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ABSTRACT Heterogeneous ultra-dense network (HUDN) is a promising network structure, which increases
network efficiency in 4G and 5G networks. However, it faces the new challenges regarding interference
and mobility management. To overcome these challenges, joint of resource allocation (RA) and mobility
management is necessary, which, to the best of our knowledge, has not been sufficiently investigated. This
paper represents a solution to this issue. First, analytical investigation and numerical analysis are carried out
to model and justify the behavior of expectation of handover (HO) success rate (ER{HSR}) versus coverage
probability. This paper provides more insight and tools for mobility-based RA researches and design of the
network as well. Then, a new approach of hybrid cell-resource allocation is introduced. It is noteworthy
that this is a practical structure that is adaptable to dynamic network changes in parameters, such as
traffic distribution, mobility pattern, network topology, and different tiers’ acceptable signal-to-interference-
plus-noise ratio. The advantage of this new proposed approach is demonstrated by a numerical analysis.
The results are compared with traditional approaches with and without HO priority consideration called
hybrid-partial CRA (HP-CRA) and traditional CRA (T-CRA), respectively. The results show a considerable
improvement of ER{HSR} about 20% and 80% compared with HP-CRA and T-CRA, respectively, under the
loaded situations, while the network sum rate is kept near the optimal solution.

INDEX TERMS Hybrid cell allocation and resource allocation, mobility management, stochastic geometry,
heterogeneous ultra-dense network, handover success rate, network sum rate.

I. INTRODUCTION
The telecom industry, starting with the mission of connecting
people, has been faced with new requests such as internet of
things (IoT), Ultra high quality video, etc. [1]. The fact is
that it is not only about exponential data traffic and numer-
ous connections growth but also request to high signal to
interference signal to interference plus noise ratio (SINR)
services such as full HD videos on-demand and online remote
surgery. Therefore, proper wireless networks with efficient
cell resource allocation (CRA) algorithms should be designed
to cope with the related challenges. Heterogeneous ultra-
dense network (HUDN) is a promising network structure
introduced in 3GPP Rel-10 and recommended for 5G [2], [3].
This structure usually consists of two or three tiers of different
types of base stations (BSs), including small cells and macro
cells. Small cells are low power nodes which densify the net-
work in randomly-located hotspots. HUDN structure imposes
more interference and lower mobility performance compared

to homogeneous networks. Considering these challenges for
HUDNs, it is necessary to propose practical and efficient
mobility-based CRA solutions [4].

A. RELATED WORKS
1) RESOURCE ALLOCATION
Resource allocation (RA) is one functionality of MAC layer
in wireless networks such as LTE which has a key role for
efficient resource management [5]. This functionality allo-
cates radio resources including subcarriers and power among
users such that a utility function, for example network sum
rate (NSR) is maximized. NSR is the summation of all users’
throughput also called system sum rate [6].

Two types of solutions are generally considered in the
literature: instantaneous resource allocation (IRA) [6]–[8]
and ergodic resource allocation (ERA) [9]–[11]. In IRA,
the instantaneous value of the utility function is optimized by
taking instantaneous constraints into account. In accordance
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with changes in channel state information (CSI), the problem
should be solved in a dynamic manner, which introduces high
computational complexity and excessive signaling load in
network. In ERA, both the utility function and the related
constraints are considered in an average sense. ERA solu-
tions are based on the long-term conditions of a wireless
system using channel distribution information (CDI). With
similar utility and constraint functions, the complexity of
ERA is less than that of IRA, but the accuracy of IRA is
superior [9]. In [10], a simplified hybrid RA solution for
spectrum allocation as offline phase and power allocation
as online phase is presented. However, cell allocation and
mobility management are not considered.

2) MOBILITY MODELING
In order to analyze and simulate the mobility performance,
we should consider a proper mobility model to describe
the movement pattern of mobile users in cellular networks.
Several models have been presented which can be divided
into two groups: dependent models [12] and randommobility
models [13]. In dependent models, the mobility parameters
depend on geography, location, direction, etc. This type of
analysis is recommended for benchmarking and analysis in
specific situations. However, it is not proper for general cases
and analytical investigations. In random models, character-
istics such as direction and velocity follow random process.
In this regard, Random waypoint (RWP) model is a very
well-known and tractable model [13], [14]. Moreover, this is
a generic model which can be easily used for mathematical
and numerical analysis.

3) MOBILITY-BASED RA
RA and mobility management play key roles for improving
network performance. It is worth noting that since they are
dependent, they should be considered together in a unified
framework. This issue is addressed by [15] and [16]. It is
demonstrated through simulation that mobility and interfer-
ence are interwoven. In [17], a RA solution with the target
of minimizing energy is proposed. This method categorizes
mobile users into different groups and analyzes SINR for
each group. However, no mobility criteria such as handover
success rate (HSR) is investigated. Generally, HSR describes
the ratio of the number of successfully performed handover
procedures to the number of attempted handover proce-
dures [18]. Reference [19] presents a scheduling method
focusing on multimedia services using separate handover
(HO) control and RA modules. The efficient throughput
called good put is simulated. However, mobility is not investi-
gated. Reference [14] introduces mobility predictive method
to improve network resource utilization. This study analyzes
the performance of network from capacity point of view and
dose not tackle the performance indicators of mobility such
as HSR.

5G mobility-aware user associations is presented in [20],
in order to overcome the limitations of the conven-
tional received power (RSS)-based association strategies.

It proposes an optimization problem which is helpful in
dynamic situations caused by users’ mobility and BSs’ loads.
However, the solution is limited to mmWave systems without
considering the interference and allocating radio resources
such as transmit power and subcarrier.

As mentioned above, there are few solutions presenting
joint cell allocation and RA which take into account mobility
performance, coverage, load of the network, and flexibility to
dynamic changes of network. One of the main 4G HUDNs’
challenges is the destructive impact of mobility on perfor-
mance which is more serious in 5G [4]. Accordingly, as one
of the main prerequisite to reach the targets of 5G, we should
optimize the process and algorithms of RA and mobility
management jointly.

This paper presents H-CRA, a new kind of joint CRA
algorithm, which satisfies both coverage and mobility perfor-
mance requirements. H-CRA improves the efficiency of CRA
to serve both stationary and mobile users in the context of
dynamic HUDN with high SINR service requirements. Joint
process of CRA and mobility does not mean removing HO
management procedure. However, it considers both coverage
and HSR requirements to allocate resources in a more effi-
cient way and removes some unnecessary round trips between
CRA and HO algorithms.

B. MAIN CONTRIBUTIONS
i- Mobility in HUDNs is modeled by exploiting the RWP
method and stochastic geometry. Through analytical and
numerical investigation, we obtain an interesting result show-
ing that the geographical expectation of HSR (ER{HSR}) in
HUDNs is equivalent to the coverage probability.

ii- To the best of our knowledge, no research presents CRA
problems which takes into account the mobility behavior of
users in terms of HSR. Accordingly, the proposed RA covers
both stationary and mobile subscribers and the HSR factor
can be improved considerably.

iii- The optimization problem is proposed as a combination
of cell allocation and resource allocation to enhance coverage
and mobility situations. In this regard, we model coverage
probability by using stochastic geometry.

iv- A new approach of hybrid CRA consisting of offline
and online phases is introduced. This approach has a practical
and generic structure for CRA which is recommended in
complex and dynamic situations of HUDNs. In the offline
phase, an ERA problem is solved which satisfies the con-
straints in average sense such as ER{HSR} and coverage prob-
ability. Although the proposed solution is time-consuming,
it can only be solved for long-term conditions of users and
network. This phase determines initial transmit power values
and bandwidth for mobile users which should be used in the
online phase. Then, an IRA problem as online phase is solved
which instantaneously fulfills the constraints at each time
slot.

These derivations and techniques facilitate analysis and
resource management more efficiently due to the following
advantages:
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� The results provide applicable insights about service
design at each tier.
� This approach reduces the load of BSs caused by ping
pong cell change or HO due to the load of BSs or low
quality of connections.
� It also provides a flexible tool to track the dynamic
changes of the network parameters including number
and locations of BSs, threshold of SINR, the models of
users’ mobility, and traffic model.
� Eventually, it improves the most important performance
indicator of mobility management i.e., HSR.

In current wireless systems, the main part of HO algorithms
belongs to the radio resource management layer (L3). More-
over, resource allocation is performed in the MAC layer sep-
arately from HO but interactively with L3. The focus of this
paper is on theMAC layer mobility-based resource allocation
to enhance the overall mobility management performance.

In order to investigate H-CRA in more details, hybrid-
partial CRA (HP-CRA) and traditional CRA (T-CRA) are
presented. HP-CRA is a special solution of H-CRA with
near-optimal results of NSR. However, H-CRA outperforms
HP-CRA.

The organization of the paper is as follows: Section II
introduces the models deployed in this paper. Section III
derives the mathematical relations of coverage probability
and ER{HSR}. The analytical result of ER{HSR} is justi-
fied through numerical analysis. Section IV discusses the
proposed H-CRA, HP-CRA and T-CRA to compare their
performance. Section V presents numerical analysis and per-
formance evaluation. Section VI is dedicated to the conclu-
sion. The proof of Lemma and the list of abbreviations are
presented in the appendix section.

II. SYSTEM MODEL
A. NETWORK MODEL
This study is devoted to the downlink of an Orthogonal
Frequency Multiple Access (OFDMA)-based HUDN. It is
assumed that the HUDN network consists of I tiers belonging
to set I = {1, · · · , I } where each tier i ∈ I specifies one
type of BS, such as macro, micro, pico or small cell. The
main specifications such as transmit power, capacity, and
density of the BSs may differ in each tier. Furthermore, it is
assumed that these cells belong to open access category. The
considered HUDN structure is modeled based on stochastic
geometry. Stochastic geometry is a well promising technique
which has been used vastly in the recent years [21]–[25]. It is
a general tool which is much more tractable than the grid
model for analysis and simulation of the cellular networks
especially HUDNs. Users in cellular networks also small cells
in heterogeneous network are located randomly which are
not possible to be modeled by the grid or other determin-
istic models. Therefore, we have to adopt a random model
such as stochastic geometry to study behaviors of HUDNs
including coverage probability and mobility. The reason is
that the stochastic geometry allows us to study the average

behavior over many spatial realizations of a network whose
nodes (BSs or users) are placed according to some probability
distributions.

One of the important objects of stochastic geometry is
point process model which is the random collection of points
in the space and can be chosen from different types. Poisson
Point Process (PPP) is the most usual and typical point pro-
cess which is proper to model the locations of BSs and users.
PPP provides tractable tool for mathematical analysis with
acceptable accuracy to model practical cases [26].

In this regard, the BSs are spatially distributed in each tier
using PPP φi of density λi. The average transmit power of
each BS in tier i is indicated byPTier(i) and the SINR threshold
of each BS in tier i is denoted by βi. Similarly, the distribution
of users is modeled by independent PPP φm with density λm.
Considering Rayleigh fading channel, the channel power

gain is denoted by {hmf ,n: exp(1)} related to the connection
between the mth user and BS or cell f ∈ {1, 2, · · · ,F} on
subcarrier n. exp(1) indicates the exponential function with
the expected value one [27] and xf ,m stands for the distance
between user m and BS f . The power loss is l (x) = ‖x‖−α ,
where α ≥ 2 is the path loss exponent and ‖·‖ is the norm
function. The total bandwidth of the network is divided into
N orthogonal subcarriers, denoted by n ∈ N = {1, 2, · · · ,N }
and each of them undergoes block fading.

We consider P as the related transmission power matrix
where its elements are denoted by pmf ,n. PTier(i), the average
transmit power of base stations in tier i, belongs to PTier with
the dimension of 1 × I . ρmf ,n ∈ {0, 1} is a binary variable
showing the result of subcarrier allocation for the probable
user m ∈ {1, 2, · · · ,M} in cell f . ρmf ,n is the element of ρ
where its dimension is F ×M ×N . We define matrix B with
the dimension ofM ×F with element bmf representing if user
m is assigned to the cell f . The users are classified into two
sets of mobile and stationary users denoted by Mm and Ms
respectively. The notations are summarized in Table. 1. The
SINR of themth user connecting to cell f on subcarrier n ∈ N
is indicated by γmf ,n. γ

m
f ,n is calculated as follows:

γmf ,n =
ρmf ,np

m
f ,nh

m
f ,n

∥∥xf ,m∥∥−α
σ 2 +

∑M
j=1,j 6=m

∑F
k=1,k 6=f ρ

j
k,np

j
k,nh

m

k,n

∥∥xk,m∥∥−α ,
(1)

where σ 2 is the constant additive noise power.Without loss of
generality, it is assumed that the CSI is perfectly available and
backhaul links have sufficient bandwidth. We will comment
more on this assumption in section IV, discussion 4. In this
paper, each macro BS, as first tier, controls the overlaid BSs
lied in other tiers. Scheduling is performed in the macro
BS using its own measurement and those from the overlaid
and neighbor BSs. The macro BSs exchange the measure-
ments and resource allocation information with each other
to overcome interference across different tiers. Two samples
of the three-tier HUDN are shown in Fig. 1 as a mix of
macro, micro, and pico cells. These BSs are located based
on aforementioned PPP model. The area is tessellated by the

66942 VOLUME 6, 2018



M. Farokhi et al.: Mobility-Based Cell and RA for Heterogeneous Ultra-Dense Cellular Networks

TABLE 1. Notations description.

average coverage regions in the absence of fading. They are
obtained by taking average over a period of time based on
maximum SINR connectivity model which is defined in the
next section.

B. MOBILITY MODEL
As mentioned in the introduction, mobility models are
generally divided into two types, namely random models
and dependent models. In random models, the parameters
such as velocity, direction, etc. are based on random pro-
cesses. While the parameters in dependent models are func-

tion of geography, location, direction, and clustering, etc.
Since our main aim is to obtain an analytical relations and
model for general mobility management, it is not proper
to utilize the dependent model. Therefore, we adopt the
random model without loss of generality. In this regard,
Random Way Point (RWP) is the most useful random model
which is widely used for both analytical studies and simula-
tions [28], [29].

RWP is defined as a sequence of triples within a convex
two-dimensional area A ⊂ R2:

(X1,X2,V1) , (X2,X3,V2) , (X3,X4,V3) , · · · (2)

where {X1,X2,X3} are random points selected from both
uniform and non-uniform distributions over A. In order to
verify the random model’s results, non-uniform distribution
of RWP which is somehow close to the dependent models
is investigated in the paper. Every two points in the triples
constitute a leg in which the user moves along that leg with
average velocity Vi. Fig. 1 shows two samples of mobility
pattern with a limited number of legs.

III. COVERAGE PROBABILITY, HANDOVER
SUCCESS RATE
A. DEFINITION: GENERAL COVERAGE PROBABILITY
A user mobile is defined to be in coverage if there exists at
least one connection to each cell f across the tiers where the
SINR is greater than or equal to threshold βi. Considering
CRA algorithm which assigns different subcarriers to each
user, the coverage condition is satisfied if at least one sub-
carrier n has a SINR greater than or equal to βi. Therefore,
the coverage probability of a randomly located user m is
formulated as:

Pc ({λ} {β} {PTier}) = P
{⋃

i∈I

⋃
xf ∈8i

γ̄mf ≥ βi

}
, (3)

where PTier is the average transmit power of base stations
in different tiers and γ̄mf is the maximum of γmf ,n versus N
subcarriers. P {.} is the probability function.

Using the results of [21], the coverage probability is:

Pc =
∑I

i=1
λi

∫
R2

exp[−
(

βi

PTier(i)

)2/α

C (α)
∥∥xf ,m∥∥2

×

∑I

j=1
λj
(
PTier(j)

)2/α] exp(− βiσ
2

PTier(i)

∥∥xf ,m∥∥α)
× dx f ,m (4)

where C (α) = 2π2csc
(
2π
α

)
α−1. �

Nowadays, mobile services’ throughput requirement needs
the SINR to be much more than one. Moreover, HUDNs
are usually interference limited due to the limited shared
spectrum among the tiers. Hence, it is very helpful to utilize
the simplification of (4). Based on [21, Corollary 1] and by
assuming the interference limited networks with negligible
noise and βi ≥ 1 (0dB), (4) is simplified to:

Pc =
π

C (α)

∑I
i=1 λiP

2/α
Tier(i)β

−2/α
i∑I

i=1 λiP
2/α
Tier(i)

(5)
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FIGURE 1. Two close-up views of 3-tier HUDN with different settings of BS density and path loss exponent. Left:
λ = [7e−6,14e−6,28e−6]; α = 3, Right: λ = [1e−6,5e−6,10e−6]; α = 4.

Discussion 1: In Fig. 2, the coverage probability behaviors
are drawn versus the first and second tiers’ average transmit
powers {P1,P2} considering different configurations. The
graphs show that the Pi which maximizes Pc is varying
depending on the value of βi. Another important point is
that the behavior of the coverage probability is monotonic
which allows us to deploy different algorithms for feasible
optimization problems.

The following Proposition introduces an interesting fact
when all tiers have the same SINR threshold:
Proposition 1: Coverage probability Pc in an interference

limited network is independent of tiers’ average power PTier
when βis are the same for all i ∈ {1, · · · , I } and greater or
equal than one.

Proof: Taking into account (5), it is evident that when
for all tiers βi = β then P∗c =

π
C(α)β

2/α . �

B. DEFINITION: HSR
In this paper, HSR is modeled mathematically as the prob-
ability of successful handover in a convex area A. In fact,
HO is successful when the moving user m has at least one
connection to any tier with SINR which is greater than or
equal to the threshold (βi). Alternatively, handover failure is
happened when there is no connection to tier i ∈ I for moving
userm such that its connection’s SINR is greater than or equal
to the required thresholds (βi).
According to the random behavior of the users and the

networks, we adopt the geographical expectation of HSR,
ER {HSR}, or alternatively ER {HFR} in our analysis.

C. LEMMA 1
Assuming a typical mobile user in a free capacity HUDN, the
geographical expectation of handover success rate is equal
to the coverage probability regardless of the mobile users’
location PDF

Pc = ER{HSR}. (6)

Proof: See Appendix.
Discussion 2: In order to justify the mobility modeling and

the results of Lemma 1, comprehensive simulation is per-
formed which verifies the theoretical results. Fig. 3 presents
Pc and ER{HSR} versus β1 in order to compare the pro-
posed analytical and simulation results. Both uniform and
non-uniform distributions of mobile users are investigated.
In this figure, density of BSs across the tiers are λ =[
1e−4, 5e−4, 15e−4

]
. In the first scenario, βi = 1 for i = 2, 3

while in the second scenario, βi = 0.5 for i = 2, 3. As shown
in this figure, the analytical and simulation results are very
closed which verify Lemma 1.
Discussion 3: Every relation of Pc which is based on

definition (3) can be used in Lemma 1. Equation (4) is general
and closed form relation of Pc which is valid for a wide
range of SINR from high values down to −4 dB even under
weaker assumptions [21]. Furthermore, it should be noted that
in many cases, HUDNs are interference limited and noise is
negligible. By numerical investigations, we reach to this fact
that the behavior of (4) and (5) are very similar as indicated
in Fig. 3. Another point is that regarding the high penetration
of smart phones and demand for high performance services,
the condition βi ≥ 1 is a common threshold of coverage for
the new applications. Thus, (5) is adopted in the next sections
as Pc.

IV. HYBRID JOINT CRA PROBLEM
In this section, we propose a general network-level prob-
lem consisting of three sub-problems: Cell allocation which
assigns users to the best cells and RA including both transmit
power and subcarrier allocation sub-problems.

The main goal of this optimization problem is to maximize
the network sum rate (NSR) taking into account the coverage
conditions for stationary users and successful HO conditions
for mobile users in average sense. Accordingly, two con-
straints are included in the optimization problem. One con-
straint controls CRA solution in such a way that the coverage
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FIGURE 2. Coverage probability versus P1 and P2 when λ = [1e−6,1e−5,1.5e−5] based on two scenarios with different βi .

FIGURE 3. Comparison of PPPc and normalized ER {HSR} for the considered
methods: analytical relations (4), (5), simulation of PPPc , and simulation of
ER {HSR} with both uniform and non-uniform PDF of mobile users. Two
settings of SINR sensitivity are considered which are denoted by
S1 and S2.

probability is greater than or equal to the threshold (Pmin).
Another constraint is the average HSR should be greater than
or equal to the threshold (τ ). The thresholds τ and Pmin are
the normalized variables in the range of (0, 1]. Moreover, it is
assumed that the network is heterogeneous cellular network
which is modeled based on the method denoted in Section II.
Note that some illustrations of the coverage probability and
HSR are provided in Fig. 2 and Fig. 3.

Moreover, maximum transmit power of each BS and sub-
carrier allocation constraints are considered. Hence, the pro-
posed optimization problem is written as follows:

Target: max
P,B,ρ
{NSR} = max

P,B,ρ

×

{∑F

f=1

∑M

m=1

∑N

n=1
bmf ρ

m
f log2(1+r

m
f ,n)
}
,

(7a)

s.t ER {HSR} ≥ τ ; ∀m ∈ Mm (7b)

Pc ≥ Pmin; ∀m ∈ Ms (7c)

ρmf ,n ∈ {0, 1} ; ∀m, f , n (7d)

∑M

m=1
ρmf ,n ≤ 1; ∀n, f (7e)∑M

m=1

∑N

n=1
ρmf ,np

m
f ,n ≤ P

max
f ; ∀f (7f)

bmf ∈ {0, 1} ; ∀m, f (7g)∑F

f=1
bmf ≤ 1; ∀m (7h)

where rmf ,n is defined as the data rate of user m on subcarrier
n served by BS f :

rmf ,n = log2
(
1+ γmf ,n

)
(8)

(7b) represents the constraint of the minimum acceptable
mean of HSR for HO users and (7c) is the coverage prob-
ability constraint for stationary users. (7e) states that each
subcarrier cannot be shared by two or more users in one cell
at the same time. The transmit power of the BS should be less
than or equal to Pmaxf formulated in (7f). (7h) limits each user
to be served only by one BS.

Since the problem is non-convex and mixed integer-non-
linear, it is too complex to be solved optimally. However,
there are some facts which are worthy of note: the variables
such as network structure, tiers’ SINR sensitivity, βi, and
even overall network mobility pattern are not changing very
fast in practice during some time intervals such as 10 ms
LTE-frame’s duration [5].

Consequently, we exploit this fact to divide the problem
into two parts: offline, called E-CRA, and online called
I-CRA, in such a way to fulfill the target function and all
constraints in (7).

Based on the aforementioned points, the ergodic sense of
objective and constraint functions are adopted in the offline
phase. This phase is again divided into two parts: First,
average transmit power of the tiers, P∗Tier is calculated. Then,
the needed bandwidth of each BS to be reserved for mobility
is obtained which is denoted by θ∗. P∗Tier and θ

∗ are 1× I and
1× F matrices, respectively.

Unlike the offline phase, I-CRA is designed in the instan-
taneous sense considering all cells, subcarrier and power
allocation parts. Fig. 4 summarizes the proposed H-CRA
approach.
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FIGURE 4. Overall structure of H-CRA solution and optimization variables.
The star indices stand for the sub-optimal solutions.

A. OFFLINE PHASE (E-CRA)
The offline problem is ergodic and complex. However, han-
dling the offline problem during a more relaxed time period
allows us to cope with this complexity. Regardless of com-
plexity, it is also needed to analyze the behavior of the net-
work in a longer time than a short time as time slot. Therefore,
we design the offline problem in order to obtain: a) optimum
average transmit power of each tier, and b) the bandwidth
needed to be reserved for mobile users or HO at each cell.
Propopsition 2: In order to solve (7), considering the

ergodic sense of the offline problem and the results of
Lemma 1, the constraints (7b), (7c) are equivalent andmerged
as:

Pc ≥ ξ ; (9)

where ξ = max{Pmin, τ }.

1) OFFLINE PHASE, PART 1
Optimum values of PTier is obtained by using (7) and cover-
age probability behavior presented in Section 3 and Propo-
sition 2. Then it is possible to solve the problem in the
offline mode using expectation of NSR, E{NSR}, as our target
function in an ergodic optimization problem. Interestingly,
if we note that almost all HUDNs are interference limited
due to the usage of the same limited spectrum in all tiers and
β < 1 which is the proper threshold in real networks such as
LTE then, we can simplify E{NSR} to average user throughput
R̄ if the user is in coverage [21]:

R̄ = log (1+ βmin)+

∑I
i=1 λiP

2/α
Tier(i)β

−2/α
i A (α, βi, βmin)∑I

i=1 λiP
2/α
Tier(i)

.

(10)

where A (α, βi, βmin) =
∫
∞

βmin

max(βi,x)−2/α

1+x dx and βmin =
min{β}.
Hence, the target is to maximize R̄ subject to constraints

(7b) and (7c) where the maximum transmit power of each tier

i is denoted by PmaxTier(i). The solution of this part enables us to
determine the priority of transmit power among all tiers and
initial values for online power allocation.

Target: max
PTier

{
R̄
}
, (11a)

s.t: Pc ≥ ξ ; (11b)

PTier(i) ≤ PmaxTier(i); ∀i (11c)

The Lagrangian function of problem (11) is given by:

L1 (PTier ,µ) = R̄+ µ1,1 (Pc − ξ)

+

∑I

i=1
µ2,i(PmaxTier(i) − PTire(i)). (12)

where µ is the Lagrange multiplier vector. In order to find
the optimum value, we solve ∂L1

∂PTire(i)
= 0 which yields the

following polynomial equation. It can be solved numerically
versus other tiers’ powers by considering fixed values of
Lagrange multipliers.

K1P
2
α
−1

Tier(i) −

(
λiP

2
α

Tier(i) + K2

)
= 0, (13)

where K1 =
2(A+µ1,1)λi

αµ2,i

∑I
j 6=i λjP

2
α

Tier(j)(1− β
−

2
α

j ) and K2 =(∑I
j 6=i λjP

2
α

Tier(j))
)2

.

Considering that HUDNs are almost located in dense urban
and hotspots areas, we can assume that path loss α = 4 [27].
After some manipulations, the closed-form solution of (13),
P∗
Tier is obtained as follows:

P∗Tier =
ϑi

3.78λ4i
−

3.78
(
12K1K2λ

5
i − K4

2λ
4
i

)
3λ4i ϑi

+
2K2

2

3λ2i
,

(14a)

where ϑi is:(√
255.4K 3

1K
3
2 λ

15
i + 283K 2

1K
6
2 λ

14
i + 36.5K1K 9

2 λ
13
i

+27K 2
1 λ

8
i − 72K1K 3

2 λ
7
i − 2K 6

2 λ
6
i

)1/3

. (14b)

Lagrangian problem (12) is solved by exploiting the dual
optimization and sub-gradient algorithms as follows

g1(µ) = max
µ

L1
(
P∗Tier ,µ

)
(15)

Considering the dual optimization problem:

min
µ

g1(µ), (16a)

s.t µ ≥ 0, (16b)

the Lagrange multipliers µ are determined using the sub-
gradient method [30] as:

µl+11,1 = [µl1,1 − s
l (Pc − ξ)]

+
; (17a)

µl+12,i = [µl2,i − s
l (Pmi − PTier(i))]+; ∀i (17b)

where l is the iteration number and [·]+ denotes max (., 0).
where l is the iteration number and [·]+ denotes max (., 0).
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sl is the scalar step size which has a key role in the con-
vergence of (17). It is demonstrated that the sub-gradient
approach in the dual decomposition method converges to
optimal µ if sl is chosen to be sufficiently small. As a proper
criterion, sl is selected to be square summable, and it should
not be absolute summable [26].
Discussion: Fig. 2 indicates Pc behavior versus different

values of β. In some cases, P∗
Tier happens in higher values

of βis and in some situations vice versa. However, if βis are
equal for all tiers then λ and transmit power PTier does not
affect the value of Pc.

It follows from Fig. 2 and the behavior of R̄ [21] that (11)
is concave. Subsequently, considering Karush_Kuhn_Tucker
(KKT) [31] as the first optimality condition, depicted
in Table. 2, it is feasible to attain the optimum solution, P∗

Tier .

TABLE 2. KKT conditions of problem (11) where P∗Tier is the solution.

Insight: A supplementary application is to deploy the opti-
mization problem (11) and its solution in network design
process. For instance, if the solution results to P∗

Tier(3) = 0,
then we find that the third tier is not useful versus Pc and may
be applicable only for capacity. If so, it is reasonable to revise
the service strategy in order to change the SINR sensitivity of
the 3th tier. Hence, Pc and user’s experience can be improved.

2) OFFLINE PHASE, PART2
In the call admission and CRA process, two sets of sta-
tionary and mobile users request resources. In the proposed
approach, it is required that mobile users’ online CRA to be
carried out in parallel with stationary users’ CRA, assuming
pre-determined capacity at each cell. In order to calculate this
capacity for mobile users, the number of requested HOs for
each cell is measured during the offline time. Therefore; the
mean number of needed subcarriers for HO admission called
θ∗ is produced and transferred to online problem.

B. ONLINE PHASE
The online phase is a complementary part to the offline phase
and enhances the accuracy of the overall solution. This phase
is devoted to find the solutions to the cell, subcarrier, and
power allocation problems in an instantaneous sense based
on the results of the offline phase.

This problem is a combination of three sub-problems:
power, cell, and subcarrier allocation sub-problems. Based on
the alternative search method (ASM) [32] and extending the
result of [33], these stages are iteratively solved to converge

to the best sub-optimal solution.

{P[0]→ B[0]→ ρ[0]}

H⇒ · · · H⇒ {P[topt−1]→ B[topt−1]→ ρ[topt−1]}

H⇒ {P[topt ]→ B[topt ]→ ρ[topt ]}. (18)

where {P [0] ,B [0] , ρ [0]} is the initial feasible set of CRA
where P [0] follows P∗

Tier i.e., p
m
n,f = P∗

Tier(f )
/N . Then, at the

beginning of each iteration t, P[t] is computed versusB[t−1]
and ρ[t−1] obtained in the last iteration. These iterations are
repeated until convergence is achieved. The overall process
of online solution is summarized in Table. 3.

TABLE 3. Online cell & resource allocation algorithms.

1) ONLINE POWER ALLOCATION
Similar to the main problem (7), NSR is chosen to be the
objective function in the instantaneous sense meaning that it
is carried out in each time slot. The online power allocation
sub-problem is formulated as follows:

Online Target:

max
P

∑M

m=1

∑N

n=1

∑F

f=1
bmf ρ

m
f ,nr

m
f ,n, (19a)

s.t:
∑F

f=1

∑M

m=1
ρmf ,n ≤ 1; ∀n (19b)∑M

m=1

∑N

n=1
ρmf ,np

m
f ,n ≤ P

max
f ; ∀f (19c)

ρmf ,n ∈ θ
∗
; ∀m ∈ Mm, ∀f (19d)

bmf ∈ {0, 1} ; ∀m, f (19e)∑F

f=1
bmf ≤ 1; ∀m (19f)

Due to the non-convexity of objective function in (19), we can
exploit the successive convex approximation with low com-
plexity (SCALE)method to convert (19) to a convex problem.
For more details and proofs, refer to [10].

Based on this method, a lower bound for user rate is
adopted. Thus, the convex form of the online power allocation
sub problem is as follows:

max
P̃

M∑
m=1

N∑
n=1

F∑
f=1

bmf ρ
m
f ,nψ

m
f ,n

(
log2 (r

m
f ,n)+ χ

m
f ,n

)
,

s.t (19 b to 19 f). (20)
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where ψm
f ,n =

γmn,f

(
P̃(t−1)

)
1+γmn,f

(
P̃(t−1)

) , χmf ,n = rnm,f (P(t − 1)) −

ψm
f ,n log

(
γ nm,f (P(t − 1))

)
, P = exp(P̃) and the index (t − 1)

shows the last step in the iterations.
The power allocation sub-problem is solved by the

Lagrangian dual decomposition method. The Lagrangian
function is as follows

L2
(
ρ, P̃, v

)
=

∑M

m=1

∑N

n=1

∑F

f=1
bmf ρ

m
f ,nψ

m
f ,n

(
log2 (r

m
f ,n)+ χ

m
f ,n

)
+

∑F

f=1
v1,f (Pmaxf −

∑M

m=1

∑N

n=1
ρmf ,np̃

m
f ,n) (21)

By solving ∂L2
∂P̃
= 0, P̃

∗
and then P∗ is obtained and similar

to offline dual Lagrange solution, the related Lagrange mul-
tipliers v are calculated using the sub-gradient method as:

vl+11,f =

[
vl1,f − s

l
(
Pmaxf −

∑M

m=1

∑N

n=1
ρmf ,np̃

m
f ,n

)]+
.

(22)

Similar to the offline problem, the KKT conditions are sat-
isfied for the online sub problem (20). It is convex problem;
therefore, the first level of optimality conditions is attained.
Also the convergence is guaranteed provided that sl is chosen
to be square summable [26].

2) ONLINE PASE- CELL ALLOCATION
According to the main optimization problem (7), NSR is
selected as the target function besides other constraints
including coverage and HSR conditions.

Target: max
bmf

∑F

f=1

∑M

m=1

∑N

n=1
bmf R

m
f ,n; (23a)

s.t: bmf ∈ {0, 1} ; ∀m, f (23b)∑F

f=1
bmf ≤ 1; ∀m (23c)

Pc ≥ Pmin; ∀m (23d)

B is obtained from solving (23) using the dual Lagrange
algorithm. Regarding the complexity of this solution and to
guarantee fairness, it is possible to obtain sub optimal solution
by dividing (23a) into following M equations:

Target: max
B
{bmf [t] r̄mf P [t − 1]}. (24)

Subject to the constraints of problem (23). r̄mf is En{rmn,f } or
average user rate in terms of the subcarriers.

Problem (24) can be easily solved by using the search
algorithms.

3) ONLINE PHASE -- SUBCARRIER ALLOCATION
The aim of subcarrier allocation problem is to maximize NSR
by considering the fixed values of P[t − 1] obtained from the
previous power allocation iteration and B which is obtained
from cell allocation sub problem. Based on the method in [7],
it is possible to decompose (7) into M sub-problems, related

to each user and each BS in order to find the maximum user
rate by obtaining the best ρ.

Target : max
ρ
{bmf [t − 1] ρmf ,n [t] r

m
f ,n

(P [t − 1]}, (25a)

ρmf ,n ∈ {0, 1}; ∀m, f , n (25b)∑M

m=1
ρmf ,n; ∀f , n (25c)

Equations (24) and (25) are mixed integer linear problems
(MILP), thus it can be solved easily by pattern search tech-
niques such as brand-and-branch algorithm [33].
Discussion 1: The online phase is a general structure with

the possibility of applying different types of solutions such as
a general dual decomposition like optimal-iterative spectrum
balancing (OSB or ISB) [7], [10], [32], [33], and iterative
water filling (IWF), [6]. All these solutions satisfy the KKT
conditions and provide suboptimal results. The OSB tech-
nique results an upper limit of optimal points and approaches
the optimum solutions within the limits of large numbers
of N . Each algorithm provides different acceptable results
from the main criteria of complexity, fairness, and conver-
gence time point of view [7], [10]. Here, successive convex
approximation (SCA) dual Lagrange solution is carried out
in power allocation sub-problem to analyze the performance
of the H-CRA and HP-CRA.
Discussion 2: As another solution to cell and resource

allocation sub problems, it is possible to deploy joint
solution of these sub-problems by mesh algorithms [34].
NOMAD [35] is a proper tool to solve mixed integer linear
and nonlinear problems near-optimally but its complexity is
too high.
Discussion 3: The objective and constraint functions in

both power allocation and cell-resource allocation problems
are differentiable. IfP∗ and v∗ are the primal and dual optimal
points of the solutions to (20) then the KKT conditions will
be satisfied with proper values of the thresholds related to
the constraints. Regarding the convexity of the online power
allocation problem, (20) and the KKT conditions, the first
level optimal power solution is attained. Besides, the other
online subproblems (cell and subcarrier allocation problems)
are linear whose solutions are globally optimal. Therefore,
based onASM, the proposed algorithm is converged to a local
solution [32].
Discussion 4: As mentioned in Section II, we assume per-

fect CSI and backhaul capacity. However, it is also possible to
consider imperfect assumptions: For the imperfect CSI case,
it can be firstly modeled by the summation of the estimated
CSI and its estimation error which is usually assumed to be
a Gaussian random variable. Then, the actual CSI is mod-
eled with the imperfect CSI [36]. Accordingly, the proposed
method is applicable for the imperfect CSI case.

For the backhaul limited capacity scenario, it is only
needed to add a new sum access rate constraint to the opti-
mization problem [10]. By following the same line of argu-
ments of the unlimited case, we can solve the corresponding
limited optimization problem.
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FIGURE 5. Convergence speed of H-CRA or HP-CRA and T-CRA for different scenarios: S1 and S2 and configurations of M and N .

4) BENCHMARKING ACROSS T-CRA AND HP-CRA
To justify the results of the proposed solution, the perfor-
mance of HP-CRA and T-CRA are compared. HP-CRA is
the same as H-CRA except the offline power allocation is
removed and only θ∗ is obtained in the offline phase.
Under similar conditions of fairness, the same online algo-

rithms of cell, power, and subcarrier allocation are utilized
for T-CRA. Similar to the hybrid solution, these three sub-
problems are solved iteratively following (16). The differ-
ences with H-CRA are: I) T-CRA is carried out only in online
sense. II) T-CRA does not perform joint CRA and mobility
analysis and the constrains of Pc and ER{HSR} are not con-
sidered. The overall formulation is similar to the online part
except the coverage probability constraint, and P∗Tier . Cell
allocation is similar to the method of H-CRA.

In the hybrid method, the T-CRA power allocation sub-
problem is solved by the dual decomposition method which
obtains the upper bound of the optimal solutions. Also, cell-
subcarrier allocation sub-problems are solved by the men-
tioned search method. The benchmarking is carried out by
investigating the performances of the algorithms using dif-
ferent criteria such as convergence behavior, HSR or HFR,
equivalent to (100-HSR), and NSR which presents spectrum
efficiency.

V. NUMERICAL ANALYSIS
The performance of the proposed H-CRA approach is inves-
tigated using numerous simulations and comparison with the
T-CRA and HP-CRA algorithms. The considered structure
consists of joint cell-resource allocation and mobility. The
mobility pattern is based on RWPMobility as shown in Fig. 1.
HO decision parameter is SINR. HO is performed after aver-
aging over measured signals to take out the fast fading effects.

In addition, we consider three tiers (macro, micro and pico
cells) with different Pmax = [40, 2, 0.2] Watts and β =
[1, 2, 3] to form HUDN. It is assumed that the spectrum is
shared among all BSs and carrier frequency is 2.6 GHz. The
noise power spectrum density is equal to −174dBm/Hz. The

channel gain is considered to be the superposition of path
loss, shadowing, and fast fading. In accordancewith the dense
urban environments, the path loss exponent, α, is 4. The fast-
fading factor is based upon a normalized Rayleigh function
for modeling the multi-path effect [37]–[39].

A is the domain of the network as a square-shaped cluster
with the dimensions of 1000 m× 1000 m. In order to analyze
the performance, the Monte Carlo method and the stochastic
geometry model are adopted, hence, instead of the number
of BSs their density (λi) are used and the number of BSs in
each tier is determined based on PPP and λi. In each run of
the simulation, the number and locations of BSs and users are
changed.

A. CONVERGENCE BEHAVIOR
In order to study the behavior of the algorithms under dif-
ferent network’s load, different numbers of users, M , and
subcarriers, N , are evaluated. If the threshold of convergence
is 0.1 and El is the error function in terms of P in the l th

iteration, then the iterations stop if ‖El − El−1‖ ≤ 0.1 or the
maximum number of iterations (lmax = 500) is reached. The
typical convergence behavior of the different algorithms is
presented in Fig. 5, which indicates the number of iterations
up to convergence for different scenarios of M and N . Two
settings for BSs density are chosen called S1 and S2 with
λ1 = [2e−3, 3e−3, 4e−3] andλ2 =

[
1.5e−3, 2.25e−3, 3e−3

]
,

respectively. It is clear that the convergence speed is proper
and similar to T-CRA methods.

B. MOBILITY MANAGEMENT PERFORMANCE
Numerical analysis is performed for various network config-
urations of λ, M , and N . Note that M and M

N are selected as
network load metrics to analyze the performance. When the
load or traffic is high, there is high probability of blockage or
drop rate during HO process.

In addition, the higher load of the HUDNs raises the higher
interference hence, NSR is saturated and HO failures increase
due to the lower SINR in the cells’ border.
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FIGURE 6. (a) ER {HFR} versus the number of users, N = 10 and
λ1 =

[
2e−3,3e−3,4e−3

]
. (b) ER {HFR} versus the number of users N = 10

and λ2 = [1 · 5e−3,2 · 25e−3,3e−3].

Fig. 6 and Fig. 7 compare the results of the handover failure
rate ER{HFR} = 100 − ER{HSR} of the three proposed
solutions in terms of different values of λ and N .
Fig. 6a and Fig. 6b show the comparisons for two density

sets: λ1 and λ2 when N =10, Pmin = 0.9 and τ = 0.9.
As seen in these figures, H-CRA and HP-CRA algorithms
outperform the T-CRA method for different scenarios in all
traffic conditions. For instance, Fig. 6 shows about 78%
improvement of H-CRA in comparison with T-CRA when
N = 10 and M = 10.
Moreover, H-CRA and HP-CRA are much more efficient

in higher network’s load compared to T-CRA. Furthermore,
H-CRA is superior than HP-CRA about 20 % denoting the
efficiency of offline power allocation. In fact, this improve-
ment comes from considering jointly mobility pattern and
channel information in the resource allocation procedure.
In other words, unlike traditional works that is only the
function of channel information, our methods are function of
both channel and mobility information.

C. NETWORK SUM RATE
Here, the NSR of the algorithms, the sensitivity of Pmin, and
τ are investigated.

FIGURE 7. (a) NSR versus the number of users, N = 10 and
λ1 = [2e−3,3e−3,4e−3]. (b) NSR versus the number of users, N = 10 and
λ2 = [1 · 5e−3,2 · 25e−3,3e−3].

FIGURE 8. (a) ER {HSR} versus the network load for the proposed
algorithms and different values of PPPmin. N = 4 and
λ = [2e−3,3e−3,4e−3]. (b) NSR versus the network load for the proposed
algorithms and different values of PPPmin. N = 4 and
λ = [2e−3,3e−3,4e−3].

Fig. 7 presents NSR with Pmin = 0.9 according to the
two scenarios with λ1 and λ2 versus the network load. The
results of simulations justify that the NSR of both H-CRA
and HP-CRA are very similar and near to optimal values
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especially HP-CRA. Since the coverage and HSR constraints
are added in H-CRA, and some parts of bandwidth are allo-
cated to the mobile users, the NSR is reduced. However,
the difference is less than 10%which is acceptable in practice.

Pmin is an important parameter which has a key role in
the performance where it makes a tradeoff between NSR
and ER{HSR}. In fact, higher values of Pmin results in higher
ER{HSR} and lower NSR. Therefore, the optimum value of
Pmin should be chosen based on the network configurations.

Fig. 8 introduces the effect of Pmin with different values:
{0.7, 0.9, 0.99} on NSR and ER{HSR}. As it is seen, Pmin =
0.9 is a proper threshold value which leads to near-optimal
values of ER{HSR} and NSR. Note that the network load is
considered as M

N .

VI. CONCLUSIONS
Heterogeneous ultra-dense networks’ behavior has been
investigated in terms of average handover success rate (HSR)
and coverage probability through mathematical and numer-
ical analysis stating that average HSR in these networks
is equivalent to coverage probability. Furthermore, a novel
mobility-aware cell-resource allocation structure is proposed.
In this regard, we aim to maximize network sum rate (NSR)
subject to the coverage and average HSR (ER{HSR}) con-
straints, transmit power limitation, and subcarrier and cell
allocation restrictions. By dividing the main problem into
ergodic and instantaneous sub-problems, two practical solu-
tions, namely hybrid cell resource allocation (H-CRA) and
hybrid partial cell resource allocation (HP-CRA) have been
provided. This approach is flexible to the dynamic changes
of the network including, topology, traffic, and mobility
pattern. It has been demonstrated that ER{HSR} results of
both solutions outperform traditional cell resource allocation
(T-CRA). Especially, H-CRA has remarkable improvement
in average HSR about 78% compared to T-CRA as shown
in Fig. 6 and Fig. 8.

APPENDIX
Proof of Lemma 1: Let the mobile user moves from point r1
to r2 in convex domain A, facing with handover failure in r2.
Considering that γmfi,n (r2) is SINR related to connection of
user m to cell fi from tier i on subcarrier n also γmgi,k (r1) is
SINR at location r1 connecting user m to cell gi belonging to
tier i on subcarrier k . Thus, the probability of HFR at r2 is
defined as:

PHFR (r2) = P
(
∩
I
i=1γ

m
fi,n (r2)< β i |

⋃I

i=1
γmgi,k (r1) ≥ βi

)
(a1)

= P
(
∩
I
i=1γ

m
fi,n (r2)< β i

)
. (a2)

Equation (a2) follows from the fact that γmf ,n (r2) is inde-
pendent of γmg,k (r1). Based on 3GPP standards, HO triggers
after making L1 and L3 filtering on measurements in order
to remove fast fading effects. Therefore, when the distance
between these two points are more than typical thresholds,

TABLE 4. List of abbreviations.

handover failure is independent from the last location situa-
tion. Thus, (a2) is equivalent to:

PHFR (r2) = 1− Pc (r2), (a3)

where Pc (r2) follows from (4) or (5). Let the user faces with
low quality at location dA and cannot handover to a better cell
and taking into account the (4) and (a3). It is evident that Pc
then PHFR are independent of location. Thus, if the outage is
occurred in a small area, dA, it follows d (HFR) = PoutagedA
and POutage = 1− Pc.

Therefore, the expectation over HFR in A is:

ER {HFR} =
∫
A

(1− Pc) fR (r) dr, (a4)

where fR (r) is the pdf of mobile users’ locations or

ER {HSR} = Pc

∫
A

fR (r) dr. (a5)
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In both cases of uniform and non-uniform of distributions of
users movement fR (r), (a5) is simplified as follows

ER {HSR} = Pc. (a6)

REFERENCES
[1] A. Nordrum. Popular Internet of Things Forecast of 50

Billion Devices by 2020 Is Outdated. IEEE Spectrum.
Accessed: Aug. 2016. [Online]. Available: https://spectrum.
ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-
50-billion-devices-by-2020-is-outdated

[2] R. El Hattachi and J. Erfanian. (Feb. 17, 2015). NGMN 5G White Paper,
NGMN. [Online]. Available: https://www.ngmn.org

[3] R. Q. Hu and Y. Qian, ‘‘An energy efficient and spectrum efficient wireless
heterogeneous network framework for 5G systems,’’ IEEECommun.Mag.,
vol. 52, no. 5, pp. 94–101, May 2014.

[4] M. Lauridsen, L. C. Gimenez, I. Rodriguez, T. B. Sorensen, and
P. Mogensen, ‘‘From LTE to 5G for connected mobility,’’ IEEE Commun.
Mag., vol. 55, no. 3, pp. 156–162, Mar. 2017.

[5] S. Sesia, I. Toufik, and M. Baker, LTE—The UMTS Long Term Evolution:
From Theory to Practice. Hoboken, NJ, USA: Wiley, 2009.

[6] L. Venturino, N. Prasad, andX.Wang, ‘‘Coordinated scheduling and power
allocation in downlink multicell OFDMA networks,’’ IEEE Trans. Veh.
Technol., vol. 58, no. 6, pp. 2835–2848, Jun. 2009.

[7] Z. Shen, J. G. Andrews, and B. L. Evans, ‘‘Adaptive resource allocation in
multiuser OFDM systems with proportional rate constraints,’’ IEEE Trans.
Wireless Commun., vol. 4, no. 6, pp. 2726–2737, Nov. 2005.

[8] A. Sharifian, R. Schoenen, and H. Yanikomeroglu, ‘‘Joint realtime and
nonrealtime flows packet scheduling and resource block allocation in
wireless OFDMA networks,’’ IEEE Trans. Veh. Tech., vol. 65, no. 4,
pp. 2589–2607, Apr. 2015.

[9] N. Mokari, H. Saeedi, and P. Azmi, ‘‘Quantized ergodic radio resource
allocation in cognitive femto networks with controlled collision and power
outage probabilities,’’ IEEE J. Sel. Areas Commun., vol. 32, no. 11,
pp. 2090–2104, Nov. 2014.

[10] M. Farokhi and A. Zolghadrasli, ‘‘Dynamic spectrum, subcarrier and
power allocation in heterogeneous cellular networks based on interference
and small cells’ backhaul limitations,’’ Arabian J. Sci. Eng., vol. 42, no. 7,
pp. 2685–2696, Sep. 2016, doi: 10.1007/s13369-016-2314-0.

[11] L. Musavian and Q. Ni, ‘‘Effective capacity maximization with statistical
delay and effective energy efficiency requirements,’’ IEEE Trans. Wireless
Commun., vol. 14, no. 7, pp. 3824–3835, Jul. 2015.

[12] A. Hanggoro and R. F. Sari, ‘‘Performance evaluation of the manhattan
mobility model in vehicular ad-hoc networks for high mobility vehi-
cle,’’ in Proc. IEEE Int. Conf. COMNETSAT, Dec. 2013, pp. 31–36,
doi: 10.1109/COMNETSAT.2013.6870855.

[13] X. Lin, R. K. Ganti, P. J. Fleming, and J. G. Andrews, ‘‘Towards under-
standing the fundamentals of mobility in cellular networks,’’ IEEE Trans.
Wireless Commun., vol. 12, no. 4, pp. 1686–1698, Apr. 2013.

[14] P. S. Prasad and P. Agrawal, ‘‘A generic framework for mobility prediction
and resource utilization in wireless networks,’’ in Proc. 2nd IEEE COM-
SNETS Conf., Bangalore, India, Jan. 2010, pp. 1–10.

[15] V. Capdevielle, A. Feki, and E. Sorsy, ‘‘Joint interference management and
handover optimization in LTE small cells network,’’ in Proc. IEEE ICC
Conf., Jun. 2012, pp. 6769–6773.

[16] D. Lopez-Perez, I. Guvenc, andX. Chu, ‘‘Mobilitymanagement challenges
in 3GPP heterogeneous networks,’’ IEEE Commun. Mag., vol. 50, no. 12,
pp. 70–78, Dec. 2012.

[17] Y. Zhang, H. Long, Y. Peng, A. V. Vasilakos, and W. Wang, ‘‘QoE
and energy efficiency aware resource allocation for OFDM systems in
group mobility environments,’’ Int. J Commun. Syst., vol. 27, no. 12,
pp. 3526–3544, Dec. 2014.

[18] Key Performance Indicators (KPI) for the Evolved Packet Core (EPC),
Release 10, document TS 32.455, 3GPP, 2011.

[19] Q. Liu and C. W. Chen, ‘‘Smart downlink scheduling for multimedia
streaming over LTE networks with hard handoff,’’ IEEE Trans. Circuits
Syst. Video Technol., vol. 25, no. 11, pp. 1815–1829, Nov. 2015.

[20] A. S. Cacciapuoti, ‘‘Mobility-aware user association for 5G mmWave
networks,’’ IEEE Access, vol. 5, pp. 21497–21507, 2017.

[21] H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, ‘‘Modeling and
analysis of K-tier downlink heterogeneous cellular networks,’’ IEEE J. Sel.
Areas Commun., vol. 30, no. 3, pp. 550–560, Apr. 2012.

[22] A. H. Sakr and E. Hossain, ‘‘Location-aware cross-tier coordinated mul-
tipoint transmission in two-tier cellular networks,’’ IEEE Trans. Wireless
Commun., vol. 13, no. 11, pp. 6311–6325, Nov. 2012.

[23] H. Elsawy, E. Hossain, and M. Haenggi, ‘‘Stochastic geometry for mod-
eling, analysis, and design of multi-tier and cognitive cellular wireless
networks: A survey,’’ IEEE Commun. Surveys Tuts., vol. 15, no. 3,
pp. 996–1019, 3rd Quart., 2013, doi: 10.1109/SURV.2013.052213.00000.

[24] G. George, R. K. Mungara, A. Lozano, and M. Haenggi, ‘‘Ergodic spec-
tral efficiency in MIMO cellular networks,’’ IEEE Trans. Wireless Com-
mun., vol. 16, no. 5, pp. 2835–2849, May 2017, doi: 10.1109/TWC.2017.
2668414.

[25] G. Giambene and V. A. Le, ‘‘Analysis of LTE-A heterogeneous networks
with SIR-based cell association and stochastic geometry,’’ IEEE J. Com-
mun. Netw., vol. 20, no. 2, pp. 129–143, Apr. 2018.

[26] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti,
‘‘Stochastic geometry and random graphs for the analysis and design
of wireless networks,’’ IEEE J. Sel. Areas Commun., vol. 27, no. 7,
pp. 1029–1046, Sep. 2009, doi: 10.1109/JSAC.2009.090902.

[27] W. C. Y. Lee, Wireless and Cellular Telecommunication. New York, NY,
USA: McGraw-Hill, 2006.

[28] Y. Zaki, Future Mobile Communications: LTE Optimization and Mobile
Network Virtualization (Advanced Studies Mobile Research Center Bre-
men). Wiesbaden, Germany: Springer, 2012.

[29] E. Hyytia, P. Lassila, and J. Virtamo, ‘‘Spatial node distribution of the
random waypoint mobility model with applications,’’ IEEE Trans. Mobile
Comput., vol. 5, no. 6, pp. 680–694, Jun. 2006.

[30] W. Yu and R. Lui, ‘‘Dual methods for nonconvex spectrum optimiza-
tion of multicarrier systems,’’ IEEE Trans. Commun., vol. 54, no. 7,
pp. 1310–1322, Jul. 2006.

[31] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[32] M. Moltafet, R. Joda, N. Mokari, M. R. Sabagh, and M. Zorzi, ‘‘Joint
access and fronthaul radio resource allocation in PD-NOMA based 5G
networks enabling dual connectivity and CoMP,’’ IEEE Trans. Commun.,
to be published, doi: 10.1109/TCOMM.2018.2865766.

[33] D. T. Ngo, S. Khakurel, and T. Le-Ngoc, ‘‘Joint subchannel assignment and
power allocation for OFDMA femtocell networks,’’ IEEE Trans. Wireless
Commun., vol. 13, no. 1, pp. 342–355, Jan. 2014.

[34] C. Audet, S. Le Digabel, and C. Tribes, ‘‘Dynamic scaling in the mesh
adaptive direct search algorithm for blackbox optimization,’’ Optim. Eng.,
vol. 17, no. 2, pp. 333–358, 2016.

[35] S. Le Digabel, ‘‘Algorithm 909: NOMAD: Nonlinear optimization with
the MADS algorithm,’’ ACM Trans. Math. Softw., vol. 37, no. 4,
pp. 44-1–44-15, Feb. 2011.

[36] N. Mokari, M. R. Javan, and K. Navaie, ‘‘Cross-layer resource allocation
in OFDMA systems for heterogeneous traffic with imperfect CSI,’’ IEEE
Trans. Veh. Technol., vol. 59, no. 2, pp. 1011–1017, Feb. 2010.

[37] S. Hara and R. Prasad, Multicarrier Techniques for 4G Mobile Communi-
cations. Norwood, MA, USA: Artech House, 2003.

[38] T. S. Rappaport,Wireless Communications: Principles and Practice, vol. 2.
Upper Saddle River, NJ, USA: Prentice-Hall, 1996.

[39] G. L. Stüber, Principles of Mobile Communication. Atlanta, GA, USA:
Springer, 2017.

MASOUD FAROKHI received the B.S. degree
from the University of Shiraz and the M.S. degree
from the University of Tehran. He is currently pur-
suing the Ph.D. degree in telecommunication engi-
neering with the University of Shiraz. He is also
working inmobile network planning and optimiza-
tion areas. His current research interests include
4G, 5G radio resource allocation, heterogeneous
network, interference, and mobility management.

66952 VOLUME 6, 2018

http://dx.doi.org/10.1007/s13369-016-2314-0
http://dx.doi.org/10.1109/COMNETSAT.2013.6870855
http://dx.doi.org/10.1109/SURV.2013.052213.00000
http://dx.doi.org/10.1109/TWC.2017.2668414
http://dx.doi.org/10.1109/TWC.2017.2668414
http://dx.doi.org/10.1109/JSAC.2009.090902
http://dx.doi.org/10.1109/TCOMM.2018.2865766


M. Farokhi et al.: Mobility-Based Cell and RA for Heterogeneous Ultra-Dense Cellular Networks

ALIREZA ZOLGHADRASLI was born in Fasa,
Iran, in 1955. He received the B.Sc. degree (five
years’ program) in electrical and electronic engi-
neering from Shiraz University (ancient Pahlavi
University), Shiraz, Iran, in 1978, and the M.Sc.
degrees in electronic, signal and data processing
and the Ph.D. degree in image processing and com-
munication systems from the Institute Polytechnic
of Grenoble, Grenoble, France, in 1980, 1981, and
1985, respectively. He was an Assistant Professor

and an Associate Professor with the University of Chambery, France, and the
University of Grenoble, France, respectively, from 1985 to 1990.

From 1990 to 2001, he was an Assistant Professor with the Electrical
Engineering Department, Shiraz University, where he was an Associate Pro-
fessor from 2001 to 2016. He was promoted to Professor of communication
systems at the Electrical EngineeringDepartment in 2016. He has authored or
co-authored more than 100 papers in international journals and conferences
proceedings. His research interests include signal and image processing,
communication, and wireless systems.

NADER MOKARI YAMCHI received the Ph.D.
degree in electrical engineering from Tarbiat
Modares University, Tehran, Iran, in 2014.
In 2015, he joined the Department of Electrical
and Computer Engineering, Tarbiat Modares Uni-
versity, as an Assistant Professor. He was involved
in a number of large-scale network design and
consulting projects in the telecom industry. His
research interests include design, analysis, and
optimization of communications networks.

VOLUME 6, 2018 66953


	INTRODUCTION
	RELATED WORKS
	RESOURCE ALLOCATION
	MOBILITY MODELING
	MOBILITY-BASED RA

	MAIN CONTRIBUTIONS

	SYSTEM MODEL
	NETWORK MODEL
	MOBILITY MODEL

	COVERAGE PROBABILITY, HANDOVER SUCCESS RATE
	DEFINITION: GENERAL COVERAGE PROBABILITY
	DEFINITION: HSR
	LEMMA 1

	HYBRID JOINT CRA PROBLEM
	OFFLINE PHASE (E-CRA)
	OFFLINE PHASE, PART 1
	OFFLINE PHASE, PART2

	ONLINE PHASE
	ONLINE POWER ALLOCATION
	ONLINE PASE- CELL ALLOCATION
	ONLINE PHASE -- SUBCARRIER ALLOCATION
	BENCHMARKING ACROSS T-CRA AND HP-CRA


	NUMERICAL ANALYSIS
	CONVERGENCE BEHAVIOR
	MOBILITY MANAGEMENT PERFORMANCE
	NETWORK SUM RATE

	CONCLUSIONS
	REFERENCES
	Biographies
	MASOUD FAROKHI
	ALIREZA ZOLGHADRASLI
	NADER MOKARI YAMCHI


