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ABSTRACT Rainfall prediction targets the determination of rainfall conditions over a specific location. It is
considered vital for the agricultural industry and other industries. In this paper, we propose a new forecasting
method that uses a deep convolutional neural network (CNN) to predict monthly rainfall for a selected
location in eastern Australia. To our knowledge, this is the first time applying a deep CNN in predicting
monthly rainfall. The proposed approach was compared against the Australian Community Climate and
Earth-System Simulator-Seasonal Prediction System (ACCESS), which is a forecasting model released
by the Bureau of Meteorology. In addition, the CNN was compared against a conventional multi-layered
perceptron (MLP). The better mean absolute error, root mean square error (RMSE), Pearson correlation (r),
and Nash Suttcliff coefficient of efficiency values were obtained with the proposed CNN. A difference
of 37.006 mm was obtained in terms of RMSE compared with ACCESS and 15.941 compared with
conventional MLP. Further investigation revealed that the CNN was generally performing better in months
with higher annual averages, while ACCESS was performing better in months with low annual averages.
The generated output is promising and can be widely extended in this type of applications.

INDEX TERMS Convolutional neural networks, rainfall prediction, weather forecasting models.

I. INTRODUCTION
Weather forecasting ensures the sustainable development of
society and economy. Therefore, the interest in forecasts has
started since 650 BC, where Babylonians tried to predict
weather based on observations of clouds (observed patterns).
Then, multiple philosophers proposed various forecasting
theories. Over time, it was noticed that these theories were not
adequate. Consequently, it was perceived that there is a need
to understand the weather from a broader perspective. With
the invention of new instruments, measurement of the atmo-
sphere was undertaken. Various instruments, such as the tele-
graph and radiosonde, allowed better monitoring of weather
conditions. Nowadays, these instruments are used to record
weather conditions. For modern rainfall forecasting, forecasts
were produced before the invention of the computer, where
Lewis Fry Richardson used arithmetic equations to predict
weather after World War I (1922). Consequently, scientists
introduced new methods that were developed along with the
vast spread of technology. Nowadays, scientists use different
methods to apply forecasts. Because to its relevance to human
life and needs, weather forecasting is applied everywhere in
the world.

Various weather forecasting mechanisms have been intro-
duced and used in Australian rainfall prediction. Predictive
Ocean Atmosphere Model for Australia (POAMA) was the
recent official forecasting model used by Bureau of Meteo-
rology (BOM) [1]. POAMA is based on General Circulation
Models (GCMs) and is used to forecast various weather
attributes, including temperature and precipitation [2], [3].
POAMA forecasts are given to users over large spatial dis-
tributions (≈ 250 km grids) and as probabilistic values.
Recently, the BOM revealed a new forecasting model for
the Australian continent: the Australian Community Climate
and Earth-System Simulator (ACCESS) [4]. This forecasting
model consists of 11 ensemble members and releases fore-
casts up to six months. A lower grid size was used in this
model (≈ 60 km).
Artificial Neural Networks (ANNs) are machine learn-

ing algorithms representing a computational technology built
on the analogy of the human information processing sys-
tem [5]. These algorithms have been successful in various
classification and regression tasks, such as financial appli-
cations [6], speech recognition, machine vision [7], [8],
engineering applications [9], energy demand [10], medical
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applications [11]–[13], and agricultural applications [14].
In addition, ANNs have been widely used in predicting
weather attributes such as rainfall, temperature, relative
humidity and wind [15]–[21]. Furthermore, it has been
applied in anticipating several environmental phenomena as
floods [22], drought indices [23], [24], water demand [25],
heavy metal concentration in lakes [26], etc.

ANNs are computational paradigms that attempt to
approximate non-linear relationships [27]. These models
require data, where a set of input features is given to the
network to approximate a non-linear relationship with the
target. ANNs mimic the structure of the human biologi-
cal brain. The most commonly used network topology in
weather related applications is the Feed Forward Neural
Network (FFNN), that processes input features in a feed for-
ward manner. As mentioned earlier, a neural network requires
data to be trained so that it can be used to estimate future
weather conditions. The backpropagation algorithm is usu-
ally incorporated as the training algorithm, where the network
connection weights and bias are updated to achieve the lowest
error between actual and forecasted values.

The use of neural networks in weather applications have
been applied for various lead times and in different locations
around the world. This included hourly, daily, monthly, quar-
terly, annually etc. Luk, Ball, and Sharma proposed a neural
network to forecast rainfall amount 15 minutes ahead for
Paramatta catchment in Sydney, Australia [28]. Only rainfall
values were used as input features in the prediction task.
Multiple neural network topologies were introduced and eval-
uated where a Time Delay Neural Network (TDNN) revealed
the highest accuracy.

Chaudhuri and Chattopadhyay [16] developed a FFNN to
estimate maximum surface temperature and maximum rela-
tive humidity. Lagged values of each attribute were used to
train two FFNNs. The Prediction Error (PE) statistical mea-
surement was used to assess the performance of the developed
models. The developed models were compared against single
layered perceptron models, where lower errors were obtained
with the proposed FFNNs.

Baawain, Nour, El-Din, and El-Din conducted an experi-
ment that uses an ANN as a forecasting model to predict two
El-Nino Southern Oscillation (ENSO) attributes: Nino 3.0
and Southern Oscillation Index (SOI) [29]. A Multi-Layered
Perceptron (MLP) was designed for each attribute. The
authors investigated the ability of MLP forecasting at var-
ious lead time (1-12 months). Pearson correlation (r) was
used to assess the performance of each MLP. Results
exposed that increasing the lead time decreased the prediction
accuracy.

Chattopadhyay developed a FFNN to estimate average
rainfall during summer-monsoon season in India [30]. The
proposed network was compared to aMultiple Linear Regres-
sion (MLR) model where better accuracy was obtained with
proposed FFNN.

Hung et al. [31] proposed a Generalized Feed For-
ward Neural Network (GFFNN) to forecast hourly rain in

Bangkok, Thailand. The authors concluded that accuracies
decreased while increasing the prediction lead time.

Nagahamulla et al. [32] used an ANN to predict seasonal
monsoon precipitation in Srilanka. The developedmodels tar-
geted estimating rainfall for four months: May, June, July and
August where climate indices were used as possible predic-
tors. Correlation analyses were used to determine the predic-
tors of each month. The generated networks were compared
against each other and the best accuracy was obtained in June.

Meknik et al. [33] utilized weather attributes to forecast
spring rainfall in Victoria, Australia. A MLR and an ANN
were utilized as the prediction models. Data were collected
from nine weather stations. Better accuracy was recorded
with the neural network in eight out of the nine stations
compared to MLR.

Kashiwao et al. [34] developed a prediction model for
hourly rainfall prediction in Japan. MLP and Radial Basis
Function Neural Network (RBFNN) topologies were mainly
investigated to build the prediction system. The developed
neural network based models held reasonable accuracy but
lower than the official forecasts accuracy release by Japan
Meteorological Agency (JMA).

Vathsala and Koolagudi [20] utilized a MLP to predict
peninsular Indian summer monsoon rainfall. Closed-itemset-
generation-based association rule method was utilized for
feature selection and K-means clustering for dimensionality
reduction. The target of the MLP was to classify the type of
rainfall to be encountered over the targeted location.

Doe and Şahin [23] used ANNs to forecast the Stan-
dardized Precipitation and Evapotranspiration Index (SPEI),
which is a drought index. Global scale climate indices were
used as predictors of SPEI. Some 30 ANNs were developed
while varying the input features and network parameters. The
accuracy of each ANN was calculated and one was selected
as the best model. The authors confirmed the applicability of
ANNs in estimating SPEI.

Karmakar et al. [35] developed a neural network model
to estimate monsoon precipitation for a specified region in
India. Wang and Sheng [36] proposed a Generalized Regres-
sion Neural Network (GRNN) to forecast yearly precipitation
for Zhengzhou, China. Moustris et al. [37] conducted a study
that uses artificial neural networks to predict rainfall for mul-
tiple months for selected locations in Greece. Charaniya and
Dudul [38] proposed a Focused Time Delay Neural Network
(FTDNN) to predict Indian monsoon rainfall. Indian Ocean
Dipole (IOD) climate index and rainfall values were used as
predictors. Khedhire [39] proposed a neural networks based
approach to predict rainfall for a selected location in Canada.

In addition, several machine learning algorithms as Sup-
port Vector Machines (SVMs), Adaptive Network-Based
Inference Systems (ANFISs), Extreme Learning Machine
(ELM), Regression Trees (RT) and K-Nearest Neigh-
bors (KNNs) have been used to predict various weather
attributes [40]–[44]. Mekanik et al. [41] proposed an ANFIS
model to estimate spring precipitation for various locations in
Australia. Yaseen et al. [45] proposed a hybrid ANFIS model
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to predict monthly rainfall for a catchment area in Malaysia.
Sojitra et al. [46] developed daily rainfall forecasting mod-
els using ANFIS for Udaipur city in India. Jaedong and
Jee-Hyong [40] proposed an SVM based prediction model
to forecast hazardous weather conditions. Kusiak et al. [42]
employed five different algorithms to forecast rain in a water-
shed basin at Oxford, Iowa. Yaseen et al. [47] designed an
ELM to predict stream flow for a selected region in Iraq.
Deo and Şahin [43] used ELMs to estimate a drought index
in eastern Australia. Bagirov and Mahmood [44] compared
several machine learning models including SVMS and RT in
predicting monthly rainfall in Australia. Further applications
that utilize machine learning algorithms in weather related
applications can be found in [5] and [48]–[50].

Convolutional Neural Networks (CNNs) are network
topologies basically used in machine vision applications.
Using a CNN, the number of training weights in the network
are reduced when compared to the fully connected networks,
where portions of input features vector share the same set of
weights. In 2012, Alexnet which is a convolutional neural net-
work topology, achieved the lowest error in ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [51]. Since
then, CNNs were widely used and investigated in various
applications including machine vision, health and financial
applications [11], [12], [52]–[57].

In recent literature, various artificial neural network
topologies were incorporated to predict weather attributes.
In this work, we investigate the ability of deep convolu-
tional neural networks in approximatingmonthly rainfall for a
selected location in Australian areas. Themain reason beyond
incorporating a convolutional neural network is its proven
ability in extracting complex relationships in input features.
To our knowledge, this is considered the first time apply-
ing one-dimensional deep convolutional neural networks in
predicting monthly rainfall. The paper presents the following
research contributions:

1) A new method for building forecasting models based
on convolutional neural networks is proposed

2) The ability of deep CNNs in predictingmonthly rainfall
for locally specified regions in Australia is investigated

3) The performance of CNN against the first version of
ACCESS prediction model ACCESS-S1 is analyzed

4) The performance of CNN against a conventional MLP
is analyzed

5) The prediction performance of the CNN over each
month is analyzed

The rest of this paper is organized as follows: Section II
describes the proposed forecasting approach. Section III lists
the collected data. Section IV describes experimental setup
and results. Comparative analysis are shown in Section V.
A conclusion is drawn in Section VI.

II. PROPOSED APPROACH
In this study, we propose a deep convolutional neural net-
work to forecast monthly rainfall for a selected location.

One dimensional convolutional neural networks are explained
first then the prediction model is shown.

A. ONE DIMENSIONAL CONVOLUTIONAL NEURAL
NETWORKS
Typically, a CNN consists of various combinations of three
main layers: convolutional layer, pooling layer, and fully
connected layer. A general architecture of a deep convolu-
tional neural network with two convolutional layers (Conv1,
Conv2), two pooling layers (Pool1, Pool2) and a Fully Con-
nected Layer (FCL) is shown in Figure. 1.

Algorithm 1 CNN Training Procedure
Input: Training dataset, Validation dataset
Output: Trained CNN
1: Initialize the network weights and bias
2: For each epoch:
3: Process the records of the training data

cases
4: Compare the actual values to predicted

values
5: Calculate the loss function
6: Backpropagate the error through the lay-

ers and adjust the network weights
7: Check the validation dataset
8: If better loss value obtained
9: Save the network weights
10: End
11: End
12: Return the trained CNN

The convolutional layer is the main building block of the
convolutional neural network. Usually, the layers of the net-
work are fully connected in which a neuron in the next layer
is connected to all the neurons in the previous layer. While
with convolutional layers, neurons are connected to local
regions from the previous layer. We intend to use this type
of connections in an attempt to enhance the determination of
effective predictors of rainfall. Several characteristics affect
the structure of the convolutional layer including: filter size,
number of filters, stride, padding. The filter size is the local
receptive field that represents a spatial area over the input
features vector. As shown in Figure. 1, the convolutional layer
is viewed as a stack of layers. The number of stacked layers
is determined based on the number of filters specified. Stride
determines the way the filter (local receptive field) moves
through input. Padding is the process of adding/removing
values to the dimension of the input so that the filter can
smoothly traverse the whole dimension.

The convolutional neural network learns from data through
its hierarchical structure of layers. Going deeper with lay-
ers, enhances the learning of complex relationships in input
features. In rainfall prediction, the forecasting model per-
formance is dependent on input features. For a set of input
features δ =

{
δ1, δ2, . . . , δn

}
, 1 ≤ i ≤ n, n is the number

of input features, the use of a subset β(β ⊂ δ) may reveal
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FIGURE 1. A general architecture of one-dimensional convolutional neural network.

better performance. On the other hand, the removal of ele-
ments in the input features dataset may remove some of the
information needed for the model to perform. Also, a spe-
cific feature δi may highly affect the prediction of specific
instances and may not be useful for others, especially in rain-
fall applications. Furthermore, the combination of multiple
features through a set of mathematical representations may
release better representations of the climate patterns. Hence,
we propose using convolutional nets since the connections are
directed toward specific regions in the input features vector.
Through this mechanism, the deeper feature maps of the
network could learn the relationships between input features
and rainfall without the need to investigate all the features
effectiveness on rainfall variability.

The pooling layer is added to decrease the size of the rep-
resentations. The maximum pooling layer selects the highest
value in each selected region of inputs while the average
pooling layer selects the average value. Each convolutional
layer was followed by a pooling layer when developing the
network model.

CNNs have been widely used in classification applications.
For this reason, different activation functions have been uti-
lized to map the input features in a set of categories. In this
study, the output is determined as rainfall amounts. For this
reason, sigmoid (1) and hyperbolic tangent (2), which are a
nonlinear activation functions, were investigated in the final
layer:

σ (z) =
1

1+ e−z
(1)

σ (z) =
ez − e−z

ez + e−z
(2)

where z is the summation of weights and inputs of the con-
nected layer added to bias, z = wkxk + b, wk represent a
weight of a connection to the fully connected layer, xk is an
input into the fully connected layer, b is bias, 1 ≤ k ≤ c,

c is the number of connection weights and inputs in the fully
connected layer. Additional layers are usually used as the
flatten layer, which converts the input with multidimensional
sizes into one dimension. Dropout is usually incorporated
to avoid overfitting. The dataset is usually partitioned into
training, validation and testing. The procedures followed to
train the CNN are shown in Algorithm. 1. A set of func-
tions can be deployed through the training phase. As shown
in Algorithm. 1, a check point was introduced to save the
network weights when having a better performance over the
validation dataset.

B. MONTHLY RAINFALL PREDICTION
The proposed approach intends to investigate the CNN per-
formance in a weather prediction task. In other meaning,
the CNN is proposed to map a feature space Rn→ R:

δ11 δ21
δ12 δ22

. . . δn1

. . . δn2
...

...

δ1m δ2m

...

. . . δnm

→

r1
r2
...

rm

 (3)

where δji represents an instance of a climate input feature,
ri is a rainfall value, 1 ≤ i ≤ m, 1 ≤ j ≤ n,m is the length of
the dataset, n is the number of input features.

Rainfall variability is affected by various atmospheric con-
ditions. These conditions comprise of local and global vari-
ations in the atmosphere that lead to rain occurrences in a
selected location. These conditions can be measured and are
denoted as climate indices. Climate indices have been linked
to weather variability in several locations in the world. These
indices may affect rainfall variability at specific times of the
year. In other words, a climate index can be used to analyse
rainfall trends at certain durations of the year for a selected
location. Therefore, several climate indices were collected
and used as input features.
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The target is to find the best connections and input weights
that will reveal the lowest error between actual and predicted
rainfall values. Each neural network is trained by updating
the connection weights and bias in each layer. The training
process continues until reaching a minimum error between
the target and the model output values. Then, a forecasting
model is obtained. While training, the network performance
is measured. The loss function (l) that maps the set of input
features into rainfall was determined as mean squared error:

l =
1
h

h∑
i=1

(
yi − y

′

i

)2
(4)

where yi represents an actual instance in the dataset, y
′

i repre-
sents a forecasted instance in the dataset, h is the length of the
dataset. The forecasting model can be then represented as:

rain = ϕ (δ) (5)

where ϕ is the trained convolutional neural network, δ =
{δ1, δ2, . . . , δn}, δj is an input feature 1 ≤ j ≤ n, n is
the number of input features. Multiple input features were
proposed in this study. The lagged values of some of these
features were used as predictors of rain. Hence, the prediction
of rain at time t can be represented as shown in (6).

raint = ϕ
(
δ1t−k , δ

2
t−k , . . . ., δ

n
t−k

)
(6)

where k is the lag value, 1 ≤ k ≤ 12, 12 was selected as the
last antecedent value for some of the features (the information
about previous weather conditions in each record is up to one
year), n is the number of input features, ϕ is the forecasting
model (CNN). It should be noticed that k varied for each
feature.

III. DATA
Innisfail is an Australian suburb located in north Queensland
(17.522◦ S, 146.0285◦ E). The selected location is shown
in Figure. 2. Innisfail receives an annual rainfall average
that exceeds 3550 mm. Several weather attributes and cli-
mate indices were gathered from multiple sources to be used
as rainfall predictors. Rainfall values, which were targeted
in this study, were taken from the Bureau of Meteorology
(BOM) [58]. Additional local attributes were also collected
from the BOM as the mean minimum temperature (MinT)
and the mean maximum temperature (MaxT).

Various climate indices that measure weather conditions
in oceans around the Australian content were also collected
and used to predict rainfall variability in Innisfail. These
indices included: Southern Oscillation Index (SOI), Nino 1.2,
Nino 3.0, Nino 3.4, Nino 4.0, Dipole Mode Index (DMI),
Interdecadal Pacific Oscillation (IPO), Tripole Mode Index
(TPI), North Pacific Index (NPI), North Atlantic Oscillation
(NAO) and Pacific Decadal Oscillation (PDO). Furthermore,
sunspot values were collected and used as predictors of rain.
Additional details about climate indices can be found in [59].
The weather attributes were collected from five sources:
BOM, Royal Netherlands Meteorological Institute Climate

FIGURE 2. Selected location.

TABLE 1. Source of each weather variable.

Explorer (KNMI) [60], Climate of the 20th century (C20C)
[61], Earth System Research Laboratory (ESRL) [62] and
Solar Influences Data Analysis Center (SIDC) [63]. The
source, minimum, maximum, average, median, and stan-
dard deviation (STD) of each weather attribute are shown
in TABLE 1.

The collected attributes were manipulated so that the
records range between January 1908 and December 2012.
The collected rainfall records contained missing values.
These values were replaced by values in a nearby weather
stations or average. Neural networks perform better with
small ranges. The minimum and maximum bounds varied
between each weather attribute. Hence data were normalized
to a smaller range between 0 and 1 following this equation:

d
′

i =
di − max(dmi=1)

max(dmi=1)− min(d
m
i=1)

(7)

Where d ∈ δ, di is an instance of the weather attribute,
max(dmi=1) is the upper bound of the weather attribute values,
min(dmi=1) is the lower bound of the weather attribute values,
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d
′

i is a normalized value, 1 ≤ i ≤ m, m is the length of the
weather attribute dataset.

To generate the dataset, lagged values of the collected
attributes shown in TABLE 1 were used as possible
predictors:

• Rainfall lagged values were added as input features.
Some 12 input features representing the lagged values
of rainfall up to one year (raint−1, raint−2, . . . , raint−12)
were generated to predict rain at time t

• Two new features were created to increase the iden-
tification of antecedent rainfall conditions. Those fea-
tures were created to determine the type of rain
(extreme/normal) in antecedent months. For a month at
time t, two new binary features (Blagt−1, Blagt−12) were
proposed to identify the occurrence of heavy rain at time
t-1 and t-12

• For each weather attribute (MaxT, MinT, SOI, Nino1.2,
Nino3.0, Nino3.4, Nino4.0, DMI, Sunspot, IPO, TPI,
NAO, NPI, and PDO), two features were added to
the dataset representing the attribute value at time
t-1 and t-12

Therefore, the dataset consisted of 43 input features:
14 input features at time t-1, 14 input features at time t-12,
12 lagged rainfall values up to one year, 1 feature as month
and 2 binary features to determine type of rain at time t-1
and t-12. TABLE 2 represents the inputs features of the
generated dataset.

The generated dataset consisted of 104 years
(Jan 1909-Dec 2012). The main reason behind starting
in 1909 even if the values were collected from 1908 was to
include lagged values as possible predictors. In other words,
January 1909 is the first instance with completed lagged
values.

The first 92 years (Jan 1909-Dec 2000) of the dataset were
used for training and validating the convolutional neural net-
work. 85%were used for training and the remaining 15% for
validating the network performance and to avoid overfitting.
The remaining 12 years (Jan 2001 and Dec 2012) were used
to assess the model performance (hold-out sample).

IV. EXPERIMENTS AND RESULTS
A. EVALUATION METRICS
Determination of monthly rainfall values was targeted
in this study. To assess the accuracy of the developed
models, several statistical measurements that have been
widely used in rainfall prediction tasks were calculated:
Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), Pearson correlation (r) and Nash Suttcliff coef-
ficient of efficiency (NSE). The mathematical representa-
tion of each statistical measurement is shown in (8), (9),
(10) and (11), as shown at the bottom of the next page,
where yi is the actual value, y

′

i is the predicted value,
ȳ is the average of observed values, p is the number of ele-
ments in the dataset, 1 < i ≤ p. The MAE and RMSE values
range between zero and infinity. The closer the values to

TABLE 2. Input features.

zero the better the forecasts. Pearson correlation values range
between negative one and positive one. The closer the values
to one, the better the forecasts. TheNSE values range between
negative infinity and one. Negative NSE values indicate that
the prediction model is not a better predictor than the mean
of the actual values [64].

B. EXPERIMENTAL SETUP AND RESULTS
The proposed approachwas developed usingKeras [65] pack-
age installed on top of Tensorflow framework [66]. Trial and
error method was followed to determine the convolutional
network architecture. Several architectures were developed
and examined while varying the number of convolutional
layers, number of pooling layers, filter sizes, number of
filters, stride and activation functions. In addition, the opti-
mizers of the loss function were varied to analyse the effect
of each optimizer on performance. Three optimizers were
examined: Adam, stochastic gradient descent and RMSprop.
1000 epochs were used to train each model.

The selected architecture consisted of two convolutional
layers, two average pooling layers and a fully connected layer
as shown in TABLE 3. Several steps were followed to avoid
overfitting. Dropout, which is a regularization techniques
was added to the architectures [67]. In addition, the network
weights that were shownwith the lowest error over the valida-
tion dataset were detained while training the CNN. A flatten
layer was added before the fully connected layer to flatten the
input into the fully connected layer so that one dimensional
input vector is obtained. Hence, the convolutional layers were
added in an attempt to extract information and understand pat-
terns in local regions in the input features. Dropout was added
before the fully connected layer. The loss function of the
selected network architecture is shown in Figure. 3. The loss
function over the training dataset was not extremely lower
than the loss function over the validation dataset. This means
that the network didn’t overfit through the training phase.
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TABLE 3. Selected convolutional neural network architecture.

FIGURE 3. Loss function while training the convolutional neural network.

RMSEprop algorithm was found to be the best optimizer.
Using a small number of filters didn’t allow the network to
converge. In addition, hyperbolic tangent activation function
generated better models than sigmoid activation function.
TABLE 4 shows the MAE, RMSE, and r values obtained
by the developed CNN over the training, validation and test-
ing datasets. The generated CNN model revealed a MAE
of 114.654, RMSE of 142.133, and r of 0.868 over the test
dataset. Because of dropout, it is expected to have the training
error higher than the validation error since regularization
techniques are turned off in validation and testing phases [65].

TABLE 4. Mae, RMSE, r values obtained over the training, validation and
testing datasets.

TABLE 5. Mae, RMSE, r and NSE for ACCESS, MLP and CNN forecasting
models.

V. COMPARATIVE ANALYSIS
The proposed approach was compared to ACCESS-S1
andMLP. A set of hindcasts from the ACCESS-S1 prediction
model is available on the National Computational Infrastruc-
ture (NCI) website [68]. A dataset representing hindcasts
between Jan-2001 and Dec-2012 was collected from the NCI
website. These records are saved in Network Common Data
Form (NetCDF) files and represent the output of ACCESS-S1
over Australia. As mentioned earlier, the set of forecasts
are released over grid areas (60 km). MATLAB was used
to collect the predictions released by ACCESS-S1 for the
closest grid point to Innisfail with the following coordinates:

MAE =
1
p

∑p

i=1

∣∣∣y′i − yi∣∣∣ (8)

RMSE =

√√√√∑p
i=1

(
y
′

i − yi
)2

p
(9)

r =

p
(∑p

i=1 y
′

iyi
)
−

(∑p
i=1 y

′

i

)( p∑
i=1

yi

)
√√√√(p∑p

i=1 y
2
i−

( p∑
i=1

yi

)2
)((

p
∑p

i=1 y
′

i
2
−

( p∑
i=1

y
′

i

)2
)) (10)

NSE = 1−

p∑
i=1

(
yi − y

′

i

)2
p∑
i=1
(yi − ȳ)2

(11) (11)
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TABLE 6. MAE, RMSE, r and NSE values over each month alone.

FIGURE 4. Boxplots of the absolute difference between actual and
forecasted values for each prediction model.

17.4999◦ S, 146.2500◦ E. In addition, a MLP was designed.
The Keras package was used to implement the MLP. The
same training, validation and testing portions were selected
with the MLP. The number of hidden neurons and activation
functions were selected using trial and error method. A MLP
consisting of 23 neurons in the hidden layer revealed the best
prediction accuracy. Hyperbolic tangent transfer functions
were selected between the input-hidden and hidden-output
layers.

MAE, RMSE, r and NSE for each model over the hold-
out sample are shown in TABLE 5. Better MAE, RMSE,
r and NSE values were obtained with the generated CNN.
A 10.691 mm difference was recorded in terms of MAE
and 37.006 in terms of RMSE compared to ACCESS-S1.
A 6.020 mm difference was obtained in terms of MAE and
15.941 in terms of RMSE compared to MLP. Higher r and
NSE values were also revealed with the generated CNN com-
pared to ACCESS-S1 and MLP. This reveals the appropriate-
ness of this kind of methods in predicting rainfall values.

To investigate further, the hold-out sample was divided into
12 datasets to analyse the performance of each model on
monthly basis. Hereafter, the statistical measurements were
calculated over each month alone between January 2001 and

December 2012. MAE, RMSE, r and NSE values for each
month using each model are shown in TABLE 6. The second
column represents the annual average of each month based
on the training and validation datasets.

The CNN revealed better prediction accuracies in terms of
RMSE in 6 out of the 12 months compared to ACCESS-S1:
January, February, March, May, July and October.
ACCESS-S1 showed better performance in sixmonths: April,
June, August, September, November and December.

The CNN showed better performance in 9 out of the
12 months compared to the MLP: January, February, March,
April, May, September, October, November and December.
The MLP showed better accuracy in the remaining three
months.

The first three months of the year held the highest rainfall
averages. The CNN model revealed better accuracy in all
of the three months. This demonstrates the ability of the
CNN in performing with high ranges. ACCESS-S1 perfor-
mance was better in two out of the three months with low-
est annual averages (September, October). In 10 out of the
12 months, the CNN was found to be the best or the second-
best prediction model. Negative NSE values were obtained
for April, June and July. The STDs of the three months over
the predicted values were low compared to the STDs over the
actual values (April – actual: 156.147, predictions: 32.010;
June – actual: 96.064, predictions: 47.244; July – actual:
87.535, predictions: 31.019). The spread of data over actual
values was at least two times higher than predicted val-
ues in each of the three months. This could be related to
the CNN not being able to learn the non-linear relationships
for those three months. Additional reason could be the need
for extra information (data) that may affect the rainfall vari-
ability over the three months and was not found in generated
dataset.

Figure 4 represents the absolute difference between actual
and forecasted values for each prediction model. The num-
ber outliers in the ACCESS-S1 model was higher than the
number of outliers in the CNN model. This can be referred to
the high RMSE obtained with the ACCESS-S1 model. It is

69060 VOLUME 6, 2018



A. Haidar, B. Verma: Monthly Rainfall Forecasting Using One-Dimensional Deep CNN

FIGURE 5. Rainfall values against ACCESS output between Jan-2001 and Dec-2012.

FIGURE 6. Rainfall values against MLP output between Jan-2001 and Dec-2012.

FIGURE 7. Rainfall values against CNN output between Jan-2001 and Dec-2012.

clearly demonstrated that the machine learning models were
performing better with months with high annual averages,
while ACCESS-S1 revealed better accuracywithmonthswith
lower annual averages. Therefore, as a part of future work,
ensemble techniques could be investigated to combine the
efficiencies of each prediction model.

Figure. 5 represents the actual rainfall values compared
to ACCESS-S1 output between Jan-2001 and Dec-2012.
Figure. 6 represents the actual rainfall values compared
to MLP output between Jan-2001 and Dec-2012. Figure. 7
represents the actual rainfall values compared to CNN output
between Jan-2001 and Dec-2012. The continuous line in each
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figure shows actual rainfall, while the dotted line shows the
output of each model (ACCESS-S1, MLP and CNN) respec-
tively. It is clearly shown that the generated machine learning
based models performed better than ACCESS-S1 in rainy
monthswith better performancewith the CNNmodel. Inmost
of the peaks, rainfall was predicted accurately. On the other
hand, the rainfall values were not well predicted in months
with low annual averages, as shown in September 2002,
September 2003, September 2004 etc. ACCESS-S1 held a
better ability in predicting rainfall values for months with
low annual averages. In most of the instances that represent
months with low rainfall averages, the generated CNN antic-
ipated higher rainfall values compared to actual rainfall.

VI. CONCLUSION
In this paper, a neural network based approach has been
proposed to forecast monthly rainfall for a selected location
in Australia. A deep CNN was developed to predict monthly
rainfall. The developed model was compared to the first ver-
sion of the Australian Community Climate and Earth-System
Simulator (ACCESS-S1) and a Multi-Layered Perceptron
(MLP), where better performance was revealed with the pro-
posed CNNmodel. This study highlighted the ability of CNN
in performing in a rainfall prediction task. In addition, the
capability of convolutional neural networks in performing in
a monthly rainfall prediction has been evaluated. The study
showed that the CNN was performing better in months with
high annual averages compared to alternative approaches.
In future research, ensemble techniques will be incorporated
to combine the diversities of the models. Also, additional
locations and datasets will be incorporated. The architecture
of the network model will be examined further to enhance the
accuracy of predictions.
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