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ABSTRACT In wireless devices, a transmitter normally consumes most of power due to its power
amplifier (PA), especially in the applications such as radar, base station, and mobile phone. It is highly
desirable to design a transmitter that can emit signals smartly, i.e., the power emission is exactly based on
the emitting distance required and the target. Such a design can save huge amount of power as there are
almost countless wireless devices in use currently. In this paper, an intelligent radio-frequency transmitter
integrated with artificial neural network (ANN) is implemented. The intelligent transmitter consists of an
ANN module, a frequency generation module, and a switch-mode PA. The integrated three-layered fully
connected ANN can be offline trained to smartly classify input data according to the required power and
assign the transmission channel. Furthermore, with the integrated ANN, the average power consumption
of the PA is reduced to 34.3 mW, which is 46.5 % lower than PA without the ANN. With the intelligent
transmitter, wireless devices can save a large amount of energy in their operations.

INDEX TERMS Radio transmitters, radiofrequency amplifiers, energy efficiency, power control, frequency
control, classification algorithms, machine learning.

I. INTRODUCTION
There are countless wireless devices in use worldwide con-
suming around 61 trillion Watt per hour [1]. Transmitter
containing power amplifier (PA) consumes most of power in
wireless systems, responsible for modulating the input signal
into a predefined carrier frequency and boosting the radio
signal to a sufficient power level to transmit through the air
interface between the transmitter and the receiver [2], [3].
Conventionally, as transmitters do not ‘‘know’’ emitting dis-
tance and target, full power is normally used by PA in order
to assure that signals can be received [4], [5]. Hence power
giants like radar and base station may consume tens of thou-
sands Watt per second. On the other hand, since wearable
devices usually have a limited battery capacity, RF compo-
nents in the wireless transmission systems should be power
efficient to reduce energy consumption, in order to increase
the battery lifetime and avoid using cooling systems [6]–[8].

To save energy consumption, it is highly desirable to have an
intelligent transmitter that emits an exact amount of energy
according to the emitting distance required and target.

Recently artificial neural network (ANN) becomes an
increasingly interesting research topic due to its various
potential applications [9]–[12]. ANN, which is inspired by
biological neural networks, is based on the integration of arti-
ficial neurons and synapses. ANN has been proved useful in
realizing brain-like behavior such as image or voice recogni-
tion [13]–[15]. ANN has also been used in RF circuit design.
Work [16]–[18] studied the effect of using ANN solve trans-
mitter’s nonliearity problems. Work [19] presented the effect
of training a BFSK Neural Network demodulator with noisy
data. Andwork [20] proposed anANN to optimize RF passive
component synthesis in high frequency RF designs. Among
various ANNs, multi-layer perceptron (MLP) is one of useful
models for its good generalization, pervasive approximation
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and classification capability. A typical MLP network con-
sists of an input layer, which is formed by a set of source
nodes, one or more hidden layers of computation neurons,
and an output layer of nodes [21]. Considering the MLP’s
advantages, we have integrated an MLP neural network into
a CMOS chip to realize an intelligent transmitter that can
smartly determine the power and channel required due to its
self-learning capability. To the authors knowledge, this is the
first integrated ANN in RF circuit design.

In this work, a feed-forward MLP neural network is intro-
duced into the transmitter for smartly controlling the power
emission. In addition, the MLP can also smartly assign data
transmission into an appropriate channel to avoid interfering
with other data transmissions. The intelligent transmitter was
designed and fabricated with a standard 0.13 µm CMOS
process. It occupies 1.96 mm2 including the bonding pads
and ESD devices. Measurement results show that the trans-
mitter has a peak output power of 14.9 dBm and a power
consumption of 75.6 mW from a 1.5 V power supply. With
theMLP network identifying the input data and automatically
adjusting the transmit power as well as the transmission
channel, the average power consumption of the PA is reduced
to 34.3 mW that is about 46.5 % lower than PA without the
ANN. Obviously, with such intelligent transmitters, much
power can be saved for wireless devices.

II. DESIGN OF INTELLIGENT TRANSMITTER
A. THE INTELLIGENT TRANSMITTER
The power consumption of body area radio networks is con-
stantly increasing due to the growing number of portable
terminals and higher traffic demands. Shortcomings of the
state-of-the-art lie in the fact that current transmitters for
multi-user, such as base station, are designed to serve peak
demands without considering energy efficient off-peak oper-
ation [22]. Many algorithms have been proposed in the area
of adaptive transmit power control and channel allocation.
Work [22] proposed a radio resource management algorithm
to minimize the base station supply power consumption for
multi-user multi-input multi-output (MIMO) orthogonal fre-
quency division multiplexing (OFDM). Work [23] investi-
gated joint subchannel and power allocation in bandwidth-
hungry services. It implies that resource allocation algorithms
are inevitable in indoor multi-user radio networks. However,
this work proposed a self-adaptive RF transmitter with an
integrated ANN that offers better performance with lower
power consumption than running algorithms on external com-
puting units.

Fig. 1 (a) illustrates the working mechanism of the intel-
ligent transmitter. As shown in Fig. 1 (a), the intelligent
transmitter can transmit data to a receiver in a specified
channel with an exact amount of power determined by the
transmission distance. As shown in Fig. 1 (a), receivers locate
with different distances and are in different channels. After
training the ANN, the transmitter can adjust the emitting
power that is exactly required for Receivers A and D but

FIGURE 1. (a) Schematic illustration of data transmission from the
intelligent transmitter to a specified receiver through a specified channel;
(b) photograph of a die of the intelligent transmitter; (c) architecture of
the intelligent transmitter.

Receiver C receives nothing from the transmitter as it is
out of range. Of course as Receiver B locates within the
range of transmission, it can receive signal also. On the other
hand, the intelligent transmitter can also assign the channel
smartly. As shown in Fig. 1 (a), Receivers A, B and C
are assigned to Channel 1, while Receiver D is assigned
to Channel 2. Therefore, although Receivers A and D are
located in the same distance, either of the receivers cannot
receive signals from the other one as they are in different
channels, thus avoiding the interference. The prototype chip
is shown in Fig. 1 (b), an MLP network, a Voltage Controlled
Oscillator (VCO) and a PA are integrated in the chip. The
transmitter was designed and fabricated in a standard 130 nm
CMOS process. Dies of the intelligent transmitter were cut
from the wafer and packaged in standard 32-pin quad flat no-
leads packages (QFP32).Fig. 1 (c) shows the configuration
of the intelligent transmitter. The MLP network is used to
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FIGURE 2. Data flow chart of the intelligent transmitter.

identify the input data, to determine the energy required for
the signal transmission, and to smartly assign the channel;
the PA is used amplify to the signal; and the VCO is used to
provide the reference frequency for a specific channel.

B. DATA FLOW OF THE INTELLIGENT TRANSMITTER
As shown in Fig. 2, a GPU is used to train MLP to obtain
weight matrix with past data. The weight matrix is transferred
to the field-programmable gate array (FPGA) that is used
to send data to the transmitter. The intelligent transmitter
uses serial peripheral interface (SPI) bus protocol to receive
weight matrix and input data. A computing core calculates
the required supply voltage and frequency with the registered
weight matrix and the input data. A low dropout regula-
tor (LDO) and a voltage-controlled oscillator (VCO) are used
as voltage and frequency control of the switch mode power
amplifier (PA), respectively.

C. TEST BOARD AND FPGA WAVEFORMS OF THE
INTELLIGENT TRANSMITTER
The Fabricated transmitter chip and its test board are shown
in Fig. 3. Dies of the intelligent transmitter were cut from
the wafer and packaged in standard 32-pin quad flat no-leads

FIGURE 3. Photograph of the intelligent transmitter chip and the test PCB
board.

package (QFP32). The Artificial Neural Network (ANN)
based on Multilayer Perceptron (MLP) was realized in logic
circuit. The test board was fabricated in printed circuit board
(PCB), which consisted of a packaged intelligent transmitter
chip, three LDO chips (two AMS1117 chips from AMS
and one TPS74301 chip form Texas Instruments), and other
passive devices (from Murata). A field-programmable gate
array (FPGA) board was used to transfer data and analyze
accuracy.

FPGA waveforms for the proposed MLP are shown
in Fig. 4. The waveforms (from the bottom to top) corre-
spond to the high 8-bit of input data, low 8-bit of input
data, classification output, max done signal, and next data
signal, respectively. A working cycle is fulfilled in 433 µs.
In the first 418.4 µs, the input data is received by MLP. After
MLP performs its max out calculation, a pulse is detected in
‘‘Max Done’’ and the MLP classification output is available
in ‘‘Class Out’’. A pulse in ‘‘Next Data’’ comes after the pulse
in ‘‘Max Done’’, which means that MLP is ready for next
input.

III. DESIGN OF MLP NEURAL NETWORK
An MLP neural network is used to smartly adjust PA trans-
mission power according to transmission distance required,
as well as to assign transmission channel. MLP has an excel-
lent identification accuracy [24], [25] and its integration in
an integrated circuit is easy [26]. The MLP consists of three-
layered fully-connected layers [27]. We use tanh as the acti-
vation function for both the input layer and the hidden layer.
As ex and e−x can be calculated without multiplications,
has a good compatibility with integrated circuit. Details of
implementing function by circuit are presented in Supple-
mentary Note 1. Results from the circuit-realized function
and ideal function are consistent, as demonstrated in Supple-
mentary Note 2. Maxout function is used to make the deter-
mination of classification as shown in Fig. 5. The details of
implementing Maxout circuit are provided in Supplementary
Note 3. Supplementary Note 4 presents the verification of
the Maxout function. The booth’s multiplication is used to
realize matrix multiplication. The implementation details are
provided in Supplementary Note 5.

The MLP was trained with samples from past data and
then it can classify input data into categories according to the
transmission distances. A GPU-equipped computer was used
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FIGURE 4. FPGA waveforms of a working cycle for MLP.

for the training process. The cross entropy [28], [29] between
the given targets and outputs is used to calculate the network
performance. Since we use as the activation function with its
output between −1 and 1, the cross entropy is given by

CEtanh = (−1− t) · log(1+ y)− (1− t) · log(1− y) (1)

where t is the target value; and y is the output of the
MLP. Equation (1) returns a numerical value approaching
infinity, which heavily penalizes output when it approaches
−1 or 1. Equation (1) gives a minimum value when y
equals to t. Although minimizing CEtanh leads to a good
accuracy of classification, lavishly minimizing CEtanh may
cause overfitting. We use early dropout method to prevent
overfittings [30], [31]. The samples of past data are randomly
divided into three sets: training (80%), validation (10%), and
examination (10%). Scaled conjugate gradient method [32] is
used when optimizing weight matrices and bias. The training
process keeps updating the weight and bias until validation
check continuously fails for five times. As shown in Fig. 5,
when working, data are input into the transmitter with SPI
protocol, and are identified by the MLP network in serial to
reduce system latency. FPGA is used to send data including
the weight matrices and signal data to the intelligent trans-
mitter. After the weight matrices are stored in the registers
of the MLP, the MLP network identifies the received data
and adjusts the working power of the PA according to the
training. After the work mode adjustment, the transmitter can
transmits data at the necessary power in its assigned channel.

FIGURE 5. Overall workflow diagram of the MLP integrated circuit.

The integrated MLP, in the chip as shown in Fig. 1 (b).
It occupies 1 mm2 area and dissipates 10 mW power. The
MLP shares the SPI bus with the RF transmitter to send and
accept data from the FPGA. The MLP, as well as its interface
bus, can operate at the highest clock frequency of 10 Mb/s.

IV. DESIGN OF PA AND VCO
Co-design of digital signal processing (DSP) algorithms
and PA circuits can lead to improved efficiency in multiple
conditions [33]. A digitally assisted PA and VCO is one of
the potential solutions to realize a better power efficiency and
multiband transmitter. PAs with a reconfigurable amount of
RF unit-cells are representative in digitally controlled PAs.
The output power is controlled by changing the number of
active unit-cells (AUC) [33], [34]. Another method to con-
figure the output power of a PA is to dynamically control the
power supply (DPS) [33], [35]. The dynamically controlled
power supply of PA can be realized by a programmable low
dropout regulator (LDO) or a digitally driven buck converter.
PAs in work [34] and [36] show second gate bias voltage
control (SGBVC) and power combiners can also improve the
average power efficiency.

As shown in Fig. 6 (a), the integrated PA consists of
two stages, a pre-amplification stage and a power amplifier
stage. The pre-amplification part amplifies the input voltage
into full swing on-off switching voltage signal with a peak-
to-peak voltage of 2.5 V, and amplifies the current to an
enough level to drive the gate capacitor of the power amplifier
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FIGURE 6. (a) Circuit schematic of the power amplifier in the intelligent
transmitter; (b) PA output power; (c) PA power added efficiency (PAE);
(d) power consumption of PA.

transistor in the second stage. And the power amplifier stage
converts the DC power of the power amplifier transistor
into an RF signal for information transmission. As shown
in Fig. 6 (b) and (c), the output power of the implemented
PA is 14.9 dBm and the power added efficiency (PAE) is 40.6
%. Fig. 6 (d) indicates that at the supply voltage of 1.5 V,
the power consumption of the PA is around 60 mW. A 5th

order Chebyshev low pass filter (LPF) is integrated between
the load pull and the antenna to filter out the higher harmonics
of PA. With the LPF, a higher harmonic suppression ratio of
37 dBc is achieved.

FIGURE 7. (a) Circuit schematic of the programmable ring oscillator;
(b) schematic of the TSPC divider; (c) spectrum of the frequency
generation module; (d) phase noise of the output signal from the
frequency generation module.

A frequency generator is integrated betweenMLP network
and PA to supply RF reference frequency for data transmis-
sion. The frequency generator consists of a programmable
ring oscillator (Fig. 7 (a)) and a frequency divider (Fig. 7 (b))
based on true single-phase clock (TSPC) flip-flop. The ring
oscillator is used instead of a resonant LC oscillator for its low
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TABLE 1. Performance comparison of recent transmitters.

power consumption and small chip area. The programmable
current source in Fig. 7 (a) is used to adjust the transmitter
transmission channel. And the frequency divider is used to
avoid interference from higher harmonics of the ring oscilla-
tor. The ring oscillator consumes 45uA from a supply voltage
of 2.5V. The spectrum of the generated frequency signal is
shown in Fig. 7 (c). The output frequency can be varied
in the range between 433 MHz and 438 MHz by adjusting
the supply current of the ring oscillator. The phase noise of
the generated signal is −96.0 dBc/Hz at a carrier frequency
of 433 MHz as shown in Fig. 7 (d).

Table 1 summarizes the performance of the state-of-the-art
transmitters and the presented transmitter. Concluded from
the comparison, with the ANN, this transmitter has a higher
PAE range.

V. MEASUREMENT RESULTS OF THE INTELLIGENT
TRANSMITTER
A. DESIGN TOOLS AND MEASUREMENT
The MLP was trained with samples of past data, which con-
tains about 40,000 bits of transmitted data, transmit power
and transmission channel assignment in a wireless commu-
nication system. A spectrum analyzer (R&Sr FSW67) was
used to measure the power and frequency of the transmitted
signal. The ANN was trained and evaluated with a computer
equipped with an Intel 5930 CPU and 2 Nvidia 1080 GPUs.
The training process and identification accuracy were defined
and calculated with Python scripts.

The RF transmitter was designed with the IC design soft-
ware Cadence Version 6.1.6 (passive and active components
co-simulation) and ADS Version 2015.01 (passive compo-
nents simulation). The Verilog code of ANN was converted
into low-level circuit descriptions (netlists) with Synopsys
Design Compiler (Version 2016.12). And the netlist of the
ANN was converted into layout with Cadence Innovus
(Version 15.20.000). The layout was compared with the
schematic and corrected with IC verification tool Mentor
Calibre (Version 2016). The transmitter and ANN were co-
simulated with Verilog-AMS.

FIGURE 8. (a) Continuous validation check of epochs in training;
(b) training gradient of epochs.

The intelligent transmitter was packed before measure-
ment. Dies of the intelligent transmitter were cut from the
wafer and packaged in standard 32-pin quad flat no-leads
packages (QFP32). The test board was fabricated in printed
circuit board (PCB), which is composed of a packaged intelli-
gent transmitter chip, three LDO chips (two AMS1117 chips
from AMS and one TPS74301 chip form Texas Instruments),
and other passive devices (from Murata). An FPGA board
was used to transfer data and analyze classification accuracy.
And a spectrum analyzer (R&Sr FSW67) was used to mea-
sure the power and frequency of the output signal.

B. RESULTS
Fig. 8 (a) shows the continuous validation check of each
epoch. In Fig. 8 (a), the training process stops at Epoch
16 for a pre-termination setting as discussed above when
validation check keeps failing for five times. The Gradient
keeps decreasing till to Epoch 16 as shown in Fig. 8 (b). Based
on the failure check result in Fig. 8 (a), the weight and bias in
Epoch 11 are saved. The measured time-domain input data,
output data and transmitted data are presented in Fig. 9 (a).
Fig. 9 (a) certifies that the send-out data and the received data
are consistent, showing that the transmitter works well. The
calculated classification accuracy (Fig. 9 (b)) show that the
classifier of the transmitter works as expected. The weighted
average classification accuracy of the intelligent transmitter is
higher than 95.1 %. That means the MLP neural network can
assign transmission tasks into correct categories and the trans-
mission power can be adjusted smartly. The measured output
power and output frequency of the classified four categories
is shown in Fig. 9 (c). The average power consumption of the
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FIGURE 9. (a) time-domain waveforms of data in the intelligent
transmitter; (b) measured classification accuracy of the intelligent
transmitter; (c) measured output power and output frequency of the
classified four categories.

transmitter is reduced from 64.1mW to 34.3 mW, which is
46.5 % lower.

VI. CONCLUSION
An intelligent radio frequency (RF) transmitter integrated
with artificial neural network (ANN) is implemented. The
reconfigurable ANN in the transmitter makes the radio net-
work possible to work without an extra power and channel
allocation algorithm, which can reduce the complexity and
computing resource of the radio network. The transmitter is
designed to be used in indoor medical radio communications
device in medical implant communication service (MICS)
band. The intelligent transmitter was designed and fabri-
cated with a standard 0.13 µm CMOS process. It occupies
1.96 mm2 including the bonding pads and ESD devices. Mea-
surement results show that the transmitter has a peak output
power of 14.9 dBm with a power consumption of 75.6 mW
from a 1.5 V power supply. With the MLP network identi-
fying the input data and automatically adjusting the transmit
power as well as the transmission channel, the average power
consumption of the PA is reduced to 34.3 mW that is about
46.5 % lower than PA without the ANN. The measured
identification accuracy of the MLP is 95.1 %. The intelli-
gent transmitter provides a promising method to significantly

reduce the energy required by RF devices. With these smart
RF devices, wireless communications in daily life can be
more power-efficient and save a huge amount of energy.
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