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ABSTRACT Rotating machines have been widely used in industrial engineering. The fault diagnosis of
rotating machines plays a vital important role to reduce the catastrophic failures and heavy economic loss.
However, the measured vibration signal of rotating machinery often represents non-linear and non-stationary
characteristics, resulting in difficulty in the fault feature extraction. As a statistical measure, entropy can
quantify the complexity and detect dynamic change through taking into account the non-linear behavior of
time series. Therefore, entropy can be served as a promising tool to extract the dynamic characteristics of
rotating machines. Recently, many studies have applied entropy in fault diagnosis of rotating machinery.
This paper aims to investigate the applications of entropy for the fault characteristics extraction of rotating
machines. First, various entropy methods are briefly introduced. Its foundation, application, and some
improvements are described and discussed. The review is divided into eight parts: Shannon entropy,
Rényi entropy, approximate entropy, sample entropy, fuzzy entropy, permutation entropy, and other entropy
methods. In each part, we will review the applications using the original entropy method and the improved
entropy methods, respectively. In the end, a summary and some research prospects are given.

INDEX TERMS Entropy, fault diagnosis, fault feature extraction, rotating machinery, condition-based
maintenance.

NOMENCLATURE
ApEn Approximate entropy
SampEn Sample entropy
FE Fuzzy entropy
REN Rényi entropy
PE Permutation entropy
SpEn Spectral entropy
WaEn Wavelet entropy
IMFs Intrinsic mode functions
EMD Empirical mode decomposition
MSE Multiscale sample entropy
CMSE Composite multi-scale sample entropy
MMSE Modified multiscale sample entropy
HSE Hierarchical sample entropy
MFE Multiscale fuzzy entropy
CMFE Composite multi-scale fuzzy entropy
RCMMFE Refined composite multivariate multiscale

fuzzy entropy
MMFE Modified multiscale fuzzy entropy

HFE Hierarchical fuzzy entropy
SVM Support Vector Machine
MPE Multiscale permutation entropy
CMPE Composite multiscale permutation entropy
GCMPE Generalized composite multiscale

permutation entropy
MHPE Modified hierarchical permutation entropy
SDE Symbolic dynamic entropy
HCM Health condition monitoring
CWRU Case Western Reserve University

I. INTRODUCTION
Rotating machinery is one of the most widely used mechani-
cal equipment of modern industry, for example in helicopters,
airplanes, machining centers, tracked loaders, mining tracks,
andwind turbines as shown in Figure 1. Subjected to the harsh
working condition, the rotating machines are vulnerable
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FIGURE 1. Some applications of rotating machinery [10].

to various damages [1]–[5]. In order to guarantee the produc-
tion security and minimize the unexpected breakdowns and
economic loss, it is important to detect these damages as early
as possible [6]–[9]. Due to the rich fault-related information
embedded in contaminated vibration signals, the vibration-
based fault diagnosis method has become a mainstream in the
field of health condition monitoring (HCM) [3], [4].

The collected vibration signals of rotating machinery often
represent non-linear and non-stationary characteristics and
the fault features are usually weakened and disturbed by
the strong environment noises and other neighboring compo-
nents. However, most of the existing methods are based on a
stationary assumption, which is inefficient to analyze these
complex vibration signals [11]. Therefore, how to extract
these periodic features is the crucial issue in HCM of rotating
machinery [12].

As a statistical measure, entropy can quantify the complex-
ity and detect dynamic change through taking into account
non-linear behavior of time series [7], [13]–[17]. Recently,
entropy-based method has been widely applied in the fault
diagnosis of rotating machinery [17]–[21]. Known that the
vibration signal collected from a healthy machine has a
larger entropy value due to its high irregularity, while that
collected from a faulty rotating machine has a smaller
entropy value due to its low irregularity caused by the local-
ized damage [22], [23]. Compared with traditional methods,
entropy-based method has several advantages, such as good
cluster ability, high classification accuracy, robust to noise,
independent on prior knowledge, etc [24]. Therefore, entropy
can be served as a promising tool to extract the dynamic char-
acteristics of rotating machines, which shows considerable
potential for HCM of rotating machinery.

Entropy, as a measure of uncertainty or irregularity of time
series, was first proposed by Shannon in 1948 [25]. Shannon
entropy estimates the complexity using the probability distri-
bution of its states. For a given time series, if the probability
values of different states are similar, it is difficult to determine
the future status, thus the time series has its maximum entropy
value. In contrast, if there is only one state, the time series has
its minimum entropy [26]. After that, other forms of Shannon
entropy are conducted and themost representative one is rényi
entropy [27]. Inspired by Shannon entropy, Pincus introduced
approximate entropy (ApEn) to quantify the irregularity and

self-similarity of time series [28], [29]. However, a very long
data is required in ApEn, and if the data length is short,
the obtained value is often smaller than the real one [30].
To address this problem, Richman and Moorman [30] pro-
posed sample entropy (SampEn). SampEn, though powerful,
has two main shortcomings. First, SampEn utilizes a jump-
ing self-similarity function (Heaviside function) to measure
the complexity of time series, resulting in inaccurate esti-
mated value in real applications [13], [21]. Second, SampEn
has lower calculation efficiency, especially for long time
series [23]. To address the first problem, fuzzy entropy (FE)
was developed by Chen et al. [31], which replaced the Heav-
iside function with a kind of fuzzy membership function.
To address the second problem, a new irregularity indica-
tor, permutation entropy (PE) was proposed by Bandt and
Pompe [32]. PE assesses the dynamical characteristics by
considering the order of the amplitude value, which has a
higher calculation efficiency compared with SampEn.

Entropy-based method has been widely used in many
fields such as biology [30], [33], [34], medicine [35],
geography [36], image-processing [30], and engineering
[18], [37], [38]. In this paper, we will give a comprehen-
sive review on entropy-based methods and their applications
in fault diagnosis of rotating machinery. For each entropy
method, we will review the mathematical theorem, improved
entropy methods, and applications in the fault diagnosis of
rotating machinery, respectively.

The organization of the rest of this paper is as follows:
Section II to VII presents the fundamentals of six main
entropy methods, their variants and engineering applications.
Section VIII reviews the other four entropy methods and
their applications in the fault diagnosis of rotating machinery.
Section IX gives a summary of the entropy-based methods
and their applications. Section X describes some prospects of
entropy in fault diagnosis of rotating machinery.

II. SHANNON ENTROPY
A. DESCRIPTION OF SHANNON ENTROPY
Entropy is first introduced by Shannon to evaluate the
irregularity and self-similarity of time series in information
theory [25]. For a given time series {x1, x2, . . . , xn}, the defi-
nition of Shannon entropy H (x) is given as follows.

H (x) = −
n∑
i=1

p (xi) log2 (p (xi)) (1)

where p represents the probability of the time series {xi}. The
physical meaning of log2 (p (xi)) denotes the length of the
binary encoding. It can quantify the information of the time
series {xi} and its unit is bits.
In mathematics, the Shannon entropy represents the expec-

tation of the shortest average coding length according to the
probability distribution of its states [25]. In other words, it is
the expectation of the quantity of information. This expecta-
tion can be regarded as an indicator tomeasure the complexity
of information. Shannon not only defines entropy, but also
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defines three properties as follows. First, Shannon entropy
should be continuous; Second, Shannon entropy should be
a monotonic increasing function. A bigger entropy indicates
a more uncertainty or irregularity of time series; Third, if a
probability can be divided into the sum of several individual
values, so does the Shannon entropy [25].

B. APPLICATIONS USING SHANNON ENTROPY
This section describes the applications of Shannon entropy in
the fault diagnosis of rotating machinery. For convenience,
the applications of Shannon entropy are listed in Table 1.
Table 1 provides the authors, Shannon entropy-combined
method, application object and database source.

TABLE 1. Applications of Shannon entropy in fault diagnosis of rotating
machinery.

C. IMPROVED SHANNON ENTROPY METHODS
Based on Shannon entropy, many researchers have devoted to
enhance the performance of Shannon entropy for more accu-
rate complexity estimation, such as spectral entropy, wavelet
entropy and energy entropy.

1) SPECTRAL ENTROPY
Spectral entropy (SpEn) is a normalized form of Shannon
entropy. SpEn utilizes the power spectrum amplitude of time
series to assess its regularity [61]. SpEn is obtained by multi-
plying the power in each frequency pf by the logarithm of
the same power, and the product is multiplied by -1. The
definition of SpEn is expressed as follows.

SpEn =
∑
f

pf log
(

1
pf

)
(2)

For convenience, Table 2 summarizes the applications of
SpEn in fault diagnosis of rotating machinery.

TABLE 2. Applications of SpEn in fault diagnosis of rotating machinery.

2) WAVELET ENTROPY
Wavelet entropy (WaEn) estimates the complexity of time
series by quantifying the degree of similarity between differ-
ent fractions of signals. In other words, WaEn is a indicator
of the disorder degree associated with the multi-frequency
signal response [73]. WaEn can recognize the underly-
ing episodic dynamic behavior of a signal. Also, WaEn
can provide an accurate complexity estimation for a peri-
odic mono-frequency signal [62]. The definition of wavelet
entropy is given in Eq. (3).

WaEn = −
∑
i<0

pi ln pi (3)

where pi denotes the probability distribution of time series.
i represents different resolution levels.
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WaEn has three main advantages as follows: high
calculation efficiency, better noise elimination and no
pre-determined parameters [62].

For convenience, a summary of applications of WaEn in
fault diagnosis of rotating machinery is listed in Table 3.

TABLE 3. Applications of WaEn in fault diagnosis of rotating machinery.

3) ENERGY ENTROPY
Energy entropy quantifies the regularity of time series with
the help of intrinsic mode functions (IMFs). Assume that we
have obtained n IMFs, three steps are required to obtain the
energy entropy as follows [70]:

(1) Calculate the energy of ith IMF

Ei =
m∑
j=1

∣∣cij∣∣2 (4)

where m represents the length of IMF.
(2) Calculate the total energy of these n efficient IMFs

E =
n∑
i=1

Ei (5)

(3) Calculate the energy entropy of IMFs

Hen = −
n∑
j=1

pi log (pi) (6)

where Hen denotes the energy entropy in the whole of the
original signal and pi = Ei

/
E denotes the percentage of

the energy of the IMF number i relative to the total energy
entropy.

For convenience, Table 4 summarizes the applications of
energy entropy in fault diagnosis of rotating machinery.

III. RÉNYI ENTROPY
A. DESCRIPTION OF RÉNYI ENTROPY
Rényi entropy is a generalized form of Shannon entropy,
which can quantify the irregularity, uncertainty, or random-
ness of time series [27]. The definition of REN with order is
expressed as follows.

RENα (X) = −
α

1− α

∑
log2p

α
i (7)

TABLE 4. Applications of energy entropy in fault diagnosis of rotating
machinery.

where pi represents the probability of a time series
{x1, x2, . . . , xn} and the order α 6= 1. For α ≥ 2,
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REN provides a lower bound for its smooth entropy [97].
For α = 1, REN equals to Shannon entropy.
REN has two main advantages. Frist, REN changes by an

additive constant at the rescaling of the variables; Second,
REN remains unchanged for the different density functions.
In other words, REN does not vary irrespective of the density
functions used. Also, REN has its own shortcoming. REN is
not a sub-additive, recursive, nor it possess the branching and
sum properties [33].

B. APPLICATIONS USING RÉNYI ENTROPY
This section aims to describe the applications of REN in
the fault diagnosis of rotating machinery. For convenience,
the applications of REN are summarized in Table 5. It can be
observed that Table 5 provides the authors, REN-combined
method, application object, and database source.

TABLE 5. Applications of REN in fault diagnosis of rotating machinery.

C. IMPROVED RÉNYI ENTROPY METHODS
Based on REN, Robert Jenssen developed a novel
information-theory-based method for data transformation
and dimensionality reduction, called kernel entropy compo-
nent analysis (KECA) [102]. KECA attempts to maintain the
maximum estimated Rényi quadratic entropy of the input data
set via a kernel-based estimator [103]. Zhou et al. developed
two fault diagnosis methods based on KECA: supervised
kernel entropy component analysis [103] and weight kernel
entropy component analysis [104] for the fault diagnosis of
rolling bearings.

IV. APPROXIMATE ENTROPY
A. DESCRIPTION OF APPROXIMATE ENTROPY
Approximate entropy (ApEn) was first proposed by
Pincus [28], [29] to quantify the irregularity and unpre-
dictability of time series. ApEn evaluates the probability of
occurrence of a new pattern through observing the embedding
dimension m and similarity coefficient r . Since the similarity
criterion is equivalent to the standard deviation of time series,
ApEn is a scale invariant indicator [29]. A larger ApEn value
means a higher probability of a new pattern occurring of time
series, and a smaller ApEn value indicates the time series has
lower irregularity. The concept of ApEn is defined as follows.

ApEn = φm (r)− φm+1 (r) (8)

where φm(r) represents the mean value of logarithm pattern
mean count. φm(r) and φm+1(r) can be calculated using
Eq. (9).

φm(r) =
1

N − m+ 1

×

N−m+1∑
i=1

ln
[

1
N − m+ 1

num{d[x(i), x(j)] < r}
]

(9)

where r represents the tolerance of the time series, m repre-
sents the pattern length,N represents the length of time series,
and num{d[x(i), x(j)] < r} represents the count of the dis-
tance between x(i) and x(j) lower than the tolerance r . Here,
the distance is defined as the maximum absolute difference
of their corresponding scalar components. In mathematics,
ApEn is an approximate value of the negative average nat-
ural logarithm of the conditional probability. To achieve an
accurate complexity estimation performance, the parameters
of ApEn are recommend as follows: pattern lengthm = 2 and
similarity coefficient r = 0.2∗SD (SD represents the standard
deviation) [28], [29]. A flowchart of the ApEn method is
shown in Figure 2.

FIGURE 2. Flowchart of the ApEn method.

ApEn has three main advantages as follows. Frist, ApEn
has some ability to resist interference and noise, espe-
cially the transient anti-interference ability [28]; Second,
ApEn has a stable estimation with relatively short data;
Third, ApEn is suitable for random signal, certain signal
and their combinations [30]. In addition, ApEn has five
main shortcomings as follows. First, ApEn is biased statis-
tic and heavily dependent on the input signal length.
Signals with short length lead to a lower value than expected.
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Second, ApEn lacks of consistent results for different values
ofm and r ; Third, ApEn is susceptible to strong noises [105];
Fourth, ApEn counts self-matches which is against the basic
definition of entropy; Last, ApEn has a low calculation
efficiency.

B. APPLICATIONS USING APPROXIMATE ENTROPY
This section aims to describe the applications of ApEn in fault
diagnosis of rotating machinery. For convenience, the appli-
cations of ApEn are summarized in Table 6. It can be observed
that Table 6 provides the authors, ApEn-combined method,
application object, and database source.

TABLE 6. Applications of ApEn in fault diagnosis of rotating machinery.

V. SAMPLE ENTROPY
A. DESCRIPTION OF SAMPLE ENTROPY
As discussed above, ApEn has certain disadvantages in the
complexity estimation of time series. To address this prob-
lem, Richman and Moorman [30] proposed sample entropy
(SampEn). Unlike ApEn, SampEn can measure the irregular-
ity of time series independent of the embedding dimension m
and similarity coefficient r . Therefore, SampEn is relatively
consistent and eliminating the bias of ApEn [30]. A larger
SampEn value indicates the time series with higher complex-
ity, while a samller SampEn value implies the time series with
lower irregularity [74]. The definition of SampEn is given as
follows.

SampEn = − ln
(
Bm+1(r)
Bm(r)

)
(10)

where Bm(r) is the mean value of pattern mean count. Bm(r)
and Bm+1(r) can be expressed as:

Bm(r) =
1

N−m+1

N−m+1∑
i=1

[
1

N − m
num{d[x(i), x(j)] < r}

]
i = 1, 2, · · · ,N − m+ 1, i 6= j (11)

where r represents the tolerance of the time series; m repre-
sents the embedding dimension; N represents the length of
time series. num{d[x(i), x(j)] < r} represents the count of
the distance between x(i) and x(j) lower than the tolerance r .

Noted that the i 6= j means the SampEn can not contain
self-matches. In SampEn method, it is recommended to set
m = 2 and r = (0.1 ∼ 0.25)∗SD (SD represents the standard
deviation) [112], [113].

A flowchart of the SampEn method is illustrated
in Figure 3.

FIGURE 3. Flowchart of the SampEn method.

SampEn method has four main advantages as follows.
First, SampEn is an accurate value of negative average
of logarithm of conditional probability, which doesn′t rely
on the length of data; Second, SampEn doesn′t contain
self-matches; Third, SampEn has better performance in the
consistency; Last, SampEn is insensitive in data length.
In addition, the main shortcomings of SampEn lies in
its inconsistency for the sparse data and low calculation
efficiency.

B. APPLICATIONS USING SAMPLE ENTROPY
This section aims to describe the applications of SampEn
in fault diagnosis of rotating machinery. For convenience,
the applications of SampEn are summarized in Table 7.
It can be observed that Table 7 provides the authors,
SampEn-combined method, application object, and database
source.

C. IMPROVED SAMPLE ENTROPY METHODS
This section aims to describe the improved sample entropy
methods: multiscale sample entropy, modified multiscale
sample entropy, composite multiscale sample entropy and
hierarchical sample entropy. In addition, there are some
other improved SampEn methods, such as refined composite
multiscale entropy [14], multivariate sample entropy [119],
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TABLE 7. Applications of SampEn in fault diagnosis of rotating machinery.

generalized multiscale entropy [120] refined multiscale
entropy [121]. Such improved will not be described in this
paper due to they are not applied in the fault diagnosis of
rotating machinery until now.

1) MULTISCALE SAMPLE ENTROPY
The measured vibration signals from the rotating machinery
and the fault information often embedded in multiple scale
structures. However, SampEn only analyzes the vibration
signal from single scale and much useful information will be
ignored. This limits its performance in extracting the embed-
ded fault features [122]. In order to avoid such disadvantage,
Costa et al. put forward a multiscale procedure and combined
it with SampEn, called multiscale sample entropy (MSE),
to estimate the complexity of the original time series over a
range of scales [131]. MSE can enhance the physical mean-
ings and statistical sense of SampEn. There are two steps in
MSE method [123].

(1) For a given time sereis {x1, . . . , xi, . . . , xN } , the coarse-
graining procedure for scale i is obtained by averaging the
samples of the time series inside consecutive but non over-
lapping windows of length i. Therefore, it can be divided
into several coarse-grained time series

{
y(τ )

}
using Eq. (12)

as follows. Figure 4 gives an example of the coarse-grained
procedure.

y(τ )j =
1
τ

jτ∑
i=(j−1)τ+1

xi, 1 ≤ j ≤ N
/
τ (12)

where τ is the scale factor and τ should be a positive integer.
When τ = 1, the time series

{
y(1)
}
is the original time series.

(2) Compute the SampEn for each coarse-grained time
series and then plotted as the function of the scale factor τ .
The definition of MSE is given as follows.

MSE(x, τ,m, r) = SampEn(y(τ )j ,m, r) (13)

A flowchart of the MSE method is shown in Figure 5. For
convenience, the applications of MSE in fault diagnosis of
rotating machinery are summarized in Table 8.

MSE can estimate the dynamical characteristics of time
series over different scales. However, MSE has three main

FIGURE 4. Procedure of coarse graining process.

FIGURE 5. Flowchart of the MSE method.

TABLE 8. Applications of MSE in fault diagnosis of rotating machinery.

shortcomings as follows. First, the coarse-graining procedure
reduces the data length with the scale factor increasing, which
may lead an inaccurate estimation; Second, MSE can be
regarded as a low-pass filter, which cannot prevent aliasing
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when the downsampling procedure is applied [121]; Third,
the standard deviation of time series may become lower with
the scale factor increasing. This would cause the patterns
becoming closer, resulting a decreasing entropy value.

2) COMPOSITE MULTISCALE SAMPLE ENTROPY
To address such issues of MSE, the composite multi-scale
sample entropy (CMSE) is proposed byWu et al. [113]. Since
the composite multiscale analysis considers SampEn values
of all coarse-grained time series with the same scale factor,
a more reliable estimation of SampEn values can be obtained.
The concept of CMSE is expressed as follows.

(1) For the time series {X (i)} = {x1, x2, · · · , xN }, the com-
posite multiscale time series yτu =

{
yτu,1, y

τ
u,2, · · · , y

τ
u,(i+1)/2

}
is shown as:

y(τ )k,j =
1
τ

jτ+k−1∑
i=(j−1)τ+k

xi, 1 ≤ j ≤
N
τ
, 1 ≤ k ≤ τ (14)

(2) Calculate the SampEn of each coarse-grained time
series

{
yτu
}
for a given τ and k .

CMSE(X , τ,m, n, r) =
1
τ

τ∑
u=1

SampEn(y(τ )k ,m, n, r) (15)

The composite multisacle time series can be seen
in Figure 6. Reference [113] applied CMSE and artificial
neural network to recognize the bearing fault types using the
CWRUdata. The simulation and experimental results demon-
strate that the CMSE can enhance the linear distinguishability
compared with MSE method.

FIGURE 6. The schematic illustration of the composite multiscale time
series for scale factor τ = 2 and τ = 3.

3) MODIFIED MULTISCALE SAMPLE ENTROPY
Modified multiscale is another way to overcome the defect
of data length decreasing during the coarse-graining proce-
dure. Wu et al. [129] proposed modified multiscale sample
entropy (MMSE), which utilizes a moving-averaging pro-
cedure to replace the traditional coarse-graining procedure.

FIGURE 7. The schematic illustration of the modified multiscale time
series for scale factor τ = 2 and τ = 3.

Figure 7 illustrates the moving-averaging procedure. The
definition of MMSE is given as follows.

(1) For a given time series {X (i)} = {x1, x2, · · · , xN },
the moving-averaging procedure can be obtained by
following:

yτj =
1
τ

j+τ−1∑
i=j

xi, 1 ≤ j ≤ N − τ + 1 (16)

(2) Calculate the SampEn for each improved coarse-
grained time series.

MMSE(x, τ,m, r) = SampEn(y(τ ),m, r) (17)

In [129], MMSE is able to provide a more precise estimation
of entropy compared with MSE when analyzing a short-term
time series. The experimental bearing signals from CWRU
are used to validate the advantages of MMSE in the fault
feature extraction.

4) HIERARCHICAL SAMPLE ENTROPY
MSE can provide a comprehensive analysis of vibration sig-
nals, however, it may discard the fault information hidden
in the high frequency components because the multiscale
analysis in MSE only considers the fault information in low
frequency components [15], [130]. To address this problem,
Zanin et al. [20] developed the hierarchical decomposition
and proposed the hierarchical sample entropy (HSE). Hier-
archical decomposition has been demonstrated to be more
effective than multiscale analysis [131]. There are two main
steps in HSE method in Eq. (20).

FIGURE 8. Illustration of hierarchical decomposition process with
3 hierarchical layers.

(1) Construct the hierarchical tree. Figure 8 illustrates the
hierarchical tree with 3 hierarchical layers. For a given time
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series X{x(i), i = 1, 2, · · · ,N }, the hierarchical component
Z ek can be obtained by the averaging operator Q0 and differ-
ence operator Q1 as follows:

Q0 (x) =
x (i)+ x (i+ 1)

2
i = 1, 2, · · · ,N − 1 (18)

Q1 (x) =
x (i)− x (i+ 1)

2
i = 1, 2, · · · ,N − 1 (19)

(2) Calculate the SampEn of each layers of the hierarchical
component and then plotted as the function of hierarchical
lay k . The definition of HSE is given as follows.

HSE(x, k, e,m, r) = SampEn(Z ek ,m, r) (20)

The calculation process of the HSE is shown in Figure 9.

FIGURE 9. Flowchart of the HSE method.

In the application of HSE, only one reported paper was
found. Zhu et al. [132] applied the HSE combining with
SVM in fault diagnosis for bearings. The data source is
from CWRU and the final classification accuracy using HSE
is 100%.

VI. FUZZY ENTROPY
A. DESCRIPTION OF FUZZY ENTROPY
Because SampEn measures the similarity between the two
vectors using the Heaviside function, which is jumping. How-
ever, the boundaries of the two classes are mostly ambiguous
in real applications, thereby, the Heaviside function is unsuit-
able to measure the similarity of two vectors [21], [133].
To avoid this shortcoming, fuzzy entropy (FE) was developed
by Chen et al. [31], which replaces the Heaviside function
with a Gaussian function. As the continuity of the exponen-
tial function, FE can overcome the drawbacks of SampEn
effectively.

For a time series {x(i), i = 1, 2, · · · ,N }, the similarity of
FE is defined as follows.

Dmij = µ
(
dmij , n, r

)
= e
− ln 2

(
dmij

/
r
)n

(21)

where, r represents the similarity tolerance. The dmij rep-
resents the distance between Xmi and Xmj . Define the
function ϕm as:

ϕm (n, r) =
1

N − m

N−m∑
i−1

 1
N − m− 1

N−m∑
j=1,j6=i

Dmij

 (22)

Then, FE can be expressed as:

FE (m, n, r,N ) = lnϕm (n, r)− lnϕm+1 (n, r) (23)

A flowchart of the FE method is shown in Figure 10.

FIGURE 10. Flowchart of the FE method.

Compared with SampEn method, FE has a better per-
formance in robustness to noise because FE evaluates
ambiguous uncertainties from the highly irregular signals.
Therefore, the advantage of FE is that FE is insensitive to
background noises and highly sensitive to the dynamical
change [16], [21]. In addition, the main shortcoming of FE
lies in its low calculation efficiency.

B. APPLICATIONS USING FUZZY ENTROPY
This section describes the applications of FE in fault diag-
nosis of rotating machinery. For convenience, the appli-
cations of FE are listed in Table 9. Table 9 provides
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TABLE 9. Applications of FE in fault diagnosis of rotating machinery.

the authors, FE-combined method, application object and
database source.

C. IMPROVED FUZZY ENTROPY METHODS
1) MULTISCALE FUZZY ENTROPY
Because applying FE of single scale entropymay generate the
unreliable results, MFE method was proposed by combining
multiscale analysis and FEmethod [13]. MFE algorithm con-
tains two steps as follows [13], [21].

(1) For a given original time series {Xi} = {X1,X2,
· · · ,XN }, it can be divided into several coarse-grained time
series yτj using Eq. (24).

yτj =
1
τ

jτ∑
i=(j−1)τ+1

xi, 1 ≤ j ≤
N
τ

(24)

where τ = 1, 2, · · · ,N is a positive integer.
(2) Calculate FuzzyEn of each coarse-grained time

series yτj using Eqs. (21)-(23) and describe FuzzyEn as a
function of scale factor τ using Eq. (25) [21].

MFE (x, τ,m, n, r) = FuzzyEn
(
yτj ,m, n, r

)
(25)

A flowchart of the MFE method is shown in Figure 11. For
convenience, the applications of MFE in fault diagnosis of
rotating machinery are summarized in Table 10.

TABLE 10. Applications of MFE in fault diagnosis of rotating machinery.

However, there are twomain problems in theMFEmethod.
First, the statistical stability of MFE is poor for the analysis
of short time series. Since the coarse-graining procedure in
the multi-scale analysis shortens the length of the time series
as the scale factor τ increases, it may generate the inaccurate
or undefined estimation of entropy and loose statistical relia-
bility at larger scale factors [21]. Second, the averaging oper-
ation used in the coarse-graining procedure to generate a new
time series only considers the fault information embedded in

FIGURE 11. Flowchart of the MFE method.

the low frequency region, which loses fault information in the
high frequency part [17], [140].

2) COMPOSITE MULTISCALE FUZZY ENTROPY
Based on the composite multiscale analysis and FE method,
the composite multi-scale fuzzy entropy (CMFE) is devel-
oped by Zheng et al. [16]. CMFE considers the FuzzyEn
values of all coarse-grained time series with the same scale
factor, thereby, it can minimize the variance of FuzzyEn
values at large scales. The definition of CMFE is given as
follows.

(1) For the time series {X (i)} = {x1, x2, · · · , xN }, the com-
posite multiscale time series yτu =

{
yτu,1, y

τ
u,2, · · · , y

τ
u,(i+1)/2

}
is expressed as:

y(τ )k,j =
1
τ

jτ+k−1∑
i=(j−1)τ+k

xi, 1 ≤ j ≤
N
τ
, 1 ≤ k ≤ τ (26)

(2) Calculate the FE of each coarse-grained time
series

{
yτu
}
for a given τ and k .

CMFE(X , τ,m, n, r) =
1
τ

τ∑
u=1

FE(y(τ )k ,m, n, r) (27)

Reference [16] applied CMFE and ensemble support vec-
tor machines to achieve the fault pattern identification. The
experimental data from CWRU is used for validation and the
final classification result achieves 100%.

3) REFINED COMPOSITE MULTIVARIATE
MULTISCALE FUZZY ENTROPY
Recently, Azami and Escudero extended the MFE to mul-
tivariate signals (mvMFE) [119]. mvMFE measures each
sequence in multi-channel data by taking into account their
mutual predictability. However, mvMFEwill have some fluc-
tuations at larger scale. To address this issue, refined com-
posite multivariate multiscale fuzzy entropy (RCMMFE) was
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proposed by Zheng et al. [141]. Because the multivariate
multiscale analysis has a better fault feature extraction ability
than mono channel analysis, RCMMFE has a better per-
formance for fault feature extraction. In [141], the CWRU
bearing data is applied to verify the effectiveness of the
RCMMFE method and the final classification accuracy is
100% [141]. Li et al. [142] combined Vold-Kalman filter
and RCMFE to conduct the fault diagnosis of rolling bearing
under speed fluctuation condition. Results demonstrated that
their method is able to recognize the localized damage on
the inner race, outer race, and rolling element under variable
speed conditions. The definition of RCMMFE is expressed as
follows.

(1) For a given normalized p variate multi-channel time
series X = {xk,i}Ni=1, k = 1, 2, · · · , p, the coarse-graining
time series is similar as MSE:

y(τ )k,j =
1
τ

jτ∑
i=(j−1)τ+1

xk,i (28)

(2) Compute the average ϕ̄mτ (r) of all ϕmτq(r) and the
average ϕ̄m+1τ (r) of all ϕm+1τq (r) values of y(τ )k,j under
q = 1, 2, · · · , τ , respectively.

(3) The definition of RCMMFE is expressed as

RCMMFE(X ,M , τ, n, r) = − ln
[
ϕ̄m+1τ (r)
ϕ̄mτ (r)

]
(29)

4) MODIFIED MULTISCALE FUZZY ENTROPY
Modified multiscale fuzzy entropy (MMFE) is proposed by
Li et al. [21] to overcome the data length decreasing dur-
ing the coarse-graining procedure in MFE method. Com-
bined local mean decomposition (LMD) and SVM, the
LMD-MMFE method is demonstrated to be effective in rec-
ognizing 10 bearing fault types and severities [21]. The con-
cept of MMFE is defined as follows.

(1) The modified multiscale time series can be obtained
using Eq. (30).

y(τ )j =
1
τ

j+τ−1∑
i=j

xi, 1 ≤ j ≤ N − τ + 1 (30)

(2) Calculate the FE for each improved coarse-grained time
series.

MMFE(x, τ,m, r) = FE(y(τ ),m, r) (31)

5) HIERARCHICAL FUZZY ENTROPY
Similar with MSE, MFE only considers the fault information
embedded in the low frequency region, which loses fault
information in the high frequency part. To tackle this problem
of MFE, hierarchical fuzzy entropy (HFE) is proposed by
Li et al. [140] by combing hierarchical decomposition anal-
ysis with FE. Because the averaging and differential pro-
cesses are both utilized in the hierarchical decomposition,
the HFE can characterize more information than the MFE.
The effectiveness of HFE is validated using experimen-
tal signals from CWRU. The results demonstrate that the

HFE has a better performance than MFE. Meanwhile,
Zhu and Li [143] combined with HFE with SVM to rec-
ognize bearing fault types and a satisfactory classification
accuracy (100%) was achieved. The concept of HFE is given
as follows.

(1) Calculate the hierarchical component Z ek through
the hierarchical decomposition analysis (details are given
in Section V. C. 4).

(2) Calculate the FE value of each hierarchical component
and the HSDE can be obtained using Eq. (32).

HFE (x, k, e,m, ε) = SDEnorm
(
zek ,m, ε

)
(32)

VII. PERMUTATION ENTROPY
A. DESCRIPTION OF PERMUTATION ENTROPY
As a statistical measure, permutation entropy describes com-
plexity of a time series or signal measured on a physical
system through phase space reconstruction, and takes into
account non-linear behavior of the time series, as often seen in
vibration signals of rotary machines. Thus, PE can be served
as a viable tool for dynamic changes detection of the machine
working status.

Permutation entropy (PE) was proposed by Bandt and
Pompe [32] to measure the irregularity of time series. Differ-
ent from ApEn, SampEn and FE, PE only utilizes the order
of the amplitude of time series [37]. Therefore, PE has a cor-
responding higher calculation efficiency [144] and is robust
under non-linear distortion of time series [37]. PE has been
widely applied into the fault diagnosis of rotating machinery
due to its sensitivity to the dynamical change [37], [145]. The
concept of PE is defined as follows.

PE = −
∑

p(π )log2p(π) (33)

p(π ) =
num{i|i ≤ T − n, (xi+1, · · · , xi+n) has type π}

T − n+ 1
(34)

where p(π ) denotes the relative frequency for each permu-
tation π . num{i|i ≤ T − n, (xi+1, · · · , xi+n) has type π}
indicates the number of permutation π under order m. The
calculation process of the PE is shown in Figure 12.

PE is an appropriate complexity measure for chaotic time
series, especially in the presence of dynamical and obser-
vational noise. PE has four main advantages as follows.
First, PE has a high calculation efficiency, which can be
used to compute huge data set [37]; Second, PE has a good
performance of complexity estimation; Third, PE has good
robust ability to noise [32]; Last, PE does not require any
model assumption and is suitable for the analysis of nonlinear
processes. The main shortcoming of PE lies in its inability to
classify well defined patterns of a particular design [146].

B. APPLICATIONS USING PERMUTATION ENTROPY
This section aims to investigate the usage of PE for fault
diagnosis of rotating machinery. For convenience, the appli-
cations of PE are listed in Table 11. Table 11 provides
the authors, FE-combined method, application object and
database source.
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FIGURE 12. Flowchart of the PE method.

TABLE 11. Applications of PE in fault diagnosis of rotating machinery.

C. IMPROVED PERMUTATION ENTROPY METHODS
1) MULTISCALE PERMUTATION ENTROPY
Like MSE and MFE, two steps are required in MPE
method as follows: (1) obtain the multiple series using the
coarse-graining analysis; (2) calculate the PE value of each

FIGURE 13. Flowchart of the MPE method.

coarse-grained time series. A flowchart of the MPE method
is shown in Figure 13. For convenience, the applications of
MPE in fault diagnosis of rotating machinery are summarized
in Table 12.

TABLE 12. Applications of MPE in fault diagnosis of rotating machinery.

2) COMPOSITE MULTISCALE
PERMUTATION ENTROPY (CMPE)
Like CMSE and CMFE, the composite multi-scale permu-
tation entropy (CMPE) is also developed to overcome the
shortcomings of MPE. Because PE has better performance
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in the fault feature extraction and high calculation efficiency,
CMPE also show outstanding merits in the fault diagnosis of
rotating machinery. Tang et al. [168] proposed a bearing fault
diagnosis method based on CMPE and Dual Tree Complex
Wavelet Packet Transform, the final classification accuracy
using CWRU data can achieve 98.79%. Li et al. [23] devel-
oped a bearing fault diagnosis method based on EEMD and
CMPE and a satisfactory classification result with 98.79%
can be achieved using CWRU experimental data.

3) GENERALIZED COMPOSITE MULTISCALE PERMUTATION
ENTROPY (GCMPE)
Because MPE may produce uncertain and unsatisfactory
analysis for short-length data, especially at larger scales [17].
In addition, the averaging procedure used in the MPE will
cause loss of useful information [17] to some extent. Gener-
alized composite multi-scale permutation entropy (GCMPE)
is proposed by Zheng et al. [17] to estimate the complexity
of time series. Compared with MPE, GCMPE has two main
advantages. First, GCMPE uses the composite multiscale
analysis to reduce the large variance of PE values at large
scales. Second, GCMPE adopts the second-order moment
(unbiased variance) to replace the first-order moment in the
coarse graining procedure, which enhances the fault signature
extraction ability [17]. The concept of GCMPE is given as
follows.

(1) For a discrete time series {x1, . . . , xi, . . . , xN } of
length N , the coarse-grained time series

{
y(τ )k

}
is computed

as:

y(τ )k =
1
τ

jτ+k−1∑
i=(j−1)τ+k

(xi − x̄i), 1 ≤ j ≤ N
/
τ , 2 ≤ j ≤ τ

(35)
(2) Calculate the PE values of all coarse-grained time

series
{
y(τ )k

}
for the scale factor τ .

(3) The GCMPE can be calculated as follows:

GCMPE(X , τ,m, λ) =
1
τ

τ∑
k=1

PE(y(τ )k ,m, λ) (36)

Zheng et al. [17] applied the GCMPE in bearing fault diag-
nosis. Experimental results show that the proposed method
performs best in recognizing bearing fault types and fault
severities with testing accuracy of 100%.

4) MODIFIED HIERARCHICAL PERMUTATION ENTROPY
Another improved permutation method is called modified
hierarchical permutation entropy (MHPE), which is pro-
posed by Li et al. [15] to address the drawbacks of MPE.
MHPE has two main advantages. First, MHPE utilizes
the moving-averaging and moving-difference procedure to
replace the original hierarchical procedure. The length of time
series will not be shortened as hierarchical layer increases,
thereby, MHPE has a higher stability comparing with HPE.
Second, MHPEmethod gets rid of the requirement of the data
length of N = 2n (n is a positive integer) in conventional

hierarchical procedure. Simulation and experimental signals
show that MHPE performs better to recognize the various
fault types of planetary gearboxes.

VIII. OTHER ENTROPY METHODS
A. SYMBOLIC DYNAMIC ENTROPY
Recently, Li et al. [23] proposed a new entropy method,
namely symbolic dynamic entropy (SDE), to assess the
dynamical characteristics of time series. Known that SampEn
and PE are two most widely used entropy methods. However,
SampEn is not fast enough especially in the analysis of long
time duration signals. PE, though faster than SampEn, only
utilizes the amplitude information of the time series, which
is easily affected by the noises [38]. To fill this research gap,
SDE utilizes the symbolization procedure to eliminate back-
ground noise. Also, SDE reserve the fault information using
the probability of state pattern and the state transition [23].
SDE has been demonstrated to have better performance in
detecting the dynamical change of time series using both
simulated and experimental signals. SDE has obvious advan-
tages, such as high calculation efficiency and robust to noise.
The main calculation steps can be seen in Figure 14. Details
about SDE can refer to [23].

In addition, SDE is extended to multiscale symbolic
dynamic entropy (MSDE) [23], refined composite multi-
scale symbolic dynamic entropy [15], hierarchical symbol
dynamic entropy [38], and generalized multiscale symbolic
dynamic entropy (GCMSDE) [18] for comprehensive analy-
sis of vibration signals of rotating machinery. Until now, SDE
and its various improvements have been successfully applied
in the fault diagnosis of rolling bearings and gearboxes.

B. BELIEF ENTROPY
Belief entropy was first proposed by Deng et al. [169] to
measure the uncertain information of time series. A larger
belief entropy value means the evidence contains more infor-
mation [170]. Xiao [171] proposed a hybrid methodology
based on belief entropy and fuzzy preference relation analysis
to accomplish the motor rotor fault diagnosis. Details about
symplectic entropy can refer to [169].

C. FREQUENCY BAND ENTROPY
Liu et al. [172] proposed frequency band entropy to extract
fault features of rolling bearings. Frequency band entropy
is developed based on short-time Fourier transform, which
can provide the complexity of each frequency component.
Frequency band entropy provides a way of blindly designing
optimal band-pass filters. The effectiveness of the frequency
band entropy is demonstrated using both simulated and exper-
imental signals. Results show that frequency band entropy is
sensitive to the incipient fault of rolling bearings [172].

D. SYMPLECTIC ENTROPY
Lei et al. [173] proposed symplectic entropy based on the
energy distribution of the attractor X in symplectic space.
The symplectic entropy can better describe the properties
of the system using the symplectic transform, even for the
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FIGURE 14. The main calculation steps of SDE.

nonlinear dynamic systems. Based on its merits in the extrac-
tion of the dynamic characteristics, symplectic entropy has
been successfully applied to diagnose the various faults of
rolling bearings. Details content about symplectic entropy
can refer to [173].

IX. SUMMARY
Based on the above review, we can see that entropy has
achieved many successful applications in fault diagnosis
of rotating machinery such as gears, rotors, and bearings.
We have tried our best to include all the related papers in this
review. But, omission of some papers may still be inevitable
due to kinds of possible reasons. Based on the above review,
a summary of our observations is given below.

(1) The applications of entropy and its variants have
successful applied in fault diagnosis of rotating machin-
ery. Compared with traditional methods, entropy has several
advantages, including better detection ability of dynamical
changes, suitable for the non-linear time series, independent
on prior knowledge and better cluster ability.

(2) To make accurate fault diagnosis, the existing problems
of entropy cannot be ignored, such as low calculation effi-
ciency, vulnerable to parameters and the noise robust ability.
Many researchers have attempted to address these problems
and obtained good results.

(3) Entropy methods perform well in detecting dynamic
change of rotating machinery. However, it is hard to com-
plete the fault diagnosis of rotating machinery only through
the complexity estimation using entropy methods. The com-
bination entropy with dimensional reduction methods and
machine learning methods offers a promising tool for fault
diagnosis of rotating machinery. However, as many parame-
ters are involved in these entropy-based combination meth-
ods, expert experiences are required to select the optimal
parameters.

X. PROSPECTS
Entropy algorithm has been successfully applied in fault
diagnosis of rotating machinery and its variants and improve-
ments have been made to enhance the performance in detect-
ing the dynamic change of time series. However, some issues
should be further studied in-depth for better performance.
Some research prospects are given below based on our review
and our research experience in this field.

(1) The development of multivariate version of entropy
should be considered. In real applications, multiple channel
signals may be collected simultaneously. The multivariate
entropy will contain richer fault information than univariate.
Although this problem has been preliminarily studied [141],
it is still worthy of further research.

(2) Fault diagnosis of rotating machinery is facing the
challenge of the variable speed influence. To complete the
fault diagnosis of rotating machinery under variable speed
conditions will have great significance.

(3) Computational efficiency deserves attention of
researchers in development of entropy methods. Although
PE is proposed to improve computational efficiency, it is
still inefficient for online monitoring. Further improvements
are still needed in computational efficiency of PE and other
entropy-based methods to satisfy online HCM requirements.

(4) The unsuitable selected parameters of entropy cannot
detect dynamic changes effectively, leading to extremely bad
classification results. Further studies should be conducted
to automaticly determine the suitable parameters of entropy
methods.
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