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ABSTRACT Bearing vibration signals under nonstationary conditions exhibits time-varying instantaneous
frequency (IF) feature, resulting in difficulty in fault characteristic frequency identification. Order track-
ing (OT) is one of the most prevalent techniques to remove the influence of speed fluctuation. However,
it produces different spectrums guided by different IFs, which hinders the fault diagnosis. Generalized
demodulation (GD) is another effective method newly proposed to process nonstationary signals. Never-
theless, in the demodulation operation, all phase functions of target frequency components must be required.
In fact, it is hard to detect one consistent IF to guide OT, and even harder to estimate all IFs to facilitate GD
without tachometer. As such, a novel method is proposed, which can pinpoint all frequency components of
interest guided by only one IF, and the result spectrum does not change with the variation of references,
i.e., arbitrary IF extracted from the signal can guide the reconfiguration. First, the Hilbert transform is
applied to bearing signal to highlight the impulsive components and obtain the envelope signal. Second,
the Chirplet path pursuit is adopted to extract one IF from the envelope. Then, the concentration of frequency
and time (ConceFT) algorithm is exploited to generate the time–frequency representation (TFR) with sharp
time–frequency ridges. Next, the ConceFT-based TFR is reconfigured guided by the extracted IF. Finally,
the reconfigured TFR is mapped to the 2-D representation, yielding time–frequency reconfiguration order
spectrum. The performance is validated by both simulated and experimental data.

INDEX TERMS Rolling bearing, order spectrum, nonstationary condition, fault diagnosis, time-frequency
reconfiguration.

NOMENCLATURE
AM Amplitude modulation
ConceFT Concentration of frequency and time
CPP Chirplet path pursuit
EMD Empirical mode decomposition
FCC Fault characteristic coefficient
FCF Fault characteristic frequency
FM Frequency modulation
GD Generalized demodulation
IDMM Instantaneous dominant meshing multiple
IF Instantaneous frequency
LSSVM Least square support vector machine
MMSDE Multi-scale symbolic dynamic entropy
mRMR Minimum redundancy maximum relevance

MST Multitaper synchrosqueezing transform
OT Order tracking
ST Synchrosqueezing transform
TF Time-frequency
TFR Time-frequency representation
TFRO Time-frequency reconfiguration order
WT Wavelet transform

I. INTRODUCTION
Rolling bearings as elemental components of rotating
machinery are vulnerable to fault due to the tough run-
ning environment, such as high rotating speed, heavy yet
unpredictable load, and high temperature [1], [2]. A simple
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local fault on the bearing would result in excessive vibration
levels or breakdowns of rotating machinery. Therefore, the
bearing fault diagnosis has drawn increasing attention owing
to its high importance in preventing severe equipment damage
and unscheduled downtime.

The condition of the rotating machinery can be detected
from acoustic emission [3], thermal [4], oil debris [5], [6], and
vibration signal [7], [8]. Among them, the vibration signal
is one of the most popular tools to diagnose the rotating
machinery. Based on the vibration signal, model-based tech-
niques [9], [10], classification methods [11]–[13] and fault
characteristics extraction methods [14], [15] have made sig-
nificant contribution to themachinery fault diagnosis. Among
those methods, fault characteristics extraction methods lie
at the foot of all techniques. For example, Li et al. [9]
employed Wavelet transform (WT) to deal with the coupled
fault characteristics of gear pair and applied Autoregressive
model to cope with the gear faults. Zhou et al. [10] applied
shift-invariant dictionary to extract the bearing fault charac-
teristic and then utilized Markov model to recognize the fault
type. Li et al. [11] utilized multi-scale symbolic dynamic
entropy (MMSDE) and minimum redundancy maximum rel-
evance (mRMR) to identify the fault characteristics of plan-
etary gearboxes and then applied least square support vector
machine (LSSVM) to complete the fault type classification.
These works have contributed a lot to the fault diagnosis.
Bearing fault diagnosis under nonstationary conditions is still
a challenge in real applications. In this paper, we focus on
the fundamental fault characteristic extraction technique of
rolling bearing.

Identifying fault characteristic frequency (FCF) is one
direct and effective approach to monitoring the bearing [16].
In the Fourier spectrum of raw signal, there are complex
sidebands around the resonance frequency according to the
modulation feature of bearing vibration and convolution
property. Besides the complexity of the spectrum, the ran-
dom slip further hinders the effectiveness of detecting FCF
from the frequency representation of raw signal. Amplitude
demodulation can effectively pinpoint the FCF, because it
avoids the sidebands and highlights the amplitude of impul-
sive components. The methods, such as empirical mode
decomposition (EMD) based algorithms [17], [18], spectral
kurtosis [19], [20], and singular spectrum analysis [21] are
developed, which facilitates the envelope analysis. However,
the time-varying rotating speed will lead to spectrum smear-
ing, because the energy of FCF or its harmonics is distributed
in a certain frequency range, rather than concentrates on a
constant frequency value.

Order tracking (OT) is one of the most effective techniques
to deal with the spectrum smearing [22]–[27]. The essence of
OT lies in resampling the time domain signals equi-angularly
guided by the rotating frequency, without considering the
magnitude of waveform, i.e., the time-varying trajectories of
instantaneous characteristic frequency components are con-
verted into lines parallel to time axis on the time-frequency
representation (TFR). Cheng et al. [23] utilized OT to

resample the product functions obtained by local mean
decomposition to extract the gear fault features. Li et al. [24]
combined OT with sparse decomposition to diagnose the
complex planetary gearbox faults under nonstationary condi-
tions. Yang et al. [25] employed OT to resample the bearing
vibration signals and then applied constrained independent
component analysis to deal with the angular domain signal.
In the process of interpolation, the rotating frequency as
a trigger reference is indispensable. In fact, the reference
rotating speed is not always available from the tachome-
ter/encoder, due to the limitations of cost and installation
location.

Algorithms used to estimate the instantaneous fre-
quency (IF) from vibration signal are developed to avoid the
auxiliary equipment. Due to the fact that the gear meshing
frequency is easily observable, they are effectively employed
in gearbox diagnosis. Wang et al. [28] extracted the gear
instantaneous dominant meshing multiple (IDMM) to pro-
vide a reference for adaptive noise cancellation algorithm and
Zhao et al. [29] applied the estimated IDMM to resample
the gearbox vibration signals. He et al. [30] utilized energy
centrobaric correction technique to detect the instantaneous
meshing frequency, and then adopted OT to extract gearbox
faults. Zhao et al. [31] proposed a tacho-less OT technique,
in which the Chirplet-based approach is introduced to esti-
mate a harmonic of rotating frequency, to detect the gear
fault feature. From bearing signals, it is almost impossible
to extract rotating frequency directly. Compared with the
rotating speed, FCF can be more easily detected from the
envelope. However, according to the principle of OT, it pro-
duces different spectra guided by different IFs. Therefore,
it is necessary to estimate the rotating speed by the extracted
frequency. Nevertheless, the rotating speed is hard to be
calculated by the extracted FCF, because the ratio of FCF to
rotating speed cannot be determined, if the fault location is
uncertain.Moreover, it is hard to claim the detected frequency
must be the fundamental frequency, rather than its harmon-
ics [32]. During different periods of operation, the amplitude
of its harmonics may be higher. Hence, the ratio of the
extracted IF to the rotating speed is not always determined,
which results in difficulty in estimating the rotating speed to
guide the OT.

Generalized demodulation (GD) is another newly devel-
oped algorithm to detect the nonstationary signal [33].
It can convert the time-variant IF into constant one, and
then wavelet analysis is applied to the transformed compo-
nent to improve the time-frequency (TF) resolution. Li and
Liang [34] proposed generalized synchrosqueezing transform
to avoid the diffusions in the time and frequency dimen-
sions. Feng et al. [35] further developed iterative generalized
synchrosqueezing transform for improving the TFR reso-
lution of multi-component signal. Inspired by the property
of GD, it has been extended to frequency spectrum analy-
sis. Zhaoet al. [36] utilized GD to reveal the FCF of bear-
ing guided by the measured rotating speed. Feng et al. [37]
presented an order spectrum analysis based on iterative
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generalized demodulation for planetary gearbox fault detec-
tion. However, before the application of GD, the phase func-
tions of all target frequency components must be detected.
In [36], only mono-component is demodulated referring to
the measured rotating speed. Reference [37] estimated the
IFs by fitting the observable gear meshing frequency. But
it is hard to detect all IFs of bearing vibration signals to
calculate the phase functions. Although there are proportional
relationships between the FCF and its corresponding rotating
frequency, the ratios of the FCFs caused by different parts to
the rotating speed are unequal, which hinders the estimation
of the other components. Therefore, without the rotating
speed serving as a reference, it is difficult to demodulate all
the target characteristic frequencies by GD algorithm.

In general, the time-varying feature of bearing signals is
always removed in the time domain, no matter by OT or GD.
However, this highly relies on the reference IF. OT produces
different order spectrums referring to different IFs and it is
hard to estimate the rotating frequency by the detected IF.
Using GD to detect all target frequency components requires
all phase functions, but the phase functions are difficult to
determine without the measured speed. In fact, the time-
varying behavior is manifested fully in the TFR of the enve-
lope, although the characteristic frequency components with
low amplitude magnitude are often overwhelmed by noise.
As such, we attempt to remove the time-varying behavior in
the TF domain.

In this paper, a simple yet flexible method is proposed
to reveal the frequency contents of bearing signal under
time-varying rotating speed. It is implemented by the TF
reconfiguration with one IF as a trigger reference. To avoid
the installation of tachometer/encoder, an ideal IF is extracted
from bearing signal by exploiting the merits of the Chirplet
path pursuit (CPP) algorithm [38]. Due to the low correla-
tions between chirplet functions and noise, CPP is robust to
noise. Moreover, any prior knowledge including the phase
and amplitude is not required in the detection operation. Con-
centration of frequency and time (ConceFT) [39] can provide
a fine TFR with sharp TF ridges by locally ‘squeezing’ the
TF distribution. More importantly, it can suppress the spu-
rious TF distribution caused by noise, thus achieving strong
robustness to noise. The novelty of the proposed method is
that it removes the spectrum smearing in the ConceFT-based
TFR domain.

Themethod is detailed as follows. First, the envelope signal
is obtained by applying the Hilbert transform to the signal
to highlight the impulsive components. Second, one IF is
extracted from the envelope using CPP. Then, the TFR of
the envelope with sharp TF ridges is obtained by ConceFT.
Next, the ConceFT-based TFR is reconfigured guided by
the extracted IF. Finally, the time-frequency reconfiguration
order (TFRO) spectrum is obtained by mapping the reconfig-
ured TFR to 2-D representation. Based on the TFRO spec-
trum, the fault pattern is identified.

Hereafter, this paper is organized as follows. In Section
II, the background knowledge is introduced. In Section III,

the ConceFT-based TFRO spectrum in bearing fault detec-
tion is proposed. In Section IV, the method is illustrated
via simulated signals. In Section V, the method is further
validated by experimental signal. The conclusions are drawn
in Section VI.

II. BACKGROUND KNOWLEDGE
A. THE MODULATION CHARACTERISTICS
OF BEARING SIGNALS
To pinpoint the fault feature, it is necessary to revisit the
modulation characteristics of the bearing vibration signal.
In general, if a local fault occurs to a rolling bearing, a series
of impulses is generated by the collision between the defec-
tive point and its matching ball. The repetition frequency of
impulses is called FCF [40]. Under a certain rotating speed,
the value of FCF is only determined by fault location and
geometric parameters of the bearing.

Rolling bearing signals exhibit amplitude modula-
tion (AM) and frequency modulation (FM) features. The
frequency spectra of raw signals consist of intricate sidebands
around the resonance frequency because of the modulations
and the convolution property, thus making it difficult to detect
FCF from the sideband spacing. Amplitude demodulation
highlights the impulsive component. However, the obtained
spectrum will be blurred under time-varying speed. Under
constant rotating speed, as is shown in Fig. 1 (a), clear
TF ridges of characteristic frequency components, whose
trajectories are parallel to time axis, appear on the envelope
TFR plane. Correspondingly, prominent peaks are revealed
in the envelope spectrum. When the speed fluctuates, as is

FIGURE 1. (a) Envelope TFR under constant rotating speed, (b) envelope
TFR under time-varying rotating speed.
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shown in Fig. 1 (b), the IF trends change following the speed
variation profile (i.e., the energy of characteristic frequency
is distributed in a certain frequency range, rather than concen-
trating on a constant frequency value). Therefore, no obvious
peak is revealed in the envelope frequency representation.

B. THE SIGNAL PROCESSING METHODS FOR
TIME-VARYING BEARING SIGNALS
In this section, the commonly used methods, OT and GD,
especially their principles and drawbacks for processing
time-varying bearing signals, are introduced.

FIGURE 2. Observations of OT illustrated with an example:
(a) the principle of resampling, including the raw impulse series x(t)
(in blue), the integral curves θ1(t) (in purple) and θ2(t) (in red),
the impulse series x1(ω) and x2(ω) in angular domain guided respectively
by fr and ffcf, (b) and (c) are the order spectra of x2(ω) and x1(ω)
respectively, (d) the envelope spectrum of x(t).

OT converts time-varying frequency components of bear-
ing vibration signals to constant ones guided by the syn-
chronous rotating frequency. For a bearing signal x(t) (shown
in Fig. 2 (a)) under increasing rotating frequency fr(t),
the envelope spectrum of x(t)is plotted in Fig. 2 (d). In this
figure, no prominent peak is revealed. Guided by the rotating
speed, the resampled signal x1(ω) is obtained by interpolating
x(t) based on the rotated angle θ1(t) = 2π

∫
fr(t)d(t). From

the order spectrum of x1(ω), illustrated in Fig. 2 (c), it can be
observed that some prominent peaks are revealed at the order
value 2 and its multiples. This indicates OT can remove the
spectrum smearing effect caused by speed fluctuation, and
then identify the fault pattern.

According to the definition of OT,O = f /fr(O is the order,
f is the frequency of time domain signal, fr is rotating speed),
arbitrary IF proportional to the rotating speed can be applied
to guide the resampling. The angular domain signal x2(ω)
is obtained by resampling x(t) guided by FCF (the integral
function θ2(t) = 2π

∫
ffcf(t)d(t) is plotted in Fig. 2 (a)).

In the corresponding order spectrum (Fig. 2 (b)), though some
peaks are revealed, the values of those orders have changed.
Therefore, guided by different IFs, the obtained order spectra
are different. To accurately localize the fault, it is necessary
to estimate the rotating speed, if the rotating speed cannot
be measured. However, as mentioned before, it is hard to

calculate the rotating speed by the IF, due to the uncertain
ratio of the IF to the corresponding rotating frequency.

GD is another effective method that can map the
time-varying IF to constant component. To illustrate this
method, a simple multi-component signal x(t) is generated.

x(t) =
N∑
i=1

Ai sin[2π
∫
fi(t)td(t)] (1)

f (t) = −4.5t6 + 46t4 − 189t2 + 167.2t + 18.2 (2)

where Ai represents the amplitude, fi(t) is the IF of the signal,
N = 3. The signal x(t) can be regarded as a signal composed
by the IF f1(t) = f (t), its second harmonic f2(t) and third
harmonic f3(t).

FIGURE 3. The illustration of GD: (a) waveform of signal x(t), (b) IF f1(t),
(c) TFR of x(t), (d) frequency spectrum of x(t), (e) and (g) are the TFRs of
demodulated signals guided by v1(t) and v2(t) respectively, (f) and (h) are
the frequency spectra of demodulated signals guided by v1(t) and v2(t)
respectively.

Fig. 3 (a) and (b) show the waveform of x(t) and
the fundamental frequency f (t)respectively. The short time
Fourier transform (STFT) based TFR and the frequency
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spectrum of x(t) are plotted in Fig. 3 (c) and (d) respec-
tively. It can be observed that there is no obvious peak in
the frequency spectrum. The demodulated signal y1(t) =
x(t) exp[−j2πv1(t)] is constructed based on the phase func-
tion v1(t) =

∫
[f1(t)− f0]d(t). Fig. 3 (e) shows the TFR

of y1(t). The trajectory of f1(t) is mapped into a line
parallel to the time axis. Correspondingly, as Fig. 3 (f)
shows, f1(t) is revealed in frequency spectrum. Similarly,
f2(t) can be mapped to a constant frequency guided by
v2(t) =

∫
[f2(t)− f0]d(t). The TFR and the frequency spec-

trum of the corresponding demodulated signal are shown
in Fig. 3 (g) and (h). Therefore, based on a given phase func-
tion, only one time-varying frequency component can be
demodulated to a constant frequency.

However, it is difficult to detect all frequency components.
As mentioned before, there are proportional relationships
among the FCF, rotating frequency as well as their harmonics.
However, the ratios of the FCFs caused by different parts to
the rotating speed are unequal, which hinders the estimation
of the other components. In addition, it is hard to claim that
the detected frequency is the fundamental frequency, not its
harmonics. Therefore, the application of GD is essentially
subject to the phase function estimation.

III. CONCEFT-BASED TFRO SPECTRUM
Both OT and GD remove the smearing effect by mapping the
time-varying frequency components to instant ones guided
by a certain IF. Inspired by this idea, a simple yet flexible
ConceFT-based TFRO approach is proposed in this section.
Compared to OT and GD, the method can reveal the fre-
quency contents guided by only one arbitrary IF detected
from the nonstationary signal.

A. EXTRACTION OF IF USING CPP
For a nonstationary vibration signal of bearing, in theory,
the time-varying behavior is reflected in one arbitrary IF.
Therefore, we exploit the robustness of the CPP to noise to
detect one successive IF from the envelope. Given a bearing
signal x(t), the amplitude of the characteristic frequency is
highlighted by the envelope demodulation. Then, the CPP is
used to detect one IF by joining a series of chirplet atoms in
a dictionary defined by

fa,b,I (t) = |I |−1/2 exp[−i(aµt2/2+ bµt)]LI (t) (3)

where I is the dynamic interval, I = [kT2−j, (k + 1)T2−j],
j is the scale factor, j = 0, 1, · · · , log2 N − 1, T is the
total time, k = 0, 1, · · · , 2j−1, aµ and bµ are the slope and
offset parameters respectively. LI (t) is a rectangular window
function, if t ∈ I , LI (t) = 1, if t /∈ I , LI (t) = 0. I−1/2 is
normalization factor, resulting in

∥∥fa,b,I (t)∥∥L2 = 1 (‖·‖ is the
Euclidean norm).

According to (3), the IF of chirplet atom can be calculated
aµt + bµ. The CPP is implemented by finding a best way to
linking the atoms together piece by piece to appropriate the IF
of a signal. The selecting chirplet atoms group should bemost

relevant to y(t). It is satisfied by the maximum coefficient

βI = max
I

〈
y(t), fa,b,I (t)

〉
(4)

where 〈·〉 represents the inner product. Then the component
represented by βI can be calculated

d(t) = |βI | exp[−i(at2 + bt)+ 6 βI ]LI (t) (5)

If 5 = {P1,P2, · · · ,PM } is a set of all possible paths to
approach y(t), the joining path Pm

∣∣m=1,2,··· ,M covering the
time span L satisfies

d(t) = arg max
m=1,2,··· ,M

‖dm(t)‖2 (6)

where ‖·‖ represents the Euclidean norm, the connecting path
of dm(t) isPm. The IF of the signal can be estimated by joining
the liner frequencies of chirplet atoms in the path in order.

B. TFR USING CONCEFT
To achieve an order spectrum of high quality, a fine TFR
is necessary. To date, various TF analysis methods have
been developed. However, the conventional methods suf-
fer from their inherent limitations [41]. For example, linear
TFRs [42], [43], such as STFT andWT, are limited to Heisen-
berg uncertainty principle and cannot achieve high resolu-
tion in time and frequency scales simultaneously. Bilinear
TFRs [44], [45], such as Cohen andWigner-Ville distribution,
are subject to interference terms among frequency compo-
nents in the TF domain.

To improve the TF resolution, Daubechies et al. [46] pro-
posed synchrosqueezing transform (ST). It produces a better
TF resolution by squeezing the TFR in a proper scale range,

thus removing the blur in the scale/frequency domain.
However, the performance of synchrosqueezing degrades
when the signals with strong noise are processed, because
the noise obscures the concentration of true frequency com-
ponents. To strengthen the robustness to noise, recently,
Daubechies et al. [39] further proposed ConceFT, which can
effectively suppress the spurious distribution of noise and
then achieve a high quality TFR. Therefore, we conduct
ConceFT to obtain a TFR with sharp TF ridges of bearing
signal.

The WT of the signal y(t) can be given by

Wy(a, b)=
〈
y(t), ψa,b(t)

〉
=

1
√
a

∫
+∞

−∞

y(t)ψ∗(
t − b
a

)dt (7)

where a is the scale, b is the time offset, ψ(t) is the selected
wavelet, ∗ denotes complex conjugate operation. If y(t) =
cos(ωt), (7) can be recast as

Wy =

√
a

2π

∫
+∞

−∞

_y(ξ )
_

ψ
∗

(aξ ) exp(ibξ )d(ξ )

=
A
√
a

4π

_

ψ
∗

(aω) exp(ibω) (8)

If the energy of
_

ψ(ξ ) is concentrated around the frequency
ξ = ω0, Wy(a, b) will be concentrated around a = ω0/ω
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on the time-scale plane. However, the Wy(a, b) will be dis-
tributed around the horizontal line a = ω0/ω. Although
Wy(a, b) is distributed around a, the oscillatory behavior of
Wy(a, b) in b points to the original frequency ω, not subject
to the value of a.
Therefore, the IF ω(a, b) at any location (a, b) for which

Wy(a, b) 6= 0 can be computed by

ω(a, b) =
−j

Wy(a, b)
∂Wy(a, b)

∂b
(9)

To condense the blur along the scale, according to
ω(a, b)→ (b, ωy(a, b)), the time-scale plane is transferred to
the TF plane. The ST is performed to reassign the time-scale
plane to TF plane

STy(ωl, b) =
1
1ω

∑
ak

Wy(ak , b)a
−3/2
k (1a)k (10)

where ak is the kth discrete scale value, with (1a)k = ak −
ak−1, ωl is the lth center frequency, 1ω = ωl − ωl−1.
In the ST based TFR, the dominant component usually

has the similar TF structure. However, the noise varies from
reference wavelet to reference wavelet, because WT is a con-
volution with a wavelet. Inspired by the property, multitaper
synchrosqueezing transform (MST) is developed.

MST (ω, b) =
1
I

I∑
i=1

ST (ψi)(ω, b) (11)

where I represents the number of reference wavelets ψ(t).
The TF distribution artifacts caused by noise are restrained
by averaging over a large number of reference wavelets.
However, the smeared area on the TF plane will also increase
the number of wavelets.

To overcome the limitations of MST, ConceFT method is
proposed. For ψ(t) =

∑I
i=1 riψi(t), the synchrosqueezing

operation can be used (where the weight ri is real), but the
synchrosqueezing is a highly nonlinear operation. For dif-
ferent choices of vector r = (r1, · · · , rI ), the TFR artifacts
due to noise interference. Therefore, the noise artifacts can
be limited by averaging over many choices of r. Then the
ConceFT algorithm is detailed as follows:

1) Select I orthonormal wavelets ψi(t) (i = 1, · · · , I )
with good concentration on the TF plane.

2) Pick N random vectors of unit norm rn, n = 1, · · · ,N .
3) For n = 1, · · · ,N , define ψn(t) =

∑I
i=1 rniψi(t)

and calculate the corresponding WT W (ψn)
y (a, b) =∑I

i=1 rniW
(ψi)
y (a, b).

4) Calculate the IF ω(ψn)(a, b) and the corresponding ST
ST (ψn)

y (ωl, b).
5) Average over the random vectors rn and then obtain the

ConceFT representation

CFTy(ω, t) =
1
N

N∑
n=1

ST (ψn)(ω, t) (12)

In real application, the number of reference wavelets I
could be as small as 2, while the number of weight vectors

N could be chosen as large as the user wishes to average out
the noise artifacts. This method not only effectively sharpens
the TF ridges on the TFR of ConceFT, but also suppresses the
spurious distribution caused by noise in the synchrosqueezing
operation.

C. CONCEFT-BASED TFRO SPECTRUM
In this section, a simple yet flexible method is proposed
to reveal the frequency contents of bearing signals under
time-varying rotating speed. It is implemented by the TF
reconfiguration in the ConceFT-based TFR with one IF as
a trigger reference. Given the frequency range is [ωa, ωb],
f (t) is one arbitrary IF detected from y(t) via CPP. The times
of the minimum frequency fmin and maximum frequency fmax
values of f (t) can be calculated{

tmin = argmin[f (t)]
tmax = argmax[f (t)]

(13)

where tmin and tmax represent the time points of fmin and fmax
respectively.

Given the frequency region of interest is [ωa, ωb], the fre-
quency range of reconfiguration should be smaller than this
region, otherwise, the reconfiguration range will exceed the
interest frequency region. The scale coefficients of the poten-
tial reconfigured minimum and the maximum IFs to the
detected IF α and β can be derived from{

α = ωa/f (tmin)
β = ωb/f (tmax)

(14)

The frequency region of reconfiguration can be calcu-
lated [αf (t), βf (t)]. After the reconfiguring operation is con-
ducted, all time-varying IFs are converted to constant ones
parallel to the time axis. Therefore, the time-varying fre-
quency range on the TFR plane is calculated [αf (0), βf (0)].
Then the amplitude of the reconfigured TFR Are(t, ω) is
derived guided by f (t).

Are(t, ω) = A(t, ω
f (t)
f (0)

) (αf (0) ≤ ω ≤ βf (0)) (15)

where A(t, ω) represents the ConceFT-based TFR of sig-
nal y(t). Finally, the amplitude of the reconfigured TFR is
mapped to 2-D picture

Yre(ωi) =
N∑
i=0

Are (ti, ωi)
N

(16)

where Yre(ωi)is the TFRO representation, ti is the time at
ith sampling point, ωi is the frequency at ti, N is the total
sampling points.

The flowchart of the method in bearing fault diagnosis is
shown in Fig. 4, which can also be summarized as follows:

1) Apply Hilbert transform to the vibration signal x(t) for
highlighting the impulsive components to obtain the
envelope signal y(t).

2) Extract one IF f (t) from the signal y(t) using CPP.
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FIGURE 4. Flowchart of the proposed method.

3) Perform ConceFT to the frequency range [ωa, ωb] of
signal y(t) to obtain the TFR CFTy(ω, t).

4) Apply the TF reconfiguration to the amplitude Ay(ω, t)
in frequency range [ωaf (0)

/
f (tmin), ωbf (0)

/
f (tmax)]

obtaining the reconfigured amplitude Are(ω, t).
5) Map the amplitude function Are(ω, t) to 2-D picture

Yre(ω) obtaining the TFRO spectrum of y(t).

FIGURE 5. Demonstration of ConceFT-based TFRO
algorithm: (a) ConceFT-based TFR, (b) frequency spectrum
by projecting the TFR, (c) frequency spectrum by projecting the
reconfigured TFR, (d) ConceFT-based TFRO spectrum guided
by f1(t), (e) STFT-based TFRO spectrum, (f) ConceFT-based
TFRO spectrum guided by f2(t).

6) Identify the bearing fault pattern by the TFRO
spectrum.

To illustrate the method figuratively, the signal gen-
erated by (1) is further processed. Fig. 5 (a) shows
the ConceFT-based TFR. Compared with Fig. 3 (c),
the STFT-based TFR, the TF ridges are sharper. Fig. 5 (b)
shows the projection of the TFR onto frequency axis. From
this figure, the energy of f1(t), f2(t), and f3(t) is distributed in
region (Re) 1, Re 2, and Re 3, rather than in narrow bands,
which is the immediate cause of spectrum smearing. The
projection of the reconfigured TFR is plotted in Fig. 5 (c).
Comparedwith Fig. 5 (b), the frequency bands are condensed.
However, the direct projection operation is sensitive to the
background noise. Fig. 5 (d) shows ConceFT-based TFRO
spectrum guided by f1(t), in which the frequency components
are pinpointed as expected. However, in the STFT-based
TFRO spectrum (Fig. 5 (e)), the result is unsatisfying due to
the limitation of Heisenberg uncertainty principle. Fig. 5 (f)
shows the TFRO spectrum guided by f2(t), which is almost
identical to the spectrum guided by f1(t)
Based on the analysis above, the advantages of the pro-

posedmethod are concluded as follows: (a) It avoids the spec-
trum smearing caused by the IF fluctuation and produces a
quality spectrum with prominent yet condensed peaks, which
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can be confirmed by Fig. 3 (d) and Fig. 5 (f); (b) It, better than
OT, generates a consistent spectrum guided by different IFs,
which can be concluded by comparing the OT-based spectra
(Fig. 2 (b) and (c)) with the TFRO spectra (Fig. 5 (d) and (f));
(c) Outperforming GD, it pinpoints all time-varying fre-
quency components guided by only one IF, which can be
observed from the GD-based spectra (Fig. 3 (f) and (h)) and
TFRO spectra (Fig. 5 (d) and (f)).

IV. SIMULATION EVALUATION
In this section, to evaluate the effectiveness of the proposed
ConceFT-based TFRO method in analyzing bearing vibra-
tion signals, the numerical simulated bearing signals under
time-varying rotating speed are generated according to the
model

x (t) = (1+ cos(2π fr(t))) ·
N∑

m=1

Am exp(−β(t − tm))

× sin(wr(t − tm))u(t − tm)+ n(t) (17)

where fr(t) denotes the rotational speed of the bearing, fr(t) =
−29(t−0.6)2+29,Am the amplitude of themth impulse,N the
number of impulses, u(t) a unit step function, β the damp-
ing characteristic, wr the bearing high resonance frequency,
n(t) the white Gaussian noise, tm time of mth impulse, which
can be calculated by{

t1 = (1+ τ ) · 1/(fr(t0))/n
tm = (1+ τ ) · 1/(fr(tm1))/n m = 2, 3, · · ·,N

(18)

where τ is the random slippage effect caused by rolling
elements, n is the number of impulses per shaft rotation.
Assuming one fault occurs to the outer race, n = 3.5, that
means the outer race FCF fouter(t) = 3.5fr(t). The potential
inner race FCF finner(t) = 5fr(t). The detailed parameters are
listed in Table 1.

TABLE 1. Detailed parameters of the simulation model.

To better illustrate the principle of the method, a Gauss
noise is added to the model with the signal-to-noise
ratio (SNR) of 10 dB. Fig. 6 (a) and (b) show the waveform
and the TFR of the simulated signal. As the TFR depicts,
the energy of the signal is mainly concentrated on the vicinity
of resonance frequency 2 000 Hz. However, no TF ridge
related to the bearing fault is revealed. Fig. 6 (c) shows the
TFR of the envelope by applying Hilbert transform and Con-
ceFT to the signal. In the TFR, clear characteristic frequency
ridges are unveiled. Nevertheless, it is hard to identify and
localize the fault symptom only based on the TF ridges,
especially when the noise level is high. In engineering appli-
cations, the rotor unbalance even the manufacturing errors
may generate the IF trends in the TFR of the envelope.

FIGURE 6. Simulated case under SNR = 10 dB: (a) waveform of the
simulated signal, (b) TFR of the raw signal, (c) TFR of the envelope
signal, (d) IF extracted by CPP, (e) and (f) are the spectra without the
TF reconfiguration, (g) and (h) are the spectra based on TFRO method.

The transform results of the TFR to frequency representa-
tion without the TF reconfiguration operation are displayed
in Fig. 6 (e) and (f). In those spectra, no prominent peak is
revealed. Applying CPP to the envelope signal in time domain
yields one IF trend plotted in Fig. 6 (d). The trajectory of the
extracted IF is consistent with the frequency variation profile
in the TFR of the envelope. Regardless of the cause of the
detected frequency trend (FCF, its harmonic or the rotating
speed), TFRO method is applied directly to the envelope
TFR guided by the detected IF so as to yield the projection
spectrum and the order spectrum, plotted in Fig. 6 (g) and (h)
respectively. In the TFRO order spectrum, prominent peaks
appear at the location of fr, nfcf , and fcf − fr as expected.
The fault location can be determined by the ratio of fcf
to fr(Couter = fcf /fr). This confirms that the method can
remove the spectrum smearing and pinpoint all frequency
components guided by only one extracted IF trend.
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FIGURE 7. Simulated cases under different noise levels: (a), (c) and (e) are
TFRs of the simulated signals under SNR of 0, −5 and −10 dB respectively,
(b), (d) and (f) are TFRO spectra of (a), (c) and (e) respectively.

To further testify the robustness of the proposed method
to noise, more simulated signals under higher noise levels
are analyzed. The ConceFT-based TFRs of the envelope sig-
nals and the TFRO spectra under SNR of 0 dB, −5 dB,
and −10 dB are plotted in Fig. 7. With the rise of noise
intensity, it is increasingly difficult to identify the IF from the
envelope. For the TFR under SNR of −10 dB, the TF ridges
are submerged by the background noise. Correspondingly,
no prominent peak is revealed as expected in the TFRO
spectrum. Therefore, for the simulated signals under SNR
of 10 dB, 0 dB, and −5 dB, the TFRO method performs well
in pinpointing the relevant frequency components of bearing
signals. If the noise level is too high, the effectiveness of the
proposed method is not ideal. It should be noted that, when
there are signals with too strong noise, the filtering techniques
such as EMD, spectral kurtosis and singular spectrum analy-
sis can be utilized to reduce the noise interference to a certain
extent.

V. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL SETTINGS
To further validate the performance of the proposed method,
the experimental signal is measured using a vibration test
rig at the Beijing Jiaotong University of China. To better
describe the assembly relation of different parts, the diagram
of experimental setup is plotted in Fig. 8. An accelerometer
(CA-YD-1181) is mounted on the top of bearing support to
collect the vibration signal. An encoder (KSWL-3806-20) is

FIGURE 8. Experimental setup.

installed at the end of the shaft to record the speed pulse. The
model of acquisition card is DE6231. The rotating speed is
adjusted by the speed controller (TDGC2-O.5kVA).

FIGURE 9. Experimental bearing.

To mimic the localized fault, one crack is manufactured in
the outer race of the tested rolling bearing. The local graph
of bearing installation and bearing are illustrated in Fig. 9.
The sampling frequency is set to 24 000 Hz and the data
is collected for 2 seconds. The type of the tested bearing is
6000. According to the geometry parameters of the bearing,
the fault characteristic coefficients (FCCs) of outer race, inner
race, and rolling element are calculated. Fig. 10 shows the
geometry of rolling element bearing. The detailed parameters
of the bearing are listed in Table 2.

TABLE 2. Parameters of the rolling element bearing.

B. VALIDATION OF PROPOSED METHOD
The time domain waveform of the raw vibration and its
corresponding rotating speed are shown in Fig. 11 (a) and (f).
The speed trend is calculated by the polynomial fitting
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FIGURE 10. The geometry of rolling element bearing.

FIGURE 11. Experimental cases: (a) waveform, (b) TFR of the raw signal,
(c) TFR of the envelope signal, (d) frequency distribution, (e) frequency
spectrum of the envelope, (f) IF extracted by CPP.

based on the pulse interval and the parameters of encoder.
Fig. 11 (b) and (c) are the TFRs of the raw signal and the
envelope signal respectively. As observed, there is no obvious
TF ridge in the TFR of raw signal. In the TFR of the envelope,
clear TF ridges are revealed following the rotating speed
variation profile. However, the bearing fault cannot be identi-
fied by these TF ridges without the reference of measured
rotational speed and prior knowledge, not to mention the
fault location. Asmentioned before, rotor unbalance, even the
unavoidable manufacturing errors in some mechanical equip-
ment may produce the same TF trends. The direct projection
of the envelope TFR to the frequency axis and the envelope
spectrum are plotted in Fig. 11 (d) and (e) respectively.

The characteristic frequencies are distributed in wide ranges,
resulting in frequency smearing. Fig. 11 (f) shows the IF f (t)
detected by CPP, which also follows the speed change profile.

FIGURE 12. TF reconfiguration results guided by different
IFs: (a), (c) and (d) are the projections of reconfigured TFRs
guided by the detected f (t),1/2 f (t) and 2 f (t) respectively,
(b), (d) and (f) are the corresponding TFRO spectra
of (a), (c) and (e) respectively.

Fig. 12 (a) and (b) show the projection of the reconfigured
TFR and the TFRO spectrum guided by the detected f (t).
By the TF reconfiguration, the distributions of characteris-
tic frequency components are effectively condensed in the
projection figure, but the bearing fault pattern still cannot
be identified conveniently because the direct projection is
sensitive to the noise. Fortunately, the modulation charac-
teristic frequency components are highlighted by the TFRO
approach. The existence of bearing fault is usually deter-
mined by the identification of FCF and then the fault type is
confirmed with the help of modulation rotation speed. In the
TFRO spectrum, besides the FCF, the peaks at the locations
associatedwithmodulation rotation speed fr and one sideband
fcf − fr appear. The FCF and its harmonics indicate the
existence of bearing fault. To identify the fault type, the ratio
of fcf to fr is calculated C = fcf /fr, which corresponds to the
FCC of outer race. The value of sideband further confirms
that the outer race fault does exist. The results are consistent
with the actual experimental settings.

To test the influence of the reference IF on the result spec-
trum, the projections of reconfigured TFR guided by 1/2 f (t)
and 2f (t) are plotted in Fig. 12 (c) and (e) respectively.
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FIGURE 13. Comparison results: (a) phase functions θ1(t), θ2(t) and θ3(t)
in the OT applications, (b), (c) and (d) are the order spectrums based on
the phase functions θ1(t), θ2(t) and θ3(t) respectively, (e) phase functions
ϕ1(t), ϕ2(t) and ϕ3(t) in the GD applications, (f), (g) and (h) are the
demodulation spectrums based on ϕ1(t), ϕ2(t) and ϕ3(t) respectively.

Correspondingly, the TFRO spectra guided by 1/2 f (t) and
2 f (t) are shown in Fig. 12 (d) and (f) respectively. Compared
with those spectra, the TFRO results are hardly affected by
the reference IFs, i.e., the TF reconfiguration produces a
consistent result spectrum guided by different IFs detected
from the signal, avoiding the difficulty of identifying which
component the extracted IF belongs to.

C. COMPREHENSIVE COMPARISON
To validate the superiority of the method, both OT andGD are
utilized to analyze the experimental signal for comparison.

First, the processing results of OT are analyzed. Fig. 13 (a)
shows the reference phase functions of the resampling oper-
ation, in which θ1(t), θ2(t) and θ3(t) are derived by θi(t) =
2πCi

∫
f (t)d(t) (where i = 1, 2 and 3, Ci = 1, 1/2 and 2).

Fig. 13 (b)-(d) display the order spectrums produced by
applying OT to the vibration signal guided by θ1(t), θ2(t)
and θ3(t) respectively. It can be observed that obvious peaks

related to FCF and its harmonics are pinpointed in the three
order spectrums. However, the locations of the peaks cor-
responding to the same frequency component in different
spectrums are changed (which is explained in Section II-B)
and the order values are not related to the fault location
directly. Moreover, as for Fig. 13 (b) and (c), the modulation
rotating frequency in the lower frequency region is over-
whelmed by noise. Although the modulation frequency and
one sideband are revealed in Fig. 13 (d), they are still sur-
roundedwith noise and not as clear as the TFRO-based results
(Fig. 13 (b), (d) and (f)).

Second, the commonly used GD is performed to vali-
date the merit of the proposed method. Fig. 13 (e) shows
the phase functions ϕ1(t), ϕ2(t) and ϕ3(t) corresponding to
components f (t), 1/2f (t) and 2f (t) respectively, which are
calculated by ϕi(t) = 2πCi

∫
[f (t)− f0]d(t) (where f0 repre-

sents the initial frequency of f (t), i = 1, 2 and 3, Ci = 1,
1/2 and 2). Fig. 13 (f)-(h) show the demodulation spectrums
based on ϕ1(t), ϕ2(t) and ϕ3(t) respectively. From those
figures, it can be found that only one component is revealed
in Fig. 13 (f) and (h) respectively, i.e., the component fcf and
its second harmonic 2fcf are demodulated based on ϕ1(t) and
ϕ3(t) respectively. As for Fig. 13 (g), no prominent peaks
appear which indicates that no components are demodulated
via ϕ2(t) effectively.

As analyzed in Section V-B, guided by different IFs
(i.e. f (t), 1/2f (t) and 2f (t)), the TFRO based spectrums don’t
change with the variation of guidances which simplifies the
fault localization.More importantly, the proposedmethod can
produce clear spectrum consisting of the FCF and its harmon-
ics aswell as themodulation rotating frequency guided by one
arbitrary IF. The comparison results confirm the superiority
of the proposed method.

VI. CONCLUSION
A novel ConceFT-based TFRO method is proposed for bear-
ing fault diagnosis under nonstationary conditions. The char-
acteristic frequency is extracted from the envelope signal by
CPP and the high resolution TFR of the envelope with sharp
TF ridges is obtained by exploiting themerits of the ConceFT.
The TFRO spectrum is implemented by reconfiguring the fine
TFR according to the proposed algorithm with the extracted
IF as a trigger reference. The major contributions of the
proposed method include:

(a) It avoids the spectrum smearing caused by the speed
fluctuation and therefore pinpoints the time-varying charac-
teristic frequency components in the order spectrum free from
the encoder/tachometer;

(b) It produces a consistent spectrum guided by different
IFs, i.e., arbitrary IF extracted from the signal can guide
the operation, avoiding the difficulty of identifying which
frequency component the IF belongs to;

(c) It reveals all frequency components guided by only one
detected IF in an order spectrum and hence avoids the dif-
ficulty in calculating the phase functions of other frequency
components by the detected IF.
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In this preliminary study, the proposedmethodwas demon-
strated to be effective for rolling bearing fault diagnosis under
speed fluctuation condition. Further studies will be carried
out to evaluate the effectiveness of the method in extracting
the fault features of more complex rotating equipment such
as planetary gearboxes.
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