the Gaussian kernel and the sigmoid kernel is more
effective.

Table 3 denotes that the performances of the GAP and
GKAP algorithms are similar, and the GPAP and GSAP algo-
rithms perform better than the GAP and GKAP algorithms in
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TABLE 4. Clustering results of the six algorithms for the DLBCL dataset.

FIGURE 9. The iterations of the six algorithms for the DLBCL dataset.
(a) AP algorithm. (b) GAP algorithm. (c) GKAP algorithm. (d) GPAP
algorithm. (e) GSAP algorithm. (f) HKAP algorithm.

terms of iterations and clusters. All of the algorithms perform
markedly better than the AP algorithm, which performs the
worst. The reason for failure of AP is that the similarity mea-
sure between data points is defined by the Euclidean distance,
which considers all data points equally. However, kernel-
based algorithms (GKAP, GAP, HKAP, GPAP and GSAP)
can retain the original information of the data. It is clear
that the HKAP algorithm developed in this paper performs
the best for the Leukemia dataset. Fig. 8 intuitively shows
the iteration process of the six algorithms for the Leukemia
dataset. The ordinate represents the net similarity of the clus-
tering solution. Fig. 8 illustrates that the number of iterations
is the largest for the AP algorithm, while that of our proposed
algorithm is the smallest. Numerical oscillation occurs in
the early iterations of all algorithms, but the LLE-HKAP
algorithm tends to converge soonest, that is, our algorithm

TABLE 5. Clustering results of the six algorithms for the Prostate dataset.

has fast convergence and few iterations for the test data.
The AP algorithm tends to converge slowest and its absolute
value of net similarity is too large, demonstrating the poor
performance of the traditional AP algorithm. In conclusion,
our proposed algorithm is highly robust and efficient.

Fig. 9 shows the iterations of the six tested algorithms for
the DLBCL dataset. The ordinate represents the net similar-
ity of the clustering solutions. Fig. 9 denotes that the three
hybrid-kernel AP algorithms clearly perform better than the
AP and single-kernel AP algorithms in terms of the number
of iterations. The number of iterations of the single-kernel
AP algorithms is twice that of the hybrid-kernel AP algo-
rithms, which reduces the efficiency of the algorithms. The
hybrid-kernel AP algorithms tend to converge sooner than
the single-kernel AP algorithms. For the two single-kernel
AP algorithms, our proposed global-kernel AP algorithm
performs better than the Gaussian-kernel AP algorithm. The
AP algorithm exhibits the worst performance in terms of the
number of iterations, and its speed of convergence is more
than six times that of the LLE-HKAP algorithm. As shown
in Table 4, although the HKAP algorithm performs slightly
worse than the GPAP and GSAP algorithms in terms of the
number of iterations and the operation time, it can obtain
the correct cluster number. Because of the large number of
iterations, the operation time of single-kernel and traditional
AP algorithms are longer than those of the hybrid-kernel
algorithms. These results further verify the effectiveness of
the kernel-based similarity measure and our proposed global
kernel.

Fig. 10 shows the iterations of the six tested algorithms for
the Prostate dataset. The ordinate represents the net similarity
of the clustering solution. Table 5 and Fig. 10 demonstrate
that both the single-kernel AP algorithms and the hybrid-
kernel AP algorithms yield the correct number of clusters;
however, the single-kernel algorithms perform slightly worse
than the hybrid-kernel algorithms in terms of the num-
ber of iterations and the operation time. Fig. 10 illustrates
that the AP algorithm tends to converge slowest, while the
LLE+GPAP algorithm tends to converge quickest. Although
the LLE+GPAP algorithm performs slightly better than the
LLE-HKAP algorithm in terms of the number of iterations
and the operation time, it cannot obtain the correct clus-
ter number, which results in worse indices. The effective-
ness of the GKAP and GAP algorithms verifies that the
improved similarity measure with a single kernel function can
improve the accuracy of the AP algorithm. Meanwhile, the

68900 VOLUME 6, 2018



L. Sun et al.: AP Clustering Method Using Hybrid Kernel Function With LLE

FIGURE 10. The iterations of the six algorithms for the Prostate dataset.
(a) AP algorithm. (b) GAP algorithm. (c) GKAP algorithm. (d) GPAP
algorithm. (e) GSAP algorithm. (f) HKAP algorithm.

TABLE 6. Clustering results of the six algorithms for the SRBCT dataset.

single-kernel algorithms, considering only the global or the
local information of the data, show poorer performance
than the hybrid-kernel algorithms. The experimental results
obtained for the Prostate dataset show that the number of
iterations and the operation time are greatly reduced when
using the HKAP algorithm. Therefore, our proposed algo-
rithm outperforms the other five tested algorithms.

Table 6 shows that the LLE-HKAP algorithm performs
best in terms of the Sil and FM indices; the values of the two
indices are the largest. It can be seen that the three algorithms
(LLE+GAP, LLE+GSAP, and LLE-HKAP) can obtain the
correct number of clusters, while the other three algorithms
(LLE+AP, LLE+GKAP, and LLE+GPAP), especially the
traditional AP algorithm, have slightly bad performance.
Fig. 11 shows the iterations of the six tested algorithms for
the SRBCT dataset. From Table 6 and Fig. 11, LLE-HKAP

FIGURE 11. The iterations of the six algorithms for the SRBCT dataset.
(a) AP algorithm. (b) GAP algorithm. (c) GKAP algorithm. (d) GPAP
algorithm. (e) GSAP algorithm. (f) HKAP algorithm.

TABLE 7. Clustering results of the six algorithms for the
Leukemia1 dataset.

shows the best performance in terms of iterations, and the
iterations of LLE+GSAP are a little worse than those of
LLE-HKAP. In terms of operation time, the LLE-HKAP
and LLE+GSAP algorithms are similar. It can be seen that
the number of iterations and the operation times of LLE-
HKAP and LLE+GSAP are much smaller than those of the
other four algorithms. Table 6 shows that the hybrid-kernel
algorithms (LLE+GPAP, LLE+GSAP, and LLE-HKAP) can
obtain better performance on the SRBCT dataset.

Table 7 shows the clustering results of the six algorithms
for the Leukemia1 dataset. Fig. 12 shows the iterations of the
six tested algorithms for the Leukemia1 dataset. As shown
in Table 7 and Fig. 12, the three algorithms (LLE+AP,
LLE+GAP, and LLE+GKAP) have similar performance
in terms of iterations and operation time, but the tradi-
tional AP algorithm produces the wrong number of clusters,
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FIGURE 12. The iterations of the six algorithms for the
Leukemia1 dataset. (a) AP algorithm. (b) GAP algorithm. (c) GKAP
algorithm. (d) GPAP algorithm. (e) GSAP algorithm. (f) HKAP algorithm.

TABLE 8. Clustering results of the six algorithms for the 9-Tumor dataset.

which leads to a lower value of the two evaluation indices.
Compared with the single-kernel algorithms (LLE+GAP
and LLE+GKAP), the three hybrid-kernel algorithms (LLE-
HKAP, LLE+GPAP, and LLE+GSAP) show better perfor-
mance in terms of iterations and operation times. Among
them, the LLE+GPAP algorithm has the slowest iterations
and wastes more operation time, and the LLE-HKAP and
LLE+GSAP algorithms are similar. The LLE-HKAP and
LLE+GPAP algorithms show the correct numbers of clus-
ters, while the other four algorithms perform badly in this
regard. In terms of the two evaluation indices, our LLE-
HKAP algorithm performs better than the other five algo-
rithms. In summary, the proposed LLE-HKAP algorithm has
better clustering results on the Leukemia1 dataset.

Table 8 shows the clustering results of the six com-
pared algorithms for the 9-Tumor dataset. Fig. 13 shows the

FIGURE 13. The iterations of the six algorithms for the 9-Tumor dataset.
(a) AP algorithm. (b) GAP algorithm. (c) GKAP algorithm. (d) GPAP
algorithm. (e) GSAP algorithm. (f) HKAP algorithm.

iterations of the six tested algorithms for the 9-Tumor dataset.
It can be observed from Table 8 and Fig. 13 that the
LLE-HKAP algorithm has notably better performance than
the other five algorithms in terms of iterations and oper-
ation time, and the hybrid-kernel algorithms (LLE-HKAP,
LLE+GPAP, and LLE+GSAP) are better than the single-
kernel algorithms (LLE+GAP and LLE+GKAP) and the
traditional AP algorithms. Regarding the number of clusters,
the LLE+GAP and LLE+GSAP algorithms perform slightly
a little worse than the other four algorithms (LLE+AP,
LLE+GKAP, LLE-HKAP, and LLE+GPAP), which obtain
correct numbers of clusters. Based on the characteristics of
the 9-Tumor dataset, all algorithms have low values for the
clustering evaluation indices, and the LLE-HKAP algorithm
is far better than the other five algorithms in terms of evalua-
tion indices. These results further demonstrate the effective-
ness of the proposed LLE-HKAP algorithm on the 9-Tumor
dataset.

Table 9 shows the clustering results of the six con-
trast algorithms for the Prostate1 dataset. Fig. 14 shows
the iterations of the six tested algorithms for the Prostate1
dataset. From Table 9, the LLE+AP algorithm has fewer
numbers of iterations and a lower operation time than the
LLE+GAP and LLE+GKAP algorithms, but according to
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TABLE 9. Clustering results of the six algorithms for the
Prostate1 dataset.

FIGURE 14. The iterations of the six algorithms for the Prostate1 dataset.
(a) AP algorithm. (b) GAP algorithm. (c) GKAP algorithm. (d) GPAP
algorithm. (e) GSAP algorithm. (f) HKAP algorithm.

Fig. 14(a), the LLE+AP algorithm cannot converge. The
LLE+AP algorithm shows poor performance in terms of
the number of clusters, which leads to the small values of
the two evaluation indices. From Table 9 and Fig. 14, the
three hybrid-kernel algorithms (LLE-HKAP, LLE+GPAP,
and LLE+GSAP) achieved better performance in terms of
iterations and operation times, but only the LLE-HKAP algo-
rithm can obtain the correct number of clusters. Meanwhile,
the value of the larger evaluation indices indicates that the
LLE-HKAP algorithm is superior to the other five algorithms
for the Prostate1 dataset.

All comparisons indicate that the LLE-HKAP method
yields the correct number of clusters and can provide favor-
able performance in terms of the number of iterations and
the operation time. To further verify the clustering quality of

FIGURE 15. The Sil index of the six algorithms for the eight gene
expression datasets.

FIGURE 16. The FM index of the six algorithms for the eight gene
expression datasets.

Algorithm 2, two indices (Sil and FM) are introduced to eval-
uate the clustering results, which are shown in Figs. 15 and
16. Fig. 15 shows that, for the Colon dataset, the largest value
of Sil indicates that the LLE-HKAP algorithm shows the best
in terms of clustering accuracy, whereas AP shows the worst.
The results for the Leukemia, DLBCL and Prostate datasets
also demonstrate the good performance of the LLE-HKAP
algorithm. Fig. 16 shows, for all datasets, that the values of
FM of the kernel-based algorithms are clearly larger than
those of theAP algorithm; the value ofFM by the LLE-HKAP
algorithm is largest. For the 9-Tumor dataset, based on the
characteristics of the dataset, all algorithms have low val-
ues for the clustering evaluation indices, which still proves
that the proposed LLE-HKAP algorithm is superior to other
algorithms. Since Sil and FM can measure the clustering
accuracy of the tested data [44], the largest values of the
Sil and FM indices indicate that our proposed algorithm is
effective. In summary, in terms of the number of iterations,
the operation time and the clustering accuracy, LLE-HKAP
performs better than the other tested methods.

C. COMPARISONS OF TESTING ACCURACY ON GENE
EXPRESSION DATASETS
This portion of our experiments, which further concern gene
expression data, is conducted to validate the classification
accuracy of LLE-HKAP in comparison with other related
state-of-the-art classificationmethods: (1) the hiddenMarkov
model (HMM), which amplifies the probability of the given
Information [47]; (2) the information gain and standard
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TABLE 10. Comparison of the testing accuracy of the three algorithms on
the four gene expression datasets.

TABLE 11. Comparison of the testing accuracy of the five algorithms on
the two gene expression datasets.

genetic algorithm (IG-SGA) [45]; (3) the AP-based clas-
sifier ensemble selection algorithm (APCES) [15]; (4) the
ensemble gene selection algorithm by grouping (EGSG) [48];
(5) the ensemble selection method based on the random sub-
space method (RSM) [49]; and (6) the random forest (RF)-
based feature selection algorithm [50]. Following the exper-
imental techniques designed by Salem et al. [45], the four
typical gene expression datasets (Colon, Leukemia, DLBCL,
and Prostate) are selected from Table 1, and 5-fold cross-
validation method is used to evaluate the testing accuracy
with recall R and specificity S on the selected four datasets.
Table 10 shows the comparison of the testing accuracy of
the HMM, IG-SGA with LLE-HKAP algorithms on the four
gene expression datasets. Similarly, following the experimen-
tal techniques developed by Meng et al. [15], the Colon
and Leukemia datasets are selected from Table 1 and the
5-fold cross-validationmethod is applied to test the clustering
accuracy with R, S and the accuracy AC on the selected two
datasets. The experimental results are shown in Table 11.
In the comparative experiments, the large values of the three
indices indicate that the algorithm has better performance in
terms of clustering accuracy.

According to Table 10, because both index values are 1,
the IG-SGA algorithm performs best on the Prostate dataset.
The proposed LLE-HKAP algorithm performs slightly worse
than the IG-SGA algorithm on the Prostate dataset. However,
our algorithm performs better than other two algorithms on
the Colon dataset. On the Leukemia dataset, although the
LLE-HKAP algorithm shows poorer performance than the
IG-SGA algorithm in terms of index S, it performs better
than the HMM and IG-SGA algorithms in terms of index
R. On the DLBCL dataset, the value of R is the largest for
the LLE-HKAP algorithm, which indicates that our algorithm
performs best. The value of S for the LLE-HKAP algorithm
is smaller than that of the HMM algorithm but larger than that
of the IG-SGA algorithm. In general, the experimental results
verify the effectiveness of the LLE-HKAP algorithm.

Table 11 shows the three indices (recall R, specificity S
and accuracy AC) of the five algorithms on the Colon and
Leukemia datasets, where the APCES algorithm uses a bicor
correlation coefficient as the similarity measure of the AP
algorithm [15]. From Table 11, the LLE-HKAP algorithm
shows better performance than the other four algorithms
(APCES, EGSG, RSM and RF), especially on the Colon
dataset. For the Colon dataset, the three evaluation indices
of LLE-HKAP are obviously higher than those of the other
four algorithms. LLE-HKAP is 8% higher than APCES in
terms of the R and AC indices, and up to 13% higher in terms
of the S index. For the Leukemia dataset, the RF algorithm
performs better than the other four algorithms in terms of
the R index but worse in terms of the S and AC indices.
Compared with the other four algorithms, the LLE-HKAP
algorithm shows better performance in terms of the three
indices. The experimental results provide further evidence for
the effectiveness of the proposed LLE-HKAP algorithm.

The following section describes the clustering accuracy of
the proposed algorithm compared with ten clustering algo-
rithms on five high-dimensional gene expression datasets
selected from Table 1. The compared methods include two
traditional clustering algorithms (HC [51], K -means [52]),
two non-negative matrix factorization algorithms (C-NMF,
S-NMF) [53], three subspace segmentation algorithms (LSR,
LRR, LatLRR) [54]–[57] and three low rank projection
least square regression (LPLSR) subspace segmentation
algorithms (LPLSR-1, LPLSR-2, LPLSR) [58]. Following
the experimental techniques designed by Chen et al. [58],
five typical gene expression datasets (DLBCL, SRBCT,
Leukemia1, 9-Tumor, and Prostate1) are selected from
Table 1 to test the accuracy AC using the above eleven algo-
rithms. To reduce random error, each method is run 10 times,
and the results are the mean value of the clustering accuracy
of the 10 evaluations. The results are shown in Table 12.

According to Table 12, the traditional clustering and
NMF-based algorithms show the worst performance, and the
subspace segmentation algorithms perform better than the
traditional algorithms in terms of clustering accuracy. Due to
the large number of data categories, the clustering accuracies
of all algorithms are low on the 9-Tumor dataset, where the
HC algorithm performs the worst, and nearly all data points
are misclassified. However, compared with K -means and the
two NMF-based algorithms, the HC algorithm shows better
performance, for which the clustering accuracy is the same as
that of the three subspace segmentation algorithms. Although
the subspace segmentation algorithms perform better on high-
dimensional datasets than the traditional clustering algo-
rithms, it is difficult to determine the size of the subspace. It is
known that an inappropriate subspace size can lead to poor
results. Compared with all the above algorithms, except LLE-
HKAP, the clustering accuracies of the LPLSR-1, LPLSR-2
and LPLSR algorithms were increased by more than 10% on
the SRBCT, Leukemia1 and Prostate1 datasets. Nevertheless,
all of the compared algorithms show lower clustering accu-
racy than the LLE-HKAP algorithm. On the 9-Tumor dataset
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TABLE 12. The accuracy AC of the eleven algorithms on the five gene expression datasets.

TABLE 13. Description of the five standard UCI datasets.

in particular, LLE-HKAP performs better than the other ten
algorithms. In general, the LLE-HKAP algorithm is effi-
cient in terms of clustering accuracy and outperforms the ten
compared approaches. Therefore, our method is concluded
to be suitable for high-dimensional data and can achieve
better clustering results on gene expression datasets than the
compared methods.

D. COMPARISONS OF TESTING ACCURACY ON STANDARD
UCI DATASETS
In the previous experiments, it is proved that the
LLE-HKAP algorithm is effective for high-dimensional gene
expression datasets. To evaluate the feasibility and effi-
ciency of the LLE-HKAP algorithm on large-scale low-
dimensional UCI datasets, we conducted experiments on
low-dimensional real-world datasets for practical problems
that are commonly used to test the performances of clus-
tering algorithms [59]. Several standard UCI datasets can
be downloaded from the UCI repository of machine learn-
ing databases (http://www.ics.uci.edu). These datasets are
described in Table 13. To compare the LLE-HKAP algorithm
with the AP algorithm [26], the fireworks explosion opti-
mization semi-supervised affinity propagation (FEO-SAP)
algorithm [44] and the adaptive semi-supervised affinity
propagation clustering algorithm based on structural simi-
larity (SAAP-SS) [60], our experimental techniques of test-
ing the five selected UCI datasets are the same as those
reported in [26], [44], and [60]. The clustering results of
the four compared algorithms are shown in Table 14, where
CN describes the cluster numbers of the four algorithms.
To indicate the clustering accuracies of the four algorithms
visually, Figs. 17 and 18 display histograms of the Sil and FM
indices in detail, where the best performance for each dataset
is highlighted. Similar to Section 4.3, the four methods are
executed 10 times to reduce random error, and the results
of CN, Sil and FM are the mean values of 10 clustering
operations.

As shown in Table 14, the CN of the original AP algorithm
does not match the actual number of clusters, while those

FIGURE 17. The Sil index of the four tested algorithms for the five
standard datasets.

of the other three algorithms match the actual numbers for
the five UCI datasets. The evaluation results, when assessed
in terms of the Sil and FM indices, show that the proposed
LLE-HKAP algorithm achieves clustering performance that
is superior to that of the other three algorithms. This result
can be attributed to the defined similarity measure, which can
more accurately describe local and global information explic-
itly. Although the FEO-SAP and SSAP-SS algorithms offer
satisfactory performance, they can make only local adjust-
ments to the similarity matrix due to the limited amount of
a priori information. Thus, these algorithms can neither com-
prehensively reflect the similarities among the data points nor
discover the global clustering structure of the data. As shown
in Figs. 17 and 18, the proposed LLE-HKAP algorithm
clearly outperforms the other three algorithms. Therefore,
it can be proved that the proposed LLE-HKAP algorithm
not only performs well on high-dimensional datasets but also
provides favorable performance when using standard UCI
datasets.

It is well known that, in many real-world problems,
imbalance occurs when a negative class contains many more
patterns than dose a positive class [61]. Note that, to date,
learning from imbalanced data is still a research focus.
To evaluate the classification precision of the LLE-HKAP
algorithm, experiments on real-world imbalanced datasets
from standard UCI datasets are performed. Information per-
taining to three real-world imbalanced datasets is described
in Table 15. For the three real-world imbalanced datasets,
our LLE-HKAP algorithm is compared with five SVM-based
machine learning methods: (1) the adaptive synthetic sam-
pling (ADASYN) algorithm [62]; (2) the different error
costs (DEC) algorithm [63]; (3) the random under-sampling
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TABLE 14. Clustering results of the four algorithms on the five standard UCI datasets.

FIGURE 18. The FM index of the four tested algorithms for the five
standard datasets.

TABLE 15. Description of the three imbalanced datasets.

(RAMU) algorithm [64]; (4) the ADASYN+DEC algo-
rithm [65]; and (5) the hybrid support vector machine
(HSVM) algorithm [65]. In this experiment, following the
experimental techniques designed by Liu et al. [65], 5-fold
cross validation is adopted to ensure a fair comparison. The
experimental results on real-world imbalanced datasets are
presented intuitively by the histogram in Fig. 19, where the

index G-mean =
√
R× S =

√
TP×TN

(TP+FN )×(TN+FP) [65] is used
to estimate the classification precision of the six algorithms.

Fig. 19 shows that for the Ecoli dataset, the G-mean index
of our LLE-HKAP algorithm is notably greater than the cor-
responding indices of ADASYN, DEC and ADASYN+DEC,
and slightly less than those of RAMU and HSVM. On the
Yeast dataset, the LLE-HKAP algorithm performs markedly
better than do DEC and RAMU, and the performances
of LLE-HKAP, ADASYN, ADASYN+DEC and HSVM
are similar. For the Pima-indians dataset, the LLE-HKAP
algorithm exhibits the best performance. It can be con-
cluded from Fig. 19 that LLE-HKAP has the highest clas-
sification precision on most of the imbalanced datasets,
and the performances of LLE-HKAP and HSVM are very
similar. Furthermore, the three algorithms (LLE-HKAP,
RAMU and HSVM) perform better than the ADASYN, DEC
and ADASYN+DEC algorithms on the three imbalanced

FIGURE 19. The G-mean index of the six tested algorithms for the three
imbalanced datasets.

datasets, where DEC shows the worst performance. There-
fore, the experiments show that our proposed LLE-HKAP
algorithm exhibits better classification precision for imbal-
anced datasets and can efficiently improve the robustness of
machine learning models.

Based on the abovementioned experimental results and the
comparison of our scheme with other schemes, the contribu-
tions of our proposed method can be summarized as follows.

(1) The LLE-based dimension reduction algorithm is intro-
duced to reduce the dimensions of high-dimensional datasets.
Because processed low-dimensional data can maintain the
original topology, the LLE algorithm can effectively reduce
the dimensions of the data, which does not lose potential
information.

(2) Comparedwith existing kernel techniques, a new global
kernel function is defined in the proposed HKAP model, and
the global kernel function can satisfy the conditions of the
SVMkernel function.Meanwhile, our proposed global kernel
function has better generalization ability. There is only one
parameter in the kernel, and thus the influence of parameter
adjustment can be avoided.

(3) The HKAP model is constructed based on the global
and Gaussian kernels. Because of both its global and local
advantages, the similarity measure calculated by our pro-
posed hybrid kernel can yield better results than the similarity
measures of methods based on traditional Euclidean distance
and a single kernel. The kernel techniques can also maintain
the original structure of the data, which makes the algorithm
robust. Finally, the experimental results show that the com-
bination of the LLE-based dimension reduction algorithm
and the HKAP algorithm makes the proposed model able to
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effectively handle high-dimensional gene expression data and
standard UCI data, including real-world imbalanced data.

V. CONCLUSION
Due to their many favorable characteristics, AP cluster-
ing methods have received considerable attention in recent
years. However, in the face of a growing number of high-
dimensional datasets, both AP and extended AP algorithms
show poor performance in terms of clustering accuracy.
In this paper, an efficient LLE-HKAP algorithm for high-
dimensional gene expression datasets and standard UCI
datasets is presented, for which the cluster centers and the
number of clusters may be unknown in advance. The first part
of the algorithm reduces the dimensions of high-dimensional
data and retains only the most significant data with the LLE
algorithm. The second part investigates a novel HKAP algo-
rithm. A new global kernel is defined and linearly com-
bined with the Gaussian kernel to form a hybrid kernel,
which is used to improve the similarity measure for con-
structing the similarity matrix in the AP algorithm. Then,
the HKAP algorithm is proposed. To evaluate the accuracy
of the LLE-HKAP method, several evaluation indices were
introduced. The results of comparative experiments on sev-
eral gene expression datasets and UCI datasets indicate that
the LLE-HKAP algorithm can provide the correct number of
clusters and perform well in terms of the number of itera-
tions, the operation time and the clustering accuracy. There-
fore, high-dimensional gene expression data and standard
UCI data can be meaningfully analyzed using the presented
LLE-HKAP algorithm.
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