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ABSTRACT Identifying overlapping communities is essential for analyzing network structures, exploring
the interactions of groups, studying network functions, and obtaining insight into the dynamics of networks.
Many algorithms have been proposed for detecting overlapping communities but identifying the intrinsic
communities is still a non-trivial problem because of the difficulties with parameter tuning, user bias criteria,
and the lack of ground truth information. In this paper, we propose a newmodel called OCDID (Overlapping
Community Detection based on Information Dynamics) to uncover the overlapping communities, which
treats the network as a dynamical system that allows an individual to communicate and share information
with its neighbors. The information flow in the network is controlled by the underlying topology structure
(e.g., the community structure), and the community structure is also reflected by the information dynam-
ics. Overlapping nodes act as bridges between multiple communities and the information from multiple
communities flows through these nodes. Thus, the overlapping nodes can be identified by analyzing the
information flow among communities. In addition, we use the monotone convergence theorem to confirm
the convergence of our model. Experiments based on synthetic and real-world networks demonstrate that in
most cases, our proposed approach is superior to other representative algorithms in terms of the quality of
overlapping community detection.

INDEX TERMS Complex network, diffusion, information dynamics, overlapping community detection.

I. INTRODUCTION
Complex networks are powerful methods for representing
and studying the interactions among objects in the real world.
In recent decades, complex network mining has been an
important research area because of its far-reaching effects in
various disciplines and domains [1]–[5]. Numerous studies
have demonstrated that many real networks possess com-
munity structures (groups, clusters, or modules). Detecting
community structures is a core problem in the field of network
computing because of its importance and practical applica-
tions, such as identifying modules, studying the interactions
among objects, understanding the dynamic characteristics,
and predicting the evolution of a network. In recent years,
many methods have been established for disjoint commu-
nity detection [6]–[8]. Most of these methods divide net-
works into several independent communities with no nodes

shared between them. However, it is known that people
can participate in diverse organizations in the real world
owing to their many interests; thus, one person may belong
to different communities, so most of the communities in
real-world networks are overlapping. Therefore, the detec-
tion of overlapping communities has attracted increasing
attention and extensive discussions. Many algorithms have
been designed for identifying the overlapping communi-
ties from different perspectives, which can be divided into
four categories: clique percolation-based algorithms, seed
expansion-based algorithms, link partitioning-based algo-
rithms, and dynamical-based algorithms. Among these algo-
rithms, identifying overlapping communities using dynamic
models based on the intrinsic topological structure of net-
works is an emerging and promising method, and it has
been used widely because of its simplicity, efficiency, and
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data-driven nature. The basic idea of the dynamical algorithm
is to treat a network as a dynamical system before creating
a dynamic model to imitate the interaction processes among
the nodes. As the interactions evolve, each node will reach
a steady state and the community structure will finally be
revealed in an intuitive manner. SLPA [9], COPRA [10], and
Synchronization of Wu et al. [11] are representative dynam-
ical algorithms. However, most of the existing methods have
some limitations and deficiencies. For example, the Syn-
chronization of Kuramoto method needs to set the coupling
strength parameters Kp and Kn. The COPRA algorithm also
needs to set parameters for the maximum number of commu-
nities. The performance of these algorithms depends greatly
on the choice of parameters. In addition, the propagation-
based algorithms comprising SLPA and COPRA are disad-
vantageous because they produce unstable results and they
detect the overlapping communities by label propagation;
therefore, they do not truly model the propagation of informa-
tion in real-world networks. Thus, it is important to develop
mathematical models for qualitatively and formally charac-
terizing the essential features of information propagation for
overlapping community detection. However, it is difficult
to model the spread of information in networks because
of the complex interactions between objects as well as the
diversity and vast scale of networks. Therefore, the highly
accurate detection of overlapping communities is still a major
problem.

In this study, we propose a new overlapping community
detection algorithm based on information dynamics called
OCDID. We treat the network as a closed dynamic social
system and each person in the network exchanges information
with others because of their common interests. The overlap-
ping community structure is identified in a natural manner
based on the information dynamics. This new approach pro-
vides a novel method for detecting overlapping communities
and it has some attractive features. In the following, we first
introduce the basic idea of the proposed method.

A. BASIC IDEA
In the real world, the topological structure of a network
affects the spread of information. In addition, the propaga-
tion of information in networks has the power to change
the network structure. For example, a person might prefer
to exchange information with familiar people or people in
the same circle (group or community). Similarly, these peo-
ple may also form a circle because of their common inter-
ests and traits. Therefore, the communication of information
between people plays an important role in the formation and
development of communities. Thus, the communication of
information may reflect the overlapping structure of com-
munities. We considered a person who was connected with
multiple circles or communities and found that the amount
of information flowing through this person was often higher
than that through his/her neighbors connected with one com-
munity. A person on the boundaries of communities can
communicate with different people in distinct clusters, so the

information can be spread among different communities.
Thus, the dynamic features of information propagation in net-
works are suitable for characterizing the overlapping struc-
ture of communities. According to this assumption, we may
be able to automatically identify the overlapping communi-
ties by imitating the diffusion of information among people.
Thus, we developed a new method based on information
dynamics to obtain insights into the partitioning of overlap-
ping communities, where the basic idea is to treat the network
as an accommodative dynamic system and study the interac-
tions among information as it diffuses over time. In particular,
in a social network, users with similar hobbies and properties
are more likely to communicate with each other, and the
diffusion of information between them is often more fre-
quent. As the interactions of information spread, the people
in a common community have almost the same information,
whereas those located in multiple communities may receive
more diverse information. Over time, the dynamics of this
network reach convergence and the information in the net-
work achieves a steady state. Thus, everyone in a common
community has the same amount of information, whereas
people in distinct communities have different amounts of
information, and users connected with multiple communi-
ties may receive more information from different groups.
Therefore, the overlapping communities can be identified
by calculating the amount of information that each person
possesses. The formal definition of the information dynam-
ics model is presented in Section 3. We use a toy network
as an example to better illustrate the basic idea. As shown
in Fig. 1, a number of users denoted as cartoon people with
different colors comprise the artificial social network. In this
network, we use a corporation as an example to introduce
the information dynamics process, which can be described
according to the following stages: First, people possess their
own knowledge as initial information because of their dif-
ferent occupations. For example, the initial information of v
equals 0.29 (see Definition 3), as shown in Fig. 1(a). The
information then diffuses through the topological structure
and the interactions to communicate information between
users are more frequent in a common department than among
those in different departments. For example, user v exchanges
information with the connected users u1 − u5 (see (5)–(9)),
as shown in Fig. 1(b). The overlapping people act as bridges
between communities and information from multiple com-
munities flows through these people (u4 is an overlapping
person). Over time, the volume of information communicated
between people tends to zero and the information possessed
by users in a common department will be the same. Finally,
the volume of information in the whole network achieves a
steady state and the information dynamics in the network
reach convergence (see Fig. 1(c)). Next, the communities
are divided in a natural manner by calculating the different
information in the network, as shown in Fig. 1(d). As a
result, the overlapping nodes can be identified by consider-
ing the amount of information flowing through the bridge
nodes ((10)-(12)), as shown in Fig. 1(e).
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FIGURE 1. Illustration of overlapping community detection based on information dynamics. (a) An artificial social network where the lines denote
the relationships between people. (b) The dashed lines with arrows represent the information communicated between people. The information
possessed by every person is updated over time based on the proposed information dynamics model. (c) The information in the whole network
reaches a steady state. (d) The communities are identified by calculating the different volumes of information in the network. (e) The overlapping
communities are identified by computing the information flowing through the bridge nodes.

B. CONTRIBUTIONS
By imitating the information dynamics, the OCDID method
exhibits several desirable properties for overlapping commu-
nity detection in complex networks where the most important
are as follows.
• Intuitive and effective overlapping community detec-
tion: The information dynamics model identifies the
overlapping communities by simulating the commu-
nication of information in the real world, which
accurately represents the flow of information in the
network. The overlapping nodes can be identified
in a natural manner by calculating the information
flowing through the bridge nodes. More importantly,
the OCDID reliably identifies the high-quality overlap-
ping community, and still achieves outstanding results
at low average degree networks (Fig. 3 –Fig. 4 and
Table 4).

• Parameter-free: The OCDID method does not rely
on prior knowledge and parameter adjustments, and it
can automatically identify the overlapping communities
based on the information dynamics obtained from the
local topology.

• Scalability: Owing to the benefits of the proposed
information dynamics model, OCDID can detect over-
lapping nodes based on the amount of informa-
tion spread among communities, which can also be
used to identify non-overlapping communities. Further-
more, OCDID can be applied to large-scale networks
owing to the local interaction model and its low time
complexity.

The remainder of this paper is organized as follows.
In Section 2, we provide a brief survey of related
research. In Section 3, we explain the information dynamics
model and develop the algorithms in detail. In Section 4,
we present evaluations of the performance of OCDID based
on synthetic and real-world networks according to several
widely used metrics. Finally, we present our conclusions in
Section 5.

II. RELATED WORK
In recent decades, many algorithms have been designed for
identifying overlapping communities in networks. In the fol-
lowing, we only provide a very brief survey of the algorithms
that are relevant to the present study, which can be broadly
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classified into four areas. More detailed reviews of overlap-
ping community detection were provided by [12] and [13].

A. CLIQUE PERCOLATION-BASED METHODS
The first clique percolation-basedmethodwas CPM [14] pro-
posed by Palla. CPM assumes that a community comprises
fully connected subgraphs and it identifies the overlapping
communities by searching for adjacent cliques. Therefore,
CPM is more suitable for densely connected networks. In the
worst case, the time complexity of CPM is exponential
because it requires the computation of all the maximal
cliques in the network [15], and thus it fails to identify the
overlapping communities in many large social networks.
Many clique percolation-based methods have been pro-
posed recently, such as CPMw [16], SCP [17], and FCP [18].
CPMw is designed for weighted networks and it detects
the overlapping communities based on a subgraph intensity
threshold. SCP detects communities with a given size, where
it allows multiple weight thresholds and it is faster than
CPM. FCP initially obtains the maximal cliques in a similar
manner to CFinder, before trying to minimize the number of
overlapping clique tests that need to be conducted to obtain
the k-clique communities.

B. SEED EXPANSION-BASED METHODS
Seed expansion-based methods start from a small group of
nodes or a node and a community can be identified by
adding neighbor nodes with a local benefit function. The
benefit function characterizes the quality of the structure
of the clustering. In general, seed expansion approaches
comprise two steps. First, the algorithm detects seed nodes
according to certain criteria. Second, the seed nodes are
expanded or merged iteratively until a local quality func-
tion cannot be improved further. In the last decade, many
seed expansion-based algorithms have been proposed such
as iterative scan (IS) [19], LFM [20], and seed set expansion
(SSE) [21]. IS starts by choosing an edge as a seed and then
expands the seeds by adding or removing vertices until a
density metric cannot be improved. A disadvantage of this
method is that the clustering result is influenced by the choice
of a random edge. LFM expands the seeds by maximizing
a fitness function and the community size is controlled by
the fitness function parameter. The SSE method comprises
three phases: filtering, seeding, and expansion of the seed set.
A drawback of SSE is that it returns different results in each
run.

C. LINK PARTITIONING-BASED METHODS
Link partitioning-based methods identify overlapping com-
munity structures by partitioning links instead of nodes.
They convert the original network into a line graph and
then identify the non-overlapping link communities using
disjoint community detectionmethods. Finally, the line graph
is converted back into the original network, which allows
nodes to be present in multiple communities. Recently, many
link partitioning-based methods have been proposed such as

link clustering (LC) [22], CDAEO [23], and map equation
for link communities (MELC) [24]. Link partitioning allows
disjoint community detection methods to be employed for
identifying overlapping communities, which is a conceptu-
ally natural approach for the detection of overlapping. How-
ever, a disadvantage of these algorithms is the resolution limit
problem [25].

D. DYNAMICAL-BASED METHODS
Overlapping communities can also be identified in a dynam-
ical process and many dynamical algorithms have been pro-
posed based on methods such as synchronization [11], [26],
label propagation [9], [10], [27], spin dynamics [28], [29],
and random walk [30]. For example, the synchronization
dynamical-based algorithm [11] considers a node as a phase
oscillator and the nodes evolve according to the designed
differential equations. As the interactions among the phase
oscillators proceed, the neighborhoods with common prop-
erties reach the same phase. The network converges with
time and the nodes with the same phase can be partitioned
into the same community. Finally, the network is divided into
several communities based on their phases, where the phases
of overlapping nodes are between two or more commu-
nity phases. Label propagation algorithms detect overlapping
communities based on the dynamics of label propagation. In a
network, every vertex shares its label with neighbors. Finally,
vertices with the same label are assigned to the same commu-
nity. The overlapping vertices have multiple labels, and thus
they are divided into several communities. COPRA [10] is a
well-known label propagation-based algorithm that identifies
communities based on their belonging coefficients. However,
a parameter needs to be set to limit the number of communi-
ties in which a node can participate. SLPA [9] is a fast label
propagation algorithm that detects overlapping communities
based on speaker–listener patterns. An advantage of SLPA
is that the time complexity is O(tm), which is linear with
the edges m, so it can handle large-scale networks. However,
a disadvantage of SLPA is that the community division result
is unstable.

In this study, we introduce a new dynamical-based method
called OCDID for identifying the overlapping community
structure. Similar to label propagation methods, this method
also employs the idea of propagation and a node interacts with
its immediate neighbors. However, our approach identifies
overlapping communities from the perspective of information
theory, which is different from label propagation methods.
In addition, our method uses the amount of information
spread in a network to represent the flow of information in
the network, whereas label propagation algorithms propagate
a label.

III. OVERLAPPING COMMUNITY DETECTION BASED
ON INFORMATION DYNAMICS
In this section, we first survey preliminary concepts regarding
overlapping community detection and information dynam-
ics, before introducing the information dynamics model.
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Finally, we develop the information dynamics algorithm and
analyze its time complexity.

A. PRELIMINARIES
Before explaining our proposed algorithm, we formalize
some basic definitions that are used in the following sections.
Let G = (V ,E) be an undirected unweighted network with
|V | nodes and |E| edges. The goal of overlapping com-
munity detection in network G is to find a division D =
{C1,C2, . . . ,Ck} where one node can belong to more than
one community ({∃i, j ∈ k,Ci

⋂
Cj 6= ∅, i 6= j}). All of the

key symbols are described in Table 1.

TABLE 1. Summary of the symbols used in this study.

Definition 1 (Jaccard Similarity): Given an undirected
and unweighted network G = (V, E), 0(v) denotes the set
of neighborhoods of vertex v that includes vertex v and
its neighbors. The Jaccard similarity coefficient for vertices
u and v is defined as follows.

JSuv =
| 0(u)

⋂
0(v) |

| 0(u)
⋃
0(v) |

(1)

In the real world, research has shown that social networks
often contain strong and weak ties, which play very important
roles in information propagation and community formation.
We use triangles to describe the contact strength in order to
clearly characterize the relationships of vertices in networks
because a triangular structure can better reflect the degree of
connection between vertices.
Definition 2 (Connection Strength): Given an undirected

and unweighted network G = (V ,E), the contact strength
of vertex u on v is defined as

CSvu =
|N (v)

⋂
N (u)|

Tv
(2)

whereN (v) is the number of neighbors of node v, the junction
of N (v) and N (u) denotes the amount of triangles shared by
nodes v and u, and Tv represents the quantity of triangles for
node v.

In an interpersonal network, a person can obtain more
information when he/she has more friends, and thus more
resources. Similarly, the clustering coefficient of a node
reflects the degree of aggregation with its organizations.
Thus, we use the degree of a node and the clustering coef-
ficient as its initial information.

Definition 3 (Information): Given an undirected and
unweighted network G = (V ,E), the initial information for
vertex v is defined as

Iv =
Dv · CCv
Dmax

(3)

where Dv denotes the degree of node v, Dmax represents the
maximum degree of G, and CCv is the clustering coefficient
of node v. Let Imax be the maximum volume of information
for the nodes in a given network G. We can obtain the largest
value (Imax = 1) when Dv = Dmax , CCv = 1.
Definition 4 (Boundary Nodes): Given an undirected and

unweighted network G = (V ,E), let c be a community of G
and the boundary node set of community c is defined as

BNc = {v ∈ c|0(v) ∩ c 6= ∅, 0(v) * c} (4)

where 0(v) is the set of neighbors of node v, including v.
A boundary node is a node v that belongs to a community
c and the neighbors of v do not belong to this community
completely.

B. INFORMATION DYNAMICS MODEL
After defining the key notations, we now construct the infor-
mation dynamics model, which has three parts: the inter-
action range, dynamics model, and overlapping community
detection.

1) INTERACTION RANGE
The topology of the network plays an important role as
the medium, which can affect the dynamics of information
diffusion. Instead of observing the global interaction of the
topology, we focus on the information dynamics in a local
manner. In particular, every vertex interacts with its directly
connected vertices. Our algorithm can handle large-scale net-
works because it considers local interactions.

2) DYNAMICS MODEL
After defining the interaction range for information prop-
agation, the next critical step involves studying the diffu-
sion model among the nodes in order to characterize the
information dynamics. How should we describe the spread
of information? Considering the patterns of information dif-
fusion among people in a social network, we can see that
everyone can obtain information from their neighbors as
well as propagating information to them. People on the bor-
ders between organizations play coordinating roles, where
they can guide relationships and the exchange of informa-
tion among different organizations. Thus, the propagation of
information is greatly affected by the local topology, such as
the node’s degree, clustering coefficient, similarity, and con-
nection strengths. Moreover, the cost of information diffusion
should be considered. Thus, in the following, we formulate
the dynamics model in terms of the initial information,
propagation volume, information loss, and information
propagation.
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1) Initial Information. How should we depict the ini-
tial information for one node? The degree of a node
is an important indicator for characterizing its initial
information. However, our experiments showed that
only using the node degree as the initial informa-
tion for finding overlapping communities is not ideal
because many nodes have the same degree in a net-
work, which may affect the diffusion of information.
Another reason is that overlapping nodes often have
larger degrees because they connect several commu-
nities. Thus, more information is transmitted so these
communitiesmay have the same amount of information
and multiple communities could be assigned to one
community. To solve these problems, we use the degree
and clustering coefficient to represent the information
for nodes ((3)). The degree of a node reflects howmuch
the node owns a resource and the clustering coefficient
denotes the closeness of one node to other nodes.

2) Propagation Volume. In the real world, the exchange
of information is readily influenced by the surrounding
environment. For example, people are more likely to
choose to communicate with people with whom they
share closer links and similar interests. In order to char-
acterize the diffusion of information in a more realistic
manner, we use the information difference, node sim-
ilarity, connection strength, and clustering coefficient
to model the amount of information propagated. For-
mally, we let Iu→v denote the information that one node
u propagates to node v, which is defined as follows:

Iu→v = f (Iu − Iv) · JSuv · Huv · CCuv (5)

where f (Iu − Iv) represents the information that can
be propagated from node u to node v. In particular,
the coupling function f (·) is given by

f (Iu − Iv) =

{
e(Iu−Iv) − 1 Iu − Iv ≥ 0
0 Iu − Iv < 0.

(6)

As shown above, nodes with a large amount of informa-
tion are more likely to spread and influence nodes with
a small amount of information. In Equation (5), JSuv
denotes the Jaccard similarity coefficient for node u
and node v,Huv represents the contact strength between
nodes u and v, and CCuv is the closeness of nodes u and
v with their neighbors in the local topology, which is
defined as

CCuv =
1

1+ e−5·CCv·CCu
− 0.5. (7)

3) Information Loss. The loss of information may occur
during the information propagation process in the
real world. For example, if the information dissem-
inated is familiar or attractive to us, we can under-
stand and spread it more easily. By contrast, owing
to environmental factors, people may misunderstand,
ignore, or even lose information. In order to describe

the loss of information in a more realistic and accu-
rate manner, we employ the topological features and
information volume for its characterization. Formally,
we define the loss of information as follows:

I(u→v)_cost =
Avg_S(v)
Avg_D(v)

· f (Iu − Iv) · (1− JSuv) (8)

where Avg_S(v) and Avg_D(v) are local topological
features representing the local average similarity and
local average degree, respectively. Clearly, I(u→v)_cost
is positively related to f (Iu − Iv) and negatively related
to JSuv. Thus, the information loss is greater when the
amount of information propagated is higher, and the
information loss is smaller when the communicating
objects are more similar.

4) Information Propagation. To represent the informa-
tion diffusion process in a network, we use iterative
methods to simulate the communication of information
between the nodes. Every node obtains information
from its neighbors in each iteration. Based on the com-
bined diffusion patterns, the model of the information
dynamics over time is given by

Iv(t+1)= Iv(t)+
∑
u∈N (v)

(Iu→v(t)−I(u→v)_cost (t)) (9)

where Iv(t) denotes the information for node v at time
step t. Initially, t = 0 and Iv(0) is the initial information
for node v ((3)). We can see that the information for
node v at time step t + 1 comprises two parts: the
information at time t and the information obtained from
its neighbors. In the real world, the information that we
may receive cannot be negative. Therefore, (Iu→v(t)−
I(u→v)_cost (t)) ≥ 0, i.e., the information volume of
every node will not decrease in each iteration.

3) OVERLAPPING COMMUNITY DETECTION
Based on the proposed information dynamics model, we can
divide communities by computing different information val-
ues for the nodes in the network. The overlapping nodes are
detected as follows. The overlapping nodes are connected to
several communities and they can penetrate the information
into the linked communities, so we can identify the overlap-
ping nodes by calculating the information volume commu-
nicated with multiple communities. Let B(v, c) denote the
belonging degree of a node v that belongs to community c,
which comprises two parts: the attribution coefficient based
on information flow and the belonging coefficient obtained
from the local topology. Formally, the definition of B(v, c) is
given as follows:

B(v, c) =
1
2
(BI (v, c)+ BT (v, c)) (10)

where

BI (v, c) =

∑
u∈(N (v)∩c) Isum(u↔v)∑
u∈N (v) Isum(u↔v)

(11)
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represents the belonging coefficient of nodes derived from the
information flow in different communities, and where

Isum(u↔v) =
∑
t∈L

(I(u↔v)(t)− I(u↔v)_cost (t)) (12)

is the sum of the information volume propagated between
nodes u and v. I(u↔v)(t) is the information propagated
between nodes u and v at time step t , and I(u↔v)_cost (t) indi-
cates the cost information at time step t . BT (v, c) describes
the belonging coefficient of nodes based on the local topo-
logical structure, which is defined as

BT (v, c) =
|N (v) ∩ c|

Dv
. (13)

C. CONVERGENCE ANALYSIS
Based on the proposed information dynamics model,
the information for each node in the network will reach a
steady state over time. In this section, we prove the conver-
gence of the information dynamics model. Before deriving
our proof, we first present some related symbols. According
to Equation (3), Iu|t=i denotes the information for node u
at time step t = i and the sequence {Iu|t=i, i = 0, 1, 2 . . .}
represents the information for node u from t = 0 to t = i.
Theorem 1: Note that the maximum amount of informa-

tion for one node in network G is Imax (Imax = 1). For
each node u, the information sequence comprising {Iu|t=i, i =
0, 1, 2 . . .} is convergent.

Proof: According to Definition 3 and by using (5),(6),
we can obtain:

Iu|t=i ≤ Imax . (14)

Equation (14) denotes that the sequence {Iu|t=i, i =

0, 1, 2 . . .} is bounded above. Based on the information
dynamics (9), for any t = i:

Iu|t=i ≤ Iu|t=i+1. (15)

Formula (15) shows that the sequence {Iu|t=i, i = 0, 1, 2 . . .}
is non-decreasing as i increases. According to the monotone
convergence theorem [31], for one vertex u, the sequence
{Iu|t=i, i = 0, 1, 2 . . . n} is convergent.

D. OCDID ALGORITHM
In this section, we present the OCDID algorithm for identify-
ing overlapping communities, which involves the following
steps.

1) Simulation of Information Dynamics. Based on the
proposed information dynamics models, we can sim-
ulate the information spread process. The information
dynamics mainly comprise the following several steps.
Initially, there is no interaction between the nodes and
every node is assigned initial information according to
the local topology features ((3)). Then, the informa-
tion propagates in the network and the exchange of
information between nodes depends on the informa-
tion dynamics models ((5)–(8)). In order to find the
overlapping nodes, we need to store the amount of

Algorithm 1 OCDID
Input:

Graph:G = (V ,E)
1: //Initialization of information.
2: for each node v in V do
3: for each node u in N (v) do
4: compute JSuv using (1)
5: compute CSuv using (2)
6: end for
7: compute CCv,Avg_S(v) and Avg_d(v)
8: compute the initial information Iv using (3)
9: end for
10: //Information dynamics interactions.
11: Flag = TRUE
12: Threshold = 0.001
13: while Flag do
14: Imax = 0
15: for each node v in V do
16: for each node u in N (v) do
17: compute the propagation volume using (5)
18: end for
19: // Update information over time.
20: compute Iv(t + 1) using (9)
21: Iin = Iu→v − I(u→v)_cost
22: if Iin > Imax then
23: Imax = Iin
24: end if
25: end for
26: // The network reaches a balanced state.
27: if Imax < Threshold then
28: Flag = FALSE
29: end if
30: end while
31: // Partition communities.
32: C ←Community_detection(G, I )
33: // Detect overlapping communities.
34: OC ← Ov_comm_detection(G, C)
35: // Return overlapping communities OC .
Output: OC

information spread between each of the nodes ((12)).
Next, we iteratively update the information volume
for each node using (9)). Finally, when the amount of
information propagating between each pair of nodes in
the network is less than the threshold, the information
of the entire network reaches a steady state. As shown
in the Algorithm 1, the threshold is equal to 0.001.
Because when the threshold is less than or equal to
0.001, the information dynamics in the network will
reach a convergence state, and the community structure
in the network is well divided. Although a higher com-
munity partitioning accuracy can be achieved when the
threshold is less than 0.001, more computational time
is required. Therefore, considering the performance
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and calculation cost, we set the threshold equal
to 0.001.

2) Community Partitioning. All of the nodes converge
as the information in the network reaches equilib-
rium. According to the information dynamics model,
the amount of information on the nodes in the same
group is equal. By contrast, the information volumes
on nodes in distinct groups are unequal. Therefore,
we can identify the communities in a natural man-
ner by statistically analyzing the different information
volumes for the nodes in the network. As shown in
Algorithm 2, when the amount of information between
two neighboring nodes is less than the threshold, they
are divided into the same community.

Algorithm 2 Community_detection
Input:

Graph: G = (V ,E), Information list: I
1: // Community partition.
2: Threshold = 0.001
3: for each node v in V do
4: if v not in C(communities) then
5: for each node u in N (v) do
6: if |Iv − Iu| < Threshold then
7: if u in C then
8: if v in C then
9: Cu− > Cv
10: else
11: v− > Cu
12: end if
13: else
14: if v in C then
15: u− > Cv
16: else
17: u, v− > Cu
18: end if
19: end if
20: end if
21: end for
22: end if
23: end for
24: // Communities C .
Output: C

3) Overlapping Community detection. After detect-
ing the communities in the network, we can identify
the overlapping nodes by studying the information
exchange between a node and its neighbors. Over-
lapping nodes have different information compared
with other nodes because of the information exchange
between overlapping nodes and multiple communities.
Therefore, we can identify the overlapping nodes in the
following steps. First, we calculate the information vol-
umes for boundary nodes using (12). Next, we compute
the belonging degree for each boundary node ((10)).

Finally, the overlapping nodes are divided into multiple
communities according to the belonging degree of each
node. The method for detecting overlapping nodes is
given in Algorithms 1–3.

Algorithm 3 Ov_comm_detection
Input:

Graph: G = (V ,E), Communities: C
1: // Identify the overlapping nodes.
2: Threshold = 0.2
3: for each node v in V do
4: if v in BNc then
5: // NC is the community set to which node v neigh-

bors belong.
6: for c′ in NC do
7: compute the belonging degree B(v, c′) using (10)

8: if B(v, c′) > Threshold and v not in c′ then
9: c′← v
10: end if
11: end for
12: end if
13: end for
14: // Overlapping communities C .
Output: C

Fig. 2(a)–(f) illustrate the overlapping detection process
based on the information dynamics in a social network.
Every node begins with the initial information obtained from
its local structural characteristics. For example, the initial
values for nodes 1, 2, 3, and 4 are 0.43, 0.29, 0.36, and
0.38, respectively, which can be calculated using formula (3)
(Fig. 2(a)). Next, each node interacts with its neighbors and
the nodes within the boundaries can communicate with nodes
in different communities. Fig. 2(b)–(d) show the change in
the amount of information for each node as the interaction
process iterates. We can see that the amount of information
on the nodes in the same community tends to be equal. For
example, the information volumes for nodes 1, 2, 3, and
4 are 0.43, 0.42, 0.43, and 0.43, respectively (Fig. 2(d)).
Each node achieves a steady state over time and the nodes in
the same community have the same volume of information
(Fig. 2(e)). The communities can be partitioned using the
information dynamics model (Algorithm 2 ). Overlapping
nodes are located between multiple communities, so they
may obtain more information from different communities,
and thus the amount of information on overlapping nodes is
different from that in each community. For example, over-
lapping node 5 can obtain information from nodes 2, 3, 13,
and 14, which belong to two different communities. The
information volumes for nodes 5, 6, and 12 are 0.32, 0.14,
and 0.31, respectively. Owing to the low clustering coefficient
of node 6, its information has not changed but it can still
be identified using formula (13). Finally, the overlapping
nodes can be identified in a natural manner by calculating
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FIGURE 2. Illustration of the information dynamics.

the information volumes for the nodes in the network (for-
mula (10)). Fig. 2(f) shows the detection of three overlapping
communities.

E. COMPLEXITY ANALYSIS
The computational complexity of OCDID has three main
components. In the first step, the initial information for
every node is required. Moreover, for the information
dynamics interaction, OCDID also needs to calculate the
clustering coefficient, Jaccard similarity coefficient, and con-
tact strength. Thus, the time complexity for initialization is
O(k · n), where k is the average degree of the network.
In the second step comprising the information dynamics pro-
cess, the computational complexity is O(L · n · k) because
of the local interaction range, where L is the total number of
iterations, which typically ranges between 20 and 100. In the
third step, the overlapping communities are detected and the
computational complexity is due to community partitioning
and detecting overlapping communities. The complexity of
community partitioning is O(k · n). The worst complex-
ity for overlapping community identification is O(|C| · n),
where |C| is the number of communities in the network G.

Hence, the computational complexity of OCDID is O(k · n+
L · n · k + |C| · n). We note that k � n and |C| � n,
and thus the OCDID algorithm can handle large-scale
networks.

IV. EXPERIMENTS
In this section, we present the results of various experi-
ments conducted using synthetic and real-world networks in
order to demonstrate the performance of OCDID based on
comparisons with several representative overlapping com-
munity detection methods. Before presenting the experimen-
tal results, we briefly introduce the algorithms used in the
comparisons.

SLPA [9] is a fast overlapping community detection
approach for large networks based on label propagation.
SLPA spreads labels among the nodes depending on interac-
tion rules, and it provides every node with a memory to store
the received labels information.

FCP [18] is a fast clique percolation algorithm that estab-
lishes a minimal spanning forest based on the maximal
cliques to reduce the need for unnecessary clique tests.

LC [22] is a well-known link clustering method that
divides communities by hierarchical clustering of the
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link similarity. The time complexity of LC is O(nd2max),
where dmax is the maximum degree of the nodes in the
network.

COPRA [10] is a well-known overlapping community
algorithm based on the label propagation algorithm [32].
First, it assigns a label to each node, where all of the belong-
ing coefficients are set to 1. Next, every node updates its
labels by computing the belonging coefficients repeatedly
for its neighbors. Finally, the overlapping communities are
identified by considering the label for each node.

DEMON [27] is a democratic voting approach where
each node judges the community to which each of its
neighbors should belong. DEMON is also based on the label
propagation algorithm.

LFM [20] is a seed expansion method for detecting over-
lapping and hierarchical community structures. LFM starts
with a random seed node and assigns a node to a community
based on its fitness.

SSE [21] uses the PageRank scheme to optimize the con-
ductance score for the community.

NECTAR [33] is an extension of the Louvain method [34]
that employs greedy local search heuristic to maximize the
modularity objective function.

These methods can be divided into several categories:
clique percolation-based algorithms (FCP), seed expansion-
based algorithms (LFM and SSE), link partitioning-
based algorithms (LC), dynamical-based algorithms (SLPA,
COPRA, and DEMON), and other algorithms (NECTAR).
Propagation-based algorithms are used widely for overlap-
ping community identification because of their low time
complexity. However, most of the algorithms based on label
propagation produce unstable results.

A. DATA DESCRIPTION
1) SYNTHETIC NETWORKS
Many complex networks exist in the real world but we rarely
know the ground truth details for the overlapping commu-
nities. Therefore, we built synthetic networks with a known
ground truth community structure in order to evaluate the
algorithms used in the comparisons. We used the LFR bench-
mark to generate networks that are very similar to real-world
networks [35]. This benchmark has been used widely for
disjoint community and overlapping community detection.
The LFR benchmark can be readily controlled to generate
networks using several parameters, including the community
size, average clustering coefficient, average degree, and over-
lap. These parameters are summarized in Table 2.

2) REAL-WORLD DATA SETS
We also used several popular real-world networks with differ-
ent sizes and characteristics to assess the performance of each
of the algorithms used in the comparisons. The statistics for
each real-world network are summarized in Table 3. All of
these data sets are publicly available as network data from
Newman (http://www-personal.umich.edu/m̃ejn/netdata),

TABLE 2. Summary of the parameters for the LFR benchmarks.

TABLE 3. Some properties of the real-world data sets where k is the
average degree and CC is the clustering coefficient.

KONECT (http://konect.uni-koblenz.de/networks), and Stan-
ford (http://snap.stanford.edu/data/). Next, we briefly intro-
duce some of the real-world networks.

a) ZACHARY’S KARATE NETWORK
This is a popular network and it has been used widely for
complex network mining. This network comprises a social
network of friendships among 34 members of Zachary’s
karate club in an American university. This club was divided
into two groups over time due to differences in opinions
regarding leadership.

b) FOOTBALL NETWORK
This is a well-known network derived from U.S. college
football games among Division IA colleges. The network
includes 115 nodes, 631 edges, and 12 conferences (commu-
nities). Each node represents a team and each edge denotes a
regular season game between two teams.

c) POLITICS BOOKS NETWORK
This network contains the books about politics in the United
States that are sold on the Amazon.com. The network com-
prises 105 nodes denoting books and 441 edge representing
the frequent co-purchasing of books by the same buyers.

d) CITESEER NETWORKS
This is a scientific paper citation network comprising papers
with six classifications. The network comprises 2110 nodes
denoting papers and 4732 edges representing the citations of
papers.
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e) JAZZ NETWORK
This is a collaboration network of Jazz musicians contain-
ing 198 nodes and 2472 edges. In the network, every Jazz
musician denotes a node and the relationship between two
musicians is represented as an edge.

f) PROTEIN NETWORK
This is a protein interactions network in yeast, which com-
prises 1870 nodes and 2277 edges. Each node is a protein
and each edge denotes a metabolic interaction between two
proteins. Studies have shown that a protein with a higher
degree is more important for yeast survival than others.

g) POWER GRID NETWORK
This is a power grid network in the Western States of the
USA, which contains 4941 nodes and 6594 edges. In the
network, a node either denotes a generator, a transformer, or a
substation, and an edge is a power supply line.

h) AMAZON NETWORK
This is an e-commerce network derived from merchandise
sales data for Amazon, which comprises 334,863 nodes and
925,872 edges. Each node denotes a product and edges rep-
resent the correlations between co-purchased products.

B. EVALUATION METRICS
In the last 10 years, many evaluation criteria have been
proposed for quantifying the goodness of the overlapping
communities detected by different algorithms. We selected
several widely used methods for evaluation, including the
extended modularity (EQ) [36], extended normalized mutual
information (ENMI) [20], F-score, and purity [37], [38]. The
ENMI, F-score, and purity metrics require the ground-truth
information for networks, but this is difficult to obtain
for real-world networks. Therefore, these evaluation criteria
are often used with synthetic networks. Before presenting
the evaluation results, we briefly describe the evaluation
indicators.

The concept of modularity was proposed by Newman and
Girvan [39] as a metric for evaluating the quality of a parti-
tion. This is still one of the most widely used measures for
quantifying the partitioning of a network. The modularity is
defined as follows:

Q =
1
2m

∑
ij

(Aij −
didj
2m

)δ(Ci,Cj) (16)

where m is the number of edges in network G, A denotes the
adjacency matrix of G, di represents the degree of vertex i,
and δ is the Kronecker function, the value of which equals 1 if
node i and node j belong to the same community, whereas it
is 0 otherwise. To evaluate the quality of a partition based on
an overlapping community, Shen et al. [36] proposed the EQ,
which is often used when the ground truth is not known for

the network. EQ is defined as follows:

EQ =
1
2m

s∑
l=1

∑
i∈Cl ,j∈Cl

1
OiOj

(Aij −
didj
2m

) (17)

where Oi is the number of communities to which vertex i
belongs and Cl denotes a community (1 ≤ l ≤ s and s is the
number of communities). The detection of the overlapping
communities will be better when the value of EQ is larger.
However, a disadvantage of the EQ evaluation metric is that
it is not suitable for evaluating large-scale networks because
of the high time complexity.

The normalized mutual information is widely used to eval-
uate the quality of disjoint community detection, where it
originated from information theory. It is considered that if
the two divisions are similar, then only a small amount of
additional information is needed to infer one partition from
the other. To evaluate the quality of overlapping community
detection, Lancichinetti et al. [20] extended the normalized
mutual information metric to obtain the ENMI, which is
defined as follows:

ENMI (X |Y ) = 1− [H (X |Y )+ H (Y |X )]/2 (18)

H (X |Y ) = 1−
1
|C ′|

∑
k

H (Xk |Y )
H (Xk )

(19)

where X and Y are random variables related to partitions
C and C ′, respectively, and H (X |Y ) denotes the normalized
conditional entropy for cluster X with respect to cluster Y .
The ENMI value ranges between 0 and 1, were 0 denotes that
the partition is completely independent of the ground truth,
whereas 1 indicates a perfect match with the real partition.

The F-score measures the accuracy of overlapping commu-
nity partitioning with respect to the ground truth information.
The F-score is defined as:

F − score =
2 ∗ Accuracy ∗ Recall
Accuracy+ Recall

(20)

where Accuracy is the proportion of correctly detected over-
lapping nodes among all of the identified overlapping nodes
and Recall denotes the proportion of correctly detected over-
lapping nodes among the total true overlapping nodes. The
Accuracy and Recall are defined as

Accuracy =
|GOC

⋂
DOC|

|DOC|
(21)

Recall =
|GOC

⋂
DOC|

|GOC|
(22)

where GOC is the ground truth for the overlapping commu-
nities and DOC represents the detected overlapping commu-
nities. The F-score value ranges from 0 to 1 where a larger
value denotes better quality.

The purity is an external evaluation metric for evaluat-
ing the quality of community detection methods and it is
defined as

P =
1
N

∑N

i=1
max1≤j≤k

|Cij|
|Ci|

(23)
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FIGURE 3. Effectiveness of different algorithms with LFR networks when the degree of overlap Om ranged from 2 to 8.

where N denotes the number of detected communities, k is
the number of different labels, |Ci| is the number of nodes in
community i, and |Cij| is the number of nodes belonging to
label j and community i. A higher purity index denotes better
community partitioning.

C. PERFORMANCE EVALUATION
In these experiments, the codes used for SLPA, FCP,
LC, COPRA, DEMON, and LFM were obtained from
GitHub (https://github.com/GraphProcessor/Community-
DetectionCodes), the code for the SSE algorithm was also
acquired from GitHub (https://github.com/grey-
foxamine/Overlapping-Co-mmunity-Detection-Using-Seed-
SetExpansion-), and the code for NECTAR was provided
by the author (https://github.com/amirubin87/NECTAR).
We employed the default values for all of the algorithms with
tunable parameters. The average result was obtained for each
method based on experiments with 20 independent runs. All
of the experiments were conducted using a desktop computer
with an Intel Core i5 3.3-GHz CPU and 16 GB RAM.

1) EVALUATIONS BASED ON SYNTHETIC NETWORKS
To compare the performance of the overlapping community
detection algorithms, we generated several synthetic net-
works using the LFR benchmark with different characteris-
tics. In particular, we set power law distributions for the node
degree τ1 = 2 and the distributions of the community sizes
τ2 = 1, the community size as Cmin = [5, 10] and Cmax =
[50, 100], and the network size as n = 1000. To conduct
comprehensive comparisons of the algorithms, we varied the
parameters Om, On, µ, and k according to the characteristics
of the networks. The ground truth was known for the synthetic
networks, so the ENMI, F-score, and puritymetrics were used
to evaluate the effects. We compared the performance of each
method with different parameter settings.

1) Effect of Om (degree of overlap)
In order to test the sensitivity of the different algo-
rithms to the parameter Om, we varied the number of
memberships Om from 2 to 8, and fixed the parameters
µ = 0.1, On/n = 0.1, and k = 10. Fig. 3 shows
how the performance of each algorithm varied with
the seven LFR networks according to different values
of the parameter Om. We found that as Om increased,

the performance of each method decreased. In terms of
the ENMI metric, DEMON and OCDID obtained the
best effects. FCP and NECTAR also achieved better
results than the other algorithms. When the value of
Om increased to 8, these four algorithms still obtained
good ENMI values. SLPA and COPRA also achieved
acceptable results. LFMperformedwell when the value
of Om was low, but its effectiveness decreased signifi-
cantly asOm increased. In particular, when the value of
Om was larger than 4, the ENMI value was less than 0.4.
LC and SSE did not obtain performance comparable to
the other algorithms for some LFR networks. In terms
of the F-score metric, OCDID, SLPA, FCP, DEMON,
COPRA, and NECTAR performed very well, thereby
demonstrating that these algorithms could achieve high
accuracy at detecting overlapping communities. How-
ever, LC, SSE, and LFM did not obtain ideal perfor-
mance. In terms of the purity metric, OCDID, FCP,
DEMON, COPRA, NECTAR, and LFM achieved very
high scores. However, LC and SSE obtained lower
purity values as Om increased, thereby indicating that
there were many errors in the communities identified,
and thus many nodes were misclassified.

2) Effect of On (number of overlapping nodes)
In order to evaluate the effectiveness of each algorithm
with various values for the number of overlapping
nodes On, we fixed the parameters µ = 0.1, Om = 2,
and k = 10, and varied the overlapping density On/n
from 0.1 to 0.8. Fig. 4 shows the performance of
the different methods in terms of the ENMI, F-score,
and purity metrics. The performance of each method
decreased gradually as On increased. In terms of the
ENMImetric, DEMON achieved the best performance,
while OCDID, FCP, and NECTAR also obtained com-
paratively good results and they performed better than
the other algorithms. When the number of overlapping
nodes did not exceed 0.2, the LFM algorithm obtained
the highest ENMI value. However, when the value of
On/n was larger than 0.4, its effectiveness decreased
significantly. LC and SSE were not ideal for some of
the LFR networks. In terms of the F-score metric, FCP
and NECTAR yielded the best performance, where
they remained effective as the value of On increased.
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FIGURE 4. Effectiveness of different algorithms with the LFR networks when the overlapping density On/n varied from 0.1 to 0.8.

FIGURE 5. Performance of different algorithms with LFR networks when the parameter µ varied from 0.1 to 0.8.

FIGURE 6. Performance of different algorithms with LFR networks when the average degree k ranged from 5 to 25.

Similar on ENMImetric, OCDID, DEMON, and SLPA
still performed comparatively well. In terms of the
purity metric, DEMON achieved the best performance,
andNECTAR,OCDID, and SLPA also performedwell.

3) Effect of µ (community density)
In order to further investigate the effects of the differ-
ent methods on the community density, we varied the
mixing parameter µ to generate networks. The mixing
parameter µ represents the fraction of the edges of
a node outside its community. Thus, it is often used
to regulate the density of a community for detecting
overlapping and disjoint communities. We varied the
mixing parameter µ from 0.1 to 0.8, and fixed the
other parameters as Om = 2, On/n = 0.1, and
k = 10. As shown in Fig. 5, the effectiveness of
all the methods decreased gradually as the parameter
µ increased. In terms of the ENMI metric, OCDID,
DEMON, and NECTAR were very stable and they
performed better than the other algorithms. FCP and

LFM delivered impressive performance when the
parameter µ < 0.3, where LFM achieved the highest
ENMI value. However, their effectiveness decreased
significantly when the parameterµwas larger than 0.4.
SLPA and COPRA also obtained comparable results.
In terms of the F-score metric, OCDID, DEMON, and
NECTAR yielded stable results in a similar manner to
the ENMI values. FCP, COPRA, and LFM obtained
very high scores when the parameter µ was less than
0.4, but their performance decreased significantly when
µ > 0.6. In particular, the ENMI scores for COPRA
and LFM were almost equal to zero. In terms of the
purity metric, OCDID, FCP, and DEMON also per-
formed better than the other methods.

4) Effects of k (average degree of node)
Fig. 6 illustrates the effectiveness of each approach
when the average degree k varied from 5 to 25. The
other parameters were fixed at Om = 2, On/n = 0.1,
andµ = 0.1. As shown in Fig. 6, most of the algorithms
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did not perform well when the average degree of the
network was relatively low. However, OCDID still pro-
duced better results than the other methods. In partic-
ular, OCDID obtained an ENMI score of 0.6 when the
average degree k was as low as 5. OCDID still produced
good results as the average degree k increased. In terms
of the three metrics, SLPA, FCP, DEMON, COPRA,
NECTAR, and LFM performed extremely well when
the average degree k was larger than 10. By contrast,
the LC and SSE methods did not perform well and they
were not comparable to the other methods with these
networks.

2) REAL-WORLD NETWORKS
In further comparisons of OCDID and the other algo-
rithms, we tested their performance with seven popular
real-world networks that exhibit distinct characteristics.
These real-world data sets lacked ground truth data, so we
used the EQ metric to evaluate the efficiency of the algo-
rithms. Table 4 shows the evaluation results obtained for the
different methods with real-world networks.

TABLE 4. The performances of several algorithms in real-world networks.

FIGURE 7. The OCDID algorithm detected two overlapping communities
in the Karate network.

The OCDID method performed very well with the
Zachary’s Karate club network, where it obtained the highest
EQ score (EQ = 0.351). Fig. 7 shows the overlapping com-
munity detection results produced byOCDID,which detected
three communities. Nodes 3 and 9were considered to be over-
lapping nodes because these nodes exchanged information
among different communities. We identified the overlapping
nodes by calculating the volume of information that flowed
through multiple communities. The SLPA and COPRA algo-
rithms also performed well and most of the nodes were

correctly divided. However, FCP, LC, and SSE did not per-
form well, with low EQ scores, possibly because of the low
average degree of the Karate club network. The LFMmethod
achieved the highest EQ score with the football network.
OCDID and most of the other approaches also performed
well due to the higher average degree (k = 10.66). However,
the LC and SSE algorithms incorrectly divided many of the
nodes, with low EQ scores. With the Polbooks, Citeseer,
and Protein networks, the OCDID algorithm still achieved
the best performance and the highest scores although the
average degree and clustering coefficients were low. COPRA
obtained the highest EQ score with the Jazz network, and the
OCDID, SLPA, and NECTAR methods also performed well,
whereas FCP, LC, and DEMON failed to identify the over-
lapping communities. With the Power grid network, SLPA
obtained the highest score (EQ = 0.558), and OCDID also
produced excellent clustering results, where it performed bet-
ter than the other algorithms. Unfortunately, the results pro-
duced by the FCP, LC, DEMON, and LFM algorithms were
not ideal because the average degree and clustering coeffi-
cients were low in this network (k = 2.669, CC=0.107).
Thus, the OCDID algorithm achieved good results with the
low average degree and low clustering coefficient networks,
as well as obtaining the ideal results for the high average
degree networks.

Next, we employed the large-scale network derived from
Amazon merchandise sales data to evaluate the performance
of the algorithms. Because of the high complexity of the EQ
measure, it could not be determined for this network. Thus,
the ENMI, F-score, and purity metrics were used to assess
the quality of overlapping community detection. Fig. 8 shows
how the different algorithms performed with this network.
OCDID obtained high performance, thereby indicating that
the quality of overlapping community detection was high.
SLPA, FCP, COPRA, and NECTAR achieved good results,
but LC and DEMON did not perform well with this network.
OCDID, SLPA, FCP, COPRA, and NECTAR obtained higher
F-score values. The result obtained by LFM is not shown in
the figure because its worst-case complexity is O(n2) and the
runtime exceeded four days with this network.

In summary, DEMON and FCP performed very well with
the synthetic networks, where they achieved most of the
highest evaluation scores. However, the performance of these
two algorithms was not ideal with real networks. By contrast,
OCDID performed extremely well with both synthetic and
real-world networks, where it could handle networks of dif-
ferent sizes and generate good partitions of the overlapping
communities.

D. RUNTIME
In order to compare the computational time required for
OCDID and various other algorithms at different network
scales, we employed the LFR benchmark to create networks
with different sizes. In particular, we fixed the parameters at
µ = 0.1, Om = 2, On/n = 0.1, and k = 10, and varied the
number of nodes n from 1,000 to 1,000,000. The runtimes of
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FIGURE 8. Effectiveness of different algorithms with the Amazon
network.

FIGURE 9. Runtimes for different algorithms with synthetic networks
when the number of nodes varied from 1K to 100M.

the algorithms are compared in Fig. 9. When the number of
nodes reaches 500, 000, the runtimewasmore than three days
for the LC, SSE, and LFM algorithms, and thus the results
obtained for these algorithms are not shown in the figure. Our
proposed OCDID method was faster than the LC, DEMON,
SSE, NECTAR, and LFM algorithms, where this advantage
was particularly significant as the network size increased.
This difference in the runtime required was mainly due to
the low time complexity of O(k · n + L · n · k + |C| · n),
where k � n and |C| � n. Therefore, the OCDID approach
can handle large-scale networks, although it was slower than
SLPA, FCP, and COPRA. These three algorithms required
less time than OCDID but the SLPA and COPRA methods
have stability problems, and FCP does not perform well with
real-world networks (Table 4), especially networks with a low
average degree.

V. CONCLUSIONS
In this study, we developed a new algorithm called OCDID
for detecting overlapping communities in complex net-
works. In our algorithm, an information dynamics model
is employed to simulate the communication of information
between the nodes in networks. This model represents the
flow of information on networks to intuitively depict the
community structure and it facilitates the identification of
overlapping nodes by calculating the volume of information
on each node. We conducted experiments using synthetic and
real-world networks to evaluate the performance of OCDID,
where we compared OCDID with eight representative over-
lapping community detection methods. The experimental
results demonstrated that OCDID performed well at identi-
fying the overlapping communities and it was better than the
representative algorithms considered in the evaluation.
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