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ABSTRACT The concept of Bitcoin was first introduced by an unknown individual (or a group of people)
named Satoshi Nakamoto before it was released as open-source software in 2009. Bitcoin is a peer-to-peer
cryptocurrency and a decentralized worldwide payment system for digital currency where transactions take
place among users without any intermediary. Bitcoin transactions are performed and verified by network
nodes and then registered in a public ledger called blockchain, which is maintained by network entities
running Bitcoin software. To date, this cryptocurrency is worth close to U.S. $150 billion and widely
traded across the world. However, as Bitcoin’s popularity grows, many security concerns are coming to
the forefront. Overall, Bitcoin security inevitably depends upon the distributed protocols-based stimulant-
compatible proof-of-work that is being run by network entities calledminers, who are anticipated to primarily
maintain the blockchain (ledger). As a result, many researchers are exploring new threats to the entire
system, introducing new countermeasures, and therefore anticipating new security trends. In this survey
paper, we conduct an intensive study that explores key security concerns. We first start by presenting a
global overview of the Bitcoin protocol as well as its major components. Next, we detail the existing threats
and weaknesses of the Bitcoin system and its main technologies including the blockchain protocol. Last,
we discuss current existing security studies and solutions and summarize open research challenges and trends
for future research in Bitcoin security.

INDEX TERMS Bitcoin, blockchain, security, machine learning (ML), anomaly detection.

I. INTRODUCTION
Bitcoin was originally introduced in 2008. Since then, it has
emerged as the most successful cryptographic currency
amongmany competitors, boosting the economywith billions
of dollars a few years after being launched. As a type of
cryptocurrency, Bitcoin exists in the form of sets of com-
puter codes that virtually hold a monetary value. With that
context, all transactions and payments are accomplished over
the Internet. Note that Bitcoin differs from traditional on-line
banking, as it utilizes a peer-to-peer (P2P) network that does
not associate with a centralized third-party organization, e.g.,
such as an e-bank, a notary, or any other traditional on-line
financial service provider that conducts and approves elec-
tronic payments activities. Instead, Bitcoin users have full
control of what they want to do with their own money by

means of freely ordering how and when to use digital money
without any constraints. Bitcoin is increasingly drawing pub-
lic attention and moving more and more customers towards
using this payment system in a variety of businesses. Fast,
convenient, tax-free, and revolutionary are commonly used
to describe Bitcoin.

However, things can never be perfect. In particular,
the security, confidentiality and reliability of Bitcoin have
also been controversial topics since they pose added vulner-
abilities being away from consolidated governance and law
enforcement. Additionally, to guarantee a reliable and trusted
distributed system of monetary transactions, it is critically
important for all Bitcoin holders and operators to have a
safe environment of monetary operations as well as personal
property protection. For the past several years, there have
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been several research studies that have considered anomaly
detection for the Bitcoin system and these studies have con-
sidered a variety of techniques including, but not limited to,
machine learning (ML) and network analysis methods. Along
these lines, in our paper, we conduct an intensive survey study
that focuses on ML-based techniques and approaches in the
detection of threats and anomalous activities in the Bitcoin
and blockchain systems.

As noted in [23], blockchain provides the fundamental
framework for all kinds of Bitcoin’s operations. In particular,
it provides a novel decentralized consensus scheme that stores
transactions, money transfers, and any other data records in
a secure manner without any involvement from third party
authorities. In Bitcoin, every transaction is broadcasted to all
peers into the network and processed to verify its integrity,
authenticity, and correctness by a group of nodes called
miners. In particular, instead of mining a single transaction,
miners bundle a number of transactions that are waiting in
the network to get processed in a single unit called a block.
A miner then advertises a block across the whole network as
soon as it completes its processing (or validation) in order
to claim a mining reward. This block is then verified by the
majority of miners in the network before it is successfully
added in a distributed public ledger called a blockchain. The
miner who mines a block receives a reward when the mined
block is successfully added in the blockchain.

Since the Bitcoin blockchain is a distributed (non-
centralized) system, it does not require any permission from
a trusted third party (TTP) to handle Bitcoin transactions.
Specifically, networking nodes can communicate with each
other in a collaborative manner to establish the blockchain
without any central authority. However, a single entity can
still crash or even behave abnormally. Such a crash or abnor-
mality may lead to communication interruption. Therefore,
in order to guarantee an uninterrupted communication ser-
vice, all entities need to run a fault-tolerant consensus pro-
tocol to guarantee that they all agree on the order in which
entries are pushed to the blockchain.

As the Bitcoin system and its network infrastructure have
been proven vulnerable to a tremendous amount of malicious
activities and attacks in the past [67], there are numerous
existing studies on dealing with particular security chal-
lenges in Bitcoin and blockchain systems such as [51], [52],
and [68]. These studies range from anomaly detection to
market return and volatility forecasting in the Bitcoin system.
Several studies have also focused on utilizing ML techniques
for anomaly detection in Bitcoin networks, such as fraud
detection and anomalous activities/transactions. For example,
Pham and Lee [51] utilize unsupervised learning methods to
deal with anomalous activities (i.e., transactions) in Bitcoin
systems. In order for us to fix or even isolate malicious parts
of the network until they are debugged, various ML tech-
niques, such as support vectormachine (SVM) and clustering,
can be deployed to help with identifying those parts that
behave abnormally.

In this work, we conduct an intensive survey that mainly
focuses on the deployment of ML techniques for security
threat detection and/or mitigation in Bitcoin and blockchain
systems/infrastructures, alongwith an analysis of their related
concepts. Moreover, we further discuss and investigate exist-
ing work and state-of-art threat vectors, classify them, and
present their limitations whenever applicable. These attack
vectors embody a variety of abnormal user behaviors and
anomalous Bitcoin transactions that threaten smooth func-
tionalities and operations in real-time monetary services and
applications. Furthermore, we study and present some com-
mon existing ML-based solutions and countermeasures to
combat serious anomalous activities and threats with regard
to the major components of Bitcoin and blockchain. Finally,
we discuss future research trends and related open security
research problems. We also discuss the effectiveness of vari-
ous security proposals and efforts that have been introduced
in the past several years to solve existing or common security
challenges for the Bitcoin infrastructure.

The rest of our survey paper is organized as follow and it is
also shown in Figure 1. Section II presents an explanatory and
detailed overview of Bitcoin along with its functionalities.
Section III then gives a taxonomic discussion of vulnerabili-
ties that threaten the security, implementation, and resiliency
of the Bitcoin network and blockchain. In Section IV we
present ML-based state-of-the-art studies and efforts aiming
to counteract a specific security threat or even improve the
current resiliency in the Bitcoin system. Finally, Section V
provides an overview of future research trends and directions.
We then conclude our surveying study in Section VI.

II. BITCOIN INFRASTRUCTURE AND DESIGN
In this section, we discuss the overall design and infrastruc-
ture of the Bitcoin system from a contextualized overview and
a technical overview as follows.

A. A CONTEXTUALIZED OVERVIEW
We refer interested readers to existing surveys on the wave
of cryptocurrency research [13], [15]. In 1983, cryptographic
currency was first introduced as a system for bank-issued
cash, where coins were blindly signed and unblinded version
of coins were conveyed among clients and traders. These
coins were redeemed once the bank validated them [21].
Similarly, the Bitcoin system also granted blind signa-
tures to block Bitcoin-enabled banks from binding coins to
clients [13]. All the way through the 1990s, several infrastruc-
tural extensions and adjustments to the Bitcoin system were
introduced [13], including, but not limited to, removing the
requirement for a Bitcoin bank to be on-line during a purchase
operation [22] and the period of enabling the splitting of coins
into small units [50].

In the early 1990s, the concept of a smart contract was
introduced [63] to allow different parties in the Bitcoin
system to officially appoint a cryptographically-mandatory
agreement and foresee the scripting capabilities of Bitcoins.
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FIGURE 1. Overview of the paper.

The final major revolution took place in 2008, where Bitcoin
was announced and an unknown white paper was posted
under the pseudonym Satoshi Nakamoto in the Cypherpunks
mailing list [49]. This release included the source code of the
authentic reference client as well. Next, the original block
of the Bitcoin system was mined early in 2009 and the first
official release of the system is believed to have taken a place
inMay 2010, where a user placed an order for a pizza delivery
by trading off 10000 bitcoins. After this stage, the number of
users started to dramatically increase on a daily basis as well
as reliable services, such as goods trade-off on site.

Precisely, the Bitcoin system is taxonomically regarded as
a network of nodes that continuously maintain an electronic
ledger called blockchain [64]. This system utilizes tokens
called bitcoins to inveigle and motivate users/clients to par-
ticipate via transactions. New bitcoins are minted whenever a
new block is generated in an incentive form, which is impor-
tant to drive the system of transactions [39]. These transac-
tions are to store Bitcoin owner information, along with the
amount of bitcoins (i.e., funds) stored in the blockchain [64].
Moreover, each user has the ability to check the content of the
blockchain that is cloned on all network nodes.

B. A TECHNICAL OVERVIEW
1) DECENTRALIZATION
Bitcoin is the very first distributed crypto-currency system
and it is a fully decentralized digital currency system where
the monetary power is not controlled by any party [35].
Imparting from the washout of a centralized economic sys-
tem, the unknown Bitcoin inventor created it in a decentral-
izedmanner. However, this decentralized architecture still has
several major limitations [54]:

• The transactions ledger needs to be publicly preserved
by every single node.

• Ledger transactions need to be checked and legitimized
by a distributed entity but not by a centralized author-
ity or party.

• Unlike centralized economic systems, new bitcoins can
be generated by any connected entity.

• Exchange operations of bitcoins’ values are completely
dynamic and no centralized control is required to handle
such operations.

Bitcoin is a distributed digital currency system based on
a P2P networking system and a decentralized probabilistic
consensus protocol where all payments and exchanges are
accomplished electronically through the transaction between
clients [46]. Addresses in the Bitcoin system are also cre-
ated through the execution of consecutive irreversible cryp-
tographic hash schemes using users’ public key. Namely,
a single client can generate several public keys in order to
have more than one addresses where each single address
will be assigned to one or more wallets [23]. The client’s
private key is necessary to expend bitcoins through digitally-
signed bitcoin transactions. These ledger transactions are
also performed to check and validate their authenticity and
integrity by a set of distributed networking-enabled entities,
i.e., miners. These miners are in charge of bundling numerous
ledger transactions, which await to access the network to be
performed by a single entity/unit named a block. In order to
announce a mining reward, a miner node will declare a block
in the Bitcoin network once the block processing is completed
and validated. Next, the rest (or majority) of networking-
enabledminer nodes in the systemwill check and validate this
mining block before it is appended to a publicly decentralized
ledger named a blockchain. The block winning miner node
will obtain a reward once the mined block is completely
appended to this blockchain.

2) TRANSACTIONS AND SCRIPTS
Bitcoin transactions are used to transfer digital coins
between different client wallets. Specifically, these coins are
transferred in form of a transaction or consecutive series
of transactions, as depicted in Figure 5. Overall, the list of
transactions is continuously increasing and there are no built-
in higher-level concepts in the system to manage the balances
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of active accounts or even the identities of clients. Instead,
this information can only be imputed from the entry list of
published transactions.
• Transaction format: Each Bitcoin transaction has a
multi-dimensional list or an array of input entries and
an array of outputs entries as shown in Figure 4. The
transaction is entirely hashed by the SHA-256, and the
produced hash value basically serves as a unique global
identifier of the transaction. Next, the transaction is
advertised by an ad-hoc-based binary format. Moreover,
the output entries constitute a set of integers which
reflect the amount of Bitcoin currencies. These output
entries also constitute a concise code in the form of
a particular scripting language named a ScriptPubKey,
which reflects the parameters required to validate the
redemption of transactions, which will be appended to
a later transaction input.

• Transaction Script: In the transactional context,
the ScriptPubKey appoints the hash of a public key
using an Elliptic Curve Digital Signature Algorithm
(ECDSA)-based public key along with a signature val-
idation routine. Briefly, as shown in Figure 3, Script-
PubKey is a short script illustrating what conditions
need to be fulfilled to purport the ownership of bitcoins.
An example of ScriptPubKey is given in Figure 3.
This entire operation is referred to as a pay-to-pub-key-
hash transaction, while the redeeming transaction also
needs to be signed by a key with this appointed hash.
Furthermore, the deployed scripting language is speci-
fied by its implementation in bitcoind, an ad-hoc-based
stack language that has about 200 commands named
opcodes. This language supports cryptographic-based
operations, such as hashing information and validating
signatures. Furthermore, this scripting language also
allows transaction input entries to point to previous
transactions using their corresponding hash. Now in
order to claim a redemption of a previously-validated
transaction, both ScriptSig and ScriptPubKey need to be
executed receptively through the same stack. However,
for transactions of the form pay-to-pubkey-hash, Script-
Sig will be a public key combined with a signature.

• From transaction to ownership: To better understand the
transactional process in the Bitcoin system as shown
in Figure 2, we give an illustrative example here.
Suppose client i wants to transfer n bitcoins to client j.
In order to make a payment to client j, client i must
utilize a Bitcoin client-side software as well as its own
private key and client j’s Bitcoin address. Although any
client in a Bitcoin network might transfer funds (i.e.,
money) to a particular a Bitcoin address, bitcoins are
released from the account only by a unique signature
generated with a private key. In this case, in order for
client i to prove ownership of those transferred coins,
client i needs to sign the transaction with its crypto-
graphic key. Once client i broadcasts the transaction, all
miners in the Bitcoin network will be informed about

the new transaction. Last, the miner nodes must verify
that client i has an enough funds to complete this trans-
action and validate the correctness of the digital signa-
ture. Moreover, the transaction format has a few key
properties. Foremost, there is inherently no ingrained
concept of identity or no singular client account that own
the bitcoins. Ownership in the Bitcoin context solely
refers to knowing a private key to grant the capability to
make a signature for a specific output redemption (i.e.,
redemption validation). Furthermore, public key hashes
are regarded as pseudonymous client identities, as spec-
ified in pay-to-pub-key-hash transactions. These client
identities are also referred to as addresses, where no
authentic names or real identifications are needed. Over-
all, since the Bitcoin system integrates cryptographic
applications along with P2P networks to guarantee a
decentralized digital cryptocurrency environment, it pre-
serves a complete transaction history within the public
blockchain. Therefore, Bitcoin clients can be exposed
to the leakage of financial information. However, this
is mainly due to existing approaches and solutions that
aim at de-anonymizing and matching real user identities
with the public transactions history [17].

3) BLOCKCHAIN CONSENSUS PROTOCOL AND MINING
Blockchain is basically a public and append-only-based
structure that saves a transaction history in the distributed
Bitcoin system in the form of individual blocks by using
Merkle tree (along with a secure timestamp and the hash
of a previously validated transactions block). A new block
is successfully appended to the blockchain only if miner
nodes validate them through solving a difficult proof-of-work
(PoW) puzzle. The blockchain also allows for traversing these
blocks to find the ownership of a Bitcoin in an efficient way
as blocks are saved in a given order. Moreover, manipulating
blocks is impossible because tampering with only one block
will modify the entire hash value of the block and the tamper-
ing will be detected since each single block contains the hash
value of the previous one [15].

On another hand, in a blockchain, the block validation
process has a distributed nature, which implies that more than
one valid solution can potentially be found at the same time.
However, this will result in valid blockchain forks with a
similar length. Now when more than one fork occurs, miner
nodes will be enabled to pick up a fork and continue to
mine on top of it. Since this situation might be common,
a blockchain with a longer version is likely to exist in the
network (and the rest of the miners nodes will eventually
begin building their corresponding blocks on the top of this
longer version, as depicted in Figure 5).

Furthermore, since the mining process in the network is of
a continuous nature, the blockchain will always increase in
size. Therefore, the operation of appending a new block will
be as follows: (1) a miner node will append the new block in
its local blockchain and advertise the solution once the valid
hash value is determined (i.e., its hash value is same or smaller
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FIGURE 2. Creation and addition of blocks and a transactional process in a blockchain.

than the target’s hash value), and (2) miner nodes will rapidly
verify the received solution of a valid block and update their
local blockchain if the advertised solution is valid; otherwise,
it will be discarded. Regarding rewards, a winning miner
node will always be rewarded with a set of newly-minted
bitcoins as an incentive while the winning hashed block
will be advertised and published in the public distributed
ledger.

Due to the decentralized nature of the Bitcoin blockchain,
authorization is not imposed on any TTP prior to any trans-
action processing. Specifically, active nodes in the network

can establish a blockchain in a collaborative way and is inde-
pendent of any centralized authority. Now, distributed entities
can crash, perform malignantly, or even poor network com-
munications between these entities can lead to a service inter-
ruption. Hence, in order to guarantee an non-interruptible
service, network nodes need to provide a guarantee that
they all concur and add valid entries to the blockchain. All
miner nodes are forced to abide by the rules appointed in the
distributed consensus protocol to append a new blockchain
block, and the PoW algorithm is used to enable the Bitcoin
system to realize a completely distributed consensus.
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FIGURE 3. ScriptPubKey generation from Bitcoin addresses to identify recipients.

FIGURE 4. A depiction of consensus model of the blockchain with a block and transaction structures.

This PoW-based consensus protocol implies a few key rules:
(1) transactions are enabled to spend only unspent valid
outputs, (2) output and/or input entries are rational, (3) spent
inputs are assumed to have correct signatures, and (4) the out-
puts of a coinbase that are a unique type of bitcoin transaction
created by a miner node are not permitted to be spent inwards
exactly 100 blocks of their creation.

Many existing Bitcoin studies focus on consensus algo-
rithm as they open up various questions and research
problems, including, but not limited to, (1) stability [13],
(2) damage of computation resources [43], and (3) scala-
bility [62]. On another hand, from the perspective of power

and resource consumption, the PoW consensus protocol in
blockchain is considered to be inefficient. Therefore, sev-
eral research efforts have also been addressing this concern
by presenting new consensus protocols such as Proof-of-
Stake (PoS), practical byzantine fault tolerance (PBFT) [20],
Proof of Storage [59], and so on. These newly-proposed
protocols differ from the PoW with regard to the resources
expensed, and are driven by the internal resources con-
sumed rather than the external usage (as in PoW). Note that
this infrastructural change establishes a completely different
series of incentives and therefore mutates the security models
in the Bitcoin system [23].

67194 VOLUME 6, 2018



M. Rahouti et al.: Bitcoin Concepts, Threats, and ML Security Solutions

FIGURE 5. Classification of resiliency threats in the Bitcoin system.

4) PEER-TO-PEER (P2P) COMMUNICATION NETWORK
Bitcoin uses an unstructured P2P-based network along with
a reliable TCP-based connection transport. An unstructured
network suits Bitcoin due to the need for a rapid distribution
of data to attain the blockchain consensus. However, vari-
ous challenges are exposed here and they can be overcome
through several means, e.g., using mainnet, a live network
for Bitcoin system connectivity [23]. Here, all entities (i.e.,
nodes) must keep the IP address list of their prospect peers.

This list will be bootstrapped through the DNS server where
further IP addresses are enabled for exchange between other
connected peers. All peers seek to keep at least 8 unencrypted
TCP-based connections within the overlay network and uti-
lize port 8333 for inbound connections listening. Once an
incoming connection is detected, the peers need to run a layer
handshake-based application, where the exchanged packets/
messages consist of a synchronization timestamp, the pro-
tocol version, and the IP address of the node. By default,
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each peering node choses its relative peers randomly and
an updated list of peers will be elaborated after a constant
time interval. This configurative process helps reduce the risk
of a netsplit threat, i.e., where an adversary can establish a
conflicting view of the blockchain through a compromised
entity.

The mining nodes hearken to incoming announcements
of new blocks that are advertised using Inventory Vector
(INV) messages constituting the hash value of a newly-mined
block. AGETDATA packet will be transmitted to a contiguous
node in case the miner figures out that it does not have a
recently advertised block and therefore the contiguous node
will reply with the desired data through a BLOCK packet. The
desired block is expected to arrive within 20 minutes at most.
Otherwise, the miner node requesting the information will
disconnect from the non-responding contiguous miner and
demand the same information from another contiguousminer.
The benefit of using an unstructured-based P2P network in
Bitcoin is to allow for fast data distribution in the entire
Bitcoin network.

From an infrastructural resiliency perspective, Bitcoin is
very dependent upon the consistent and efficient state of
PoW-based consensus and blockchain in general. A discor-
dant state of blockchain is very likely to lead to a double
spending vulnerability in case it is successfully exploited by
users. For this reason, the P2P communication network must
guarantee reliable scalability. Moreover, in Bitcoin, typical
users use the Simplified Payment Verification (SPV) scheme
to check whether a specific transaction is appended to a par-
ticular block, i.e., without downloading the complete block.
However, this operation is very costly and it can lead to
other security threats, in particular, Denial of Service (DoS)
attacks [23], [29].

5) ETHEREUM: CONQUERING BITCOIN’s
INFRASTRUCTURE LIMITATIONS
Ethereum was first introduced by Buterin et al. [18] as a
public and open source distributed operating system and
computing platform in the form of a blockchain. This pro-
posed system supports an adjusted Nakamoto protocol ver-
sion and it provides efficient features and functionality of
smart contracts. In addition, this blockchain-based platform
resolves a few critical challenges and limitations in the
blockchain structure and scripting language of Bitcoin, such
as Turing-completeness. Thereafter, it upholds the state of the
transaction for every possible kind of computations including,
but not limited to loops [65]. Lastly, Ethereum offers an abso-
lute layer to allow users to build and design their own trans-
action format, state transition functions, and ownership rules
through the built-in Turning-Complete feature [18]. However,
these privileges are given through the involvement of the
smart contract concept in the Ethereum and cryptographic
rules are only executed as long as specific instructions are
fulfilled.

III. RESILIENCY CHALLENGES
A. BLOCKCHAIN CONSENSUS PROTOCOL AND MINING
Bitcoin users are not required to authenticate themselves
before acceding to the network in the PoW consensus proto-
col. This process renders the consensus protocol in Bitcoin
very scalable in supporting a massive amount of users.
However, the PoW-based consensus protocol is prone to par-
ticular attacks, where an attacker is estimated to gain control
over more than 51% of the mining power [23]. Under this
threat scenario, attackers might create their own transaction
block or even fork the local blockchain to converge with the
primary blockchain at a later time. This security violation can
apparently foster various attacks against Bitcoin, including,
but not limited to, DoS and double spending [23]. Since
Bitcoin is a completely decentralized cryptocurrency system
uncontrolled by any party or authority, many adversaries
can exploit such a system as simple means to commit fraud
and hack transactions. Hence, in the following subsections,
we present a taxonomic overview of existing security threats
and their countermeasures in Bitcoin along with underlying
technologies.

B. DOUBLE SPENDING
The Bitcoin validation process for each transaction block
will eventually result in either acceptance or rejection of
a questioned block. Namely, the acceptance will be sig-
naled by prolonging a blockchain (i.e., a new block is
added to the blockchain), whereas rejection will be signaled
by discarding the transaction block and solely maintaining
the recently-updated blockchain by other entities [58]. For
instance, consider the following Bitcoin communication sce-
nario where entity E1 can send a transaction block to entity
E2, i.e., E1→ E2, and then to entity E3, i.e., E1→ E3,
with the same bitcoin. In this transactional scenario, it is
infeasible for other entities in the Bitcoin network to find
out what entity is doing a double spending-based attack [34].
Now, according to Bitcoin system rules, all active entities
are required to prolong the longest blockchain, and therefore
under this double spending scenario, both entities E2 and E3
will possess a blockchain of exactly the same length. This will
result in two typical scenarios:
• EntityE2might await for a confirmation from a contigu-
ous sincere entity to append the questioned transaction
E1→ E2 into the local blockchain. This operation will
preclude any possibility of receiving a confirmation for
another transaction such as the transaction E1→ E3 (to
be appended to the local blockchain in E2).

• Entity E2 might just orphan the previously-received
transaction block E1→ E2 immediately after it finds
out about the transaction block E1→ E3, i.e., since all
transaction blocks in the Bitcoin network are advertised
(broadcasted).

However, the chances of having double spending vulnerabil-
ities drastically decrease as the number of confirmation mes-
sages increases (which is eventually the case as there are up
to 6 confirmation messages in the current Bitcoin network).
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It is expected that a confirmation message is also received by
a Bitcoin entity within a fixed time frame before the entity
makes a decision about a received blockchain transation.

C. MINING POOL VULNERABILITIES
Bitcoin mining pools are an aggregation of resources used
by mining entities that share their own processing power in
the P2P network. These pools help evenly divide the reward
based on the work rate they contribute to the probability
of discovering a transaction block. Now, the current Bitcoin
infrastructure is composed of individual miners, open pools
which enable any miner node to join the network, and a
closed pool which demands a private/closed relationship to
accede. These mining pools are designed to augment any
computation-processing power that promptly impacts the
probing time of a transaction block, thereby increasing the
probabilities of winning a mining reward [23]. Generally,
many mining pools have been created in the last several
years and are being controlled by pool managers, who send
unresolved units off to particular pool members/miner nodes.
In turn, pool members create full proofs-of-work (FPoWs)
and partial proofs-of-work (PPoWs), and then transmit them
back to the pool manager in the form of shares. Once a
pool member finds a new transaction block, it will transmit
it to the pool manager accompanied by its full proofs-of-
work. Next, the pool manager will advertise the explored
transaction block in the network to acquire themining reward.
The acquired reward will then be split among the contribut-
ing miners according to their contributed portion of shares.
Hence, the partial proofs-of-work is only used to determine
the way rewards are distributed among clients.

1) POOL HOPPING ATTACK
Rosenfeld [57] introduced a pool hopping attack, in which
an adversary exploits information about the number of trans-
mitted shares in the mining pool to carry out selfish mining
(i.e., the process of mining bitcoins where a set of miners
collude to augment their revenue). Under this threat model,
the attacker attempts to execute a continual and uninter-
rupted analysis over the amount of shares transmitted by
contiguous miner nodes to their pool manager for the pur-
pose of exploring a new transaction block. The promise here
is that rewards are distributed according to the transmitted
shares. Therefore, if a huge amount of shares is transmitted
and does not have any new transaction block, the attacker
will eventually get a relatively small portion of the reward.
Hence, it could be more beneficial for an attacker to turn into
another mining pool or even mine distinctly [23]. Conversely,
a ‘‘sponsored block withholding attack’’ was also identified
by Buterin et al. [16], in which a selfish miner could complic-
ity incorporate with another pool to gain a reward from this
connivance pool and attack another pool.

2) BRIBERY ATTACK
Bonneau [12] details an attack model called the bribery,
in which an adversary can acquire most of the processing

resources for a fixed period of time through bribery. In partic-
ular, J. Bonneau describes three methods to insert bribery into
the Bitcoin network. (1) Negative-Fee Mining Pool where
an adversary creates a pool through paying a higher return,
(2) Out-of-Band Payment where an attacker pays the owner
with processing resources and directly makes these tricked
owners mine transactions’ blocks appointed by the attacker,
and (3) In-Band Payment through a forking operation where
an adversary tries to bribe via Bitcoin itself (by originating a
fork that has a bribe in the form of free money for any miner
node taking over the fork, see [23]). If an adversary possesses
most of the hashing power, they might establish various
types of attacks, including, but not limited to, DDoS and
double spending [27]. Furthermore, miner nodes accepting
bribes will acquire only a short-lived profit, which could be
undermined by the losses under the existence of Goldfinger
and DDoS attacks, or even through an exchange rate-based
crash [23].

D. VULNERABILITIES IN CRYPTOGRAPHIC APPLICATIONS
The management of private keys in Bitcoin and blockchain
is still an unresolved problem [24], [72]. Current Bitcoin
applications utilize the private key to validate the identities
of users and accomplish a payment-based transaction. How-
ever, the trustworthiness of the private key only depends on
the assumption that information cannot be tampered with.
In Bitcoin, unlike classical public key cryptography, clients
are held accountable for their private keys, and therefore each
client is responsible for producing their own private keys
and maintaining it (rather than a third-party). If the private
keys are lost, the owning clients will not be able to access
their own digital assets in a Bitcoin network. Moreover,
cryptographic algorithm-based applications might present
unbeknown backdoors and threats. Namely, since crypto-
graphic algorithms such as, Rivest-Shamir-Adleman (RSA)
and Elliptic-Curve Cryptography (ECC) are being widely
deployed in blockchain, backdoors or threats can appear in
such algorithms themselves or even during their implementa-
tion phase. Therefore, while a Bitcoin wallet guarantees the
flexibility to manage and maintain a user’s private key, saving
all private keys on local networking-enabled entities could
pose tremendous amount of security risks in case of theft [6].

E. GOLDFINGER ATTACKS
Kroll et al. [37] also present a novel attack model called
the goldfinger attack, where the intention of the majority of
mining entities is to explicitly break down Bitcoin network
stability. For instance, such an attack scenario could occur
when a connected entity in the network attempts to harm
Bitcoin in order to avert a competition with its own currency.
Additionally, a single user may try to invest in a competing
currency. However, these typical vulnerabilities have been
addressed through altcoin infanticide [13], where a deep-
forking attack was contrasted to a competing currency of a
very lowmining power, which was effectively mounted using
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Bitcoin mining nodes. As a result, this experiment proved the
Goldfinger attack profitable.

F. FEATHER-FORKING THREAT
Miller [45] introduced an attackmodel called feather-forking,
where miner nodes try to monitor a blacklist for transac-
tions while publicly warranting if a particular transaction is
appended into the blacklist in the blockchain. The adversary
will take revenge by discarding the block that possess the
targeted transaction and then try to fork the blockchain. The
adversary’s fork is expected to proceed until outperforming
the master branch and earning, or just dropping behind by
n number of blocks and thus giving up by advertising the
targeted transaction block [13]. In general, adversaries with
less than 50% of the mining power are expected to forfeit
currencies; yet, they can only block a particular blacklisted
transaction block with a certain level of probability. Further-
more, if adversaries have the capability to convincingly prove
the seriousness about retaliatory forking, they might also be
capable of imposing their designated blacklist without any
eventual cost/price. That is, as long as the remaining miner
nodes ratify that the adversary is intending to carry out a
costly retaliation-based feather-forking attack.

G. NETWORK VULNERABILITIES
Presumptive attacks in the Bitcoin network are estimated
to consume over 50% of the processing power held by a
malignant entity. However, several offensive trials might be
established [35] as follows.
• Stealing coins from particular addresses of other entities:
It is unlikely to steal coins from other nodes as doing so
will demand breaking down cryptographic algorithms.
However, for coins stealing, a malignant entity needs to
originate a transaction block through the use of the target
entity’s private key. Deriving a private key matching
a public key will be cryptographically difficult with
existing computation abilities [35].

• Restraining transaction blocks in the blockchain:
Malignant entities may feasibly evade transactions that
supply payments to a particular miner (i.e., address).
However, while a P2P network is adopted in Bitcoin,
this type of attack will eventually be detected as all
blockchain transactions are advertised to each miner and
such a detection is achieved due to the existence of
sincere miners in the Bitcoin network who will properly
append this transaction when creating a new block [35].

• Tempering with a block reward: This type of attacks
is also infeasible because a malignant miner node can-
not control the copy of software distributed within the
entire Bitcoin network. When developers update the
software copy, the change will be visible to all clients
in the global network. However, such an attack might
lead to clients loosing their trust in the system and the
bitcoin price will definitely be impacted without any
attack establishment by malignant entities. Hence, this
attack is practically feasible and the key challenge is

that such an attack demands significant investment to
outnumber hash power, but it is difficult to accomplish in
practice [35]. While numerous threat models have also
been identified for Bitcoin networking infrastructures
for the past several years, many significant attackmodels
have been ignored. For example, Apostolaki et al. [7]
investigated currency threats at the level of Internet
routing infrastructures, where it was induced that por-
tions of Bitcoin flows could be feasibly manipulated
by intercepting network flows or manipulating routing
advertisements, e.g., Border Gateway Protocol (BGP).

IV. MACHINE LEARNING-BASED EFFORTS AND
COUNTERMEASURES AGAINST THREATS
Network infrastructures have existed for many decades along
with users who behave maliciously within these network
systems. These particular users are usually referred to as
malignants [52]. Nowwith regard to networks carrying finan-
cial transactions, malignants contain users who carry out
deceitful transactions. Under the scope of these financial and
transactional networks, the intended and perceived objective
is to stop these malignants from carrying out illegitimate
activities [52]. Hence, in Bitcoin networks, it is vital to reveal
suspicious behaviors concerning all users due to the drasti-
cally growing nature of thefts.

Blockchain technology hinders two particular types of
malicious activities conducted on-line; record hacking and
double-spending [67]. As previously discussed, due to net-
work delay and/or propagation delay in the Bitcoin P2P
network, the double-spending problem might probably occur
as a Bitcoin client attempts to participate in more than one
transaction with the same bitcoin (i.e., or same quantity of
bitcoins). This is realistic because of the delay in broadcasting
pending payments through the network, which in turn results
in particular nodes being given unvalidated transactions at
different times [67].

The anomaly detection problem can also be general-
ized or applied to other networks which do not necessar-
ily encompass financial and monetary transactions. Indeed,
there are many studies and research solutions proposed in
the past to deal with anomaly detection [51], [52]. These
efforts deploy a broad range of techniques including network
analysis and ML methods. However, in this survey paper,
we mostly concentrate on recent ML solutions and proposals
to address the problem of revealingmalignants and suspicious
activities and actions in Bitcoin and blockchain, accordingly.
Tables 1 and 2 depict a taxonomic presentation and classifi-
cation of security solutions based on various ML techniques.
For example, Smith et al. [61] used particular clustering
methods to capture malignant activities in a network and
were able to classify legitimate system users separately from
malicious users, i.e., via k-means-based clustering along with
self-organizing maps to design a detection solution.

ML techniques have also been used in several studies
to address the aforementioned security threats such
as [51] and [52]. Namely, using the k-means clustering metric
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TABLE 1. Taxonomic classification of proposed security solutions using machine learning.

in [66], Pham and Lee [51] tried to detect abnormal behaviors
in Bitcoin transaction networks by using multiple unsuper-
vised ML techniques, such as k-means clustering and Unsu-
pervised VectorMachine (SVM) on two Bitcoin transactions’
graphs. Specifically, one graph presents client transactions as
entities and the other clients as entities.Meanwhile, Pham and
Lee [52] utilize power degree laws along with Local Outliers
Factor (LOF) and densification techniques. Similar to [51],
Pham and Lee [52] also applied two transactions’ graphs

to the Bitcoin network; one presents clients transactions as
entities and the other clients as entities.

Additionally, Harlev et al. [31] introduced a novel
technique to decrease anonymity in Bitcoin networks using
a ML-based supervised approach [19] to predict unidenti-
fied network nodes. Caruana and Niculescu-Mizil [19] used
a sample of 434 nodes with about 200 million transac-
tion blocks whose identities were exposed. The experimen-
tal results demonstrated the efficiency of the proposed ML
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TABLE 2. Taxonomic classification of proposed security solutions using machine learning.

scheme in predicting the entries of a yet-unidentified nature.
Hirshman et al. [32] also proposed an unsupervised ML
technique to detect abnormal conducts in the Bitcoin trans-
action network. Further, their ML approach was applied on a
dataset of Bitcoin network transactions to discover anonymity
guarantees in the Bitcoin system through dataset clustering.

Meanwhile, Monamo et al. [47] investigated the use of the
trimmed k-means method to capture deceitful behaviors in
the Bitcoin network. Namely, trimmed k-means was used
for simultaneous clustering of entities and fraud capture
in a multivariate configuration. Also, Monamo et al. [48]
described various fraud activities in the Bitcoin network
from both local and global perspectives by mean of
trimmed k-means and kd-trees. Inspired by the paradigm of
anomaly detection joint with Numenta Anomaly Benchmark
(NAB) [40], the spheres in [48] were examined using random
forests, binary regression, and maximum likelihood methods.
However, based upon the experimental evaluations, the global
outliers perspective seems to provide better accuracy than the
local perspective.

Bartoletti et al. [10] utilized data mining and ML-based
methods to investigate and capture Bitcoin addresses

relevant to Ponzi schemes. In such particular attacks,
an adversary shares a falsified transaction block which
can threaten investment in Bitcoin. Bartoletti et al. [10]
used a dedicated dataset possessing real-world features for
their Ponzi schemes that was built by analyzing trans-
actions carrying out scams. Zhdanova et al. [71] also
used micro-structuring, an often practiced ML approach,
to develop a novel technique for fraud chain detection in
Mobile Money Transfer (MMT) systems. While traditional
detection techniques are built using data mining and ML,
Zhdanova et al. [71] designed their solution using Predictive
Security Analysis at Runtime (PSA@R), which uses an event
driven process analysis approach.

Moreover, Yin and Vatrapu [69] provided an accurate
estimation of the portion of cybercriminal nodes in the
Bitcoin network. Namely, they utilized a large Bitcoin dataset
composed of more than 800 observations classified into
about 12 categories including observations relevant to cyber-
crime and uncategorized ones. The utilized dataset was
acquired from a third party (provider) who priorly desig-
nated three classes for clustering of Bitcoin transactions,
i.e., co-spend, intelligence, and behavior-based clustering.
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Yin and Vatrapu [69] re-classified the observations via a
supervised ML technique which outputted four prevailed
classifiers with very high cross-validation accuracy. Finally,
with regard to the weighted averages and per class precisions
in cybercrime-related categories, Yin and Vatrapu [69] only
used Bagging and Gradient Boosting classifiers from the top
four classifiers. Experimental evaluation in [69] showed that
the share of cybercrime-related activities was about 29.81%
and 10.95%, respectively, according to the Bagging and
Gradient Boosting techniques.

As Bitcoin is an open-source cryptocurrency system, its
design is public, ensuring that no party or authority controls it
and all users can participate [1]. However, security violations
can occur very frequently. For example, [2] details reports
from Bitcoin clients regarding their compromised wallets.
Also, Zambre and Shah [70] took advantage of the readily-
available information about all Bitcoin transactions to trace
back the flow of money within compromised client accounts
(once these clients reported robbery or heist). Zambre and
Shah also tried to uncover bizarre client behaviors perform-
ing such robberies which lead them to protrude. Namely,
Zambre and Shah [70] investigated three different types of
heists and robberies, Stone Man Loss (SML), All in Vain
(AIV), and Mass MyBitcoin Theft (MMT). In SML, Bitcoins
are stolen from the original key whereas, in AIV, a trickster
Bitcoin client fabricates a massive amount of transactions
right after the heist in an attempt to taint the currency [55].
Finally, in MMT, the heist takes place when clients use the
same passwords for MyBitcoin and Mt.Gox [4], i.e., due
to the password leakage problem in Mt.Gox. In the case
of MMT, the thief steals bitcoins from clients with com-
promised keys to their own key. The authors extracted the
classifying features for each Bitcoin client in the dataset and
applied k-Means clustering to classify them, i.e., defining K
centroids and matching each one with observations from the
dataset in order to define the objective function.

It should be noted that various illicit activities can also
be carried out between Bitcoin clients, e.g., human traffick-
ing, drug sales, etc. Hence, distinguishing such advertise-
ments is a very challenging task. To address this challenge,
Portnoff et al. [53] presented some ML-based mechanisms
and tools which could be used either in an independent or con-
junctive way to classify and categorize sex advertisements
based upon the genuine owner (not the alleged owner) in the
advertisement. Namely, the proposed ML-based classifiers
utilize stylometry to differentiate advertisements published
by the same client from the ones posted by different owners
with 90% true positive rate (TPR) and 1% false positive rate
(FPR). Furthermore, Portnoff et al. [53] explored the Bit-
coin mempool leakage to develop a mechanism that matches
groups of sex advertisements with Bitcoin wallets and relative
transactions. The mechanism’s performance was evaluated
through a four-week proof of concept trait over Backpage [5]
as the site hosts sex advertisements.

Over and above, online machine learning-based security
platforms that aim at detecting abnormal and violative client

behaviors in open-source systems, including cryptocurreny
systems, are very limited. For example, Bonger [11] intro-
duced an online optimized interpretability using an unsuper-
vised ML mechanism for detecting anomalous client activi-
ties. This work combined characteristics of an open-source
system with sets of graphical presentations and features.
Moreover, this proposed mechanism can be flexibly applied
to any time series of numerical data. Bonger [11] evaluated
the performance of the proposed solution using the public
Ethereum blockchain.

Overall, blockchain technology allows for the efficient cre-
ation of contracts guaranteeing remuneration in interchange
for a well-trained ML model for a specific data set. Hence,
this will warrant Bitcoin clients to train ML models for
remuneration in an efficient trust-less way such that smart
contracts will utilize the blockchain to autonomously verify
and legitimize the trained model. Therefore, assumptions
about the correctness of the solution are not needed as these
solutions submitted by clients do not possess any counter-
party threat or the risk of not receiving a payment for provided
work.

Buterin et al. [18] also discussed the idea of on-
chain decentralized marketplaces through the adoption of
a reputation and identity system. However, they did not
emphasize and clarify their proposal from the implemen-
tation perspective. Building on top of the findings in [18],
Kurtulmus and Daniel [38] presented a novel protocol on
top of the Ethereum blockchain such that reputation and
an identity system are not imposed in order to elaborate
transactions of the marketplace. Specifically, the proposed
protocol in [38] aims at creating amarketplace for exchanging
(i.e., providing) ML models with entrants in a secure and
automated way. However, the proposed ML models are only
evaluated on the Ethereum Virtual Machine in a forwarding
pass mode (where verification and training stages are carried
out in an independent way in order to restrain over-fitting
challenges).

In cryptocurrency systems such as Bitcoin and Litecoin [3],
majority-based attacks [26] may not form a grand secu-
rity threat. However, when it comes to consortium (i.e.,
collaboration among multiple public and private institu-
tions) blockchain-based networks, majority-based attacks
could be an epidemic impendence once a collusion between
two or more institutions occurs. To address such a chal-
lenge, Dey [25] introduced a novel mechanism that deploys
intelligent software-based agents in order to supervise and
regulate the activities of clients in the Bitcoin network. The
proposed solution utilizes a supervised ML approach along
with algorithmic game theory to detect abnormal activities
and prevent them from re-occurrence (specifically, collusions
and majority based-attacks).

As discussed in Section III, the detection of double-
spending violations is very challenging, i.e., since the fast
payment strategy adopted by the Bitcoin system is based on
the fact that the service is not guaranteed until the transac-
tion of payment is appended to the vendor’s wallet. Thus,
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it becomes worthless to capture double-spending attacks.
In order to address this security challenge, Liu et al. [42]
presented an immune-based mechanism [30] to capture
double-spending attacks in the Bitcoin network. The pro-
posed solution consists of several Bitcoin entities that have
a detection module implemented. This solution uses a
capturing module to remove an antigen character from the
transaction prior to generating the initial detectors. Next, the
initial detectors detect double-spending attacks in collabo-
ration with the memory detectors. Once a double-spending
attack is matched by an initial detector, it is promoted to a
memory detector and thus delivered to other entities in the
network.

As also previously discussed, cryptographic ransomware
is a form of malicious software that can infect Bitcoin net-
works. Namely, it can hold user files as hostage by encrypting
them and then requesting some ransom payment prior to
providing the users’ decryption key. Shaukat and Ribeiro [60]
considered a comprehensive analysis of a large ransomware
dataset of various families. Next, they presented Ransomwall,
a layered-based detection andmitigation system against cryp-
tographic ransomwares. The proposed solution deploys a
hybrid mechanism of dynamic and static analysis combined
together in order to identify and characterize different behav-
iors of these cryptographic ransomwares. Ransomewall [60]
utilizes ML to unearth 0-day intrusions. First, the tagging
layer tags a process that correlates with a malicious behavior.
Next, all user files adjusted by this process are backed up for
the purpose of maintaining users’ data in order to cluster and
classify it as either benign or ransomware.

V. FUTURE RESEARCH DIRECTIONS
While the previous sections have presented an intensive
study on the resiliency aspects of the Bitcoin system and
an overview of recent research solutions, this section pro-
vides a summary of our take-aways. However, prior to dis-
cussing future research challenges and trends, we briefly
recall that the employment of the PoW-based consensus
protocol guarantees an efficient settlement to the Byzantine
generals problem in the Bitcoin network [23]. Nevertheless,
in order to build a completely distributed consensus protocol,
Bitcoin renders its network and system vulnerable to various
resiliency vulnerabilities, e.g., double spending, which are
very feasible and attainable in the Bitcoin network.

In order to enhance resiliency for the Bitcoin network and
blockchain technologies and protocols, researchers consid-
ered the altcoins concept in a large testing environment [23].
Efficient techniques such as machine learning [14] can also
be deployed to enforce and enhance security aspects in such
a cryptocurrency system. Since the Bitcoin network will
continue to evolve in the near future, we therefore present
some potential open research problems and future research
directions here.
• Scalability and blockchain protocol: Miner entities can
act in a selfish manner by continuing to carry particular
blocks of transactions and unleashing them whenever

they wish in order to increase their revenue. Such selfish
activities will likely create a game theoretic challenge
among egocentric miner nodes and the network [36].
As a result, several suggestions have been presented,
such as [28] and [41], that prove the usefulness of game-
theoretic techniques in terms of information about the
impacts of egocentric mining and holding of blocks of
transactions. Overall, these typical techniques are quite
accurate with regards to modeling the various issues and
delivering efficient solutions for challenges related to
mining pools.

• Cryptography techniques: The deployment of clustering
techniques based on specific thresholds are designed
to address a broad range of threats (e.g., specifying a
cluster head and obtaining an extra signature on each
single transaction, or utilizing trusted paths based upon
particular machinery resources to enable clients to read
and write some cryptographic data [9]). However, there
are only a few number of methods that use string search-
ing filters for protecting wallets (e.g., AhoâĂŞCorasick
and Bloom filter).

• Incentives for miners: The Bitcoin incentive is either
constant or inconstant according to the complexity of the
miner nodes resolving the puzzle. Namely, an inconstant
incentive could eventually augment the competition
among miner nodes and assist with solving very chal-
lenging puzzles. Hence, malignant miners could conduct
an illegitimate activity through the Bitcoin network to
acquire extra awarding coins, which will augment the
amount of sincere entities in the network. Hence, it is
very important to address this challenge by making
miner nodes settle to a currency in this cryptocurrency
network.

• Preventing backtracks: Smart contracts are of a
particular interest to financial applications, which incar-
nate self-enforcing-based contracts entities in financial
networks such as Bitcoin. Therefore, this concept could
be adopted in Bitcoin infrastructures as the blockchain
system drives out the need to depend on authenticated
third parties to handle contracts. However, Bitcoin sup-
port for such contracts is still very restricted.

VI. CONCLUSIONS AND FUTURE WORK
Blockchain has demonstrated its potential to transform and
mutate classical financial and transactional market models
with its key distinctive features, including decentralization,
anonymity, and auditability. Hence, in this survey paper,
we presented an intensive and comprehensive discussion
overviewing Bitcoin and blockchain infrastructures along
with relevant key components.

The increasing popularity and important capital in the
financial market render Bitcoin system attractive to attack-
ers to establish and elaborate a variety of security attacks.
Although the Bitcoin infrastructure is established using the
PoW and consensus protocols to protect client transactions
and activities, these protocols themselves remain a point
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of vulnerability and exploitation for cyber threats, starting
from the sniffing of network packets to the double spending
activities.

In this work, we first presented an overview of the
Bitcoin network and related blockchain technologies and
protocols. We then analyzed the common blockchain consen-
sus protocol followed by a discussion of its characteristics,
including advantages and limitations. Next, we presented
a taxonomic classification and precise discussion of exist-
ing solutions and proposals that use machine learning (ML)
techniques to solve common security threats and anoma-
lous behaviors in Bitcoin networks and blockchain. Finally,
we detailed some open research questions and future research
directions followed by concluding remarks.

APPENDIX
Table 3 gives a list of acronyms used in this paper.

TABLE 3. A summary of acronyms used.
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