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ABSTRACT To provide travel recommendations and planning in the intelligent transportation system (ITS),
we must have the ability to find similar travel patterns among users based on their real mobility traces.
To measure the similarity of user’s travel behavior, various methods have been proposed, but they usually
only rely on a single attributes-related metric. In comparison, studies of the semantic relationships between
travel attributes remain scarce, making it difficult to construct a complete mobility pattern that reveals the
relevance between users or groups. In this paper, we introduced the heterogeneous information network
to build a weighted travel network with spatial–temporal GPS trajectories. The heterogeneous network
allows clustering the similar users based on the connections between different attributes instead of attribute
values. On this basis, we defined the meta-paths for travel and used each meta-path to formulate a similarity
measure over users by improving existing PathSim (Meta-path-based similarity measures) and SimRank.
Next, we aggregated different similarities, where each meta-path was automatically weighted by the learning
algorithm to make predictions. The experimental results showed that the recall of the similarity measurement
algorithm using multiple meta-paths has improved, which yielded better results than the performance of the
algorithm using a single meta-path. The performance of the improved PathSim model under different scales
of data was 15% higher than the performance of the improved SimRank model in terms of precision and 21%
higher in terms of recall. Due to the area under curve values, our experiments also show that a meta-path
combination is more effective than the state-of-the-art approaches and can be efficiently computed.

INDEX TERMS Travel, similarity, heterogeneous information network, meta-path.

I. INTRODUCTION
To improve both traffic and travel, it is necessary for ITS to
address the challenges presented by the increasing number of
motor vehicles, while at the same time satisfying increasing
demands for more and better traveling [1]. ITS has proven
to be valuable tools for sorting through a large number of
available transportation services while traveling. To promote
the use of ITS for making individual trips easier and more
enjoyable, much attention has been paid to understanding
and analyzing similarities in travel patterns among users [2].
In the case of two individuals with similar travel patterns,
we might conclude quickly that recommending nearby ser-
vices along similar routes would be straight-forward as well
as highly desirable [3]. For example, city planners can closely
monitor such patterns and compare mobile usage, identify
regularities across regions and user groups [4]. A local, daily
ridesharing within the city can also be promoted by recogniz-
ing matching rides along similar patterns [5].

Generally, individuals on a trip will generate a considerable
quantity of spatial data with time markers that can describe
his or her travel behavior, such as taxi data [6], mobile phone
data [7], and social media data [8]. To exploit travel attributes,
e.g., to improve travel time, pick-up location, and transport
mode, travel services generally use GPS trace data and check-
in data from social media. By analyzing the check-in records
for a specified location, the hot spots of an area and their
popularity can be determined. In addition, users can give
consent for services to obtain their personal preferences and
frequent access patterns by mining their check-in histories.

However, existing methods focus on mining and fus-
ing only typical attributes from GPS or social media
data [9], [10]. For this reason, it is difficult to character-
ize complex travel attributes and the associations between
them, such as when a user buys fuel, uses a car mainte-
nance service, or arrives at a local university by car or pub-
lic transportation. Also, to measure the relevance of two
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users, neighborhood-based measures such as common neigh-
bors and Jaccard’s coefficient were proposed. Other graph-
theoretic measures that are based on random walks between
objects include Personalized PageRank and SimRank. These
measures do not consider distinct relationships connecting
users with their attributes, that form a heterogeneous infor-
mation network(HIN) [11]. The rich semantics encoded in
different types of relations can then bring more information.
We have illustrated an example of similarity measurement in
carpooling. To optimize the use of private cars, each car must
carry more people. Usually, existing approaches can match
drivers and riders by assessing the similarity of their origin-
destination (O-D) [12], or by determining demographic infor-
mation (e.g., gender and estimated income) and individual
interests [13]. These approaches have not yet taken into
account the relationships between different objects in travel,
such as a user and his travel time, that would enable extrac-
tion of significant semantic knowledge for ride-matching. In
contrast, by constructing a HIN, users are connected with
each other through social links, and they are also connected
with a set of locations, timestamps, and text contents through
online activities. We can thus mine various relationships,
and extract the user’s attributes for measuring the similarity
between drivers and riders. For example, by understanding
the relationship between users in terms of location (e.g.,
staying at the same places), an application could find user
preferences for various spots, and determine the departure
time and pick-up locations. Also, the ability to identify a
passenger’s friends, or friends of friends, by mining a relation
between users via activities (e.g., shopping after work) would
be helpful when grouping similar passengers for sharing a
trip.

In this study, we presented a heterogeneous travel net-
work based on a Geolife dataset that contained 182 travers
and covered a period of five years. Then we defined three
types of travel meta-paths to illustrate the special relations
between users. Using this approach, the similarity measure-
ment became a matter of classifying users with the different
meta-paths quantified. Our contributions are as follows:

To the best of our knowledge, this is the first work to use
structured HIN for measuring travel behavior. We described
the semantic relationships between users by constructing
a heterogeneous travel network and mining multiple meta-
paths for travel. This approach is different from prior work
that searched for similar users by grouping users according
to attributes recognized, instead of the relations among users.

Considering that different top-kmeasureswould be derived
from different relations, we are able to combine such mea-
sures automatically. To estimate how a singlemeta-path influ-
ences the effectiveness of the combination, we employed a
machine learning technique that allowed for qualifying the
weight of each meta-path.

For labeling the similarity among users in the dataset,
we trained a model to estimate the variance of occurrences
between positive and negative samples, instead of manually
labeling a small subset of data. We fitted a polynomial of

degree 3 by 10-fold cross validation using all data and deter-
mined a relevance score at two levels: 0-non relevant and 1-
relevant.

The remaining sections of this paper are presented as
follows. In Section II, we present an analysis of exist-
ing research related to the similarity of travel behavior.
In Section III, we propose a heterogeneous travel network and
describe how the meta-path is constructed. Next, Section IV
puts forward our similarity calculation method based on the
meta-path. Section V describes the evaluation of the experi-
ment and its results, and Section VI concludes the paper.

II. RELATED WORK
A. TRAVEL BEHAVIOR ANALYSIS
Similarity measurement for travel behavior focuses mainly
on travel behavior analysis, mobility pattern recognition, and
pattern-based similarity calculations. Travel behavior char-
acterizes user’s attributes in different scenarios (e.g., com-
muting, family travel). Kang et al. [14] explored the pur-
poses of household travels. By recognizing travel patterns,
including travel modes and times, they constructed a model
for selecting a destination based on routes and schedules.
They could then apply this model to determine potential
travel locations and forecast daily household travel plans in
spatiotemporal terms. Pan et al. [15] introduced the bounded-
rationality individual decision-making model in the selection
of travels. They also compared and improved the relative util-
ity model and random regret model. Based on these models,
with contexts taken into account, the bounded rationality in
determining travel attributes was revealed, and the model’s
superior performance in obtaining the bounded rationality in
individuals’ travel selection behavior was verified.

1) TRAJECTORY PATTERN MINING
Other researchers considered the travel attributes of individu-
als or groups, which was helpful for constructing a trajectory
model that could describe the pattern of past travel [16], [17]
and plan future travel [18], [19]. When users’ daily trajectory
data are collected by a GPS receiving device or social media,
the amount of spatial-temporal data is massive, and activi-
ties, such as staying at a special location, can be captured.
In a study by Lian et al., [20] a point of interest (POI)-
based matrix was used to make travel recommendations
through the decomposition of the weighted matrix. In the
decomposition model, the vectors of the activity area and
POI-influenced area were used to improve the connections
between users and their points of interest. Moreover, spatial
clustering was accomplished by using the two-dimensional
kernel, which solved the sparsity problem of the POI matrix
and improved recommendation performance. However, a
classification was rough in the decomposition model, which
affected the accuracy of the inferred information categories.
He et al. [21] inferred frequent routes by mining GPS trajec-
tories and using a frequency-related quality of service (QoS)-
constrained method for mining the frequent paths. Next, they
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employed a route mining strategy to optimize the candidate
similar paths. Based on this work, users were provided with
carpooling recommendations. Furthermore, spatial-temporal
pattern mining was proposed to incorporate both regions of
interest and travel time between movements [22].

2) TRAVEL TIME ESTIMATION
Travel time is an important factor that influences travel
behavior. Some methods first estimate the travel time of
individual road segments and then sum up the travel times
of the road segments belonging to a path [23]. However,
it is difficult to explicitly model the complex factors for
crossing two road segments, e.g., intersections, and traffic
lights [24]. Other researches try to find more optimal con-
catenations of road segments to estimate the travel time of a
path, for example using a joint probability model [25], or a
dynamic Bayesian network [26]. However, these methods
do not consider the interactions between the length of sub-
path and the number of trajectories passing in travel time
estimation.

3) USER PREFERENCES MODELING
Shang et al. [27] observed that the spatial similarity on tra-
jectories itself is not sufficient to capture the relationship
between users due to the more specific preferences of users.
Most existing approaches directly predict a user’s preference
on a location [28]. Personalized Trajectory Matching (PTM)
took into account the significance of each sample point in a
trajectory. Different weights have been assigned to sample
points based on the user’s preferences [29]. Zhou et al. [30]
split the check-in records to construct a spatial-temporal
trajectory dataset. Then they formally incorporated multi-
ple context information of trajectory data into the proposed
model, including user-level, trajectory-level, location-level,
and temporal contexts. User-level contexts characterize user
preference such as shopaholic or music fan in an embedding
vector. By learning the representation of user preference,
Zhou et al. implemented the location recommendation and
social link prediction. Liu et al. [31] provided insights
into users’ preference transitions over location categories.
By splitting a user’s check-in history into several non-
overlapping sequences, the probability denoting a user would
follow a given preference transition can be predicted to rec-
ommend a set of POIs.

B. SIMILARITY MEASUREMENT
The calculation of similarity depends on the travel attributes
selected when seeking patterns, and the results determine the
performance of the patterns. Trasarti et al. [32] mined users’
public mobility profiles and adopted a mobility modeling
algorithm to measure the similarity of user travel behaviors,
using a path similarity function. This method reduced the
spatial-temporal complexity of the data, and it was robust.
However, only a small number of data points were used and
validated, so non-deterministic situations in the real world
were not well considered and simulated. Elbery et al. [17]

proposed a recommendation system that used the individual’s
check-in history and homepage locations to act as a user.
In addition, a fast Fourier transform (FFT) was employed to
represent the user’s check-in data, and to measure the simi-
larity between users. In this system, the weighted hierarchical
clustering method was adopted to estimate user locations,
and to further recommend carpool services. Although the
preprocessing of data was not required when using FFT, only
ten coefficients of FFT were determined by the system, so the
similarity needed to be improved.

In existing models, usually, symbol-based schemes have
been used for estimating similarity using GPS data or social
media data. It is difficult to characterize the associations
between users by treating travel attributes as the symbols,
also we cannot mine the similarity among users according
to the potential relationships connecting users with their
attributes. The study of HINs started in 2010 for analyzing
the implied connections between different objects. HINs have
been used widely in data mining for similarity measurement,
clustering, classification, link prediction, and recommenda-
tion. Sun et al. [33] defined the symmetric meta-path to find
the different linkage paths among the same type of objects in
a network. PathSim was then proposed to measure the meta-
path-based similarity. PathSim was useful for both homoge-
neous and heterogeneous networks, and it also described the
semantic meanings behind paths. However, the performance
of different meta-paths should be tested to provide accurate
similarity measures in real systems. Heterogeneous collec-
tive link prediction (HCLP) [34] allows for predicting the
relationships among multiple types of links using the meta-
path in Bioinformatics. Yet, choosing appropriate meta-paths
automatically should be improved and validated in different
application scenarios. SemRec [35] improves the meta-paths
for describing the uncertain weight of each link in the recom-
mender system. It helps depict the path semantics to predict
the rating scores of users on items.

Because of the comprehensive information integration and
rich semantic information provided by a HIN, it promises
to generate better similarity measurement [35]. However,
the attribute values on links, and the wide use of only one
meta-path in a HIN may fail to capture accurately the seman-
tic relations among objects [36]. For example, a ‘‘user-user’’
meta-path denotes the links between users, and a ‘‘user-
location-user’’ meta-path implies that the same spot was vis-
ited by two users. Each meta-path may suggest similar users
in terms of different travel attributes that lead to a difference
of similarity measurement. Thus, in practice, it is necessary to
make a meta-path combination and define the effect of each
path to optimize the measurement.

In our study, as distinct from thework by Sun andHan [37],
we focused on the relationships among travel attributes.
We adopted the HIN theory and defined three types of
semantic travel relationships based on the HIN nodes. Also,
we carried out a supervised learning process to constitute a
multiple meta-path, instead of using the linear combination
of several meta-paths with the predefined parameters, such as
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Path Constrained Random Walk (PCRW), for analyzing the
similar travel behaviors.

III. MODELING TRAVEL BEHAVIOR BASED ON
MULTIPLE ATTRIBUTES
A. ANALYSIS OF TRAVEL BEHAVIOR ON TRAJECTORY DATA
Users’ GPS trace data usually contain both geographical
location and temporal information. Consequently, temporal
attributes, POI (points of interest), and other types of infor-
mation such as transport mode are required for the description
of travel behavior. Through the flexible use of these detailed
travel attributes, an individual’s travel can be described accu-
rately, and various travel mobility patterns can be recognized
and classified.

For this study, first, we preprocessed the GPS points,
which included recognizing the stay points using k-means
clustering, and modeling via space-time series. To deter-
mine users’ preferences exactly, we needed to know their
service-visiting behaviors. Therefore, each point was marked
to indicate which service was accessed. This procedure
allowed us to mine the positive correlation between service-
visiting behaviors and GPS trajectories. According to our
previous work [38], the users’ generated travel trajectories
(travel points) were labeledwith the user’s identification (ID),
the locations visited during a certain time of day, and the
available services corresponding to the locations.

The dataset for the quantitative analyses was provided from
Geolife and comprised the POI data covering 60% of the area
in Beijing, including 385,734 data records. We selected only
the 21 most representative types of services, including edu-
cational training, shopping, and cultural media. Stay points
included more than 4000 locations in Beijing, such as the Old
Summer Palace, Tsinghua University, National Stadium, and
the ‘‘Branch bank’’ building, as shown in Figure 1. In terms
of travel time, a day (24 hours) was divided into four periods
based on consistent intervals: 00:00:00–07:00:00, 07:00:00–
12:00:00, 12:00:00–19:00:00, and 19:00:00–24:00:00.

FIGURE 1. Illustration of some of the stay points in Beijing, where there
are four stay points marked in red.

B. PROBLEM DEFINITION
Considering the diversity and complexity of travel attributes,
we adopted the theory of HINs to construct a travel network
based on the trajectories by serializing travel points. In such a
network, nodes and relations are of different types. This work
utilizes HIN as defined in Definition 1, which is similar to the
definition by Sun et al. [33]
Definition 1: HIN A HIN is defined as a triad G =<

V ,E, A >, with an object typemapping function∅ : V → A
and a link type mapping functionψ : E → R, where each v ∈
V denotes a set of nodes with different properties, including
different objects. Each link e ∈ E describes the multiple
semantic relationships between different objects. A denotes
the set of node types, representing the types to which the
objects belong.

When the types of objects |A| > 1 or the types of
relations |R| > 1, the network is a heterogeneous infor-
mation network; otherwise, it is a homogeneous information
network.

As we know, conventional HIN do not consider the
attribute values on links. However, this travel network can
contain attribute values on links. Concretely, the users can
visit a place several times during a day. The times that a user
appeared at a certain place can be used as an indicator on the
link between user and location which user has visited in the
past. For this study, we allowed for the existence of complex
relationships between multiple types of nodes, and the HIN
was expanded. Users’ stay points, the services users accessed
at stay points, and travel times were chosen as the node types
of the model.

The model’s edge E = {Eul ∪ Els ∪ Elt } was constructed
between node types. Eul connects users and the stay points,
indicating that users stayed in the identified place; Els con-
nects stay points and services, indicating the categories of
services utilized by users at stay points; and Elt denotes the
time periods during which users remained at stay points. In
addition, we allowed weighting in the heterogeneous travel
network to quantify the degree of association between dif-
ferent node types. The conceptual diagram of the proposed
model is shown in Figure 2.
Definition 2 Heterogeneous travel network. A heteroge-

neous travel network is defined by a six-tuple TN =<

U , L, S, T , E, W >.
(1) U = {u1, u2, . . . , un} denotes the set of types of travel

users, and ui denotes user nodes;
(2) L = {l1, l2, . . . , lm} denotes the set of types of stay

points;
(3) S = {s1, s2, . . . , s21} denotes the set of types of services

accessed at stay points;
(4) T = {t1, t2, t3, t4} denotes the set of travel time series;
(5) E = {Eul ∪Els ∪Elt } denotes the set of all edges in the

network. Eul = {e(u, l)|u ∈ U , l ∈ L} describes the semantic
relationship between users and locations, i.e., users stay at
places. Els = {e(l, s)|l ∈ L, s ∈ S} contains the semantic
relationship between locations and service types, i.e., users
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FIGURE 2. Example of HIN Schema. U: users; L: locations; S: category of
service; T: time period. ‘‘Stay’’ means that a user stays a location,
‘‘provide’’ means that a user chooses the service categories at a certain
location and ‘‘within’’ represents that a user travels within a time period.

stay at places and use provided services. Elt = {e(l, t)|l ∈
L, t ∈ T } describes the semantic relationship between time
periods and locations, i.e., users stay within time periods.

(6)W = {Wul∪Wls∪Wlt } denotes theweighted set of edges
in the model. Wul = ω(e(u, l)) denotes the times that users
appeared at a certain stay point; Wls = ω(e (l, s)) denotes
the number of categories of service provided at stay points;
Wlt = ω(e (l, t)) denotes the number of stay points that were
visited within a time period.

The applicability of a heterogeneous travel network can be
described by the following example. Mike lives in Beijing,
and his travels in a day are as follows. He eats breakfast in
SAGA Mall at 07:40, arrives at work at Tsinghua University
at 09:00, and watches a movie in SAGA Mall at 19:30.
By using a heterogeneous travel network, the following nodes
and sets of edges can be constructed:

U = {Mike} , L = {′SAGA Mall′,′ Tsinghua University′},

S = {′meal′, ′entertainment′,′ work′},

T =
{′
(00 : 00 : 00, 07 : 00 : 00)′ ,

′ (07 : 00 : 00, 12 : 00 : 00)′ ,
′ (12 : 00 : 00, 19 : 00 : 00)′ ,
′ (19 : 00 : 00, 24 : 00 : 00)′

}
Eul =

{
e
(
Mike, ′SAGA Mall′

)
,

e
(
Mike, ′Tsinghua University′

) }
.

Wul = {2, 1} indicates that Mike stayed twice at SAGA
Mall and once at Tsinghua University, respectively.

Els =
{
e
(
′SAGA Mall ′, ′meal ′

)
,

e
(
′Tsinghua University′, ′work ′

)
,

e
(
′SAGA Mall′, ′shopping′

) }
.

Wls = {1, 1, 1} indicates that there is one type of services
Mike performed each time when he stayed at a certain place.

Elt

=

{
e
(
′SAGA Mall′, ′(07 : 00 : 00, 12 : 00 : 00)′

)
,

e
(
′Tsinghua University′, ′(07 : 00 : 00, 12 : 00 : 00)′

)
,

e
(
′SAGA Mall′, ′(19 : 00 : 00, 24 : 00 : 00)′

) }
Wlt = {1, 1, 1} indicates that Mike stayed twice at t2, and

once at t4. Furthermore, by connecting users with different
attributes, the network was extended to mine the symmetric
travel behavior and enable users to be fitted into the same
class as those having similar travel attributes. Figure 3 pro-
vides an illustrated example. In the network, users are con-
nected with a set of locations, timestamps, and text contents
through online service-visiting activities. For instance, TOM
and William stayed at the same place (i.e., ‘hostel’) and used
different provided services (i.e., ‘accommodation’, ‘food ser-
vice’) within the time period from 08:00 hrs. (8 a.m.) to
19:00 hrs. (7 p.m.).

FIGURE 3. User connection graphs under different travel attributes.

After computing the relatedness between users on which
similarities are to be performed based on the heterogeneous
travel network, we perform a weighted combination of those
similarities. Then similarity search is performed to label the
unlabeled user-pair. The problem of similarity search for
travel behavior is formally defined in Definition 3.

Definition 3 Similarity search. Given a heterogeneous
travel network TN =< U ,L, S,T ,E,W > and a subset of
user-pairs H = (ui, uj) ⊂ U × U , predict the class (i.e.,
similar or dissimilar) labels for the unlabeled pairs (U ×U −
H ). H is labeled with values C = {Cij|0 ≤ Cij ≤ 1} denoting
each pair is similar or not.

IV. SIMILARITY MEASUREMENT BASED ON A
META-PATH
A. META-PATH FOR TRAVEL
Ameta-path [11] was proposed to describe the paths that exist
between the different nodes in the HINs. In the context of
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traffic and travel, the travel attributes of different users had
specific semantic connections. For example, user A arrived
at an identified location and used a certain type of service,
and user B arrived at the same location as well. The former’s
semantics could be described by a triad <travel user, stay
point, accessed service>. Similarly, a triad< travel user, stay
point, travel user> could be used to indicate that user A and
user B arrived at the same location. Therefore, by searching
the node sets in the heterogeneous travel network, the seman-
tic paths of different lengths and different types between
nodes could be constructed to obtain a meta-path. Firstly,
we formally define the meta-graph in HIN for travel.
Definition 4 Travel relationships. According to the types

of nodes in the heterogeneous travel network, three types of
travel relationships R are defined: (1) users stay at a certain
place (a location-based travel relationship) represented byR1;
(2) users access a certain type of service during their stay (a
service-based travel relationship) represented by R2; (3) users
stay at a certain place within a certain time period (a time-
based travel relationship) represented by R3.
Definition 5: Travel meta-path. In the heterogeneous travel

network TN , a travel meta-path is described asmeta−Path =

{U
R1
→ L, U

R1
→ L

R2
→ S,U

R1
→ L

R3
→ T }. R

denotes the travel relationship between nodes, wherein R =
{R◦1R2, R

◦

1R3} defines the composite relations between node
types.

For example, the location-based travel relationship can be
described using the travel meta-path U

stay
→ L, or short as

UL(U is the start type and L is the end type). Hence the
similarity search based on UL will give the user-pairs with
the same stay points.
Definition 6: Instance of travel meta-path. For meta-path

meta − Path(mP), if real path p = {vi, vi+1 ∈ U ∪ L ∪ S ∪

T |vi
Rj
→ vi+1} exists and the relationship between node vi

and vi+1 is Rj for any i, the path p is called an instance of a
travel meta-path. The set of all p that satisfies the condition
is called the set of instances of the meta-path.

In Figure 4, we identify the heterogeneous relationships
between each user-pair. Specifically, two users are similar
in travel if they have visited the same stay points, or used
the same services, or traveled at the same time. These rela-
tions can be characterized using three types of meta-paths.

FIGURE 4. A heterogeneous travel network schema with meta-path. The
edges in red denote two users have stayed at the same place, ones in
yellow imply two users have chosen the same service categories at the
same location, ones in green indicate two users have visited the same
location within the same time period..

By associating different users via meta-paths, we can build a
heterogeneous travel network that may capture the essential
semantics of the real world.

B. SIMILARITY MEASURES BASED ON
TRAVEL META-PATH
The similarity of travel behaviors can be determined by
characterizing the travel meta-paths. In existing methods,
the similarity is captured based mainly on each of a few char-
acteristics and fused into a single representation. In this study,
the stay points, service categories, and travel times were
chosen as travel attributes, and ameta-path-basedmethodwas
applied to the similarity measures by satisfying the attribute
value constraint

1) SELECTION OF A META-PATH
In our work, we searched for similar users based on their
travel relationships (e.g., spatial-temporal trajectories and
service-visiting behaviors). According to the results of the
study by Sun et al. [11], the correlation between users will
be significantly reduced whenever the number of nodes con-
tained in a meta-path is greater than 4. Moreover, we assumed
that if two users have similar travel relationships, there must

be a symmetric meta-path(e.g., ‘U
stay
→ L

stay−1
→ U ’, ‘ U

stay
→

L
provide
→ S

provide−1
→ L

stay−1
→ U ’, ‘U

stay
→ L

within
→ T

within−1
→

L
stay−1
→ U ’, as shown in Table 1). Therefore, only meta-paths

with fewer than 4 nodes were constructed in this study.

TABLE 1. Definition of meta-path based on travel relationship.

2) QUANTITATIVE ANALYSIS FOR A META-PATH
Based on the selected meta-paths, we used the PathSim [33]
method formeasuring similarity by calculating the eigenvalue
of the meta-path between users, as shown in (1). PathSim
enables finding similar objects in the network when they are
connected and share the same field.

PW x,y (mp)

=
2×

∣∣ {Px−y : Px−y ∈ mP}∣∣
| {Px−x : Px−x ∈ mP}| +

∣∣ {Py−y : Py−y ∈ mP}∣∣
=

2× (i× j : i, j ∈ Wul (Eul (x,L) ∩ Eul (y,L)))∑i2
: i ∈ Wul (x,L)+

∑j2
: j ∈ Wul (y,L)

(1)
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where Px−y denotes the number of meta-paths between
user x and user y; Px−x and Py−y denote the number of
meta-paths that connect user x and user y with themselves,
separately; Eul(x,L) and Eul (y,L)(L ∈{‘University’,‘Park’,
‘Gym’}) denote the set of meta-paths for user x and user y to
reach a particular location L; and Wul (x,L) and Wul(y,L)
denote their corresponding weights. Eul (x,L) ∩ Eul (y,L)
denotes the set of meta-paths for user x and user y to reach
the same location. i and j represent the times of the visits of
user x and user y to the particular locations, respectively.

We need to measure the relatedness between same-typed
objects i.e., source and target object type of a meta-path
would be the same. In this case, we measure the relatedness
between users. An example is given in Figure 5. Following
the meta-path U → L → U (abbreviated as ULU), we com-
pute the relatedness between users Tom and William. The
weight on each path represents the number of times that a
user arrives at a known location in a day. According to (1),
PW TOM , William (ULU) =

2×(2×8)
(5×5+2×2)+(2×2+8×8) = 0.330.

The SimRank [39] method was also applied to estimate
similarity by iteratively propagating similarity to neighbors
until convergence (no similarity changes), as shown in (2).
SimRank is improved over PageRank, and provides the sim-
ilarity measurement based on network structure, with the
intuition that two nodes are similar if nodes’ in-neighbors are
similar.

PWx,y(mp)k+1

=


1 x = y

0.8×

∑
h∈I (x),l∈I (y) PWh,l(mp)k

|I (x)| |I (y)|
x 6= y

(2)

where I (x) and I (y) denote the set of users x and y reach-
ing particular locations. k denotes the number of iterations.
According to Figure 5, I (Tom) = {University,Gym} and
I (William) = {Park,Gym}. Therefore,

PW TOM ,William (ULU) = 0.2× (PWUniversity,Park (LUL)

+PWUniversity,Gym (LUL)

+PWPark,Gym (LUL)+ 0.2

Furthermore,

PWUniversity,Gym (LUL) = 0.4× PW TOM ,William (ULU)

+ 0.4

PWUniversity,Park (LUL) = 0.8× PW TOM ,William (ULU) ,

and

PWPark,Gym (LUL) = 0.4× PW TOM ,William (ULU)+ 0.4

The iteration of PW TOM ,William (ULU) continues until con-
vergence.

3) MUTI-PATH SIMTRAVEL (MPST) ALGORITHM
The similarity between users in travel relationships can
be determined by quantifying the instances of travel

FIGURE 5. An example of the heterogeneous travel network model.

meta-paths between any two users. First, the simi-
larity between user x and user y in mobility was
determined by sample training. Then, according to
the constructed symmetrical meta-path set mPsym =

{ULU ,ULSLU ,ULTLU}, we applied the quantitative anal-
ysis proposed in Section Section IV.B to determine an eigen-
vector on each metal-path in a weighted combination, where
Eα =

(
PW x,y (ULU) ,PW x,y (ULSLU) ,PW x,y (ULTLU)

)
.

Based on the logistic regression, the prediction results of
similarity between two users are shown in Equation. (3):

Y =
1

(1+ e−Eα 2)
(3)

where vector Y denotes the similarity between user x and
user y in the training set. Wemarked its value as 0 to represent
the dissimilarity of users x and y, otherwise Y = 1. Mean-
while, based on the training set, a supervised learning method
was adopted to generate the weight vector 2 of the meta-
path eigenvector. On this basis, different users in the testing
set were selected for the prediction of similarity, namely
vector Y.

Algorithm 1 below describes the MPST algorithm. The
meta-paths were selected by rows 1–9 of the algorithm from
the set of users with labeled similarity, and either (1) or (2)
was used to calculate their eigenvector in a meta-path combi-
nation. To facilitate the comparison, the algorithm that used
(1) for calculating the characteristics was named MPS, and
the algorithm that used (2) was named MSR. The gener-
ated eigenvector was used as input for the machine learning
process by row 10 of the algorithm to obtain the weight 2
through data training. The set of users whose similarity was to
be measured was selected from the testing set by rows 12–23.
The eigenvector was calculated following the above method,
and then, in the case of weight 2, the similarity vector was
obtained, which can determine the similar users.

V. PERFORMANCE ANALYSIS
A. EXPERIMENTAL SETUP
We used the Geolife trace dataset provided by Microsoft
Research Asia, which contains 182 users and covers a period
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Algorithm 1 MPST Algorithm
Input : Heterogeneous travel network TN ; symmetrical

meta-path set mPsym; users’ training set
Utrain = {< ui, uj >, (i, j = 1, 2, âĂęn,m)};
element number K; the similarity vector Strain
of Utrain; users’ testing set
Utest = {< uh, ul >, (h, l = 1, 2, âĂęn,m)},
weight 2.

Output: The similarity vector Stest of Utest .
1 foreach < ui, uj >∈ (Utrain) do
2 k = 0;
3 foreach Pui−uj ∈ mPsym do
4 PW ui,uj

(
Pui−uj

)
:= 0;

5 foreach p ∈ getInstandPatSet
(
Pui−uj

)
do

6 PW ui,uj (p);
7 end
8 α[k ++] := PW ui,uj (p);
9 end
10 2∗ := argmax

∑
{Strain ·2α − ln(1+ eα2)};

11 end
12 foreach < uh, ul >∈ (Utest ) do
13 k = 0;
14 foreach Puh−ul ∈ mPsym do
15 PW uh,ul

(
Puh−ul

)
:= 0;

16 foreach p ∈ getInstandPatSet
(
Puh−ul

)
do

17 PW uh,ul (p);
18 end
19 α[k ++] := PW uh,ul (p);
20 end
21 Stest := eα2

∗

/(eα2
∗

+ 1);
22 end
23 Return Stest .

of five years. We extracted 3,891 stay points and then per-
formed operations such as data cleansing and normalization
to obtain the required spatial-temporal trajectories.

The cosine similarity was used for labeling the relevance
of all user-pairs in the dataset. If the result was greater
than, or equal to a threshold, it was treated as to be positive
samples (i.e., each user-pair can be clustering), while the
remaining ones were negative. For optimizing the thresholds
for ground truth labels, we performed 10-fold cross valida-
tion. After we obtain groups of positive and negative samples,
we defined a vector xn = x(1), . . . , x(l), . . . , x

(L)
from all of

the L candidate thresholds. The similarity rating for xn based
on a polynomial filter was computed as follows:

ŷn
(
xn,w

)
= w0 +

M∑
j=1

wj(xn)
j
, (4)

where M is the degree of the polynomial, w0 is the global
bias, w ∈ RM , representing the weights for the thresholds.
The parameters can be learned by minimizing the mean

square loss for each degree:

minxn,w,M
L∑
n=1

(ŷ n
(
xn,w

)
− yn)2, (5)

where yn is an observed similarity rating, estimated by the
variance of occurrences between positive and negative sam-
ples. Figure 6(a) shown that error loss of polynomial under
different degrees. We fitted a polynomial of degree 3 using
all data, and minimized the testing error and identifying the
optimal threshold as 0.75, as shown in Figure 6(b).

FIGURE 6. Illustration of 10-fold cross validation for minimizing the
testing error and identifying the threshold for labelling as 0.75. (a) Error
of polynomial of different degrees in Kth validation. Testing error of a
polynomial of degree 3 on all dataset.

We could label the similarity of any two users, and get
1000 such pairs, containing 182 different persons. We con-
sider these as our dataset, and label their ground truth,
i.e., {< ui, uj >h, Simh }

1000
h=1 , where < ·, · > is the dot

product of two users in the samples, and Simh ∈ {1, 0} is
the label.

We randomly split the above dataset into training and
test ones by the ratio 8:2, i.e., 80% of the whole data are
used for training and the remaining 20% are for testing. The
labeled pairs are then used as the input to a logistic regression
classifier for determining the corresponding weight of each
meta-path. Finally, we selected the users in the testing set to
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evaluate the performance of (1) and (2) with a single travel
meta-path and MPST, separately.

B. PERFORMANCE EVALUATION OF THE
PROPOSED METHOD
We evaluated the similarity measures performance of differ-
ent methods using the indicators shown in Table 2.

Training data under different scales were used for the train-
ing and testing of the heterogeneous travel network. Precision
and recall over all classes were computed by first summing
TP, FP and FN over all partitions in testing data for each class
separately, then applying the formulas shown in Table 2 for
precision, recall and AUC on the sums, as argued in. Equa-
tion (1) from the PathSim method was used to analyze the
precision and recall of an individual travel meta-path (i.e.,
‘ULU’, ‘ULSLU’, and ‘ULTLU’) and multiple meta-path
combinations under different data scales (Figure 7). Because
of the large number of positions (i.e., 3,891 stay points)
used in the experiment, for the ‘ULU’ meta-path, users could
visit only some of the locations in one day. Consequently,
the data describing users’ location-based travel relationships
showed sparsity and uneven distribution. For this reason,
it was difficult for the travel network based on the ‘ULU’
meta-path to provide accurate similarity measurements, and
the performancewas the worst among all themeta-path-based
models. In contrast, because there were 21 sample of service
types and 4 sample of travel times in the dataset, the spar-
sity of data for the ‘ULSLU’ and ‘ULTLU’ meta-path-based
models was improved, and their performance were improved
as well.

TABLE 2. Performance indicators of similarity measures.

However, in the travel network constructed based on the
‘ULTLU’ meta-path, a large number of paths were produced.
The effect was that the proportion of meta-paths with similar
time-based travel relationships was lowered, enabling this
meta-path-based measures to perform between the other two
meta-path-based measures. As shown in Figure 7, the MPST-
based measures performed better than other methods in terms
of precision and recall. This is consistent with our expec-
tation because the fusion of multiple single paths and the
use of machine learning allow to train and adaptively adjust
the influence of meta-paths on the determination of travel
behavior. Here, MPST limits the results to those persons who
utilized the same services at the same period of time, which
cannot be represented by ‘ULTLU’ or ‘ULTLU’ alone.

FIGURE 7. Comparison of a single travel meta-path and a meta-path
combination in measuring similarity using PathSim. (a) Precision
comparison. (b) Recall comparison.

Equation (2) from the SimRank method was also used to
analyze the precision and recall under different scales of data,
as shown in Figure 8. The MPST-based measures performed
better than single meta-path-based measures on the whole.
When the ‘ULTLU ’ meta-path was used for similarity mea-
surement, for the SimRankmethod the similarity needed to be
calculated iteratively based on the number of paths between
the users and travel time periods. A large number of paths
allowed for improving the user similarity. However, when cal-
culating the similarity between different time periods, the in-
degree node data set for different time periods increased
drastically, resulting in a decrease in similarity and a poorer
performance compared to other meta-path-based measures.
Thus, the meta-path ‘ULSLU ’ and ‘ULU ’ yield better results
than the meta-path ‘ULTLU ’ on all the SimRank-based mea-
sures. Also, the scales of in-degree node data generated using
meta-paths ‘ULSLU ’ and ‘ULU ’ remained essentially the
same when iterated at different times. Thus, the relative per-
formance was basically similar.

To analyze the performance of the PathSim and SimRank
method in similarity analysis, multiple travel meta-paths were
chosen to build the heterogeneous travel network. On this
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FIGURE 8. Comparison of a single travel meta-path and a meta-path
combination in measuring similarity using SimRank. (a) Precision
comparison. (b) Recall comparison.

basis, the performances of MPS and MSR in precision and
recall were compared. As shown in Figure 9, the method
of using PathSim to quantify meta-path characteristics and
assess similarity had a better performance than the method
using SimRank. The performance of the improved PathSim
was 15% higher than the performance of the improved Sim-
Rank in terms of precision and 21% higher in terms of recall.
Specifically, due to the sparsity of data, the eigenvector on
each metal-path with MSR was iteratively calculated to be
rather small, where some of those were very close to 0.
Therefore, the recall value fluctuated widely as the number of
samples increased. For example, the value when the number
of sample was equal 1000 was higher than that was equal 500.
But, the eigenvector with MPS was stable for each metal-
path, which were affected little by the sparsity. It is well
able for MPS to learn the semantic relations between users
well, the recall value thus improved as the number of samples
increased. This outcome was the result of SimRank’s focus
on analyzing models based on a bipartite graph structure,
and determining the similarity between objects having strong
connections in different sets by multiple iterations. However,
SimRank cannot describe the semantic relationships between

FIGURE 9. Influence of different similarity measures. (a) Precision
comparison. (b) Recall comparison. (c) Comparisons of ROC and AUC.

objects, so it provided lower accuracy in calculating similarity
than PathSim.

C. COMPARISONS OF MPST AND OTHER
SIMILARITY MEASURES
In this set of experiments, based on the sample set described
in Section V.A, we compare MPST with two other typical
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TABLE 3. My caption.

measurement methods, i.e., the BSCSE-based [40] and
the PCRW-based measures. For each similarity measures,
we plotted the ROC (receiver operating characteristic) Curve.
We then compute the area under the curve, i.e., AUC. The
experiment results are shown in Table 3. Observe that MPST-
based measures using PathSim (i.e., MPS) further outper-
form these alternative methods. Although the PCRW-based
measures is also a linear combination of single meta-paths,
its AUC value, is just 0.2606, and is worse than MPST(i.e,
0.7423). This is because MPST combines the meta-paths by
learning the influences of a single meta-path (i.e., ‘ULSLU’,
‘ULU’ or ‘ULTLU’) on the effectiveness, instead of vary-
ing the parameter values indicating each path’ influence.
The BSCSE-based measures is better than using PCRW as
it can express the common nodes in the meta-paths. How-
ever, it needs to produce a new meta-structure each time
along comes to another object (e.g., travel mode) taken into
consideration. The PCRW and BSCSE-based measures also
cannot be directly applied to weighted meta-paths proposed
in MPST, because they do not consider the attribute value
constraint on relations.

D. DISCUSSION
The information gathered from GPS trajectories, in general,
is used to analyze the travel attributes [41]. Choosing the fine-
grained information markers (e.g., semantics in the spatial
layout) are especially useful in capturing latent relationships
among users. We model the behavior similarities along two
distinct makers: semantic properties of the locations and tem-
poral duration of the trajectory. The similarities are computed
by applying appropriate meta-paths to extract the key relevant
attributes.

From the results on the datasets, we can understand that
meta-path based similarity measures on travel attributes and
classification on target users is effective. However, viewing
the semantic contained by ameta-path as the sole determinant
of similarity [42] may miss the real relationships or falsely
identify the non-existent groups. Therefore, we should lever-
age the semantics of various meta-paths simultaneously for
effective results.

The proposed method, MPST-based measures demon-
strates that leveraging a weighted combination of various
semantics in the travel network can improve the accuracy
on similarity search. How to tune this weight is challenging
because it would lead to the limited flexibility in processing
real data. Some researchers conducted the online survey [43]
on potential target users to assign the weights to different
meta-paths. Such a survey needs incorporate a larger number

of features into their user interfaces, at greater cost with
respect to implementation time and code. Due to the problem
of similarity search with multiple meta-paths, we plan a
diffusion by learning the weight to guarantee the maximal
consistency of different semantic and effective information
fusion.

VI. CONCLUSIONS
For measuring the similarity of travel behavior, we described
the semantic relationships between users by constructing a
heterogeneous travel network and introducing multiple meta-
paths for travel. We validated the similarity measures based
on PathSim and SimRank. With a meta-path combination,
we employed the logistic regression to learn the weight of
each meta-path automatically, and further predicted the sim-
ilarity between different users.

In this experimental study, we first performed the neces-
sary operations such as data cleansing and normalization.
Then we evaluated three types of travel meta-paths and
MPST algorithms separately under different scales of data.
Comprehensive experiments on real sample collections from
Microsoft Research Asia were conducted to compare various
similarity measurement approaches. Promising experimental
results demonstrated that our proposed method outperforms
other alternative measurement techniques. The reason behind
this is that in MPST we use a more expressive representation
for the data, and build the connection between the higher-
level semantics of the data and the final results.

In this study, only the stay points, travel times, and cat-
egories of chosen services were considered in the proposed
heterogeneous travel network. However, more attributes can
be introduced into future studies to construct a travel network
that describes more complicated relationships. When more
objects and their relationships with each other are taken
into consideration, such as the series relationship between
locations, the accuracy of the similarity calculation will be
improved. However, a challenge of the measures is its high
computational cost because of the relevance computation
for many object pairs over a HIN. It is important to ensure
that these similarity measures can be efficiently evaluated in
future work. Currently, only two similarity measurements for
link-based structures were selected for performance analysis:
PathSim and SimRank. In future studies, the heterogeneous
travel networkwill be validated, and the performances of sim-
ilarity measurements without the meta-paths, e.g., personal-
ized PageRank will be evaluated to illustrate the universality
of the proposed travel network.
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