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ABSTRACT Integrated modular avionics (IMA) is one of the most advanced systems whose performance
deeply impact on the security of civil aircraft. In order to enhance the safety and reliability of aircraft,
the health state of the IMA must be estimated accurately. Since IMA is a real-time system, the estimation
algorithm should have fast learning speed to satisfy the real-time requirement. In this paper, an enhanced
deep extreme learning machine is developed to estimate the health states of IMA. First, the enhanced deep
extreme learning machine is built in a novel fashion by using a dropout technique and extreme learning
machine autoencoder. Second, multiple-enhanced deep extreme learning machines with different activation
functions are employed to estimate the health states, simultaneously. Finally, a synthesis strategy is designed
to combine all the results of different enhanced deep extreme learning machines. In such a manner, the robust
and accurate estimation results can be obtained. In order to collect the data under different health states,
a performance degradation model of IMA is built by the intermittent faults. The proposed method is applied
to health state estimation, and the results confirm that the proposed method can present a superior estimation
to the conventional methods.

INDEX TERMS Integrated modular avionics, extreme learning machine, health state, intermittent faults.

I. INTRODUCTION
Integrated modular avionics (IMA) is an imperative system
for airplanes. An Arinc653 based IMA is controlled by a
real-time computer network, on which almost all the avionics
functions of different criticalities are hosted [1]. IMA system
architecture is the main trend of development in the aviation
domain [2]. Since IMA is a highly integrated, partitioned
and shared computing platform, all the hosted functions
are executed successively, according to partition schedul-
ing. This structure can effectively improve the system’s effi-
ciency while reducing resource assignment. The failure of a
flight function may spread to other flight functions. Hence,
the working performance of IMA is crucial to flight security.

IMA is a core system of aircraft and its integration structure
increases system complexity and function correlation, which
makes a big challenge for flight security. In order to guarantee
safety of aircraft and reduce the huge cost due to regular
maintenance, many researches are committed to improve the
ability of IMA by virtue of structural optimization and redun-
dancy design [3], [4]. Nevertheless, quite few studies focus

on the health state estimation of IMA. The failure of IMA
not only greatly affects flight mission, but also causes catas-
trophic accidents and the loss of human lives. Accordingly,
IMA health state must bemonitored and estimated accurately.

Health state estimation can be treated as a typical
pattern recognition problem. Many researches focus on
developing the effective health state estimation methods.
Tamilselvan and Wang [5] applied deep belief network based
classification method to diagnose aircraft engine health state
and electric power transformer health state. Liu et al. [6] used
principal component analysis and fuzzy C-means to capture
features, then, the learned features are fed into support vector
machine to implement health state assessment and remain-
ing useful life prediction. Yang et al. [7] extracted features
from the time domain, frequency domain and time-frequency
domain. They developed a health index and neural network
for estimating and predicting the health states.

Recently, deep learning is wildly used in many fields
due to its excellent feature learning capability [8]. Deep
learning employs a hierarchical structure with unsupervised
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manner for feature extraction [9]. In order to retain as much
information as possible and overcome the drawback of the
conventional feature extraction, deep learning can automat-
ically capture the features from the raw data by virtue of
its attractive characteristic that deep learning can effectively
learn the high-level representations via multiple nonlinear
transformations. In view of the advantages, deep learn-
ing has not only been applied to many frontier fields, but
also evolved many traditional fields, such as prognostics
and health management. Liu et al. [10] applied Gaussian-
Bernoulli deep belief networks for fault detection and diag-
nosis of electronics-rich analog systems. In [11], stacked
denoising autoencoder (SDAE) method was adopted to eval-
uate the health states for signals containing ambient noise
and working condition fluctuations. Li et al. [12] developed
a deep convolution neural network for remaining useful life
estimation.

Despite of the success, deep learning machine still has
some drawbacks. The salient disadvantages are that deep
learning machine will spend a lot of time training the network
and require large memory to store the parameters for adjust-
ing. Since IMA is a real-time system, the estimation method
should satisfy the real-time requirement. The disadvantages
of the conventional deep learning cannot be permitted on a
real-time system. Therefore, a fast and accurate estimation
method should be developed. Two major issues for IMA esti-
mation method should be figured out. Firstly, the estimation
method prefers to use deep learning manner to learn the high-
level feature from the raw data by a direct way, instead of
manual manner, for retaining completed information. Sec-
ondly, the estimation method should have a fast learning
speed to satisfy the real-time requirement.

Extreme learning machine (ELM) was proposed by
Huang [13] in 2006 as a fast and effective machine learning
algorithm. Different from other single hidden layer feedfor-
ward neural networks (SLFN), ELM uses the random feature
mapping to generate the hidden node parameters and the least
square method to determine the output weights. Such revo-
lution greatly alleviates the burden of parameters adjusting
caused by iterative algorithm, and thereby guarantees fast
learning speed [14]. Many researchers focus on improving
the performance of ELM. Incremental ELM and pruned ELM
were developed for amending the number of hidden nodes
of basic ELM [15], [16]. The online sequential ELM was
presented to satisfy the requirement of online testing [17].
In order to enhance the stability, many studies devoted to
selecting the input weights and bias of ELM by optimization
algorithms [18]. Al ELM is an excellent classifier, the results
are heavily dependent on the extracted features.

Inspired by the characteristics of deep learning and ELM,
this paper proposes an enhanced deep extreme learning
machine (EDELM) for health state estimation. For the pur-
pose of inheriting the advantages of deep learning and ELM,
the EDELM is built in a new fashion. The ELM autoencoder
and dropout technique are utilized to enhance the perfor-
mance of the proposedmethod. Furthermore, different activa-

tion functions are employed as the nonlinear transformation
functions for multiple EDELMs to learn the features from
the original signals, simultaneously. After that, a synthesis
strategy is designed to figure out more stable results by inte-
grating the results of the different EDELMs. Finally, an IMA
degradation model is built based on the occurrence of the
intermittent faults. The proposed method is used to estimate
the health state of IMA.

The rest of the paper is organized as follows. The basic
ELM and multiple levels ELM are introduced in section 2.
Section 3 describes the proposed algorithm EDELM, illus-
trates synthesis strategy, and details the general proce-
dure of the proposed method for health state estimation.
Section 4 demonstrates the learning performance of EDELM
by benchmark dataset. An IMA degradation model is built
based on the intermittent faults, and the proposed method is
applied to IMA health state estimation. Section 5 summarizes
the presented research and the future work.

II. RELATED WORK
This section provides a brief review of the related algorithms.
Section 2.1 overviews the general learning process of ELM.
Section 2.2 introduces the ELM autoencoder and the multiple
levels extreme learning machine.

A. EXTREME LEARNING MACHINE
ELM is an important branch of SLFN, in which the hid-
den layer needs not to be tuned [19]. It means that the
input weights and bias can be initialized randomly, thus
the output weight is the only one need to be calcu-
lated. Given a training data set with n instances as S ={
(xi, yi) |xi ∈ RN , yi ∈ RM , i = 1, 2, · · · , n

}
, where xi =

[xi1, xi2, · · · , xiN ] and yi = [yi1, yi2, · · · yiM ] are the input
vector and the target output vector of the ith instance, respec-
tively. N is the number of input attributes, M is the number of
classes. The relationship between the input samples and the
outputs is defined as follows.

yit =
L∑
k

βkt · f

 N∑
j=1

wjk · xij + bk

. (1)

wherewjk refers to the input weight from the jth input node to
the kth hidden neuron; bk is the bias of the hidden layer; βkt
represents the output weight from the kth hidden neuron to the
tth output node; L is number of hidden neurons; f (·) is any
nonconstant piecewise continuous function which satisfies
ELM universal approximation capability theorems [20]. The
hidden layer can be written in matrix form as follows.

H =

 f (w1 · x1 + b1) · · · f (wL · x1 + bL)
...

. . .
...

f (wL · xn + bL) · · · f (wL · xn + bL)


n×L

.

(2)

The target and the output weight can be defined as matrix
Y = [y1, y2, · · · , yn]T and matrix β = [β1, β2, · · · , βL]T ,
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FIGURE 1. The structure of an ELM autoencoder.

respectively. In view of the ELM theory, the goal can be
formulated as the following optimization problem:

minimize JELM =
λ

2
‖β‖2 +

1
2

∥∥∥Y − Ŷ∥∥∥2. (3)

where Ŷ is the practical output of ELM; λ is a coefficient
of regularization term. According to the KarushKuhnTucker
(KKT) theory [21], if the number of instances is larger than
the number of hidden neurons, the output weight can be
calculated by following equation.

β =
(
λI + HTH

)−1
HTY . (4)

Otherwise, it can be formulated as the following equation.

β = HT
(
λI + HHT

)−1
Y . (5)

where I is the identity matrix.

B. MULTIPLE LEVELS EXTREME LEARNING MACHINE
Multiple levels extreme learning machine (ML-ELM) is pro-
posed as a special deep learning, which is constructed by
multiple ELM autoencoders [22]. Resembling the conception
of basic autoencoder, the target of the ELM autoencoder is
set equal to the inputs. The output weight is calculated as the
same as basic ELM, but the difference is that the ELMautoen-
coder adopts the orthogonal random weights and biases to
map the input data to a different or equal dimension space.
In such manner, ELM autoencoder can have more locality
preserving power and a better generalization ability [23]. The
structure of ELM autoencoder is shown in Fig. 1.

As a kind of autoencoder, ELM autoencoder firstly projects
the inputs to feature space, and then reconstructs the inputs by
the analytical output weight β. Multiple ELM autoencoders
are stacked one by one to construct ML-ELM. More con-
cretely, the input samples x are fed into an ELM autoencoder
to train the first output weight β1. Then the transposed matric
βT1 is used for building the first hidden layer to capture
features. After that, the first hidden layer is used to train
the second output weight β2, the second hidden layer is
obtained by βT2 . In the same vein, the hidden layer Hi of cur-
rent ELM autoencoder is regarded as the inputs and target of
the next ELMautoencoder to train the output weightβi+1, and
the hidden layer Hi+1 is organized by βTi+1. Finally, the last
hidden layer Hn and the actual output target Y are used to

determine the last output weight βn+1. The subscript implies
the number of hidden layers. Notice that the hierarchical
features are captured layer by layer in an unsupervised man-
ner and all the parameters are directly determined, without
iterative adjusting.

III. PROPOSED LEARNING ALGORITHM
In this paper, we propose an enhanced deep extreme learning
machine for IMA health state estimation. This method con-
sists of three parts: the conception of the proposed EDELM,
the synthesis strategy design and the procedure of the pro-
posed method for health state estimation.

A. ENHANCED DEEP EXTREME LEARNING MACHINE
The proposed EDELM is a hierarchical neural network, and
the dropout technique is adopted to improve its generalization
capability. The theory demonstrated by Huang et al. [24] is
that the universal approximation capability of ELM cannot be
guaranteed without random projection of the inputs. Since the
ML-ELM has not fully exploited the merits of ELM theory,
the drawback of ML-ELM has been pointed out in [25].

As mentioned above, random projection should be adopted
to map the inputs into feature space. However, in the aspect
of feature expression, the learned features are unstable result-
ing from the random projection. In order to figure out this
dilemma, many papers apply the optimization method to
decide the input weights of ELM. Although such manners
can make the learnt feature stable, it will take time to search
the input weights, which makes the optimization method not
suit the real-time system. In this paper, the ELM autoencoder
is mainly used to decide the weights. The stacked ELM
autoencoder is used to learn the high-level features. Without
iteration, the proposed method can keep the fast learning
speed. The structure of EDELM is shown in Fig. 2.

In Fig. 2, the superscript and the subscript of the variables
denote the number of hidden layers and the number of neu-
rons in every individual layer. As Fig. 2 shows, the procedure
of the proposed method can be broken down into four steps.
The following article details these four steps.

In the first step, the outputs are set equal to the inputs. The
input weightwi and bias bi are randomly generated to map the
inputs x or the learned hidden layer H l

=
[
hl1, h

l
2, · · · , h

l
k

]T
into a random space. Since orthogonal constraint is unrea-
sonable when the number of the input nodes is different from
that of the output ones, input weight and bias are not made
orthogonal [25]. The output weight β i can be calculated as
the same as basic ELM. In this step, the ELM autoencoder
is utilized for determining the output weights which will be
used in the second step.

In the second step, the transposed matrix
(
β i
)T is used as

the input weights to capture the features from a corrupted
input vector x̂ or a corrupted hidden layer Ĥ l . Compared
with using random initialization manner, the input weight(
β i
)T obtained by using ELM autoencoder in step 1 can

help step 2 to learn more stable features. The typical corrup-
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FIGURE 2. The structure of EDELM.

tion methods are masking noise, salt-and-pepper noise and
additive Gaussian noise [26]. In this paper, the masking noise
is adopted to randomly set the elements of x for each sample
to zero under a preset corruption rate. The output weight
should reconstruct the clean input x from the corrupted ver-
sion x̂, which can make the learned output weight robust. For
further improving the performance, the dropout technique is
applied to the hidden layer Z l =

[
zl1, z

l
2, · · · , z

l
k

]T
in current

step. Dropout technique will randomly omit units with a fixed
probability for each hidden unit, and then the output weight
β̂ i should reconstruct the clean input x by using part of the
hidden units.

In the third step, the hidden layer H l
=
[
hl1, h

l
2, · · · , h

l
k

]T
is constructed by the transposed matrix

(
β̂ i
)T

. The hidden

layer H l is set as the input data and target of the first step.
Meanwhile, H l is also the clean data and target in the second
step. The clean input x and learned hidden layers are staked
together to construct the deep feature learning machine. The
clean input x provide the completed information, besides,

the robust weight
(
β̂ i
)T

is working as the link weight, which
can further improve the generalization performance of the
network and enable the proposed method to attain a good
capability for classification.

In the fourth step, the outputs of the third step is regarded
as the input features, and the actual output Y is the final target.
A random input weight v and bias bl+1 are generated. The last
output weight bl+1 can be analytically calculated in the same
way as ELM.

In the first three steps, a hierarchical structure is built,

TABLE 1. General activation functions.

which can extract the high-level features from the input data
by an unsupervisedmanner. In the last step, the learnt features
are fed to a basic ELM to figure out the final result. The
proposed method still has a fast learning speed, since there
is no need to adjust any parameters.

B. THE SYNTHESIS STRATEGY
According to ELM theory, ELM using a nonlinear piece-
wise continuous function as the activation function f (·) can
approximate any continuous target function Y [27]. Neural
network can extract the heterogeneous features by virtue of
the nonlinear activation function. However, the neural net-
works with different activation functions usually show dif-
ferent characteristics and complementary learning behaviors.
In order to overcome the limits of the neural network with
individual activation function and enhance the generaliza-
tion performance, this paper uses the ensemble of multiple
EDELMs with different activation functions. The general
activation functions which suffice for ELM theory are listed
in Table 1.

All these functions can be divided into exponential oper-
ation and non-exponential operation. Sigmoid function and
Gaussian function are the typical exponential operations
which are widely used as the activation functions for almost
all kinds of neural networks. ReLu and its extension function
are developed recently in deep learning field, which outper-
form the traditional functions in some pattern recognition
problems [28], [29]. In order to improve the classification
capability, this article employs different activation functions
to design different EDELMs. Each EDELM will process the
input data independently and offer the classification result.

As the typical classification problem, health state will be
estimated by every EDELM, and the estimated results are
utilized for deciding the final health states by synthesis strat-
egy. Many researches [30], [31] focus on designing synthesis
strategy, among which the majority voting method has been
widely used by virtue of its convenience and feasibility. How-
ever, the main defect of majority voting strategy is that all
the individual models are assigned same weights and treated
equally.

In this paper, an improved majority voting strategy is
designed to combine all the classification results. The
training samples x = [x1, x2, · · · , xn] are used to train
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FIGURE 3. The procedure of health state estimation.

these EDELMs, which employ different activation functions.
The training results and accuracies A = [acc1, acc2, · · · ,
accr ] can be acquired. In order to get reasonable accuracies,
the training process is repeated multiple times S and the
mean values of the accuracies are used to gain the assigned
weights. The superscript r refers to the number of EDELMs.
The subscript denotes that the ith sample belongs to the tth
class. Then, the weight wj of the jth individual result can be
calculated as follows.

wj =
accj∑r
j=1 acc

j ,

 r∑
j=1

wj = 1

. (6)

The testing samples are fed into the trained EDELMs
for health state estimation. The estimated results Y ri =[
yri1, y

r
i2, · · · , y

r
it

]
of each EDELM are collected. The

weighted results, the ith sample belongs to the tth class in
the jth EDELM, are calculated as follows.

Y ji =
[
yji1, y

j
i2, · · · , y

j
it

]
wj. (7)

So, the matrix Yi =
[
Y 1
i ,Y

2
i , · · · ,Y

r
i

]T
is the weighted

result confirming that the ith sample belongs to the tth class
in all the EDELMs. Then, the belonging of the ith sample is
calculated by finding out the maximum among the classes
after summing matrix Yi. The final results of health state
estimation can be defined as follows.

Ŷi = max

 r∑
j=1

[
yji1, y

j
i2, · · · , y

j
it

]
wj

. (8)

C. PROCEDURE FOR HEALTH STATE ESTIMATION
This paper proposes a novel algorithm for health state esti-
mation. The general procedures of health state estimation are
summarized as follows and the flowchart is shown in Fig. 3.

TABLE 2. Basic information of the benchmark datasets.

Step 1: Define the health states in accordance with the
working principles of the estimation object.
Step 2: Collect the original samples under different health

states and divide the original samples into training dataset and
testing dataset.
Step 3: Define the structure of the EDELM, select the

different activation functions for the EDELMs and set the
repeated times S.
Step 4: Use the training dataset to train the EDELMs and

figure out the training accuracies.
Step 5: Update the mean value of the training accuracies

and calculate the assigned weights.
Step 6: Validate the estimation performance of the trained

EDELMs model by testing dataset.
Step 7: Allocate the calculated weights to the estimated

results of EDELMs, and report the final estimated results.

IV. EXPERIMENTS AND RESULTS
In this section, the performance of the proposed method is
validated firstly. Then, an IMA degradation model is built
for collecting the raw data. Finally, the proposed method
is applied to estimating the health state. In section 4.1,
the proposed method is compared with 8 related methods on
the benchmark datasets. In section 4.2, an IMA degradation
model is regarded as a stochastic process and built based
on intermittent faults. The degradation model is realized on
the Simulink platform. In section 4.3, the samples under
different health states are acquired and the proposed method
is applied to IMA health state estimation. In this paper, all the
algorithms are carried out in the Matlab 2013b environment
running on a desktop with CPU 2.80GHz and 4GB RAM.

A. BENCHMARKS
Benchmark datasets employed in this study are Ionosphere
datasets,Wine datasets, Seed datasets, Statlog datasets, Sonar
datasets and Whole datasets. All the benchmark datasets are
collected from UCI Machine Learning Repository [32].The
number of attributes involved in the classification problem,
number of classes and total number of instances of each
dataset are listed in Table 2.

This paper integrates three EDELMs with different activa-
tion functions to enhance the classification performance. Sig-
moid function and Gaussian function are two of the selected
activation functions that belong to exponential operation.
ReLu function is one of the selected activation functions that
belong to non-exponential operation. In order to validate the
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TABLE 3. The structures, dropout rates and instances.

TABLE 4. The training results.

learning performance, the results of the proposed algorithm
are compared with 8 methods. Method 1 is EDELMs without
dropout technique; method 2 is EDELMwith Sigmoid activa-
tion function, method 3 is EDELM with Gaussian activation
function; method 4 is EDELMwith ReLu activation function;
method 5 is SDAE with Sigmoid activation function; method
6 is ELMwith Sigmoid activation function; method 7 is ELM
with Gaussian activation function; method 8 is ELM with
ReLu activation function.

For the purpose of ensuring the learning efficiency of
these algorithms, structure of SDAE is the same as that of
EDELM algorithm. The number of hidden neurons of ELMs
is equal to the number of neurons of the last hidden layer of
EDELM. The number of input layer neurons (the output layer
neurons) of these algorithms is equal to the number of the
input attributions (the target classes). The corruption rate is
0.1. The structures, the dropout rates, the training instances
and testing instances of the proposed method for different
datasets are listed in Table 3. The pretraining epoch and fine-
turning epoch of method 5, SDAE, are set as 200 and 100,
respectively.

In this paper, the individual EDELM is repeated 50 times
to get reasonable accuracies for calculating the assigned
weights. Every algorithm is run 50 times to obtain credi-
ble results. The training accuracies (Acc) and the training
standard deviations (Std) are listed in Table 4. The testing
accuracies and the testing standard deviations are displayed
in Table 5.

TABLE 5. The testing results.

TABLE 6. The training time and testing time.

FIGURE 4. The training accuracies.

The training time and the testing time (in milliseconds) of
the algorithms on these datasets are listed in Table 6.

To make it clear, Fig. 4 shows the training accuracies
on different datasets. Fig. 5 shows the testing accuracies
on different datasets. The training time and testing time are
displayed in Fig. 6 and Fig. 7, respectively.

As the above tables and figures show, the proposed method
has small standard deviations in both training step and testing
step due to that ELM autoencoder and dropout technique are
adopted to determine the stable and robust weights. Although
some algorithms have better training performance in some
cases, the proposedmethod still has a stable and good training
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FIGURE 5. The testing accuracies.

FIGURE 6. The training time.

FIGURE 7. The testing time.

capability for different datasets. Compared with method 2,
method 3 and method 4, the ensemble manner provides a
better generalization performance for the proposed method.
Compared with method 6, method 7 and method 8, the pro-
posed method shows the best classification capability due to
the excellent performance of deep learning in feature extrac-
tion. The testing results further confirm that the proposed
method outperforms other algorithms. The proposed method
not only has outstanding classification ability and stable per-
formance, but also adapts to all kinds of datasets. Although
the SDAE has an excellent testing performance for some
datasets, the training time of SDAE is the longest among all
these algorithms. On the contrary, the ELM theory enables
the proposed method to keep the fast learning speed.

B. IMA DEGRADATION MODEL
This paper focuses on the health state estimation of IMA,
and therefore an IMA degradation model is built. IMA is a
generalized and modular hardware platform, where the sys-
tem functions are realized as segregated software blocks [33].

FIGURE 8. IMA structure.

As a core system of modern airplanes, a scheduling is set
up to allocate the time slices to all the functions. The time
slice is a little longer than the function execution time. To sat-
isfy the real-time requirement, all the functions should be
completed in the allocated time slice. During the fly cycles,
all the functions will be repeatedly executed according to
the defined scheduling. IMA consists of a number of line
replaceable modules, mainly including remote data concen-
trator (RDC), common data network (CDN) and common
computing resource (CCR). Generally, AFDX is used as data
bus standard for CDN, general processor module (GPM) is
the main hardware for function realizing in CCR. The IMA
structure is shown in Fig. 8.

In modern airplane, a health monitoring function is hosted
on IMA to enhance the reliability and safety. The health
monitoring function aims to handle the faults which may
occur during the fly cycle. If the fault can be fixed in time and
the function is still working in a normal condition, the fault
is defined as the intermittent fault. IMA will record the mes-
sages about the intermittent faults (IFs). In this paper, IFs are
regarded as the feature of IMA.

There are many reasons responsible for IFs, for instance,
extreme environment, extreme vibration and electronic
devices degradation. In the field of civil aviation, extreme
working condition is rarely encountered. However, the elec-
tronic devices degradation cannot be neglected. Many
research works have presented that almost all the reasons for
IFs, such as time-dependent dielectric breakdown (TDDB),
hot carrier injection (HCI) and electromigration (EM), are
caused by wearout resulting from extensive use [34]. IFs can
happen in a low frequency at the initial stage, which are iden-
tified as small noise fluctuation. Afterwards, the frequency
and duration increase, IFs start to occur. Finally, IFs will
seriously impact on the system, even can lead to a failure [35].
As a real-time system, IMA must complete the functions in
a limited time. If there is an intermittent fault, the health
monitor function will handle it. Meanwhile, the handling
process will occupy the stipulated time of the error function.
If the function cannot complete in the allocated time due to
the frequent IFs, this condition is defined as failure.

In this paper, an IMA degradation model is built based on
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IFs. As mentioned above, every basic function in IMA will
be assigned a fixed time slice for completing the operation.
The function completion time X (t) consists of original func-
tion execution time and the time delay caused by error han-
dling. Suppose that the performance of IMA is constant in a
fly cycle, the function completion time X (t) can be proved
that it has the following properties in the allocated time
slice. Firstly, it owns stationary increments and independent
increments. Secondly, the initial time X (0) = 0. Thus,
the practical execution time can be depicted using LÃľvy
process. The general LÃľvy process can be formulated as
follows [36].

X (t) = µt + B (t)+
∫
[0,t]×{|x|>1}

xM (ds, dx)

+

∫
[0,t]×{|x|≤1}

x (M − m) (ds, dx). (9)

where µ is called drift parameter, B (t) is Wiener process.∫
[0,t]×{|x|>1} xM (ds, dx) is a Poisson process, where M is
Poisson stochastic measure in R+ × R0, denoting the fre-
quency of jump with scale [s, s+ ds] in the time interval
[x, x + dx];

∫
[0,t]×{|x|≤1} x (M − m) (ds, dx) is a pure jump

martingale, where m (ds, dx) is mean measure of M , which
satisfies

∫ (
x2 ∧ 1

)
v (dx) <∞.

In view of the IMA, the computing power scarcely
changes. Hence, pure jump martingale and drift process can
be discarded. In this paper, the function completion timeX (t)
is defined as follows.

X (t) = µt + B (t)+
N (t)∑
j=0

Wj, N (t) = 0, 1, 2 . . . . (10)

where µt+B (t) denotes the function execution time without
IFs;

∑N (t)
j=0 Wj is a compound Poisson process.Wj is the time

delay caused by the jth error handling; N (t) denotes the total
number of IFs by time t .
As mentioned above, TDDB, HCI and EM which should

be considered in IMA are the typical degradation reasons
for electronic devices. Many researches devote to revealing
the mechanism of TDDB, HCI and EM. The significant
conclusions are summarized in the light of lots of experimen-
tal results. The degradation of electronics caused by TDDB
and HCI can be described by Weibull distribution [37]. The
degradation of electronics caused by EM can be described by
Lognormal distribution [38]. The reliability of the electronic
device in IMA which is effected by single factor can be
calculated as follows.

R (t) = P (X > t) =
∫
∞

t
f (x)dx. (11)

where f (x) is probability density function. Hence, mul-
tiple factors have multiple probability density functions
f1 (x) f2 (x) · · · fn (x) which correspond to multiple reliabil-
ities R1 (t) ,R2 (t) , · · · ,Rn (t). As reliability denotes the
whole life of IMA, a fly cycle, which is a certain time interval,
is used to discretize it in this paper. Therefore, in the certain

FIGURE 9. The simulation flowchart.

time interval, a correlation is obliged to exist between Rji (t)
and the parameter λji (t) of Poisson process N

j
i (t). The super-

script and subscript are the jth time interval and the ith factor,
respectively. The relationship between Rji (t) and parameter
λ
j
i (t) can be defined as follows.

λ
j
i (t) = C ·

√
1

Rji (t)
. (12)

where C is coefficient. The occurrence of IFs in a certain
time interval can be regarded as a homogeneous Poisson
process, although the frequency of IFs is changing over time.
It can be proved that the occurrence of IFs with multiple fac-
tors follows homogeneous Poisson process and its parameter
λj (t) =

∑n
i λ

j
i (t) can be calculated based on the additivity

of Poisson process.
The parameters of the Wiener process and probability den-

sity function should be determined, besides, the IMA degra-
dation model should initialize the time interval and threshold.
This paper adopts Monte Carlo method to simulate the IMA
degradation process. Fig. 9 shows the simulation flowchart.

C. IMA HEALTH STATE ESTIMATION
In this paper, the left fifth GPM of Boeing 787 is simulated.
The left fifth GPM of IMA hosts flight management func-
tion (FMF), thrust management function (TMF) and naviga-
tion display (ND). The simulation is realized by Simulink.
As Fig. 10 shows, RDC provides the flight data for GPM via
AFDX.A scheduling is defined to control execution sequence
of the hosted functions. As the core function, FMF uses the
navigation data base and performance data base to calculate
the flight data, and sends the calculated datasets to TMF and
ND. During the function execution time of FMF, the simu-
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FIGURE 10. The simulation model.

FIGURE 11. The function completion time.

lation model will generate IFs according to Figure 9. In this
simulation, the period of the scheduling is set as 50 millisec-
onds. The execution time of FMF is around 15 milliseconds
and the allocated time slice is set as 20 milliseconds. The
time slices for TMF and ND are 20 milliseconds and 10 mil-
liseconds, respectively. The simulation consists of 12000 fly
cycles and the scheduling will be repeated 100 times in a fly
cycle. Fig. 11 shows the simulated data of IMA degradation
process.

Generally, the whole life of a system can be divided into
four health states which are defined as fully functionality,
degraded functionality, reduced functionality and no func-
tionality. The simulation data are divided into 4 parts depend-
ing on the frequency of the IFs. The first 10862 fly cycles
of simulation data are defined as fully functionality. The
fly cycles from 10863 to 11370 are defined as degraded
functionality. The fly cycles from 11370 to 11727 are defined
as reduced functionality. The last 273 fly cycles are defined
as no functionality.

This paper acquires the last 2000 fly cycles as the raw
data for health state estimation. The raw data are divided
into 1600 sets of training samples and 400 sets of testing
samples. The pertaining epoch and fine-turning epoch of
SDAE are set as 1000 and 500, respectively. The corruption
rates, the dropout rates and the structures of these algorithms
are listed in Table 7.

All the evaluation processes are repeated 50 times. The
training accuracies, training standard deviations, training

TABLE 7. Corruption rates, dropout rates and structures.

TABLE 8. Training and testing results.

FIGURE 12. The estimation results.

FIGURE 13. The estimation time.

time (in milliseconds), testing accuracies, testing standard
deviations and testing time (in milliseconds) are presented
in Table 8.

Fig. 12 shows the training and testing results of IMA health
state estimation. Fig. 13 indicates the training time and testing
time for evaluating the health states of IMA.

As Table 8 and Fig. 12 show, the proposed method has an
outstanding training capability and the best testing accuracy.
Meanwhile, the proposed method has small standard devia-
tion, which illustrates that the proposed method possesses a
stable performance. Fig. 13 indicates that the classical SDEA
is time consuming to train the estimation model, which can
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not suffice for real-time system. Different from the con-
ventional back propagation method, the proposed method
needs not to adjust the parameters, which makes it take an
acceptable time. The basic ELM takes less time than the
proposed method, nevertheless, its estimation performance is
unstable and unattractive. As all the results show, the pro-
posed method can learn hierarchical features from the raw
data immediately, and retain the reliable information based
on the deep structure. ELM has the excellent performance
and fast learning speed while working as a classifier or fea-
ture extractor. All the advantages of the proposed method
analyzed from the results confirm that it is more suitable for
health state estimation of IMA.

V. CONCLUSION
This paper focuses on the health state estimation of IMA.
To enhance the safety and satisfy the real-time requirement of
IMA, a novel deep learning method with fast learning speed
called EDELM is proposed for health state estimation. The
proposedmethod inherits the advantages of deep learning and
ELM. Deep learning can learn the high-level features from
the raw data directly, and ELM algorithm can guarantee a
fast learning speed for the deep structure. Firstly, EDELM
applies ELM autoencoder and dropout technique to deter-
mine weights between the adjacent layers for further learning
the deep features. Then, EDELM uses the learnt features to
figure out the estimation results by a basic ELM. Finally, this
paper takes advantage of the ensemble of multiple EDELMs
with different activation functions to improve the general-
ization performance. A synthesis strategy is designed for
combining the estimation results of the EDELMs.

The performance of the proposed method is compared
with the existing methods on the benchmark datasets firstly.
Secondly, the IMA degradation is regarded as a stochastic
process. The degradation model is built based on the intermit-
tent faults and the simulation datasets under different health
states are collected. Thirdly, the proposed method is applied
to IMA health state estimation. The results confirm that the
proposed method can capture the features automatically and
retain more useful information than manual feature extrac-
tion. Compared with other methods, the proposed method is
more robust and more accurate. Since the proposed method
adopts the theory of ELM, it spends a little time for health
state estimation, which enables the proposed method to suit
to real-time system. In the future, the research should focus
on the remaining useful life prediction.
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