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ABSTRACT Concept factorization (CF), as a matrix factorization method, has been applied widely in
obtaining an optimal data representation and has yielded impressive results. However, some shortcomings
exist in the existing CF method. 1) The standard concept factorization uses the squared loss function that is
sensitive to outlier points and noises. 2) The graph generated by the original data does not reflect the real
geometric structure of the data distribution. 3) The discriminant information is ignored. Herein, we propose
a novel method, called robust local learning and discriminative concept factorization (RLLDCF) for data
representation. Specifically, RLLDCF adopts the `2,1-norm-based loss function to improve its robustness
against noises and outliers, and exploits the discriminative information by local linear regression constraints.
In addition, the method obtains the topology structure of the data distribution during learning rather than
known a priori and fixed. A new iterative multiplicative updating rule is derived to solve RLLDCF’s objective
function. The convergence of the optimization algorithm is proved both theoretically and empirically.
Numerous experiments on both synthetic and real-world datasets are conducted, and the results indicate that
our proposedmethod is significantly better than all the comparisonmethods, thus validating the effectiveness
and robustness of RLLDCF.

INDEX TERMS Clustering, data representation, `2,1-norm, local adaptive learning, local linear regression.

I. INTRODUCTION
With the rapid development of intelligent technology, obtain-
ing an optimal data representation [1]–[8] is a fundamental
topic in machine learning, pattern recognition, and bioin-
formatics. An efficient data representation can reveal the
potential geometrical structure of data and further promote
performance of clustering and classification. Matrix factor-
ization techniques [9]–[14] have been studied widely for
data representation. The early works were primarily based
on eigenvalue decomposition or singular value decompo-
sition (SVD). Principle component analysis (PCA) [10] is
a classical approach for data representation; it first maps
high-dimensional data to a low-dimensional subspace by
eigenvalue decomposition. Nonnegative matrix factorization
(NMF) [9] is a useful data representation method that decom-
poses a nonnegative matrix into the product of two nonnega-
tive matrices. NMF leads to the part-based representation of
data owing to the nonnegativity constraints imposed on both
basis and coefficient matrices. As an extension, concept fac-
torization (CF) [15] was proposed for document clustering.

In CF, the original data matrix is factorized into the produc-
tion of three nonnegative matrices. The primary advantage
of CF over NMF is that it can be used in either the original
space or reproducing kernel Hilbert space (RKHS). When
the data live or are close to the nonlinear low dimensional
manifolds embedded in high dimensional ambient space,
Euclidean distance can not capture the local structure of the
data. Therefore, NMF and CF based on Euclidean distance
fail to incorporate the local structure; they consider only the
global geometric structure.

In recent years, various local learning models and tech-
niques have been used widely to represent high-dimensional
data, such as ISOMAP [16], Laplacian eigenmaps (LE) [17],
and local linear embedding (LLE) [18], in order to obtain the
optimal data representation. Thesemethods have successfully
characterized the intrinsic geometric structure of nonlinear
data manifolds. Although they are successful in utilizing the
local geometry of data space, these algorithms do not consider
the distribution information of data, which is essential for data
clustering. It is more reasonable to assign large weights to the
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data in the large density region [12]. In addition, it has been
shown that these algorithms can be reformulated in a graph
embedding framework.

Graph-based matrix factorization techniques [8], [19],
[20], [20]–[28] have been gaining increasing interest. How-
ever, many existing methods establish graphs that are inde-
pendent of learning processes. Once the graph is constructed,
it is unchangeable and does not benefit subsequent learning
tasks. The neighbor graph, which is constructed by the sam-
ple points in the high-dimensional space, is suboptimal, and
cannot reflect the geometrical structure of the sample distri-
bution effectively. To overcome this shortcoming, we attempt
to obtain the optimal representation of data by integrating
matrix decomposition and graph learning into a joint learn-
ing framework. Hence, we herein propose a robust local
learning and discriminative concept factorization (RLLDCF)
method; it can not only learn the local similarity matrix and
discover the local discriminative structure of the data but
also address the outlier points and noises simultaneously.
Specifically, we used the `2,1-norm as our error function, such
that RLLDCF can accommodate the outliers and noises better
than the standard CF using F-norm as the error function.
We learned the optimal graph weights jointly with CF rather
than fixing the graph in the low-dimensional representation
space. Additionally, the local regressive regularization term
ensures that data belonging to the same patch have the same
representation.

The primary aspects of the proposed approach are listed as
follows.

1. Our approach adds `2,1-norm constraints that can learn
data representation; this is the primary issue that is neglected
by the previous imperfect method.

2. To discover the local discriminative structure of the
data, we add local linear regression constraints into the
learned space. By adding the local linear regression con-
strains, our approach possesses discriminative power than the
other improved CFs.

3. The method performs matrix decomposition and struc-
tural learning simultaneously. It learns the intrinsic structure
of the data adaptively, and can thus achieve a more valuable
data representation.

4. We propose an effective iterative strategy with multi-
plicative updating rules for the optimization, and provide the
proof of rigorous convergence and correctness analysis of our
model.

The remainder of this paper is organized as follows.
In Section 2, we briefly introduce the related works.
In Section 3, we elaborate our proposed formulation and
provide convergence proof. In Section 4, we describe our
extensive experiments and analyze their results. Finally,
we conclude and discuss future work.

II. RELATED WORKS
In this section, we briefly review the related research on data
representation including graph-based matrix factorization

techniques, `2,p-norm (0 < p ≤ 1)-based matrix factoriza-
tion techniques, and locality-based approaches.

Graph-based matrix factorization techniques have been
studied and used widely for data representation [8], [19],
[20], [20]–[28]. By constructing similar graphs with vertices
corresponding to data points and edge weights represent-
ing degrees of similarity, similar graph terms are introduced
into objective functions. Thus, the data representation prob-
lem is formulated as a graph-based regularization problem
[22]– [29]. Therefore, graphs are crucial in determining their
ultimate performances. However, many existing methods
establish graphs independent of learning processes. The adap-
tive graph methods [8], [20], [23]–[31], [31]–[33] perform
feature extraction as part of the model construction process,
which performs feature extraction and obtains the neighbor
graph weight matrix simultaneously.

The graph regularized extensions of CF and NMF have
shown good performance by applying an inherent local man-
ifold structure. These methods typically adopt squared loss
to measure the data reconstruction quality. Although the per-
formance is encouraging in most cases, it is not always the
optimal choice for decomposition of the data matrix. The
study indicates that the square error is optimal for Poisson
and Gaussian noises [33]. However, it almost always involves
data that violate the hypothesis in practical applications. The
squared loss is not robust to outlier points and noises that
are typical in visual data, because a few large noisy entries
may dominate data decomposition. Recently, some improved
algorithms have been presented to enhance the robustness of
classical NMF and CF. Robust matrix factorization utilized
`2,p-norm (0 < p ≤ 1) [35], [37]-based objective function,
which is not squared; thus, the outlier points and noises do
not dominate the objective function.

Local approaches [24], [38]–[48] have been applied widely
in many intelligent learning problems such as dimension
reduction [18], [39], clustering [40], [41], and classifica-
tion [24], [42]–[48]. Locally regressive projections (LRPs)
[49] are built fundamentally upon the idea of local linear
regression and recently applied to ranking [50] and co-
clustering [51]. Recently, Li and Tang [21] proposed a novel
method called weakly supervised deep matrix factorization
(WSDM) to explore local learning for social image under-
standing, which uncovers the latent image representations
and tag representations embedded in the latent subspace
by collaboratively exploring the weakly supervised tagging
information. Liu et al. [41] presented a locality-constrained
concept factorization (LCF) method that imposes the locality
constraint onto the original CF to explore a faithful intrinsic
geometry. These methods have succeeded in discovering the
local structure of nonlinear manifolds.
Notation: We use boldface capital and lowercase letters,

A and a, to denote matrices and vectors, respectively.
||x||p = (

∑n
i=1 |xi|

p)
1
p is used to represent the `p-norm of

the vector x ∈ Rn. We use xi and xj to denote the i-th row, and
the j-th column of matrix X, respectively. xij is the element in
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the ith row and jth column ofX; Tr[X] denotes the trace ofX if
X is a square matrix; XT denotes the transposed matrix of X.
For any two matrices X and Y, we let < X,Y >= Tr(ATB)
be the inner product. We define the Frobenius norm of the
matrix X ∈ RM×N as

||X||F =

√√√√√ M∑
i=1

N∑
j=1

x2ij. (1)

We denote the `2,1-norm of a matrix as

||X||2,1 =
M∑
i=1

||xi||2 =
M∑
i=1

√√√√√ N∑
j=1

x2ij = Tr[XTDX], (2)

where D is a diagonal matrix with Dii =
1

2||xi||2
.

However, ‖xi‖2 could approach zero. For this case, we let
Dii = 1

2‖xi‖2+ε
, where ε is a small constant.

III. REVIEW OF MATRIX FACTORIZATION
In this section, we present a brief review of NMF, CF, and
LCCF.

A. NMF
Given a nonnegative matrix X, consisting of N column vec-
tors of dimensionality M , each column of X is a data point.
The idea of NMF is to obtain nonnegative matrices U and V
to reconstruct the original data matrix X. The corresponding
optimization problem is as follows:

min
U,V
‖X− UV‖2F ,

s.t. U ≥ 0,V ≥ 0, (3)

where ‖ · ‖F is the Frobenius norm. U ∈ RM×K is the
basis matrix, and V ∈ RK×M is the coefficient matrix. Lee
and Seung [9] proposed the following iterative multiplicative
updating rules to minimize the objective function:

u(t+1)jk ← u(t)jk
(XVT )jk
(UVVT )jk

,

v(t+1)ki ← v(t)ki
(UTX)ki
(UTUV)ki

. (4)

Generally, K < min(M ,N ), and we view V as the low-
dimensional representations.

B. CF
The idea of CF [15] is to characterize every concept as a linear
combination of the entire data points, each of which is the
linear combination of all the concepts. The objective function
of CF is written as follows:

min
W,V
‖X− XWVT

‖
2
F

s.t.W ≥ 0, V ≥ 0. (5)

Defining the kernel matrix as K = XTX, the matrices W
and V are obtained by the following multiplicative updating
rules:

wjk ← wjk
(KV)jk

(KWVTV)jk
,

vki ← vki
(KW)ki

(VWTKW)ki
. (6)

C. LOCALLY CONSISTENT CONCEPT FACTORIZATION
Locally consistent concept factorization (LCCF) [23] is
presented to obtain concepts by constructing the nearest
neighbor graph. The optimization problem of LCCF can be
obtained as follows:

min
W,V
‖X− XWV‖2F + λTr(V

TLV)

s.t.W ≥ 0,V ≥ 0, (7)

where λ is the regularization parameter, and L is the graph
Laplacian matrix (see [23] for details). The multiplicative
updates rules can be obtained by solving the following prob-
lem:

wjk ← wjk
(KV)jk

(KWVTV)jk
,

vki ← vki
(KW+ λSV)ki

(VWTKW+ λDV)ki
. (8)

where D is a diagonal matrix whose entries are column sums
of S, which is called weight matrix.

IV. THE PROPOSED RLLDCF FRAMEWORK
In this section, we present a novel concept decomposition
method for data representation, called RLLDCF, which can
achieve a more effective and robust data representation.

A. THE OBJECTIVE FUNCTION
Recall that CF attempts to obtain a set of basis vectors that can
be used to represent the original data. The coefficient matrix
can be regarded as the new representation of each data point
in the new basis. In this work, the learning data representation
is expected to satisfy the following three properties.

i) The learning data representation is robust to outliers and
noises.

ii) The learning data representation can reflect the true
geometrical structure of the data distribution.

iii) The learning data representation can discover the intrin-
sic discriminant structure of the data space.

To satisfy the first property, we use the `2,1-norm loss
function, instead of the square loss function based on the
Frobenius norm, to alleviate the influence of noises and out-
liers. Therefore, our robust concept representation model is
represented as

min
U,V
||X− XUV||2,1 + α||V||2,1, (9)

where α > 0 is the regularization parameter. The `2,1-norm-
based objective function promotes robustness if the dataset is
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corrupted by outlier points and noises. Meanwhile, the regu-
larization term ||V||2,1 ensures that V is sparse in rows.
Despite the popularity of exploiting graph regularization

for learning an optimal data representation, they do not satisfy
properties (i) and (ii). To overcome the shortcomings, we pro-
pose a new method to learn the reconstruction coefficients
matrix S ∈ Rn×n, where Sij represents the i-th data’s contri-
bution to reconstruct data point xj. Because S is obtained by
adaptive learning, our robust local adaptive learning structure
can be formulated as follows:

min ||V− VS||2,1 + µTr(ES). (10)

where the `2,1-norm based function is ||V − VS||2,1 =∑
i
||vi −

∑
j
Sijvj||. Because the `2,1-norm reduces the com-

ponents occupied by the large magnitude of error in the loss
function, the corrupted samples never dominate the objective
function. In this sense, the loss function ||V − VS||2,1 is
robust to outlier points and noises. To satisfy the second
property, we learn the sparse weight matrix S, where Sij
denotes the i-th data’s contribution to reconstruct data point
vj.We optimize the representationmatrixV and sparseweight
matrix S simultaneously in a single objective function. The
learned sparse weight matrix S is more flexible and related
to both the original and transformed spaces. Specifically,
we repeat learning V and S iteratively for improving the
model performance. Here, we use the learned representation
matrix V to learn the sparse matrix S, which leads to a better
V in turn. Compared with the sparse similarity, the learned
sparse weight matrix can reflect the true geometrical structure
of the data distribution. The second term Tr(ES) is equivalent
to ||S||1, with ||S|| ≥ 0, andE is a matrix of all ones. It boosts
the sparsity of the solution. µ is the regularization parameter.
To promote the third property, we construct the local pre-

dictors [50], and derive a local linear regression function. For
each sample point xi, we define the local regionM(xi) as the
set consisting of xi and its ni − 1 nearest neighbor points.
We use set Ai = {j|xj ∈ M(xi)} to denote the indices of
the samples in M(xi). We use Xi ∈ RM×ni to denote the
local data matrix containing samples inM(xi).We usematrix
Vi ∈ RK×ni to denote the new representations of points in
M(xi). The primary goal of the local regressive function is to
obtain the relation by modeling Xi to Vi. To fit such relation,
we utilize the regularized linear regression function, which
minimizes the following objective function:

min
Gi,bi

1
ni
||Vi −GT

i Xi − bi1Tni ||
2
F + λ||Gi||

2
F . (11)

where λ is a positive regularization parameter. Setting the
partial derivatives of the objective function with respect to
W and b to zero, we obtain

G∗i = (Xi5XTi + niλI )
−1Xi5Y Ti (12)

b∗i =
1
ni
(Vi − (W∗i )

TXi)1ni (13)

where I is the identity matrix and 5 = I − 1
ni
1ni1

T
ni

is the centering matrix. Substituting Eq.(12) and Eq.(13)

into Eq.(11), the fitting error of the local regressive function
is given by

L=
1
ni
Tr(Vi(5−5XT

i (Xi5XT
i +niλI)

−1Xi5)VT
i ). (14)

Therefore, the local regressive model can be rewritten as [42]:

L = Tr(ViMiVT
i ) (15)

where

Mi = λ(niλI+5XT
i Xi5)−15. (16)

Because the local matrix Vi is part of the global matrix V,
we can construct a selection matrix Si ∈ RM×ni for each Vi
such that

Vi = VSi, (17)

where the selection matrix Si is defined as follows: Si = [ej]
for j ∈M(xi), where ej is anm-dimensional vector whose j-th
element is one, and all other elements are zero. After the local
matrices are established, we combine them byminimizing the
following loss function:

min
Vi

N∑
i=1

Tr(ViMiVT
i )=min

V

N∑
i=1

Tr(VSiMiSTi V
T )

= min
V

Tr(VMVT ), (18)

where

M =
N∑
i=1

SiMiSTi . (19)

By integrating objective functions (9), (10), and (18),
the overall loss function is defined as

min
U,V,S≥0

‖X−XUV‖2,1+ β(||V− VS||2,1

+µTr(ES))+γTr(VMVT )+ α||V||2,1, (20)

where β and γ are two trade-off parameters.
We denote X − XUV = [a1, · · · , aM ]T , V − VS =

[b1, · · · ,bK ]T and V = [v1, · · · , vK ]T . When the nonneg-
ative constraint is considered on U, V, and S, the objective
function (20) can be reformulated as

O = Tr((X− XUV)TA(X− XUV))

+βTr((V− VS)TB(V− VS)+ µTr(ES))

+ γTr(VMVT )+ λTr(VTCV),

s.t. U ∈ RM×K > 0; V ∈ RK×N > 0

S ∈ RN×Lc > 0 (21)

where A, B, and C are three diagonal matrices with their
diagonal elements as Aii =

1
2||ai||2

, Bii = 1
2||bi||2

, and

Cii =
1

2||vi||2
, respectively.
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B. THE UPDATE RULES
The proposed formulation (21) is not convex in U, V, and S
together. Fortunately, we propose an algorithm for optimizing
the objective function with respect to any one of them while
maintaining the others. Based on the properties of the matrix
norm, we obtain the objective function as follows:

O = Tr(XXTA+ VTUTXTAXUV− 2XTAXUV

+βTr(VVTB+ STVTBVS− 2VTBVS)

+ γ (Tr(VM+VT )− Tr(VM−VT ))

+ λTr(VTCV)+ βµTr(ES)

s.t. U ∈ RM×K > 0; V ∈ RK×N > 0

S ∈ RN×Lc > 0 (22)

where M = M+ − M−, with M+ij =
(|Mij|+Mij)

2 and

M−ij =
(|Mij|−Mij)

2 .
We introduce the Lagrange multiplier matrix 9 = [ψjk ],

8 = [φki] and 2 = [θiq] for the nonnegative constraint on
U, V, and S. The corresponding Lagrangian function L is
defined as follows:

L=Tr(XXTA+VTUTXTAXUV−2XTAXUV

+βTr(VVTB+STVTBVS−2VTBVS)+ βµTr(ES)

+ γ (Tr(VM+VT )− Tr(VM−VT ))+ λTr(VTCV)

−Tr(9UT )− Tr(8VT )− Tr(2ST ), (23)

Let the partial derivatives of the optimization function (23)
with respect to U, V, and S be zero. Therefore, we have

9 = 2XTAXUVVT
− 2XTATXVT , (24)

8 = 2UTXTAXUV− 2UTXTATX

+ 2β(BV+ BVSST − 2BVS)

+ 2γ (VM+ − VM−)+ 2λCV, (25)

2 = 2β(VTBVS− VTBV)+ βµET . (26)

Based on the KKT conditions [48] ψjkujk = 0, φkivki = 0
and θiqyiq = 0, we obtain

(XTAXUVVT )jkujk − (XTATXVT )jkujk = 0, (27)

(UTXTAXUV)kivki − (UTXTATX)kivki
+β(BV+ BVSST − 2BVS)kivki (28)

+γ (VM+ − VM−)kivki + λ(CV)kivki = 0,

2β(VTBVS− VTBV)iqsiq + βµ(ET )iqsiq = 0. (29)

The corresponding equivalent formulas are as follows:

(XTAXUVVT )jku2jk − (XTATXVT )jku2jk = 0, (30)

(UTXTAXUV)kiv2ki − (UTXTATX)kiv2ki

+β(BV+ BVSST − 2BVS)kiv2ki (31)

+γ (VM+ − VM−)kiv2ki + λ(CV)kiv
2
ki = 0,

2β(VTBVS− VTBV)iqs2iq + βµ(E
T )iqs2iq = 0. (32)

Solving Eqs. (30), (31), and (32), themultiplicative updates
rules can be obtained as follows (33)–(35), as shown at the
bottom of this page.
Hence, we provided the solver for the objective

function (21).

C. CONVERGENCE ANALYSIS
In this subsection, we demonstrate the convergence of the
objective function (22) to the local optimum using the updat-
ing rules (33), (34), and (35) after finite iterations. The con-
vergence can be proved by the auxiliary functionmethod [23].
First, the definition of the auxiliary function is introduced;
subsequently, the convergence proof of the optimization algo-
rithm is provided.
Definition 1: A function Z (H,H′) is an auxiliary func-

tion of the function F(H) if Z (H,H′) ≥ F(H) and
Z (H,H) = F(H) for any H and a constant matrix H′.
Lemma 1: If Z is an auxiliary function of F , then F is
nonincreasing under the updating rule

H(t+1)
= argmin

H
Z (H,H(t)).

Proof:

F(H(t+1)) ≤ Z (H(t+1),H(t))) ≤ Z (H(t),H(t)) = F(H(t)).

Lemma 2: For any nonnegative matrices A ∈ Rn×n,
B ∈ Rk×k , S ∈ Rn×k , S′ ∈ Rn×k , and where A, B are
symmetric, the following inequality holds

n∑
i=1

k∑
s=1

(AS′B)isS2is
S′is

≥ Tr(STASB).

We first introduce the auxiliary function for variable V.
It is proved that when U and S are fixed, the updating rule
for V in (34) reduces the values of the objective function O.

u(t+1)jk ← u(t)jk

√
(XTATXVT )jk
(XTAXUVVT )jk

, (33)

v(t+1)ki ← v(t)ki

√
(UTXTATX+ 2βBVS+ γVM−)ki

(UTXTAXUV+βBV+BVSST +γVM+ + λCV)ki
, (34)

s(t+1)iq ← s(t)iq

√
2(VTBV)iq

(2VTBVS+ µET )iq
. (35)
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We define O(V) to represent O that is relevant only
to V.

O(V) = Tr(VTUTXTAXUV)− 2Tr(XTAXUV)

+βTr(VVTB)+ βTr(STVTBVS)

− 2βTr(VTBVS)+ γTr(VM+VT )

− γTr(VM−VT )+ λTr(VTCV) (36)

Theorem 1: The following function

Z (V,V′)

=

∑
ki

(UTXTAXUV′)kiV2
ki

V′ki
+ β

∑
ki

(BV′)kiV2
ki

V′ki

+β
∑
ki

(BV′SST )kiV2
ki

V′ki
+ γ

∑
ki

(V′M+)kiV2
ki

V′ki

+β
∑
ki

(CV′)kiV2
ki

V′ki
−2
∑
ki

(UTXTATX)kiV′ki

(
1+log

Vki

V′ki

)
−2β

∑
kipq

BkpSqiV′kiV
′
pq

(
1+ log

VkiVpq

V′kiV
′
pq

)

−γ
∑
kiq

M−iqV
′
kiV
′
kq

(
1+ log

VkiVkq

V′kiV
′
kq

)
(37)

is an auxiliary function for O(V).
Proof: On the one hand, Z (V,V) = O(V) is obvi-

ous. On the other hand, we must prove that Z (V,V′) ≥
O(V). Hence, we compare Eq.(36) with Eq.(37) to obtain that
Z (V,V′) ≥ O(V).
By applying Lemma 3, we obtain the upper bounds of

every five positive terms, and the following inequality is
established:

Tr(VTUTXTAXUV) ≤
∑
ki

(UTXTAXUV′)kiV2
ki

V′ki
, (38)

βTr(VTBV) ≤ β
∑
ki

(BV′)kiV2
ki

V′ki
. (39)

βTr(STVTBVS) ≤ β
∑
ki

(BV′SST )kiV2
ki

V′ki
. (40)

γTr(VM+VT ) ≤ γ
∑
ki

(V′M+)kiV2
ki

V′ki
. (41)

λTr(VTCV) ≤ λ
∑
ki

(CV′)kiV2
ki

V′ki
. (42)

To obtain the lower bounds of the residual terms, we use
inequality z ≥ 1+ logz,∀z; subsequently,

2Tr(XTAXUV)≥ 2
∑
ki

(UTXTATX)kiV′ki

(
1+log

Vki

V′ki

)
,

(43)
2βTr(VTBVS)= 2β

∑
kipq

VkiBkpVpqSqi

≥ 2β
∑
kipq

BkpSqiV′kiV′pq

(
1+log

VkiVpq

V′kiV′pq

)
(44)

γTr(VM−VT )≥ γ
∑
kiq

M−iqV
′
kiV
′
kq

(
1+log

VkiVkq

V′kiV
′
kq

)
.

(45)

Summing all inequalities, we can obtain Z (V,V′) ≥ O(V),
satisfying Z (V,V′) ≥ O(V). Therefore, Z (V,V′) is an auxil-
iary function of O(V).
Theorem 2: The updating rule (34) can be obtained by

minimizing the auxiliary function Z (V,V′).
Proof: To obtain the minimum of Z (V,V′), we set the

derivative ∂Z (V,V′)
∂Vki

= 0, and have

∂Z (V,V′)
∂Vki

=
2(UTXTAXUV′)kiVki

V′ki
+ 2β

(BV′)kiVki

V′ki

+ 2β
(BV′SST )kiVki

V′ki
+ 2γ

(V′M+)kiVki

V′ki

+ 2λ
(CV′)kiVki

V′ki
−

2(UTXTATX)kiV′ki
Vki

− 4β
(BV′S)kiV′ki

Vki
− γ

2(VM−)kiV′ki
Vki

. (46)

Thus, by simple algebra formulation, we can obtain the
iterative updating rule for V as Eq.(34). According to
Lemma 1, the objective function (22) decreases monotoni-
cally with the updating of vki.

The convergence proves that updating ujk and siq using (33)
and (35) are similar to the above.

D. COMPLEXITY ANALYSIS OF RLLDCF
In this subsection, we discuss the computational complexity
of our proposed algorithm, and use the capital O notation to
express the complexity. The computation cost of the pairwise
distances between the samples is O(N 2M ); the computa-
tion cost of finding k-nearest neighbors of all sample points
is O(N logN ); O(N (Mk2 + k3)) is the computation cost of
Eq.(14). The computation cost of the multiplicative updating
in (33), (34), and (35) is O(NK 2). If the updating procedure
stops after t iterations, the overall cost of the multiplicative
updating is O(tNK 2). Because M >> K and M >> k ,
the total cost of RLLDCF is O(N 2M + N logN + N (Mk2 +
k3)+ tNK 2).

V. EXPERIMENTS
We evaluated the clustering performance of our presented
RLLDCF algorithm systematically with the popular
matrix factorization algorithms including robust nonneg-
ative matrix factorization using `2,1-norm (RNMF) [35],
CF [15], LCF [41], robust semi-supervised concept factor-
ization (RSCF) [34], and concept factorization with adaptive
neighbors (CFANs) [32]. We set the number of clusters to
be the same as the true number of categories. We varied
α and µ in the range of {1, 10, 20, 30, 40, 50, 60, 70, 80}.
The regularization parameters β and γ were searched over the
grid {10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104}. The
proposed RLLDCF algorithm was tuned to achieve the best
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TABLE 1. Performance comparison with illumination variations.

performance by selecting the best parameters, and the com-
parison methods’ parameter settings followed the authors’
suggestions. In the experiment, we employed two standard
face datasets to evaluate the clustering performance of the
proposed method. The extended YaleB dataset is composed
of 38 subjects with 2414 frontal-face images. In this dataset,
the size of each face image is 192 × 168, and each subject
is acquired with 64 illuminate conditions and 9 different
poses. The AR dataset contains over 4,000 frontal-face
images of 126 subjects (70men and 56 women) with different
facial expressions, illumination conditions, and occlusions
(sunglasses and scarf). There are 26 images per subject in
two separated sessions.

A. EVALUATION METRICS
In this work, we used two standard clustering metrics to
measure the clustering performance, i.e., the accuracy (Acc)
and the normalized mutual information (NMI). We evaluated
the algorithms by comparing the obtained cluster labels of
each data point with its ground truth label provided by the
dataset. The Acc metric is defined as follows:

Acc =

∑n
i=1 δ(map(ri), li)

n
, (47)

where n is the total number of images; ri and li denote the
cluster label and the label by dataset, respectively. δ(x, y) is
the delta function that equals one if x = y, and equals to
zero otherwise. Further, map(ri) is the mapping function that
maps the obtained label ri to the equivalent label from the
dataset. The best mapping function can be determined using
the Kuhn–Munkres algorithm [50]. The second metric is the
NMI that could measure the similarity between the clustering
results and the true classes. Assume that C and C′ are the sets
of clustering result and the true class, respectively. The NMI
is defined as follows:

NMI(C, C′) =
MI(C, C′)

max(H (C),H (C′))
, (48)

where H (C) and H (C′) are the entropies of the cluster
sets C and C′, respectively. It is noteworthy that NMI(C, C′)

ranges from 0 to 1. NMI = 1 if the two sets of clus-
ters are identical, and NMI = 0 if the two sets are
independent.

B. CLUSTERING WITH ILLUMINATION VARIATIONS
In this experiment, we tested the impact of illumination
changes on the clustering performance in the extended YaleB
dataset. More than half of the face images are damaged
by a large area of ‘‘shadow.’’ Therefore, the dataset can be
regarded as a serious damage. To reduce the cost of comput-
ing, we resized each image to 32×32 pixels and rearranged it
to a 1,024-dimensional vector. Each vector was normalized to
a unit length.We established the data matrixX, which is com-
posed of various numbers of subjects k ∈ {3, 5, 7, · · · , 19} in
the extended YaleB dataset. k classes were randomly selected
from the dataset. All of these data were mixed as matrix
X for clustering. We set the clustering number k equal to
the dimension of the new representation space. For a fair
comparison, we usedK-means to cluster the samples based on
the new data representations. Because the results of K-means
are related to the initialization, we conducted 20 trials with
different initializations, and the means and variances of Acc
and NMI were reported as the final result. Table 1 shows the
detailed clustering results on different clustering numbers.
The final row shows the average clustering accuracy (normal-
ized mutual information) over k . Compared with the second
optimal method, the accuracy of clustering using our method
is increased by 8.30%. For mutual information, it exhibits an
8.38% improvement over the second optimal algorithms.

C. CLUSTERING WITH SYNTHETIC CORRUPTIONS
We investigated the image to be corrupted by white Gaussian
noise and random noise using the extended YaleB dataset,
where the former is additive and the latter is nonadditive. For
the white Gaussian noise case, each image x was corrupted
by adding the pixel value from a standard normal distribution,
that is, x̃ = x+αn, where α is the corruption ratio from 10%
to 90%with an interval of 10%, and n is the noise. For the ran-
dom pixel corruption, we replaced the values of the pixel with
a uniform distribution over [0, 255].We varied the percentage
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FIGURE 1. Performance comparison curves with varying percentage of
the white Gaussian noise corruption on the extended YaleB dataset.
(a) The Acc results. (b) The NMI results.

FIGURE 2. Performance comparison curves with varying percentage of
the random noise corruption on the extended YaleB dataset. (a) The Acc
results. (b) The NMI results.

of corruption from 10% to 90%. The location of the corrupted
pixels was chosen randomly for each image. We conducted
the evaluations 20 times with different corruption percentages
and computed the average recognition accuracies of Acc and
NMI. Figures 1 and 2 display the recognition accuracies over
different levels of corruption. The recognition accuracies of
these methods decrease rapidly as the level of corruption
increases. From Figures 1 and 2 that depict the recognition
accuracies, we can observe that our approach is better than
the other methods. All compared algorithms perform worse
with the increase in noise and obtain better performance in
white noise corruption than random pixel corruption.

D. CLUSTERING WITH SYNTHETIC OCCLUSION
We used the extended YaleB dataset to test the robustness
of our algorithm to synthetic occlusion. We added various
levels of contiguous occlusions in each image using an unre-
lated image of size p × p with p ∈ {10, 20, · · · , 90}. The
evaluations were conducted 20 times at each occlusion level,
and the average Acc and NMI curves were reported. Figure 3
plots the clustering of Acc and NMI results of the compared
methods under different occlusion levels. Although the clus-
tering accuracy of each method degrades with the increment
in the occlusion level, RLLDCF consistently exceeds other
methods. When the occlusion size increases to 50 × 50,
the occluding part will dominate the image and decrease the
clustering performance rapidly.

E. CLUSTERING WITH REAL OCCLUSIONS
We tested the robustness to real malicious occlusions of
the investigated approaches over the AR dataset. The AR

FIGURE 3. Clustering Acc and NMI curves of the compared methods on
varying percent block occlusion for the extended YaleB dataset. (a) The
Acc results. (b) The NMI results.

FIGURE 4. Clustering accuracy of the proposed method with respect to
the parameters β and γ on the extended YaleB dataset. (a) The Acc
results. (b) The NMI results.

dataset has 2600 frontal-face images from 100 individuals
comprising 50males and 50 females, captured in two separate
sessions. In each session, each subject provides seven face
images with different facial variations, three face images with
an occlusion of sunglasses, and three face images with a
scarf occlusion. We performed two experiments that corre-
spond to the sunglasses and scarf occlusions for each session,
respectively. For the sunglasses occlusion, we selected all the
normal face images and three face images with sunglasses.
For the scarf occlusion, we selected all the normal face
images and three face images with scarf. All images were
cropped to 32×32-pixel gray-scale images and shaped into a
1024-dimensional vector. Table 2 tabulates the comparison
results on the AR dataset. It is noteworthy that the perfor-
mance gain of the proposed algorithm is obvious in compar-
ison with the other five algorithms.

F. PARAMETER SENSITIVITY
Our proposed RLLDCF required four parameters: α, β, γ ,
and µ to be tuned in advance. First, we focused on dis-
cussing the parameters β and γ . We conducted experiments
on extended YaleB and the first session of AR datasets to
observe the effects on clustering performance with differ-
ent values of β and γ . Two parameters were tuned from
{10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104}. We plot-
ted the Acc and NMI of RLLDCF with respect to β and
γ , by setting α = 10 and µ = 10. Figures 4 and 5
show the 3D results of RLLDCF clearly. The horizontal
axes are the parameters β and γ , whereas the vertical axis
represents the clustering accuracy of RLLDCF. As shown
in Figures 4 and 5, the clustering performance of RLLDCF is
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TABLE 2. Clustering performance on the AR dataset.

FIGURE 5. Clustering accuracy of the proposed method with respect to
the parameters β and γ on the AR dataset. (a) The Acc results. (b) The
NMI results.

FIGURE 6. Clustering accuracy of the proposed method with respect to
the parameters α and µ on the extended YaleB dataset. (a) The Acc
results. (b) The NMI results.

relatively insensitive when parameters β and γ are selected
at an appropriate range. This renders RLLDCF easy to apply
without much effort for parameter tuning.

Next, the parameter sensitivities of α and µ were tested.
We selected extended YaleB and the first session of the AR
datasets as test examples. We analyzed the sensitivity of the
parameters by Acc and NMI under different values of α
and µ. We set β = 100 and γ = 100, and varied α and µ in
the range of {1, 10, 20, 30, 40, 50, 60, 70, 80}. We depicted
the clustering performances with different values of α and µ,
and the results are shown in Figures 6 and 7. As shown,
the clustering performance tends to change little when the
values of α and µ are different, thus indicating that RLLDCF
is relatively insensitive to the selection of parameters α andµ.

G. CONVERGENCE ANALYSIS
We proved the convergence of our update rules in the pre-
vious section. An experiment was performed to validate its
convergence, and the speed of convergence on the extended
YaleB and AR datasets was studied. The convergence curves
of the objective value are shown in Figure 8. The horizontal
axis represents the number of iterations, and the vertical axis
represents the value of the objective function.We observe that

FIGURE 7. Clustering accuracy of the proposed method with respect to
the parameters α and µ on the AR dataset. (a) The Acc results. (b) The
NMI results.

FIGURE 8. Convergence curves of RLLDCF. (a) The Extended YaleB result.
(b) The AR result.

the proposed optimization method for RLLDCF converges
within 50 iterations for two datasets, demonstrating that our
algorithm is effective and converges quickly.

VI. CONCLUSION
We herein proposed a novel learning method named
RLLDCF that extended robust CF by exploring the local
discriminative and intrinsic structure explicitly. We formu-
lated the problem into a unified optimization framework and
designed an efficient optimization algorithm. The optimiza-
tion algorithm and an analysis of its convergence were also
presented. Further work is required to extend RLLDCF to
multiview settings.
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