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ABSTRACT Detection of railway shape and dangerous obstacles plays a critical role in the auxiliary driving
of the train. Speed and accuracy are both of great significance to real-world railway traffic detection, which
demands a higher efficiency and effectiveness. The goal of this paper is to design an architecture that achieves
the right speed (for effectiveness)/accuracy (for effectiveness) balance for actual railway detection. Driven
by this motivation and based on the advantages of some current algorithms, we propose FB-Net (faster better
network), a robust end-to-end convolutional neural network. Detectors based on deep learning method are
composed of feature extraction, candidate region generation,and classification. Specifically, our framework
is focusing onwith three embeddedmodules: 1) To improve efficiency, we replace standard convolutionswith
depthwise-pointwise convolutions in the feature extraction stage, aiming to red reduce model parameters;
2) To address the effectiveness, a priori module is added for candidate boxes to provide a coarse location for
subsequent regressor and to reduce the searching space of objects significantly; 3) Meanwhile, we design
a feature fusion module to enhance the semantic context interaction of adjacent feature maps for better
detection of small objects. Experiments for railway traffic datasets on both computer device and mobile
device demonstrate that FB-Net achieves good results when the input size is 320 pixels× 320 pixels.

INDEX TERMS Railway traffic detection, efficiency and effectiveness, depthwise-pointwise convolution,
priori module, feature fusion.

I. INTRODUCTION
Since the first successful demonstrations in [1] and [2], much
attention has been put in the field of intelligent transportation.
Usually, autonomous traffic system operates in a dynamic
and complex environment, and final decision needs accurate
perception to handle some unpredictable situations in a timely
manner. Reliable detection of objects is essential in traffic
surveillance and auto-driving. For example, in urban traffic,
cars are sharing the road with other traffic participants, such
as pedestrians, bicycles, and animals. Awareness of these life
threatening factors can help to prevent accidents. In railway
traffic, auxiliary driving requires advanced judgements of the
railway shape, and obstacles need to be recognized in case of
catastrophes.

In the recent years, with the emergence of Age of Big Data
and the rapid development of GPU hardware technology,
significant progress has been made on visual object detection
[3]–[7]. Many convolutional neural network based detectors
show their strength on public benchmarks neither in accuracy
nor in speed. However, there are limited studies on analyzing

the performance of object detectors on realistic scenarios,
and existing off-the-shelf detectors still face significant chal-
lenges when deployed in real-world traffic surveillance sys-
tems because of the wide range of appearance variations.
First, various weather conditions and lighting effects lead
to differences of images. Second, different camera place-
ments and object pose variations are another source of dra-
matic changes in object appearance. Third, limited computing
capacity of mobile devices demands smaller model size and
higher speed.

Different from urban traffic monitoring, railway detection
needs to operate and make judgement timely in a high speed
movement. In this paper, we address the problem of object
detection in practical railway traffic situation by design-
ing a deep convolutional architecture. Towards this goal,
we first discuss two problems of the railway traffic, describ-
ing the demands of the each solution. Second, we propose a
novel detector named FB-Net aiming at boosting the balance
between accuracy and efficiency for real-world railway traffic
detection, including railway shapes and other obstacles.
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The two fundamental problems of railway traffic detectors
are efficiency and effectiveness. On the one hand, detector
system needs to process images in a timely fashion on a
computationally limited platform because the processor is
installed on the train and moves with the train. This needs
a more efficient network architecture with less parameter.
On the other hand, accuracy is of crucial importance as life
and property loss caused by train catastrophes is larger than
other accidents. So the detector should keep high standard
accuracy metrics, such as average precision (AP). Driven by
the two demands, we design an elegant framework which is
both efficient and effective for practical railway traffic detec-
tion. Firstly, depthwise-pointwise convolution, a replacement
for standard convolution, is introduced to make deep neural
network light weight and to make the system ‘faster’. Second,
we propose a priori module to provide preliminary locations
and to filter out negative proposals. Lastly, we design a
feature fusion module to enhance the interaction of semantic
information for the limitation with small instances. These
two algorithms help detection ‘better’. To the best of our
knowledge, this framework is novel and has been proven
successful in several real-world railway situations. In fact,
by transplanting the FB-Net into TX2, an embedded AI com-
puting platform, we achieved better results comparing with
many common frameworks, such as SSD.

To summarize, our main contributions are as follows:

A.
We propose FB-Net, a novel convolution framework aiming
at boosting a better balance between efficiency and effec-
tiveness. Depthwise-pointwise convolutions stage, a priori
module and a feature fusion module are embedded in this
architecture.

B.
With low resolution input size of 320 pixels × 320 pixels
and GeForce GTX1080Ti hardware on a computer device,
FB-Net achieves state-of-the-art result on real-world railway
dataset, with 87.6% mAP and 82 FPS.

C.
For NVIDIA Jetson TX2, the detection speed of FB-Net can
reach 20 FPS, which can increase to 30FPS when the network
channel is half the original.

The rest of this paper is organized as follows.
Section 2 introduces the related work for current object
detectors. Section 3 discusses our evolving framework in
detail while Section 4 demonstrates the experiments and the
results. The conclusion is drawn in Section 5.

II. RELATED WORK
A. TRAFFIC DETECTION
Traffic detection, as an essential part of traffic surveillance
and auto-driving, has produced many classic vehicle detec-
tors, which have achieved promising detection results. It has

drawn considerable attention when the cascade methods [8]
and the deformable part models (DPM) [9] detectors are
introduced. And Viola and Jones [8] propose the initial cas-
caded vehicle detection with a set of weak classifiers to
early filter image patches that are not target objects. Later
studies make some extent on this basis and achieved good
performance [10], [11]. These methods are based on tra-
ditional feature extraction and the information may not be
sufficient. For commercial systems, most of them rely on
background modeling techniques for detecting moving blobs
as a proxy for objects in the scene, which is limited to
low-activity scenarios [12]. Feris and Bobbitt [13]propose a
large set of complementary and extremely efficient detec-
tor models to address the problem of object detection in
urban surveillance videos. By exploring scenic consistency
information, Zhang et al. [14]propose a view independent
objection classification system for traffic scene surveillance.
According to the achieved object tracking result, an improved
backgroundmodeling and foreground segmentation approach
based on the feedback of moving objects is proposed [15].
Gibert et al. propose a multiple tasks architecture for fas-
teners inspection, which included two branches for coarse-
level classification and refined classification separately. The
results show better accuracy in detecting defects on railway
ties and fasteners. Jun et al. adopt a three stages cascade
detector for defect detection of the fasteners. Both of them
are in a coarse-to-fine manner. One limitation of this method
is that the result of the former stage will affect the detection
of the latter stage. In recent years, deep learning framework
is introduced to vehicle detection.Wang et al. [16]design a
light-weight proposal network with a fine-tuning network
for traffic surveillance. However, these methods are focusing
on urban traffic monitoring and are not suitable for railway
traffic detection because of limited efficiency as new charac-
teristics are present in this scene.

B. OBJECT DETECTION BY CNN
Basically, CNN is a kind of network with many layers to
extract feature based on invariance of regional statistics with
respect to pixel location in an image. After CNNs are initially
rekindled by their use for image classification [5], they are
quickly applied to object detection. Comparing with classi-
fication task, one cares not only about classifying images,
but also precisely estimating the class and location of objects
contained within the images for detection task. OverFeat [17]
is firstly proposed to predict the class label and the bounding
box coordinates by applying a sliding window on the top-
most feature map. Nowadays, CNN detectors of state-of-
the-art can be divided into two categories: (1) the one-stage
approach, including [18]–[20], detects objects by regular and
dense samplings over locations, scales and aspect ratios. The
bounding boxes are regressed directly with a confidence
which represents the reliability of a predicted result. The
main advantage of this method is high computational effi-
ciency, but the detection accuracy of the one-stage approach
is low and one major reason is the class imbalance problem.
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(2) The two-stage approach, including [21]–[24], generates a
sparse of candidate object boxes first and then they are further
classified and regressed. This method has been achieving top
performances on many benchmarks, such as PASCAL VOC
and COCO. In my opinion, the reason for good performance
is that the two-stage approach has following advantages over
the one-stage approach: using former step with sampling
heuristics to avoid class imbalance problem and using two
cascade regressions for precise location. Unfortunately, two-
stage approach is not suitable for some real-time situations.

Nowadays, some improvements and innovations have
made tomeet different needs of detectors. To address the class
imbalance problem and to improve the accuracy performance
for one-stage approach, Kong et al. [25], use objectness priori
constraint for convolution stage aiming at reducing the search
space significantly. Lin et al. [26] solve this problem by
reshaping the standard cross entropy loss to focus training
on a sparse set of hard examples. In order to improve the
accuracy, DSSD [27] suggests enhancing one-stage approach
with deconvolution layers for additional large-scale context.
As for the model size and efficiency, there has been ris-
ing interest in designing small and low latency models in
some recent literature. Depthwise separable convolutions are
initially introduced in [28] and are subsequently used in
Inception models [29]. Flatten networks [30] and Factorized
networks [31] build factorized convolutions which show the
extreme potential. MobileNet [32], which also adopts depth-
wise separable convolutions, achieves great performance on
resource and accuracy tradeoff and can be used in many
applications including object detection, classification, face
attributes and large scale geo-localization.

This paper inherits the merits of the one-stage approach
and the two-stage approach as we design a priori module
similar to Kong. Besides, we have to take speed and accuracy
into account at the same time, as well as the diversity and
complexity of the image quality for real-world railway traf-
fic. Some innovations have been made in FB-Net for better
efficiency and effectiveness.

III. APPROACHES
This section describes the three core modules of our proposed
framework FB-Net. We first introduce depthwise-pointwise
convolution in section 3.1. Then in section 3.2, we present the
priori module to guide the search of objects. Next, we explain
how feature fusion module works, such that different feature
maps have effective interaction. Finally, we integrate these
strategies into the FB-Net in section 3.4.

A. DEPTHWISE -POINTWISE CONVOLUTION
Aswe all know, a standard convolution operates on both space
and channel which leads to a great amount of calculations.
In this study, we factorize a standard convolution into two
convolution layers: a depthwise convolution layer for filtering
and a pointwise convolution layer for combining as [32].
To be explained in detail, the depthwise convolution applies a
single filter on each input channel while the point convolution

operates on outputs of depthwise convolution. In Figure 1,
top row presents how a standard convolution filter works and
bottom row shows how a standard convolution is factorized
into a depthwise convolution and a point wise convolution.
Figure 2 presents the structure changes.

Assuming that the size of the input feature map is Fin_w ×
Fin_h × m (Fin_w and Fin_h is the width and height of the
feature map, respectively), and the kernel size of the filters
is Kw × Kh , the convolution operation produces a Fout_w ×
Fout_h×n feature map. Comparison of a standard convolution
and a depthwise-pointwise convolution from the number of
parameters and the computational cost are as follows. Equa-
tion (1) and (2) are the functions to calculate the number
of parameters (P), and (5) means that depthwise-pointwise
convolution uses about nine times fewer parameters than
standard convolutionwith the kernel size 3. As for the compu-
tational cost(C), we pay attention to multiplication while the
add operation cost is ignored, and the results are shown as (3)
and (4). Equation (6) presents the reduction of computation
in the form of proportion.

Ps tan dard = Kw × Kh × m× n (1)

PD−P = Kw × Kh × m+ 1× 1× m× n (2)

Cs tan dard = Kw × Kh × m× Fout_w × Fout_h × n (3)

CD−P = Kw × Kh × Fout_w × Fout_h × m

+ 1× 1× m× Fout_w × Fout_h × n (4)
PD−P

Ps tan dard
=

Kw × Kh × m+ 1× 1× m× n
Kw × Kh × m× n

=
1
n
+

1
Kw × Kh

(5)

CD−P
Cs tan dard

=
Kw × Kh × Fout_w × Fout_h × m

Kw × Kh × m× Fout_w × Fout_h × n

+
1× 1× m× Fout_w × Fout_h × n

Kw × Kh × m× Fout_w × Fout_h × n

=
1
n
+

1
Kw × Kh

(6)

B. PRIORI MODULE
Usually, the two-stage approaches, such as Faster R-CNN,
achieve higher accuracy because of the mechanism that picks
out effective samples and produces coarse locations for pro-
posals. One-stage approaches, such as SSD, rely on one-step
regression to predict the locations and sizes of objects, which
are inaccurate in some challenging scenes. In order improve
the accuracy of one-stage approach, this study design a priori
module to handle the class imbalance problem and to use two
step cascade regressor for object proposal parameters.

Similar to Faster-RCNN, n anchor boxes are associated
with each cell of the feature map and each anchor box
has a fixed initial position. First regression to predict four
offsets of these boxes is made in anchor priori module.
This operation provides a coarse location for sub-sequent
regressior. Between all of these anchor boxes, only a tiny
fraction covers objects and we call them positive anchors.
In other words, the ratio between object and non-object boxes
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FIGURE 1. The convolution operation schematic. Standard convolution filers in top row are split into two steps: depthwise
convolution in bottom row left and pointwise convolution in bottom row right.

FIGURE 2. Left column: structure of standard convolution. Right column:
structure of depthwise-pointwise convolution.

is seriously imbalanced. We propose a rule to filter lots of
well classified negative anchors to mitigate the imbalance
issue. Only refined positive anchors and negative anchors
with confidence score less than 0.99 are passed for later
detector. Region generation network (RPN) in Faster-RCNN
generates anchor boxes only on the feature maps of the last
convolution stage. For better detection of multi-scale objects,
we use multi feature maps to generate anchors with different
ratios unlike RPN. And feature maps, whose receptive fields
are 8× 8, 16× 16, 32× 32, 64× 64, are selected to generate

proposals. Besides, we can design the distribution of boxes
so that specific feature map locations can be learned to be
responsive to particular scales of objects. In conclusion, this
module provides priori information which includes initial
position for more accurate detection and reduces searching
space of the objects.

C. FEATURE FUSION MODULE
Many studies have proved that highly-abstracted information
helps object detection, particularly for small targets. We use
different feature maps to detection objects with different
scales. The main limitation of the feature pyramid is that it
lacks fusion between different features maps. Particularly for
small target, feature map with 8 × 8 receptive field is used
to make predictions. However, the representation ability of
this feature map is relatively weak compared with higher
feature map. Inspired by the success of integrating context
in DSSD [27], we design a feature fusion module to help
to send high-level features back to former layers. This oper-
ation makes interaction between adjacent feature maps and
enriches semantic information of former layers. We adopt
element-wise summation to merge the two corresponding
feature maps together. With the requirement that feature
maps should have the same size and dimension, we firstly
use deconvolution operation to enlarge the high-level feature
maps. After element-wise summation, a standard convolution
is needed to ensure the discriminability of features for object
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FIGURE 3. Feature fusion module.

detection. The feature fusion module is interpreted in Fig-
ure 3 and themathematical definitionwill be given. Assuming
that {Xi, i ∈ C} are the source feature maps generated by
the convolutional layer, the feature fusion module can be
described as follows:

loc, class = D(τn(8n), . . . , τn−k (8n−k )), n > k > 0 (7)

8m = φf (Xi,X ′i+1), m ∈ [n− k, n− 1] (8)

X ′j = φd (Xj), j ∈ [n− k + 1, n] (9)

where φf is the feature fusion function. φd is the deconvo-
lution function to generate feature maps twice of the original
scale.D is the final operation to aggregate all the intermediate
results to generate the final detection while τn(·) is the func-
tion to transform the nth layer feature maps to the detection
result of a certain range.

D. FB-NET ARCHITECTURE
Based on a feed-forward convolutional network, we design
our framework called FB-Net, which is built on depthwise-
pointwise convolution, priori module and feature fusion mod-
ule as mentioned in the previous section. Our final purpose is
to boost the efficiency and effectiveness of the detector for
real-world railway traffic. In specific, depthwise-pointwise
convolutions are used for efficiency while the other two mod-
ules are both for effectiveness. During the convolution stage
for feature extracting, we replace all regular convolutions
with depthwise-point convolutions except for the first layer.
By defining the network in such simple ways, we can reduce
model parameters and computation cost greatly. Particularly,
down sampling is by the way of strided convolution. Sim-
ilar to classic one-stage approach SSD, FB-Net produces a
fixed number of bounding boxes of different scales with the
corresponding inference which indicating the possibility of
different classes, followed by non-maximum suppression for
final detection. However, before making predictions, we add
a priori module to remove most negative samples so as to
reduce search space and also provide coarse locations for sub-
sequent prediction module. The feature fusion module is also
implemented between priori module and prediction module,
which integrates semantic information of the adjacent feature
maps. The sizes of the feature maps to make predictions are

40 × 40, 20 × 20, 10 × 10, and 5 × 5. The channels of the
layers that are feed into element-wise summation are 256.
In conclusion, the FB-Net architecture is defined in Figure 4.

IV. EXPERIMENTS AND RESULTS
In this section, we first introduce the datasets used in the
experiments and then methods of data augmentation are pre-
sented. Finally, many experiments are carried out on railway
datasets to explain the superiority of our model. For better
comparison, we alsomake experiments on classical one-stage
approach SSD and two-stage approach Faster-RCNN as well
as DSSD. Results from three aspects: mAP performance,
model size, and speed performance are presented. We obtain
all of these results on caffe platform.

A. DATASETS
A camera is placed on the train to capture the real-world
railway-traffic images as seen in Figure 5. To ensure the diver-
sity of the data, pictures are obtained from various scenes
including different weather conditions, different lighting con-
ditions and also different speed conditions. For training,
we sample spatially evenly from each raw video sequence
from the training dataset, generating roughly 7342 images
and the size of original frames is 640 pixels×512 pixels.With
the consideration of railway shapes and possible obstacles in
assisted driving, we labeled the images with seven classes,
including Bullet Train, Pedestrian, Railway Straight, Railway
Left, Railway Right, Helmet and Spanner. 83% of these
images are used for train-val dataset while the rest are for
test.

B. DATA AUGMENTATIONS
In order to expand existing datasets and construct a more
robust model, we augment the training data in an online
manner with several random transformation, including:

• Scale: images are scaled by a random number
s ∈ [0.3, 1.0].

• Ratio: image aspect ratios are changed between
0.5 and 2.

• Color Jitter : the brightness, contrast, and saturation of
images are each scaled by ki ∈ [0.5, 1.5] .

• Color Normalization: RGB is normalized through mean
subtraction.

• Flips: images are flipped with a 50% chance.

We randomly select one patch of the above options so that the
minimum jaccard overlap with objects is 0.1, 0.3, 0.5, 0.7 or
0.9. After the aforementioned sampling step, each sampled
patch is resize to 320 pixels×320 pixels so that the input size
to the network is consistent.

C. PERFORMANCE
The baseline of our experiments is VGG16 [33] and is pre-
trained on the ILSVRC CLS-LOC dataset. The dimension
of the input image is 320 pixels × 320 pixels. We replace
fc6 and fc7 of VGG16 with depthwise-pointwise convolution

68734 VOLUME 6, 2018



J. Li et al.: Real-World Railway Traffic Detection Based on FB-Net

FIGURE 4. Feature fusion module.

FIGURE 5. Configuration of image collection system.

layers via subsampling parameters as well as DeepLab-
LargeFOV [34]. In order to capture high-level semantic infor-
mation and detect objects at multiple scales, two extra lay-

ers are also added to the truncated VGG16. In conclusion,
feature maps of sizes 40 × 40, 20 × 20, 10 × 10, and
5×5 are used to make predictions. Some relevant and impor-
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tant parameters are set as follows. We set the default batch
size to 32, optimization method to SGD with 0.9 momen-
tum and 0.0005 weight decay, and initial learning rate to
0.001. The maximum number of iterations of all experiments
is 120000.

1) EFFECTIVENESS PERFORMANCE
Average Precision (AP) is a critical evaluation index for
model effectiveness. With recall rate as x axis, precision
rate as y axis, AP calculates the area under the curve which
combines both of the two indexes. The results are presented
in Table 2. To illustrate the good use of the anchor pri-
ori module and the feature fusion module for effectiveness,
we introduce B-Net, which is FB-Net without depthwise-
pointwise convolution module and is present in the second
row in Table 1. The result presents that B-Net achieves the
best result of five classes. In particular, the AP value for small
targets helmet and spanner is increased by 8.1% and 10.2%
respectively compared with F-Net(Detailed in effiviency per-
formance). In the fourth column, FB-Net produces 87.6%
mAP without bells and whistles, and just decreases by 1.7%
comparedwith B-Net. For small targets, FB-Net also achieves
excellent performance with little reduction.

TABLE 1. Models of various designs.

TABLE 2. Detection results with different methods. All methods are
trained on the same trainval sets and tests on the same test set. Bold
fonts indicate the best result.

2) EFFICIENCY PERFORMANCE
Both memory utilization and time inference are critical
for railway traffic detection system. We use model size
and Frame Per Second (FPS) as the evaluation index for
efficiency. The results are presented in Table 3. Simi-
lar to effectiveness evaluation, F-Net, which is the base
model with replacement of depthwise-pointwise convolution,
is introduced to demonstrate the speed performance. At test
phrase, the speed is evaluated on a machine with GeForce
GTX1080Ti, CUDA 8.0 and cuDNN v6. As we can see, the
F-Net processes an image in 9.43ms(106 FPS) with the input
size 320 pixels × 320 pixels, while FB-Net uses 12.5ms for

TABLE 3. Efficiency performance. Bold fonts indicate the best results.

a same image. This is 2× faster than the B-Net counterpart.
To further reduce the model size, we carry out experiment
on the model FB-Net_0.5, whose channels are half of the
original FB-Net. The model size and FPS is 13.9M and
115FPS, which are the best results.

3) COMPARISION WITH THE STATE-OF-THE-ART
In this section, we compare with the existingmethods, includ-
ing one-stage based method SSD, two-stage based method
Faster-RCNN and DSSD. The quantitative results are lists
in Table 4. Particularly, the backbone of DSSD is ResNet-
101 as suggested in its respective paper.

TABLE 4. Comparision with state-of-the-art on the railway traffic dataset.
Bold fonts indicate the best results.

Our first observation from column 2 and 5 is that, with
the same basic architecture, FB-Net achieves an almost same
result while the time reference is 1.7× faster than SSD. There
are four classes whose AP result exceeds SSD. In particular,
the AP value for small targets helmet and spanner is 88%
and 83% respectively. Taking the model size into account,
FB-Net is 54.4M and this is acceptable for many mobile
devices. As for Faster-RCNN, the experimental results are not
good. In my opinion, the reason for this may be that Faster-
RCNN may be more suitable for large images as the input
size of Faster-RCNN is 1000 pixels × 600 pixels. But the
actual image size of our railway is 640 pixels × 512 pixels,
and the reverse interpolation may result in inaccurate feature
extraction. The model of DSSD also presents good perfor-
mance. However, the model is too large for many limited
platform.

Figure 6 is a scatter plot visualizing the mAP of each
of model configurations, with circle radius representing
model size, and colors representing models proposed by this
paper or not. Running time per image ranges from nine mil-
liseconds to almost 100 milliseconds.The closer to the upper
left corner, the better the model. The smaller the radius of the
circle, the less parameter themodel has. Generallywe observe
that FB-Net is better than SSD since FB-Net is on the left of
SSD, requiring only 12ms per image.
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FIGURE 6. GPU Time vsmAP. 1:F-Net; 2:FB-Net; 3:SSD; 4:B-Net; 5:DSSD;
6:Faster-RCNN.

4) SMALL OBJECT DETECTION
As for the feature fusion module, it helps FB-Net on small
objects. On the one hand, small objects can only occupy
smaller regions comparing with large objects and the location
information is easy to be lost in the convolution process.
On the other hand, recognition of small objects relies more
on the context around it. Because of detection on multi-
layers for different scales, small objects are only detected
on 40×40 feature map, whose receptive field is too small to
observe the larger context information. Feature fusion model

enables former features to have more semantic information.
Figure 7 is a good illustration of our models for detection of
small objects with the conference threshold 0.85. The three
columns are the detection results of SSD, B-Net and FB-Net
respectively. Red circles represent the missing detection of
small target such as helmet and spanner. Pink part is wrong
detection of FB-Net. Compared with SSD, B-Net and FB-Net
both achieve good performance on small objects.

5) ROBUSTNESS TESTS
We collect images of all kinds of situation, including day,
night, sunny day, rainy day, still train and moving train.
Then FB-Net models are tested on these different scenes to
verify the robustness. The results are shown in Figure 8 with
the conference threshold 0.65. Although some images are
in low quality, the proposed model still obtains considerable
detection results.

6) MOBILE DEVICE DETECTION
Jetson TX2 is the fastest, most power-efficient embedded AI
computing device. However, it’s still insufficient compared
with computing capability of computer GPU. Table 5 presents
the performance of all models in Table 3 and Table 4 on TX2.
Faster-RCNN and DSSD contain too many parameters to run

FIGURE 7. Display of good performance for small targets. Left column: SSD results. Middle column: B-Net results.
Right column: FB-Net result. Red circles represent the missing detection of small targets. Pink part is wrong
detection of FB-Net.

VOLUME 6, 2018 68737



J. Li et al.: Real-World Railway Traffic Detection Based on FB-Net

FIGURE 8. Robustness tests for different real-world scenes. (a) Moving train and day. (b) Still train and night. (c) Moving train
and rainy day. (d) Still train and sunny day.

TABLE 5. Speed perfomance of different models on TX2.

on this platform and are out of memory. The test speed of
SSD model with good AP is only 6FPS while FB-Net can
reach 21FPS. The speed difference is of great importance
since their APs are nearly similar. It is worth mentioning
that FB-Net_0.5 can achieve 33FPS. It provides the evidence
that we could reduce the number of channels appropriately to
achieve real-time detection on mobile device.

V. CONCLUSION
In this paper, focusing on real-world railway traffic detection,
we present FB-Network based on a feed-forward convolu-
tional network. In order to boost both effectiveness and effi-
ciency, three novel portions are embedded in FB-Net. Firstly,
we investigate the effectiveness of the depthwise separable

convolutions leading to an efficient model. Secondly, a priori
module, which removesmost negative proposals and provides
initial locations, is designed to guide the search of objects.
Finally, we apply a feature fusion module to fuse adjacent
features together and this enriches semantic information of
former layers. Several experiments on railway traffic dataset
are carried out. And the results show that FB-Net achieves
87.6 % mAP with 82FPS performance on computer. Experi-
ments with mobile device TX2 verify the engineering poten-
tial of FB-Net. In the future, we plan to employ FB-Net to
detect objects in some other specific situations. Besides, it is
worth exploring the use of attention mechanism or inverted
residual structure to further optimize the architecture.

REFERENCES
[1] E. D. Dickmanns and V. Graefe, ‘‘Dynamic monocular machine

vision,’’ Mach. Vis. Appl., vol. 1, no. 4, pp. 223–240, Dec. 1988,
doi: 10.1007/bf01212361.

[2] E. D. Dickmanns and B. D. Mysliwetz, ‘‘Recursive 3-D road and relative
ego-state recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 14,
no. 2, pp. 199–213, Feb. 1992, doi: 10.1109/34.121789.

[3] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, ‘‘Deep
learning for visual understanding: A review,’’ Neurocomputing, vol. 187,
pp. 27–48, Apr. 2016, doi: 10.1016/j.neucom.2015.09.116.

68738 VOLUME 6, 2018



J. Li et al.: Real-World Railway Traffic Detection Based on FB-Net

[4] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, May 2015, doi: 10.1038/nature14539.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017, doi: 10.1145/3065386.

[6] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, ‘‘Scalable object
detection using deep neural networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2014, pp. 2155–2162, doi: 10.1109/cvpr.2014.276.

[7] Q. Geng and Z. Zhou, ‘‘Survey on recent progresses of semantic image
segmentation with CNNs,’’ in Proc. Int. Conf. Virtual Reality Vis. (ICVRV),
Sep. 2016, pp. 158–163, doi: 10.1109/icvrv.2016.34.

[8] P. Viola and M. Jones, ‘‘Rapid object detection using a boosted cascade of
simple features,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., Dec. 2001, p. 1, doi: 10.1109/cvpr.2001.990517.

[9] P. Felzenszwalb, D. McAllester, and D. Ramanan, ‘‘A discriminatively
trained, multiscale, deformable part model,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2008, pp. 1–8,
doi: 10.1109/cvpr.2008.4587597.

[10] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, ‘‘A convolutional
neural network cascade for face detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 5325–5334,
doi: 10.1109/cvpr.2015.7299170.

[11] H. Qin, J. Yan, X. Li, and X. Hu, ‘‘Joint training of cascaded CNN for face
detection,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 3456–3465, doi: 10.1109/cvpr.2016.376.

[12] S. Varadarajan, H.Wang, P. Miller, and H. Zhou, ‘‘Fast convergence of reg-
ularised region-based mixture of Gaussians for dynamic background mod-
elling,’’ Comput. Vis. Image Understand., vol. 136, pp. 45–58, Jul. 2015,
doi: 10.1016/j.cviu.2014.12.004.

[13] R. Feris, R. Bobbitt, S. Pankanti, and M.-T. Sun, ‘‘Efficient 24/7
object detection in surveillance videos,’’ in Proc. 12th IEEE Int.
Conf. Adv. Video Signal Based Surveill. (AVSS), Aug. 2015, pp. 1–6,
doi: 10.1109/avss.2015.7301791.

[14] Z. Zhang, K. Huang, Y. Wang, and M. Li, ‘‘View independent object
classification by exploring scene consistency information for traffic
scene surveillance,’’ Neurocomputing, vol. 99, pp. 250–260, Jan. 2013,
doi: 10.1016/j.neucom.2012.07.008.

[15] Q. Ling, J. Yan, F. Li, and Y. Zhang, ‘‘A background modeling and fore-
ground segmentation approach based on the feedback of moving objects
in traffic surveillance systems,’’ Neurocomputing, vol. 133, pp. 32–45,
Jun. 2014, doi: 10.1016/j.neucom.2013.11.034.

[16] L. Wang, Y. Lu, H. Wang, Y. Zheng, H. Ye, and X. Xue,
‘‘Evolving boxes for fast vehicle detection,’’ in Proc. IEEE
Int. Conf. Multimedia Expo (ICME), Jul. 2017, pp. 1135–1140,
doi: 10.1109/icme.2017.8019461.

[17] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. Lecun. (Dec. 2013). ‘‘Overfeat: Integrated recognition, localiza-
tion and detection using convolutional networks.’’ [Online]. Available:
https://arxiv.org/abs/1312.6229

[18] W. Liu et al., ‘‘SSD: Single shot multibox detector,’’
in Computer Vision—ECCV. Springer, 2016, pp. 21–37,
doi: 10.1007/978-3-319-46448-0_2.

[19] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only
look once: Unified, real-time object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788,
doi: 10.1109/cvpr.2016.91.

[20] J. Redmon and A. Farhadi, ‘‘YOLO9000: Better, faster, stronger,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6517–6525, doi: 10.1109/cvpr.2017.690.

[21] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, ‘‘A unified multi-scale
deep convolutional neural network for fast object detection,’’ in Computer
Vision—ECCV. Springer, 2016, pp. 354–370, doi: 10.1007/978-3-319-
46493-0_22.

[22] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440–1448, doi: 10.1109/iccv.2015.169.

[23] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017,
doi: 10.1109/tpami.2016.2577031.

[24] A. Shrivastava, A. Gupta, and R. Girshick, ‘‘Training region-based
object detectors with online hard example mining,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 761–769,
doi: 10.1109/cvpr.2016.89.

[25] T. Kong, F. Sun, A. Yao, H. Liu, M. Lu, and Y. Chen, ‘‘RON: Reverse
connection with objectness prior networks for object detection,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2017,
pp. 5936–5944, doi: 10.1109/cvpr.2017.557.

[26] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for dense
object detection,’’ inProc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2999–3007, doi: 10.1109/iccv.2017.324.

[27] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg. (2017).
‘‘DSSD: Deconvolutional single shot detector.’’ [Online]. Available:
https://arxiv.org/abs/1701.06659

[28] L. Sifre, ‘‘Rigid-motion scattering for image classification,’’ Ph.D. disser-
tation, 2014.

[29] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. Int. Conf. Mach.
Learn. (JMLR), 2015, pp. 448–456.

[30] J. Jin, A. Dundar, and E. Culurciello, ‘‘Flattened convolutional
neural networks for feedforward acceleration.’’ [Online]. Available:
https://arxiv.org/abs/1412.5474

[31] M. Wang, B. Liu, and H. Foroosh, ‘‘Factorized convolutional neural
networks,’’ in Proc. IEEE Int. Conf. Comput. Vis. Workshops (ICCVW),
Oct. 2017, pp. 545–553, doi: 10.1109/iccvw.2017.71.

[32] A. G. Howard et al. (2017). ‘‘MobileNets: Efficient convolutional
neural networks for mobile vision applications.’’ [Online]. Available:
https://arxiv.org/abs/1704.04861

[33] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional
networks for large-scale image recognition.’’ [Online]. Available:
https://arxiv.org/abs/1409.1556v6

[34] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
‘‘Semantic image segmentation with deep convolutional nets and fully
connected CRFS,’’ Comput. Sci., vol. 40, no. 4, pp. 357–361, 2014.

JUAN LI received theB.S. degree inmeasurement–
control technology and instrumentation from
Tianjin University, Tianjin, China, in 2016. She
is currently pursuing the M.S. degree in measure-
ment technology and instruments with the Key
Laboratory of Precision Opto-mechatronics Tech-
nology of Ministry of Education, Beihang Uni-
versity, Beijing, China. Her current study includes
object detection.

FUQIANG ZHOU received the B.S., M.S., and
Ph.D. degrees in instrument, measurement, and
test technology from Tianjin University, Tianjin,
China, in 1994, 1997, and 2000, respectively.
He joined the School of Automation Science
and Electrical Engineering, Beihang University,
Beijing, China, as a Post-Doctoral Research Fel-
low, in 2000. He is currently a Professor with
the School of Instrumentation Science and Opto-
Electronics Engineering, Beihang University. His

current research interests include computer vision and image processing.

TAO YE received the B.S. and M.S. degrees in
measurement–control technology and instrumen-
tation from the China University of Mining and
Technology, Beijing, China, in 2009 and 2012,
respectively, and the Ph.D. degree in measurement
technology and instrumentsfromthe Key Labora-
tory of Precision Opto-mechatronics Technology
of Ministry of Education, Beihang University,
Beijing, in 2015. He is currently an Engineer with-
the Second Research Institute, China Aerospace

Science and Industry Group. His current research interests include deep
learning and traffic detection.

VOLUME 6, 2018 68739


	INTRODUCTION
	
	
	

	RELATED WORK
	TRAFFIC DETECTION
	OBJECT DETECTION BY CNN

	APPROACHES
	DEPTHWISE -POINTWISE CONVOLUTION
	PRIORI MODULE
	FEATURE FUSION MODULE
	FB-NET ARCHITECTURE

	EXPERIMENTS AND RESULTS
	DATASETS
	DATA AUGMENTATIONS
	PERFORMANCE
	EFFECTIVENESS PERFORMANCE
	EFFICIENCY PERFORMANCE
	COMPARISION WITH THE STATE-OF-THE-ART
	SMALL OBJECT DETECTION
	ROBUSTNESS TESTS
	MOBILE DEVICE DETECTION


	CONCLUSION
	REFERENCES
	Biographies
	JUAN LI
	FUQIANG ZHOU
	TAO YE


