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ABSTRACT In the digital world of today, global security issues have given rise to video surveillance
devices. Gait-based human recognition is an emerging behavioral biometric trait for intelligent surveillance
monitoring because of its non-contact and non-cooperation with subjects. Other benefits of gait recognition
in video surveillance are that it can be acquired at a distance and help to identify an object under
low-resolution videos. This paper surveys extensively the current progress made towards vision-based human
gait recognition. This paper discusses historical research that performs analysis of gait locomotion and
provides information on how gait recognition can be performed. This paper describes measuring metrics that
can be used to measure the performance of gait recognition model under verification and identification mode.
This paper also provides an up-to-date review of existing studies on gait recognition representations (model
based and model free). We also provide an extensive survey of available gait databases used in state-of-art
gait recognition models, created since 1998. Furthermore, it offers insight into open research problems that
help researchers to explore unripe areas in gait analysis, such as occlusion, view variations, and appearance
changes in gait recognition. This paper also identifies the future perspectives in gait recognition and also
outlines the proposed work.

INDEX TERMS Biometric, gait analysis, gait recognition, gait representation, pattern recognition, feature

extraction.

I. INTRODUCTION

In modern digital society, reliable authentication of individual
person becomes a fundamental necessity in many real-time
applications (such as forensics, international border crossing,
financial transactions, and computer security). Human body
characteristics (such as face, iris, voice, and gait) play a
vital role in recognizing individual over the thousands of
year. Such biological characteristics that can uniquely iden-
tify a human being are termed as biometric features. Thus,
biometrics may be termed as a measurement of biological
characteristics of humans to claim an identity. Biometric
system is classified into different traits based on physiological
and behavioral characteristics as shown in Fig. 2; each has
own strength and weakness. Any human physiological and
behavioral characteristics can be used as a biometric param-
eter for recognition if it satisfies the following properties [1]
that are, uniqueness, permanence, universality, collectability,
performance, acceptability, and circumvention. Fig.1 depicts
the market share of different biometric modalities reviewed in
the year 2017 [141] and found that face recognition system
has covered 39% of the market. Jain et al. [1] has reviewed
different biometric traits and has stated that face, signature,

FIGURE 1. Outlines the market share of biometric modalities review the
year 2017 [141].

and voice are very prone to circumvention as compared to
DNA, ear, gait, iris, and odor. Among the different biomet-
ric traits, gait a behavioral biometric trait has drawn more
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FIGURE 2. Generalized working of the biometric system with different biometrics traits and modes (verification and identification) [1] [38].

attention to computer vision researchers because of the fol-
lowing benefits [2], [33], [134]:

o Each person sufficiently has a distinctive uniqueness in

walking style.

« Individual subject gait features without cooperation can

be extracted from a distance of 10m or more.

« Gait characteristics can be analyzed from low-resolution

video sequences.

« Unlike signature, it cannot be possible to conceal and

disguise gait characteristics.

Because of this unobtrusive, noninvasive and non-perceivable
nature, gait based recognition system is most beneficial in
intelligent visual surveillance monitoring. The early stud-
ies of human gait in medical diagnosis and psychological
analysis [3], [4], [19] reveal that human gait has 24 differ-
ent components and if all these components are considered,
human gait is unique for individuals. Human gait analysis
in health care help to diagnose medical diseases that are
related to gait such as Parkinson patient diagnosis, orthopedic
patient diagnosis. In gait-related deficiencies, physiotherapist
and orthopedic experts monitor and analyze gait movement
patterns of these patients such as stride length, step length,
stance and swing phase [5] to identify, whether improvement
has taken place.

Recently, in the field of computer vision and motion anal-
ysis, the focus has been primarily on automatic human recog-
nition based on individual movement patterns, which has led
to the extensive research focus on video-based gait recogni-
tion. Johansson [6] and Cutting and Kozlowski [7] employed
moving light display and reflectors on different body joints
of human and made observations that gait patterns are unique
and useful as a biometric feature of a human for recognition.
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The first gait recognition approach, based on spatiotemporal
features of human walking contours, has been developed by
Niyogi and Adelson [8]. They developed their approach for
frontoparallel view consisting of 26 subject image sequences
and achieved an accuracy of 81%. With a growing demand for
automatic gait recognition, some of the famous universities
and research institute have conducted much research and pro-
posed approaches on gait recognition. Among these, Osaka
University (OU-ISIR) has built the largest gait database [40],
which is publically available under license agreement.

Aforementioned advantages prove that human authenti-
cation based on gait signature is an important research
area in computer vision and pattern recognition. However,
researchers face several issues that make gait recognition a
complicated task due to following reasons: (1) view angle
variations [30], [117], [135], (2) appearance changes due
to clothing variations, carrying conditions, walking surface,
shoe type [95], [96], [134], (3) occlusion due to multiple
people walking in a group [61], [90], [110]. These issues in
gait recognition have open new thrust areas for researchers.

There are existing surveys by different researchers that
provided their reviews on gait recognition. A recent review
by Patrick and Ross [9] focused on sensing modalities (such
as vision, underfoot pressure and accelerometer) that are used
for capturing gait motion parameters. They had also covered
different feature extraction methods based on these modali-
ties. Detailed information for important survey papers as on
July 2018 are summarized in table 1 with their references and
referred Google Scholar for a number of citations.

In this article, we surveyed the current state-of-the-art liter-
ature and selected articles that mostly discussed vision-based
feature extraction techniques for model-based and model-free
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TABLE 1. Summarized year wise survey papers on gait recognition with their citation details till July 2018.

Authors/year Title Journal/Conference

No. of No.of

Work Discussed Ref Citations

Patrick et al.  Biometric recognition by gait: A Computer Vision and Image

[9]/2018 survey of modalities and features Understanding
Sprager et al. Inertial Sensor-Based Gait Sensors
[21 12015 Recognition: A Review
Lv etal. Class Energy Image Analysis for  Sensors
[24] /2015 Video Sensor-Based Gait

Recogntion: A Review
Lee et al. A comprehensive review of past ~ Multimedia Tools and
[2)/2014 and present vision-based Applications

techniques for gait recognition
Shirke et al.  Literature Review: Model Free Fourth IEEE conference on
[136]/ 2014  Human Gait Recognition communication systems and

network technologies

Weijun et al.  Gait analysis using wearable Sensors
[140]/2012  sensors
Wangetal. A Review of Vision-based Gait IEEE conference on digital Image
[137]1/2010  Recognition Methods for Human computing: Techniques and

Identification Applications

Discussed sensing modes ( vision, under foot pressure and 209 3
accelerometers) and features extracted based on these
modes for gait recognition.

They surveyed gait recognition based on inertial sensors 86 77
(accelerometers, gyroscopes).

They focused existing class energy images that played an 96 20
important role in representation of appearance based gait
recognition.

They discussed vision based approaches for gait 132 45
recognition and outlined 17 gait datasets. They also
represented the fusion of gait with face for recognition.

They surveyed model-free gait recognition approaches. 26 13
Focused on feature extraction for model-free gait
representation.

The focus of this article is on wearable sensors that can be 182 441
used for gait analysis. They also outlined the application of
gait based on wearable sensors.

They surveyed both model based and model-free gait 60 160
representation approaches .They discussed three issues in

gait recognition i.e image representation, data reduction and

classification.

gait representation as well as classification techniques and
covering covariate conditions. The objective of this survey

article is to expand on previous surveys.
1) The paper comprehensively described the architecture

of gait recognition and gives a short description of gait
recognition evaluation parameters.

2) The article extensively reviewed feature extraction
approaches in model-based and model-free gait repre-
sentation and also outlined issues with these methods
and provided solutions.

3) Investigate thirty-three gait dataset available for
research in gait recognition based on taxonomy shown
in Fig. 10.

4) The article investigates open research challenges of
gait recognition in real time environment namely, view
variations, occlusion, and appearance changes.

5) Including more than seventy gait publications of
reputed journals and conferences based on vision-based
that is not discussed in the previous surveys.

6) We provide a short discussion on the application area
of gait recognition (i.e., soft biometric and clinical
analysis).

7) We also outline future perspectives that can be helpful
to enhance gait recognition in a real-time environment.

8) We have also given a brief description of our proposed

work.
After the introduction, the drafting of this article is as

follows; section II, outlines the history of gait analysis.
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Section III, overview the gait recognition framework and
also discuss performance measure parameters. Survey of gait
databases outlined in section IV. Gait feature representa-
tion approaches defined in section V. Section VI, outlines
short discussion on application domain of gait recognition.
Section VII, represents research challenges that affect gait
recognition in real time scenario. Future perspectives and
conclusion discussed in section VIII and X and a short
description of the proposed work outlined in section IX.

Il. BACKGROUND OF GAIT ANALYSIS
This section provides information about the related work
done in the field of behavioural biometric resource gait.

Human motion analysis delivers unprejudiced information
that helps in the quantitative valuation of human movement.
Quantitative evaluation infers a numerical outcome. In a
quantitative analysis, the movement is examined numerically
based on measurement, from the data collected during the
movement. The advantages of quantitative analysis are that
it provides a detailed, intent and accurate representation of
the movement.

According to [10] human locomotion is the displacement
of lower limbs under the stable state in which one lower limb
serves as the support while the other lower limb helps in
propulsion. The meaning of gait is related to the way and
distinctiveness involved in a person’s walking. Gait analysis
is vital in several areas of biomechanics, robotics, sports
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FIGURE 3. Summarized the contribution of key authors in the history of human motion analysis. Some images in this figure and others are taken from the

internet, and URLs are provided in appendix.

analysis, rehabilitation, and gait disease diagnosis, video
surveillance for security, identification, gender classification
among others.

A. HISTORY OF HUMAN GAIT ANALYSIS
The motives behind studying the locomotion of human beings
have changed over the centuries and gait has been a repeated
preoccupation throughout history [11]. Even the Greek
philosopher in the ancient age, Aristotle e al. (350 BC) [143]
in “on the Gait of Animals,” analyzed and described human
movement. They provide some relevant questions that form
the basis of modern age to study human motion followed
by Giovani Alfonso Borelli ef al. (1680) [144] in the article
“On the Motion of Animals” successfully depicts the muscu-
lar movement and body dynamics. They estimated the center
of mass of men based on the rigid platform for analysis.
Human gait analysis was first analyzed by Weber and
Weber (1836) [12] in “Mechanics of human walking tools.”
They were the first to propose a quantitative model for
the study of temporal and distance parameters of human
locomotion based on the gait cycle. Englishman Muybridge
(1885) [13] in “The Human Figure in Motion” and the
Frenchman Marey (1874) [14] in “Animal Mechanism:
A Treatise on Terrestrial and Aerial Locomotion,” was first
to use photographic techniques for analysis of human move-
ment patterns. Muybridge used a series of cameras to cap-
ture multiple pictures of both animals and human motion in
rapid succession. Marey’s studied on walking and research on
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muscular forces of a human being. Fig.3 presents the contri-
bution of the key author’s in the study of Human locomotion
analysis.

Tridimensional mathematical based human gait analysis
was first introduced by Braune and Fischer [15]. Their orig-
inal work published during (1895-1904). Their study on the
biomechanics of gait covered two transits, i.e., free walking
and walking with a load. They study mass, volume and center
of mass for three adult male and their body segments. Walking
is the most fundamental function of all human activities, and
there are variations in an individual’s gait not only according
to age, size, and strength but as an individual defined by
Brandford (1897) [16].He experimented side view of human
walking and depicts that angle formation of the foot with the
ground varied between individuals and it is greater in long
strides than in short strides during erect and the bent knee
gait. Their study stated that human gait varied and classified
in the inclined gait, an erect gait, the front foot gait, the heel
gait, a rapid gait, the walking gait, and the running gait.

During 1950’s of world war II, Inman et al. (1981) [17]
and Eberhart and Inman (1947) [18], in a joint venture at
University of California came up with an improved and
tremendous resource of knowledge related to human loco-
motion for the treatment of world war veterans. The work
had done during that period have set the foundation of many
fundamental approaches that are now used for research anal-
ysis of human locomotion. During the end of World War
II, Murray et al. (1964) [19], proposed a study to develop a
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simple, and inexpensive method of recording the displace-
ments associated with locomotion of human being. She was
the first researcher to measure the kinematics parameters of
different body segments during walking in multiple planes.
Their study provides standards for measurement and compar-
ison of abnormal gait with a normal gait. Light photography
camera was used to capture data for the study. Their research
strongly proves that subjects between the age group of 60 to
65 have a shorter step and stride length and wider foot angle
as compared to younger men. They found that subjects have
consistent performance on different gait elements (such as
step and stride length, stride width, and foot angle) and
repeated walking trails.

Human gait analysis has been an open area of research
for researchers for decades and has a broad spectrum of
applications such as athletic performance analysis, surveil-
lance, identification and medical disease diagnosis based on
gait. In the twentieth century, Aggarwal and Cai [20] have
a notable contribution to the study of human motion. They
focused on three areas for interpreting human motion such
as body parts involved in motion analysis, tracking human
motion using single and multiple cameras and used image
sequences for recognizing human activities.

B. OVERVIEW OF HUMAN GAIT

Gait activity between young and old healthy person achieved
through the normal movement of both limbs. Research asso-
ciated with gait analysis is the investigation of human walking
patterns.

FIGURE 4. Phases of the gait cycle, right leg (red color) considered as a
reference leg [10].

Walking is considered as a repetitious sequence of limb
motion which help the body to move forward and formed gait
cycle from heel strike(initial contact) to heel strike(terminal
swing) as shown in Fig.4. Gait cycle is categorized into two
periods’ or phases namely stance and swing. One complete
gait cycle is defined as stride. Perry and Burnfield [10] clas-
sified the gait cycle, into five stance phase periods and three
swing phase periods as shown in Fig. 4. Stance phase begins
with initial contact(IC) and covers 60% of the gait cycle.
Swing phase covers 40% of the gait cycle and begins when the
foot is lifted from the floor for limb advancement as shown in
Fig.4. Step length defines the distance between the position
of first foot contact with the ground and the same event done
by the opposite foot. The step is defined as timing between

VOLUME 6, 2018

the two limbs. Cadence is the number of footsteps per unit
time, denoted as steps per minute. For healthy adult gait,
cadence is 120 steps per minute [22]. Each limb performs
three primary tasks that are weight acceptance (WA), single
limb support(SLS) and limb advancement (LA) during each
gait cycle, accompanied by eight motion patterns (means
phases in gait cycle).

The importance of gait phase’s analysis is to identify the
impact of the different joint motions for each person gait pat-
terns. Gait phases played a vital role in evaluating the concur-
rent action of individual joints, which helps in understanding
the disability effects in human motion. Another significant
feature of gait phases is that the joint motion of a person
compared with others has variations in the phases. Therefore
gait phases have functional importance in the analysis and
classification of each person’s gait pattern.

Ill. GAIT RECOGNITION SYSTEM

Study of gait locomotion is a traditional research area, which
has been in progress during the ancient age by Aristotle
(350 BC) approached by Giovani Alfonso Borelli (1680)
in the renaissance period describing a systematic descrip-
tion of muscular movement and body dynamics. During the
past decades, gait analysis has been widely investigated in
the computer vision community and has proved promising
outputs in areas like person recognition, gender classifica-
tion, video surveillance, diagnosis of medical diseases which
are related to gait like Parkinson disease, arthritis, cereal
palsy and also beneficial for diagnosis of Chiropractic and
Osteopathic, which causes delay in gait due to misaligned
pelvic or sacru. Section VI, define three application areas of
gait recognition namely gender classification, age recogni-
tion, and gait based clinical analysis.

As compared to other biometric traits, human gait has sev-
eral unique features that have diverted the attention of com-
puter vision researchers towards recognition of human based
on gait. Gait features are classified into two approaches:
model-based and model-free (also termed as appearance-
based or Holistic approach by different researchers). Model-
based gait system required the prior modelling of human body
structure based on body components to obtain measurable
parameters. Whereas, model-free gait system do not need
prior modelling and operate directly on silhouette image after
segmentation to generate gait features. The detail description
and approaches proposed in recent years for model-based and
model-free methods summarized in section V. Section A, give
an overview of the general framework for gait recognition.

A. GAIT RECOGNITION FRAMEWORK

Gait recognition is an important and broader research area,
which has invited more attention in recent years and can be
applied in different applications like gender classification,
human age classification, clinical analysis, action recogni-
tion, video surveillance monitoring. Gait recognition is a
pattern analysis approach, in which different gait patterns of
different users are examined and compared. The variations
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FIGURE 5. Generalized gait based recognition.

that exist between them are based on investigated parameters
that differentiate the gait patterns of each person. The generic
framework of automatic gait recognition system consists of
different stages as shown in Fig. 5. The system has two
phases, training or learning, and testing. In the training phase,
first individual gait frames are captured and forwarded to
the preprocessing stage for normalization to correct different
geometric misrepresentation, noise reduction and object of
interest segmentation. Then feature vectors of the region of
interest are extracted, and an optimized feature vector is used
to train the classifier. In the testing phase, test subject gait
frames are passed through preprocessing to feature selection
and then the trained classifier estimates the similarity mea-
surement between the test frames (probe) with the trained
frames (gallery) to give the desired output.

1) GAIT ACQUISITION

The first stage in gait recognition is to capture or detect
subject gait frames, which is important because the accuracy
of the system depends significantly on image samples
used for training. The sensing devices have two categories:
sensor-based and video based. Sensor devices are floor and
wearable sensors [23]. Floor sensors are referred to as a
pressure sensor, which generates pressure signals when a
person walks on these sensors when placed on the spe-
cific floor [24], [25]. Wearable sensors are attached to dif-
ferent body joints, to collect different dynamic features
(such as speed, acceleration, and position) and other infor-
mation which can be used for gait pattern analysis. Com-
monly used wearable sensors include a light sensor (such
as reflectors, moving lights), acceleration sensors, magnetic
sensors, and gyroscopes. Sensor-based devices require more
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complex equipment’s for collecting data, but although pro-
vides accurate data for analysis. Therefore, the most com-
mon application of sensor-based is in clinical research,
such as Parkinson’s disease diagnosis [26], [27]. Whereas
video-based gait recognition research refers to capture spe-
cific human gait through the visual cameras that can be
mounted at any location. These captured gait videos are
processed to detect gait pattern information, which can be
used for recognition. During the past decade, most research
in the area of gait recognition is done using video-based gait
dataset [2], [29], [40], [44], [53]. A detailed description of
gait dataset created by the different organization is provided
in section I'V.

2) PRE-PROCESSING

In this stage background modelling of captured gait video has
been accomplished to get the foreground object. Background
subtraction methods are widely used for foreground object
detection in gait recognition as in [28]

Iiij) = |Toj — Iodij)] M

Where Iy j) is the original image, Ip,j) is the background
image and I j) is the detected foreground image. Back-
ground modelling of video sequences is a critical task.
Wang et al. [29] proposed a LMeds (least median of squares)
method for background modelling to segment foreground
object. Background modelling bg; ;) based on LMeds is
defined as

2
bg(l,]) = minvmedt (IELJ) — V) (2)

Where V represents the brightness score of background
frame, which has to be estimated for location (i, j). I represent
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the sequence of frames in N frames; med is the median value
with t index frames ranging within 1 — N.

Basic background subtraction method includes mean fil-
tering, median method, frame difference method, statistical
approach (Gaussian Mixture Model, support vector model),
optical flow and many more. The motive of this process
is to model human gait silhouette from which spatiotem-
poral shape and motion characteristics [31], [32], [130] are
extracted for recognition.

3) FEATURE EXTRACTION

After the object of interest has been segmented from the
background, features have been extracted that can be used for
individual subject recognition. In gait recognition, features
are extracted based on Model-based and Model-free (appear-
ance based) representations. Detail description discussed in
section V.

4) FEATURE SELECTION

In traditional gait recognition system, extracted features from
pre-processed videos sequences are inadequate for classifica-
tion and performance has been compromised. The reason is
that high dimensional features may contain some unnecessary
features. So, feature selection(or dimensionality reduction)
approach can be applied, which is to choose a subset of
variables(features) from the input features which efficiently
describe the input variables while reducing effects of noise or
extraneous variables and provide excellent prediction or clas-
sification results. Many feature selection approaches have
been proposed, principal component analysis (PCA) [29] is
a widely adopted dimensionality reduction method. Genetic
Algorithm (GA) based feature subset selection proposed by
Tafazzoli et al. [33] for gait recognition is another popular
approach.

5) CLASSIFICATION

The last stage in gait recognition system is to classify the test
gait sequences of an individual based on optimized features
selected. Classification is divided into two categories: super-
vised and unsupervised. In table 2, we outline a list of clas-
sifiers that are used for gait recognition. The KNN(k nearest
neighbor) is the most adopted classifier in gait recognition.

TABLE 2. Overview of the most adopted classifier in gait recognition.

Classifier Studies Benefits
kNN [33][96][113][125][115][32] ~ Simple and efficient in computation, if training
[126] [127][97][124] dataset is large
[103][37] [121][122]

Navie Bayes  [33][97][129][120] Very simple and easy to implement and fast
because required less training data and make

probabilistic predictions

SVM [125][104][124][84] Use kemels with the absence of local minima and
achieve sparseness to the solution and capacity
control achieved by optimizing the margins.

DCNN [118] Achieves high accuracy in recognition, but

required good GPU for training and need many
training data.
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B. PERFORMANCE MEASURE IN GAIT RECOGNITION

Gait recognition system is a pattern recognition approach
and attempts to capture two information’s namely intra-class
(entities in the same class) should have small variations
(invariant information) and inter-class (entities in a different
class), should have high variations (discriminating informa-
tion). Based on these information gait recognition perfor-
mance evaluation can be performed in two categories that
are verification mode and identification mode [34]—[37]. Pri-
mary evaluation metrics used for evaluating gait recognition
performance under verification and identification are: cumu-
lative match characteristics (CMC), Rank order (Rank
n identification rate, the receiver operating characteris-
tic (ROC) curve, False match rate(FMR) also known as
false acceptance rate(FAR), False non match rate(FNMR)
also termed as false reject rate(FRR) and equal error
rate(ERR).

FIGURE 6. Working of verification and identification modes in the
biometric system [138].

In identification mode, the system recognizes individual
user gait signature with all the registered gait signatures in the
system. Therefore, this mode has a 1:N association as shown
in Fig. 6(b). Classification performance achieves through
cumulative match characteristics or scores (CMC/CMS),
which is based on Rank order (Rank n) identification rate.
CMC or CMS implies the probability that the correct match
is included in top n matches (that means 1:n identification,
rank 1 or 5). The rank is plotted on x-axis while correct
matches rate along the y-axis. A sample example of CMS
curve taken from [36] is shown in Fig.7(a), here cumula-
tive match scores were plotted between static features and
dynamic features to show the performance of identifica-
tion (for rank up to, n = 20). By analysing this graph
they achieved correct classification rate for static features at
rank = 1 (approx. 83%) and at rank = 5 (approx. 96%) while
for dynamic features CCR at rank = 1 (approx. 87%) and at
rank = 5 (approx. 99%).

The verification mode compares the identity of the claimed
user with his/her identity previously registered or enrolled in
the system. In such system 1:1 association is accomplished
to determine whether the claimed identity is true or false
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FIGURE 7. Single modality for correct identification and verification.
(a) the CMS curve for Rank 1 to 20 and (b) tradeoff between FAR and FRR
for static and dynamic features [36].

as shown in Fig. 6(a). Verification results are plotted
through ROC. ROC is based on two error rates namely
FAR or FMR termed as a type-1 error, and FRR or FNMR
termed as a type-II error. Type-I Error implies that an error
(in %) when an imposter is accepted as a genuine subject
and Type-II Error implies that an error (in %) when rejecting
a genuine subject to be an imposter. To analyze the per-
formance of the model, ROC has been plotted for various
pairs of FAR and FRR under predefined threshold values for
acceptance as shown in Fig. 7(b) taken from [36] for two
individual features (static and dynamic). Therefore, to eval-
uate the efficiency of gait recognition model in verification
mode, ROC implies the trade-off between FAR and FRR.
The closer it is to the origin the better will be the proposed
model. Whereas, EER defines the rate at which FAR is equal
to FRR and lower the EER better will be the gait recognition
model.

Two matching scores, i.e., similarity measure and distance
measure are used to estimate the distribution of false accep-
tance and false rejection error rate [142].

1) FAR AND FRR BASED ON SIMILARITY MEASURE SCORE
Let assume two sets of data samples, X = {x1, x2, ..., xp},
represents the set of M genuine subjects and

Y = {y1,y2,...,yn}, represents the set of N imposters.
Then, FAR and FRR based similarity score defined as
1 N
FAR (thy) = = Zj:1 1 (yj > thy) (3)
1 M
FRR (thy) = > lxi<thy @)

Where 1 (yj > ths) states that how many subjects in Y
(imposter) are greater than a predefined threshold based on
the similarity score thg. 1 (xj < th) states that how many
genuine subjects in X set are below the threshold (thg). The
distribution graph of FAR and FRR based on similarity mea-
sure is shown in Fig. 8.
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FIGURE 8. False acceptance and false rejection estimation based on the
similarity score [142]. x; is the set of genuine match and y; is the set of
non-genuine (imposter). Area A defines the rejection rate when the
similarity score is less than the predefined threshold (ths) area B implies
the Acceptance Rate when Similarity score is greater then the threshold
value ths.

2) FAR AND FRR BASED ON DISTANCE MEASURE SCORE
Let assume X & Y be two data set of genuine and imposter
subjects as defined above. Then, FAR and FRR based dis-
tance score defined as:

1
FAR (thy) = N 2o 1 (yj < tha) 5)
FRR (thg) = %Zil 1 (x; > thg) (6)

Where 1 (yjfthd) states that how many subjects in Y
(imposter) set are less than the threshold thg, where thy is
the predefined threshold based on distance score. 1 (x; > thq)
shows that the number of genuine subjects in X are greater
than threshold thy. Distribution graph of FAR and FRR based
on distance measure is shown in Fig. 9.

FIGURE 9. The figure implies false acceptance and false rejection
estimation based on Distance score [142]. x; is the set of genuine match
and y; is the set of non-genuine (imposter). Area A defines the
acceptance rate when distance score is less than the predefined
threshold value (thy) and area B implies the rejection rate when Distance
score is greater than the threshold value thy.

Gait recognition can be an essential application in visual
surveillance because of recognizing a subject from a long dis-
tance. So, some other relevant metrics help in evaluating the
performance of any detection algorithm in video surveillance
scenario may be described as:
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TABLE 3. Shows year wise creation of vision based dataset. Acronym of words used in table: model-free(MF), model-based(MB), indoor(l), outdoor(0),
floor(F), treadmill(T), concrete(C), ground(G).

S. Dataset Ref/ No.of No.of Gender c iate Conditi B Surf Frame Rate R MF MB

No, Datase ef./year Subjects Seq.  Ratio (M/F) ovariate Conditions nv. urf. o esource

1 Kyushu University, KY4AD Iwashita et al. 42 168 - 3 view directions : frontal I F - 16 cameras 4
Database-B: Curve Walk [53]/2014 view(~ 00), side view(~ 450)

and side view(~90°%)

2 Kyushu University, KYAD Iwashita et al. 54 324 - Carrying bag, cloth I F - 2 infrared light, v
Shadow Database [54] /2014 variations 1 camera

3 OUISIR Speed Transition Lu et al. 179 - - Speed transition, I F,T 60fps / - 1 camera v
(GaitST) [44] /2014 acceleration speed (1lkm/h

to Sknv/h),deceleration
speed (Sknvh to 1km/h)

4 Cleveland State University, Moore et al. 15 - 11/4 5 walking variations I T - 10 osprey v

Human Motion & ControlLab  [65]/2014 cameras, 47
markers

5  Korea Institute of Science & Yun et al. 113 - 50/ 63 8 multiview variations with I T - /- 8 cameras, 15 v
Technology , KIST [64] /2013 constant speed ( 3kmvh) markers

6  OUISIR Large Population Iwama et al. 4007 - 2135/1872 - I F 30fps / 2 cameras v
(OULP) [40]/2013 640x480

7  University of Cordoba, AVA-  Fernandezetal. 20 1200 16/4 Multiview conditions I F 25fps / 6 cameras v
Multiview [55]/2013 640x480

8  Indonesian Gait Database Mahyuddin et al. 212 - 102/ 110 5 conditions: view I F 90fps / - LED markers, 1 v

[57]1/2012 variations, carrying video camera

condition, surface, shoe
type and time

9  OUISIR Treadmill (OUTD) 4 : } Speed variations (2km’hto 1 T 60fps / 25 cameras v
Speed Variation 10 knv/h), 32 cloth 640x 480
Cloth Variation Makiharaetal. 32 2746 - combinations ,25 view
View Variation [39]/ 2012 200 _ 100/ 100 variations, Gait fluctuation
Gait Fluctuation 185 370
10 Kyushu University, KY4D Iwashita et al. 42 168 - 3 view directions : frontal 1 F - 16 cameras 4
Database-A: Straight Walk [52]/2010 view(~ 00), side view(~ 450)
and side view( ~90°%)
11  TUM-IITKGP Hofman et al. 35 840 - Occlusion(dynamic and I F - 1 camera v
[61]/2010 static), carrying conditions,
4 walking variations
12 CASIA Dataset B Yu et al. 124 13640 93/31 11 view variations, clothing 1 F 25tps / 11 cameras v
[46] / 2005 variations and carrying 320x240
conditions
13 CASIA Dataset C Tan et al. 153 1530  130/23 4 walking variations : (@] C 25fps / Infrared v
[47] /2005 normal ,slow, fast and 320x240 cameras
normal with bag
14 CASIA Dataset A Wang et al. 20 240 - 3 view variations : laterally O C 25fps / Panasonic v
[29]/ 2001 0°, obliquely 45°, frontally 352x240 digital camera
90°
15 University of south Florida, Sarkar et al. 122 1870 - 5 covariate conditions: 2 (@] CG 30fps / 2 cameras v
HID-USF [48] /2001 shoe type, 2 carrying 720x480
condition, 2 surface type, 2
viewpoints, 2 different time
instants
16 CMU Motion of Body(Mobo)  Gross et al. 25 600 - 4 walking patterns : slow, I T 30fps / Sony DXC v
[59]1 /2001 fast, incline, walk with ball 640x480 9000’s camera
17  HID-Georgia Tech. Johnson et al. 20 188 - 3 view variations LO F 30fps / 3 cameras v
[62] /2001 320x240
18  HID-UMD Database-1 - /2001 25 100 4 view variations (0] C - 1 camera v
http://www.umiacs.umd.edu/lab
s/pirl/hid/data.html
19 HID-UMD Database-2 - /2001 55 220 - T shape pathway (@] C - 2 camera v
http://www.umiacs.umd.edu/lab
s/pirl/hid/data.html
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TABLE 3. (Continued.) Shows year wise creation of vision based dataset. Acronym of words used in table: model-free(MF), model-based(MB), indoor(l),

outdoor(0), floor(F),treadmill(T),concrete(C), ground(G).

. No.of  No.of Gender . .. Frame Rate
No. Dataset Ref/year Subjects Seq.  Ratio (M/F) Covariate Conditions Env.  Surf. ISize Resource MF MB
20 HID-UMD Small -/2001 12 5 view variations: (6] C v
Dataset 0°,15°,30°,45°,60°
http://www.umiacs.umd.edu/lab
s/pirl/hid/data.html
21  SOTON, Small Dataset -/2001 12 - - 5 shoe variations, 3 cloth I F 25tps / 1 camera v
http://www.gait.ecs.soton.ac.uk/ variations, 3 speed 384x288
database/small_db.php3 variations, view variation
with bag
22 SOTON, Large Dataset -/2001 115 2128 - 6 view variations: normal LO FT 25fps / 2 cameras v
http://www.gait.ecs.soton.ac.uk/ track + treadmill, oblique 720x576
database/large_db.php3 track + treadmill
23 University of California , UCSD  Little et al. 6 42 - 1 view direction: fronto (@] C 30fps / 1 Sony Hi8 v
[63]/ 1998 parallel 640x480 video camera

o True Positive(TP): number of correct detection by the
system

o False Positive(FP): number of false detection by the
system

« False Negative(FN): number of positive objects incor-
rectly missed by the system

o True Negative(TN): number of correct nondetection by

the system
« Precision (P): Positive predictive value:
TP
P=—— @)
FP 4+ TP
o Recall (sensitivity) (R): Probability of detection:
TP
R=——— ®)
FN 4 TP
o Specificity (SP):
TN
SP=—— ©)
TN 4+ TP
« F-Measure (F-Score): Measure of test accuracy:
2xPxR
F=—"— (10)
P+ R
The harmonic mean of precision and recall
e CCR (Correct Classification Rate):
CCR — Number of correct classified <10 (1)

Total number of subjects

IV. GAIT RECOGNITION DATASETS

Fundamental success and development of a new applica-
tion rely on the database. To test and develop a robust gait
recognition model requires a database of sufficient size and
variant factors. In recent years more and more dataset ded-
icated to human gait recognition have been created con-
sidering various factors such as shadow, view variations
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(single and multiview using number of cameras), cloth-
ing factor, carrying conditions, shoe type, variable walking
surface conditions(treadmill, floor, grass, concrete surface,
incline), acquisition environment (indoor, outdoor). A sys-
tematic description of each gait recognition dataset created
since 1998 is summarized in table 3 & 4 based on taxonomy
shown in Fig.10. Total 33 gait dataset are summarized, out
which 23 are a vision based and remaining are sensor based.
The most state-of-art literature considered in this article is
based on the vision-based dataset.

FIGURE 10. Suggested taxonomy of gait dataset.

A. VISION BASED GAIT DATABASE

In recent years focus of research on gait recognition is based
on vision-based gait dataset. Table 3 gives the summary of
marker-based (MB) and marker-free (MF) vision based gait
dataset. Out of 23, only 3 datasets are MB, which shows
that approx 90% of the research focus in gait recognition is
based on the MF dataset. Usage ratio of vision based gait
dataset for research analysis defines in Fig. 11 based on
publications from 2012 to July 2018. The CASIA-B dataset is
the most adopted dataset for analyzing the proposed models
for gait recognition. The reason is that CASTA-B dataset has a
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TABLE 4. Shows year wise creation of sensor based gait dataset. Acronym of words used in table: Kinect sensor (KS), floor sensor (FS), wearable
sensor (WS), indoor (1), outdoor (0), floor (F), treadmill (T), concrete(C).

S No.of  No.of Gender Frame
" Dataset Ref./year R | Ratio Covariate Conditions Env. Sur. . Resource KS FS WS
No. Subjects  Seq. Rate/Size
(M/F)
1 OUISIR- OULP Bag 8 Makiharaetal. 2070 2068 - Carrying condition 1 F - 3 IMUZ sensors v
[45]/2017
2 Halmstad University, Khandelwal et al. 20 - - Speed variations: 4km/h — 8km/h O F,T.C - Treadmill, shoes with piezo- v v
MAREA [58]/2017 with 0.4km/h increment electric force sensitive
resistors, accelerometer
3 Shandog university, Wang et al. 52 1040  28/24 7 view variations: 1 F - 2 Kinect sensor v
Kinect dataset [83]/2016 0°,90°,135°,180°,225°,270°,
arbitrary angle
4 OUISIR Similar Action ~ Ngo et al. 460 - - Ground conditions: flat ground, I F - 3 IMUZ sensors v
Inertial Sensor Dataset [50]/2015 up/down stairs, up/down slope
5 Zhejiang University, ZJU- Zhang et al. 175 - - 5 gait acceleration series I F - ADXL330 triaxial v
GaitAcc [56]/2015 accelerometer
6 OUISIR Inertial Sensor ~ Ngo et al. 744 - 389 /355 Ground conditions: level walk, up 1 F - 3 IMUZ sensors v
Dataset [49]/2013 & down slope, sensor location
variations
7 University of Patras, Kastaniotis et al. 30 150 15/15 Normal walk in straight line 1 F - Kinect sensor v
UPCV [60]/2013
8 TUMGAID Hofmannetal. 305 3370 - Time duration(months), carrying I F 30 fps/ Kinect sensor, 4 microphones v
[133]/2012 conditions, shoe variations, side 640x480
view, top-down view
9 University Autonoma de  Borras et al. 53 583 36/17 4 view variations : right diagonal, I C 30 fps/  Kinect sensor v
Barcelona, DGait [51]/2012 left diagonal, side view, frontal 640x480
view
10 CASIA Dataset D Zheng et al. 121 - - Walking speed effects, shoe I F -/ 40x90  RScan USB pressure sensor v
[25]/2009 variations

FIGURE 11. Describes the usage ratio of the most adopted vision based
gait dataset.

collection of 124 subjects with 11 view variations along with
clothing and carrying covariate conditions which affect gait
recognition performance.

Osaka University (OUISIR) has a large collection of gait
database considering different covariates conditions (such as
view variation, clothing variation, carrying condition, and
speed transition). Currently, they have a dataset of 4007
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subjects [40]. Chinese Academy of Sciences (CASIA) has
different categories of the dataset (dataset-A, dataset-B,
dataset-C, and dataset-D). CASIA dataset-B [47] has a col-
lection of 124 subjects considering 11 view directions with
an interval of 18° each. This dataset also focuses on clothing
variations and carrying conditions which affect gait recogni-
tion performance.

B. SENSOR BASED GAIT DATABASE

Sensor-based gait dataset captures the behavioral signals of
human motion. These signals are translated into quantitative
data that can be evaluated by the computer system.

Inertial sensor-based gait dataset first created by
OUISIR [49]. The benefit of this dataset is that it considers
3 slope conditions: level walk, up-slope and down-slope
walk. This dataset has 744 subjects with age ranging from
2 to 78 years. Ground reaction forces can be used for
distinguishing human gait patterns during the gait cycle.
Pressure sensor based gait data created by CASIA [25]. They
employed RScan USB pressure sensor on the floor of size 3m
x1m to capture foot pressure data. Total 13000 images were
captured from 121 subjects. They considered two different
conditions: walking speed effects and different shoe type
conditions.

Model-based gait recognition has an issue of view variation
and self-occlusion. In recent years, Kinect sensors have been
used to tackle these issues. Kinect sensor builds a 3D skeleton
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TABLE 5. Model-based approaches based on approaches for gait recognition with accuracy rate.

S.

No. Reference/ Year Technique/ Approach Gait Parameters/ Features Dataset Evaluation / Classifier Accuracy(%)
1 Bobick et al. Parametric Method Static body parameters. Recorded 18subjects gait data in open kNN Height + stride : 49%
[67]/2001 Stride parameters. indoor. Single stride  :21%
Two view angle: 45, frontal parallel.
Recorded 15 out of 18 in outdoor with
shadow.
2 Abdelkader et al. Parametric Method Height and stride parameters. Created 45 subjects gait data: - -
[66] /2002 7 females , 28 males
3 Yoo etal. 2D Stick Figure Trajectories based kinematic Southampton HID database, 100 subjects ~ BPNN Training vector:150
[71]/ 2008 characteristics(Linear and angular Testing vector: 30
position, displacement and time CCR : 90% , Good
derivation). Training vector:150
Testing vector : 30,
CCR: 83.3% , Fair
Training vector:150
Testing vector : 30
CCR: 83.3%, Bad
4 Yoo etal. 2D Stick Figure Motion parameters(cycle time - k-NN Subject: 30
[72]/ 2011 and gait speed). k=1:96.7% , k=3:93.3%
k=5:96.7%
Subject:60
k=1:91.7% . k=3:86.7%
k=5:85.7%
Subject: 100
k=1:84.0% , k=3:80.0%,
k=5:82.0%
5 Wagg et al. Hierarchical shape Joint rotations(hip, knee,and ankle). HID database : 115 subjects NN+ ANOVA Indoor : = 84%
[73]/ 2004 Static parameters. Outdoor : = 64%
Total 45 parameters.
6 Bouchrika et al. Haar Template Gait kinematic features. CASIA Dataset- B k-NN 73.60%
[74]/ 2014 Matching
7 Bouchrika et al. Elliptic Fourier Angular measurement of legs. Southampton indoor gait database - 86.67%
[75]/ 2015 Descriptor Spatial displacement of the body 20 subjects, 120 sequences
trunk.
8 Bouchrika et al. - Static and dynamic features. Southampton HID database - 92%
[76]/2007 120 subjects
9 Tafazzoli et al. Active Contour Model Kinematic features. Georgia Tech database - With arm feature : 94.5%
[77]/ 2010 20 subjects Without arm feature : 93.1%
10 Yametal Forced coupled oscillator Thigh and leg motion features. Created 20 subjects gait data (walkingand kNN k=1
[68]/ 2003 pendulum model running) on a treadmill walking : 80%
Running : 90%
11 Guetal. 3D gait model Configuration features (whole body ~Xmas Motion Acquisition Sequences MAP Rank 1
[78]/2010 joints). Lower (IXMAS). Trainig test: 100% Validation

12 Zahoetal.
[79]1/ 2006

13 Kwolek et al.
[81]/ 2014

14 Urtasun et al.
[82]/ 2004

15 Krzeszowski et al.

[80]/2013

16  Wangetal.
[83]/2016

17 Fernandez et al.

3D gait model

3D gait model

3D gait model

3D gait model

3D gait model

3D voxel

Silhouette Template
matchin

limb features

Static features(length of key
segments).

Dynamic features(motion
trajectories of lower limb).
Spatio-temporal feature descriptor

Temporal motion parameters

Tensorial gait data

Static features (the length

length between skeleton).
Dynamic features( angle between
skeleton).

3D dynamical features of a gait

Active shape features

12 subjetcs ( walk- incricle)

CMU MoBo database25 subjects
- slow walk for the trainingset
- inclined walk for the test set

Created 22 subjects gait database

Created 4 subjects gait using Vicon optical
motion system: 2 male and 2 females.
9 walking speed ( 3Kmv/h to 7 Km/h).

Created 22 subjects gait database : straight
walking, diagonal walking.

Created 52 subjects gait dataset using
Kinect V2 tool.

AVA MultiviewDataset
KY4D Gait Dataset

HumanID gait challenge dataset(HGCD).
Considered covariates: viewpoint, shoe,

LTN for matching and
recognition

NB
MLP

LSVM
k-means
Mabhalanobis distance

NB
MLP

SVM
PCA+LDA
k-fold cross validation

Prediction- based hierarchical

ASM

test: 97.9% Testing test:
94.1%
Static + dynamic : 70%

Rank 1: 93.5% for SVM
Rank 3: 99.6 %for SVM

N/a
NB: 85%
MLP : 90%

Static + dynamic features
0" :9423%

90 :90.38%

135° :90.38%

225 :88.46%

270" :9231%
~100%

Identification Rate :
view : 97% , shoe : 95% ,

[84]/2016
18  Kimetal.

[69] /2009
70508
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TABLE 5. (Continued.) Model-based approaches based on approaches for gait recognition with accuracy rate.

T%o. Reference/ Year Technique/ Approach Gait Parameters/ Features Dataset Evaluation / Classifier Accuracy
viewpoint + shoe, surface, shoe + surface, view + shoe : 91% , surface :
viewpoint + surface, viewpoint + shoe + 92% , sjoe +surface : 86% ,
surface. view + surface : 85% , view +
shoe + surface : 78%
19  Zengetal. Deterministic learning Silhouette lower limb joint angles CASIA dataset A RBF neural network CASIA- A 1 92.5%
[70]/2013 CASIA dataset B CASIA -B : 91.9%
20  Zhangetal. Dual gait generative Kinematic gait features. Visual Carnegie Mellon University (CMU Mocap) n/a Single gait without mapping
[85]/ 2010 model gait features. for training. EER :102.77
Dynamic gait features. Brown HumanEva for testing. Single gait with mapping,
EER :32.20
21 Kastaniotis et al. Pose estimated gait Dynamic features Created 30 subjects gait data using kNN Identification Rate : 93.20%.
[86] /2015 representation model Microsoft Kinect Sensor : 15 females, EER on verification: 3.1%.
15 males. Gender Recognition Rate:
Straight direction. 99.11%
22 Yooetal Trigonometric polynomial Trajectory-based kinematic Created 4 subjects indoor gait database BPNN Number of Features : 7
[87]/2002 approach features Recognition Rate
Avg : 100%
Min : 100%
Number of Features : 5
Recognition Rate:
Avg : 88.6%
Min : 80%
Number of Features : 3
Recognition Rate
Avg: 65.7%
Min : 60%
23 Rawesak et al. Trajectory-based gait Dynamic features(lower body- hip ~ Created gait database using Ascension NN Recognition Rate:
[88] /2001 motion estimation & knee, joint angle trajectories) electro-magnetic motion capture system Euclidean distance Database I : 73%
Database I: 18 subjects, 106 walks Database II : 42%
Database II : 8 subjects , 84 walks Expected Confusion No.
Database II1I : 8 subiects . 96 walks Database I :0.097
Database II : 0.15
Database I11 : 0.27
24 Goffredo et al. Trajectory-based gait Dynamic features ( angular SOTON dataset : indoor, 20 subjects. kNN SOTON : 95.8%
[89]/2010 motion estimation motion and trunk spatial CASIA-B dataset : 6 view directions leave-one-out cross CASIA-B : Avg. : 73.6%
displacement) (36°,540, 72°,90°,108°,126"). validation rule
25 Chen et al. Hypergraph partition 3D tensor gait features Created 120 subjects multi-gait dataset NN Recognition Rate
[90]/ 2016 approach with 2~4 participant. 2 participant
1440 videos walking alone. frontal : 89.2%
720 double pedestrians lateral : 80.3%
480 three pedestrians gait videos. 3 participant
360 four pedestrians gait videos. frontal : 88.3%
Two View-point considered : frontal , lateral : 78.2%
lateral 4 participant
frontal : 87.2%
lateral : 76.5%
26  Choudhary et al. Fusion of Spatio- Shape features based on CMU MoBo Dataset. z normalized similarity score  Identification
[130]/2013 temporal+ statistical +  Procrustes shape analysis + HumanID Gait Challenge. Rank based classifier Rank-1 :
physical (STM-SPP) elliptic Fourier Descriptor. PSA : 84%
Spatio-temporal motion features. Combination classifier : 92%
Physical features. Verification
PSA- 86%,

False Alarm Rate : 1%
Combined Classifier:94%,
False Alarm Rate : 1%

of joints [83]. Kinect sensors can be used for clinical diagno-
sis of diseases based on gait [109]. We outline 4 organizations
Kinect sensors based gait dataset, which has considered dif-
ferent covariate conditions (such as view variations, carrying
conditions, and shoe variations).

The dataset summarized in table 3 & 4 can be applicable to
surveillance monitoring, recognition, motion analysis, clini-
cal analysis, sports analysis, rehabilitation and many more.

V. GAIT RECOGNITION APPROACHES
There are two broad categorized approaches to represent

and extract gait recognition features, i.e., Model-based and
Model-free.
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A. MODEL-BASED APPROACHES

In this section, we examine the various model-based gait
recognition approaches proposed in the state-of-art studies.
Table 5 summarizes model based gait recognition approaches
based on the techniques employed, with the accuracy rate and
have also outlined the features used for gait recognition along
with classifier used. Modeling of human body or motion in
a model-based approach is explicitly based on the extracted
prior information. In this method, gait signatures are derived
by modelling or tracking of body components (such as limbs,
legs, arms, and thighs), which are employed for identifi-
cation or verification of an individual. In the model-based
method, a model of the human body (such as structural
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TABLE 6. Model free approaches based on approaches with their accuracy rate.

;'0‘ Reference/ Year Technique/ Approach — Gait Parameters/ Features Dataset/ Covariates Classifier / Evaluation Accuracy (%)
1 Sundaresan et al. Temporal Template Hidden Markov Model USF database : 75 subjects. 3 distance matrices : Rank 1
[91]/2003 (HMM) features. 4 covariate conditions : grass (G), Euclidean distance , Probe, Distance Matric
concrete(C) , shoe type (A,B) Inner product(IP) distance, IP Euclid SAD
camera view (L,R) Sum of absolute difference(SAD) A 99% 99% 98%
distance. B 89% 89% 89%
7 Probe Conditions : A(GAL) C 78% 78% 5%
B(GBR),C(GBL),D(CAR),E(CBR) D 36% 29% 23%
F (CAL),G (CBL) E 29% 28% 21%
A (GAL): grass(G), shoe type(A), F 24% 19% 16%
view left(L). G 18% 14% 15%
G (CBL) : concrete(C), shoe Rank 5
type(B), view left(L). Probe, Distance Matric
IP Euclid SAD
A 100% 100% 100%
B 92% 92% 92%
C 92% 92% 92%
D 62% 60% 59%
E 54% 54% 59%
F 47% 46% 44%
G 48% 48% 45%
2 Havasi et al. Spatiotemporal Method Symmetry features. 1000 samples : 300 walking, Kernel FisherDiscriminant Detection Rate
[92]/2006 700 non-walking. Analysis(KFDA) 97%
2 classes : waking ,non- walking. False +ve : 1.25
False —ve: 1.15
3 Boulgouris et al. linear time normalized ~ Silhouette features. HumanID Gait Challenge. Linear Discriminant analysis Identification Rate
[93]/2005 method Angular features. 7 probe condition : view, Cumulative Match Score Rank 1 Rank 2
shoe, shoe + view, surface, Sf Af Sf Af
surface + shoe, surface + view , 94% 89%  99% 99%
surface + view+ shoe
4 Wang et al. Statistical shape analysis Procrustes shape analysis NLPR(CASIA-A) Dataset Background Subtraction: LMedS k=1 (NN)
[99]/2002 method to extract shape 3 view angle : 0°, 45°, 90° Classifier : NN, kNN , ENN 0%:71.25% ,45% 72.5% ,
signature features. 90°: 81.25%
k=3 (kNN)
0°:72.5% , 45%: 73.75 %,
90°: 80 %
ENN
0° : 88.75%, 45° : 88.75% ,
90°: 90%
5 Wang et al. Statistical shape + Static features(Procrustes Created dataset of 20 subjects. ENN Features : Rank 1, Rank 3
[36] /2004 model-based analysis ~ Mean shape distance). Total 80 sequences. Rank-summation SF : 83.75%, 92.5%
Dynamic feature (joint angle Score-summation DF : 87.5%,97.5 %
lower limbs). Equal Error Rate Features : EER
SF:10, DF:8.42
6 Kusakunniran et al. ~ Spatio Temporal Space-time interest points CASIA dataset B. Nearest Neighbor Avg. : 63.6%
[32]/2014 Domain (STIP) Covariates :carrying bag , view Leave-one-out cross-validation
variations, wearing coat.
7 Rida et al. Gait Energy Image(GEI) Divide GEI into two parts. CASIA dataset B . Phase-only correlation 81.40%
[95]/2015 Two features : bottom a Covariates : carrying bag , view
row of x as features, top variations, wearing coat.
row of y as features.
8 Sarkar et al. Gait Entropy Image Static and Dynamic features ~ CASIA dataset A,.B & C. Adaptive component and GEnl + ACDA
[48] /2009 (GEnl) SOTON small dataset . discriminant analysis(ACDA) CASIA :555
SOTON : 54.5
9 Nandy et al. Statistical GEI Statistical shape features OU-ISIR Treadmill dataset. Classifier : kNN, Navie Bayes , Grid segmented features :
[971/ 2016 from GEI edge contour. Covariates: clothing condition. Decision Tree. Random Forest. 83.30%
Intra cloth variation : F-statistics. Combination of features :
Inter-subject distance : t- statistics.  79%
Intra-class correlation (ICC).
10 Ridaetal. Group lasso GEI Segment GEI to extract CASIA dataset B. Canonical discriminant analysis. Normal conditions : 98.39%
[96] /2016 discriminative features. Covariates : carrying bag, Principal component analysis. Carrying conditions :75.89%
clothing varations,view variations Multiple discriminant analysis. Clothing conditions : 91.96%
wearing coat. Overall : 88.75%

Standard deviation : 11.59
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TABLE 6. (Continued.) Model free approaches based on approaches with their accuracy rate.

Reference/ Year Technique/ Approach  Gait Parameters/ Features

No.

Dataset/ Covariates

Classifier / Evaluation Accuracy (%)

11 Wangetal Chrono Gait Image The contour of silhouette
[98]/2012 (CGI) images.

USF Human ID Gait Challenge.
CASIA dataset B.

Soton Large database.

Rank 1 : 61.69%
Rank 5:79.12%

Nearest neighbor classifier(NN)
Principal component analysis

Linear Discriminant Analysis

Covariates : carrying bag,

clothing variations.

12 Shutler et al.
[131]/2006

Statistical features based Zernike velocity moment
on moments features.

Two image sets : spatial
templates(ST) and
temporal templates(TT).

13 Wangetal.
[100] /2002

Statistical principal Eigen transformation for

component analysis silhouette shape features.

14 Abdelkader et al. Physical Parameter Spatiotemporal features :

CMU dataset : 20 subjects.

4 covariates :slow walk, fast walk,
normal view, oblique view.
SOTON : 50 subjects

Created database of 7 subjects.

17 subjects gait data:

k nearest neighbor classifier Feature Space : ST+TT
k=1:95%,k=3:93%
Feature Space : ST
k=1:61.87%, k=3 :49.5%
Feature Space : TT
k=1:46.16 % ,k=3:35.16%
STC :90.5 %

Similarity measure: spatiotemporal  NED : 89.3 %

correlation (STC), normalized

euclidean distance (NED)

leave one out rule for validation

Nearest neighbor classifier(NN)

Rank order statistic False Acceptance Rate : 11%

[101] /2002 stride length and cadence 360%240 / 30fps. leave one out rule for validation CCR ~ 89%
15  Collins et al. Physical parameter Shapes features: body CMU Indoor Treadmill Nearest neighbor
[102] /2002 height,width,body part MIT Indoor Floor
proportions. UMD Outdoor ground
Gait parameters: stride USH Indoor floor

length and amount of arm
swing.

FIGURE 12. Model based gait recognition approaches and possible
features that can be used to represent a gait signature.

model, 3D model) are fitted on walking sequences of each
frame of gait cycle to obtain gait features [24] shown in
Fig. 12. Model-based methods are easy to understand and
are view-invariant, scale invariant and are not affected by
background cluttering and noise. Because of these advan-
tages, a model-based approach can be applicable for practical
applications, because gait reference (query/probe) sequences
and test (gallery) sequences are unlikely to be captured from
the same viewpoint.

1) STRUCTURAL BASED GAIT RECOGNITION

The structural based gait recognition approaches estimate
the geometrical and structural properties of individual sub-
jects. The advantage of this method is that it is robust
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against lighting variations, segmentation imperfection, view
variations, and background cluttering. This method extracts
time-varying gait parameters, motion parameters of human
gait shown in Fig. 12.

Based on the structural approach Abdelkader et al. [66]
proposed a parametric method for identifying people in
low-resolution videos based on height and stride parameters
of an individual gait. They defined that performance was sig-
nificantly enhanced by using height as an additional discrim-
inant feature. They have extracted four view-invariant gait
variables (parameters) from low-resolution videos, i.e., mean,
amplitude of oscillation, cadence and stride length. The pri-
mary objective of their work was to depict that stride and
height are discriminating features that can be used for per-
sonal identification. They theorized that if these features
(stride and height) are combined with other biometric traits
like face recognition (multimodal), high recognition accuracy
can be achieved.

Activity-specific biometric means extracting an individ-
ual recognizing properties or of an individual’s behavior
that is appropriate only when a person is performing a spe-
cific action. Bobick and Johnson [67] proposed an approach
for gait recognition based on activity-specific parameters.
They define subjects walking action as an activity specific
biometric and extract static body and stride parameters for
recognition. A confusion metric based on mutual information
has been used to estimate the effectiveness of the extracted
parameters. For gait recognition, two set of gait features were
generated. The first set consists of four distances namely
(distance between head and foot, head and pelvis, foot and
pelvis, left foot and right foot). The second feature set
was the distance between (head and foot, foot and pelvis).
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The second feature efficiently used in viewing variation con-
ditions. The author also figures out that background sub-
traction of outdoor scenes is affected by shadows. Gaussian
modelling approach has been used to remove shadow effect
on outdoor gait sequences.

Many researchers have focused on recognition based on
human walking and demonstrate promising results. The
question arises whether analyzing leg motion, variations in
speed or running are useful in recognizing a human. Running
with a major biomechincal tranformations is an extension
of walking. Running and walking of a human has unique
bilateral symmetry characteristics [68]. Bilateral symmetry
means when a person walks or runs there is an interchange
in the direction of the left arm and right leg with the right
arm and left leg and vice-versa. Features that distinguish
walking from running are stride length and stride dura-
tion. Kinematic features of walking also differ from running
because with an increase in velocity there is an increase in
joints motion. To investigate how running and walking can
be used for human recognition, Yam ef al. [68] lay down
a model-based automated approach for human recognition
by walking and running. They have developed two models
the bilateral symmetry model and the forced coupled oscil-
lator model, which was based on the concept of pendulum
motion. These models used for extraction of thigh and leg
motion features simultaneously. The extracted features could
be used for determining the relation between running and
walking that could be used for human recognition. They
defined that to extract thigh and lower leg features, the first
hip model has to be created, which acquire hip motion.
The study revealed that the vertical motion of the hip is an
important characteristic which differs both from walking and
running.

Fusion of shape and motion features for gait recognition
has been proposed by Kim et al. [69]. They employed pre-
diction based hierarchical active shape model(ASM) for gait
cycle extraction, in which motion detection, object region
detection, and active shape model features were extracted
which lessen the problem of background extraction, shadow
removal and improve the recognition rate. They employed
a Kalman filter to predict global motion, which reduces the
unpredictable factors in the shape and motion estimation pro-
cess like illumination changes, shadows, and self-occlusion.
Their proposed algorithm achieved 97% accuracy under view
variation condition.

Identification in dynamic environments is a significant
and challenging problem. In Deterministic learning (DL),
the learning theory provides a systematic design approach for
nonlinear system identification, dynamic pattern recognition
and intelligent control for non-linear systems. Based on this
idea Zeng et al. [70] proposed a model-based human recog-
nition using deterministic learning. In this work, they con-
sidered sagittal plane for human gait recognition. Silhouette
lower limb joint angle was considered as gait features for
recognition. They employed a radial basis neural network
through DL for achieving accurate identification.
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a: MARKERLESS GAIT RECOGNITION

Vision-based human motion analysis systems are classified
into three consecutive stages namely detection, tracking, and
perception of their activity. In traditional model based gait
recognition, the majority of methods proposed for motion
analysis are marker based. An issue with the marker-based
system is that reflective markers or sensors are attached
at some crucial body joints of the human body to capture
their motion. However, gait recognition as an application
in automated surveillance monitoring system requires the
markerless system to acquire body joints motion patterns for
analysis.

FIGURE 13. 2D stick figure extraction from human body silhouette from
nine body points for each sequence [71], (a) depicts the body contour
formation and (b) 2D stick figure formed based on nine body points.

Yoo et al. [71] presented a back-propagation neural net-
work for automated gait recognition. In this approach, nine
body coordinates (body points) were extracted from the sil-
houette image of each sequence of individual subjects. Then,
a 2D stick figure was extracted from these body points as
shown in Fig. 13. Ten features were extracted from these
figures and the back-propagation neural network was used
for recognition. The overall accuracy achieved from their
approach was 90% for thirty subject datasets.

In another work, Jang and Nixon [72] proposed an auto-
mated marker-less human gait recognition system in which
gait motion was represented by a sequential set of planar
2D stick figures. Total eight planar 2D sticks were generated
from body contour with six body joints. The sequence of gait
figures was used for calculation of motion parameters and to
characterize the human gait patterns. kNN classifier was used
for classification based on motion and statistical features.

Wagg and Nixon [73] proposed a fully automated
model-based approach for gait extraction based on hierarchi-
cal mean shape, motion information, and local adaptation.
Anatomical data was used to generate shape models that
are consistent with standard human body proportions. In the
preprocessed approach, the Gaussian averaging filter used for
noise removal and Sobel edge detection used for generation
of edges of moving objects and temporal median of neighbor-
ing frames for background subtraction. They evaluated that
majority of potential recognition parameters lie in static shape
parameters and cadence. A complex parametric model reveals
greater recognition potential in gait dynamics.
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Bouchrika and Boukrouche [74] proposed a marker-less
extraction of gait features, which are used for individual
recognition. Gait features extracted using Haar-like template
under view variation condition. In this marker-less model,
an angular model template that describes the human motion
has been employed for the extraction process. Gait features
consist of the lower legs angular rotation measurement and
spatial displacement of the human body. Gait features are
localized by Haar-like template because the performance
of object detection and recognition in a real-time system
is robust and fast. To remove the irrelevant and redun-
dant feature’s Adaptive sequential forward floating selec-
tion (ASFES) method has been employed. The posture of legs
has been estimated based on a frame by frame basis and for
each person angle between hip and knee are extracted from
six viewpoints.

Elliptical Fourier descriptor based automated marker less
extraction of gait features for human identification based on
body joints proposed by Bouchrika [75]. Based on these body
joints gait features including an angular measurement of the
legs as well as the spatial displacement of the body trunk
has been extracted. To derive parameters from the elliptic
descriptor, recursive evidence gathering algorithm has been
employed under scale and rotation transformation. ASFFS
search algorithm has been used for feature subset selection
to achieve better classification rate.

Another approach has been proposed for marker-less gait
analysis and recognition by Bouchrika and Nixon [76],
in which an Elliptic Fourier descriptor modeled human gait
motion for tracking and feature extraction. They fused static
and dynamic features for recognition. Static features are
body height, stride, and height of different body parts while
dynamic features include the phase-weighted magnitude of
the Fourier frequencies for the hip and knee angular motions.

b: ARMS FEATURE FOR GAIT RECOGNITION

In recent researches, hand motion has not been considered
as a feature vector for recognition. The reason behind is
due to carrying objects by subject or because of the dis-
order due to bust. To study and verify the importance of
arm motion for recognition, Tafazzoli and Safabakhsh [77]
proposed a model-based method for gait recognition based
on the leg and arm movement. To create a model based on
the movement of body parts, they employed active contour
and Hough transform using anatomical facts. They initially
segment the human body into three regions. The size of each
region was computed as a percentage of body height. Motion
information of the person was extracted through velocity
filtering algorithm, which was used to describe a person’s
accumulated average shape over gait frames. Ellipses were
framed for head and torso, and two pairs of the line segment
for each leg has been used to estimate the shape and size
of segmented regions as shown in Fig. 14. To analyze the
efficiency of the proposed approach combined feature sets
were employed, that is static features (mean shape model)
and dynamic features (movement of joint positions of leg and
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FIGURE 14. Region segmentation and ellipse formation on head and
torso [77].

arms) which achieves an accuracy of 94.5%. Gaussian noise
was removed from frames with adaptive kernel regression.

2) 3D MODEL-BASED GAIT RECOGNITION

The objective of gait recognition is to identify the discrimina-
tive features that differentiate people according to their style
of walking. The current research approaches are based on 2D
gait video sequences. Limitation arises in 2D gait recognition
because of the fixed camera viewpoint, self-occlusion, and
surface variations that will effect to attain correct and accurate
results.

To handle the drawback of 2D images, 3D gait recog-
nition is captured simultaneously by more than two static
calibrated cameras. 3D gait recognition helps to overcome
fixed viewpoint difficulty, self-occlusion, and surface varia-
tions to obtain motion sequences as applicable in a real-world
scenario. In 3D recognition, a person’s gait is tracked with the
help of 3D human models, which helps in the reconstruction
of 3D human structure and extraction of dynamic features to
perform human recognition.

To tackle the problem of 2D recognition, Gu et al. [78]
have proposed an approach based on 3D human joints. They
worked on action and gait recognition based on 3D human
joints. In this research, a marker-less pose recovery approach
has been employed for the automatic extraction of 3D human
joints for action and gait recognition. Two types of features
were recovered, i.e., movement features and configuration
features. Movement features represent the global motion of
the subjects, including a change in body position, orientation,
and height of the body. Human body joint sequences which
depict the changes of configuration of human body segments
are termed as configuration features. They used movement
features for action recognition, and configuration features
for gait recognition. The configuration features consist of
normalized human joint sequence vectors. They also consid-
ered lower limb features, which are more robust gait features
for recognition. Maximum a posteriori (MAP) classifier was
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used for gait classification based on two feature vectors (first,
normalized body joint sequences of the whole body and
second, normalized joint sequences of two legs).

Zhao et al. [79] proposed an approach based on 3D gait
recognition. In this work 3D human model is created on
video sequences taken from multiple cameras. Two feature
sets are generated, static feature set including the length of
key segments, and a dynamic feature set including motion
trajectories of lower limb for recognition. They achieved the
accuracy of 70% while combing both static and dynamic fea-
ture sets and claimed that the proposed method deal robustly
with the effects of view and surface variations.

Krezeszowski et al. [80] outlined a markerless 3D motion
tracking approach proposed for view- independent person
identification. Particle swarm optimization algorithm was
employed for motion tracking. MoCap ground truth data were
used to evaluate motion tracking method. Four calibrated
and synchronized cameras were employed to acquire 3D
motion from video sequences, and a dataset of 20 subjects
was created. In this dataset, each subject performed two
straight walking and two diagonally. The tensorial gait data
was extracted for classification, which was optimized (dimen-
sionality reduction) by Multilinear Principal Component
Analysis (MPCA) algorithm. Navie Bayes and Multilayer
Perceptron (MLP) classifier were employed for identifica-
tion. By analyzing the results, it is concluded that MLP
achieves 90% of accuracy (Rank 1) as compared to the Navie
Bayes classifier.

In another work, to handle the view-independent issue,
Kwolek et al. [81] proposed a 3D marker-less motion track-
ing algorithm which acquires motion data for human gait
identification. To analyze the accuracy of 3D motion track-
ing, ground truth data was generated based on marker-based
motion capture system. Ground truth data was generated by
thirty-nine reflective markers attached to the body joints.
They created a dataset of 22 subjects to evaluate the
marker-less motion tracking system. Three classifiers were
employed, Navie Bayes, Multilayer Perceptron (MLP) and
Support Vector Machine (SVM). Support vector machine
classifier achieved a promising accuracy rate of 93.5% for
rank 1 and 99.6% for rank 3 as compared to two other
classifiers.

To tackle view angle variation problem of 2D video based
gait recognition, Wang et al. [83] used second-generation
Kinect V2 tool to create 3D skeleton based gait database. This
dataset has both 3D information of joints and correspond-
ing 2D silhouette images. Static and dynamic features were
extracted for recognition of the person.

Static features include a relative length of the skeleton
joints while dynamic features have an angle between skele-
ton. There dataset consists of 52 subjects with 6 view direc-
tions (0, 90, 135, 180, 225 and 270°). It is concluded that
fusion of static and dynamic features, increases classification
rate above 90% under different view variation conditions.

Urtasum and Fua [82] designed a 3D temporal motion
model for gait analysis which was robust to occlusions,
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clothing, illumination changes, and independent to view
variations. To track a motion model they have used data
points which define the model. They have taken samples
of four-persons using optical motion capture system. Each
person is walking at 9 different speed variations on treadmill
ranging from 3 km/h to 7 km/h with an increment of 0.5 km/h.

B. MODEL-FREE (HOLISTIC OR APPEARANCE-BASED)
APPROACHES

This section describes the work done for gait recognition
using model-free approaches. In this method, no prior geo-
metric model of the human body is formed but focuses
on either shape or motion characteristics of human body
silhouettes.

Features in the model-free approach are directly extracted
from the binary part of gait contour, which is insensitive to
the color and texture. The computational cost of model-free
gait representation is low as a comparison to model-based
representation. Even quality of silhouette does not effect
on gait recognition performance. Being an effective method
for gait recognition, this method usually not robust to view
variations, appearance changes (such as clothing, carrying
conditions, and shoe type) and scale.

The model-free approach considers three methods
(Spatiotemporal motion-based method, statistical method,
and Physical parameter method) for identifying the unique
gait features for recognition as shown in Fig. 15.

FIGURE 15. Model-free approaches and their corresponding features.

1) SPATIOTEMPORAL METHOD

Spatiotemporal method manages both space and time infor-
mation in video sequences. The major benefit is that it is easy
to implement with low computational complexity.

a: TEMPORAL TEMPLATE APPROACH

Temporal template approach works by comparing and match-
ing features between the probe input patterns and the gallery
stored patterns; i.e., a spatial comparison is performed
temporally, on a frame-by-frame basis. These approaches
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directly compare the probe image sequences with the gallery
sequences.

Sundaresan et al. [91] have proposed a temporal based
approach, i.e., a temporal template matching framework
based on a hidden Markov model (HMM). Due to the statis-
tical nature of HMM, it provides robustness and flexibility to
the framework for selection of feature vectors. Their frame-
work assumes that during gait, individual subject transitions
between different discrete postures do not become dependent
on the particular feature vector. For feature vector estimation
they employed binarized background subtracted image and
used three distance matrices (Euclidean distance, Inner prod-
uct (IP) distance and the sum of absolute difference (SAD)
distance). They worked on three covariates conditions (walk-
ing surface, shoe type, and view variations).

In another work based on temporal characteristics,
Sarkar et al. [48] proposed a baseline algorithm which used
the temporal correlation of silhouette for recognition. The
motive of work was to develop a method against which
future performance would be evaluated. They proposed a
semiautomatic approach of a bounding box which was used
to match silhouette frames. Gait sequences were partitioned
by estimating gait period, which was used for temporal clas-
sification. They created a database, which examines the effect
of five covariates on performance, i.e., view angle variations,
change in shoe type, variation in walking surface, carry-
ing or without carrying a briefcase and elapsed time between
sequences being compared. It is concluded that time has the
most significant impact on recognition rate.

b: SPATIOTEMPORAL APPROACHES
The challenging issue with temporal template approach is
that it is based on comparing images on a frame by frame
basis. The efficient approach is to use accumulated motion
features. In the spatiotemporal approach, the spatial struc-
tural (appearance) and temporal transitional (dynamics) fea-
tures of gait are captured. The key advantage of this method is
low computational complexity and the reduced feature vector,
which ease in implementation. However, this method is prone
to variations in camera orientation and appearance change
(walking speed, clothing variations, and carrying conditions).
In a novel approach to extract motion information
from cluttered video image sequences proposed by
Havasi et al. [92], which is based on spatiotemporal input
information to detect and classify patterns of human move-
ment. They employed symmetry features for detection and
tracking of a pedestrian in a real-time scenario. They used
modified kernel based (non-linear) Fisher discriminant anal-
ysis (KFDA) for classification. Their proposed method was
suitable for detection of subjects in multi-person images.
Another novel approach for gait recognition using lin-
ear time normalized proposed by Boulgouris et al. [93].
They transformed extracted silhouette frames into a
low-dimensional feature vector to estimate distance and
angular features from the center of the silhouette. They
evaluate their approach on seven probe conditions.

VOLUME 6, 2018

To present the application of spatiotemporal features for
human gait recognition in surveillance Ran et al. [94] pro-
posed an approach in which video sequences were decom-
posed into x-t slices. These decomposed sequences generate
periodic patterns which were referred to as double helical
signatures (DHSs). They employed an iterative local curve
embedding algorithm for extracting DHS from gait video
sequences. The objective of DHS is that it revealed the geo-
metric symmetries by encoding the appearance and kine-
matics of human motion and is helpful in detecting simple
events in human gait and extracting parameters. The signa-
ture integrates temporal body kinematics with shape, motion,
and appearance. Another advantage of DHS is that it has
effective learning in the presence of imperfect gait period,
self-occlusion and clutter.

Appearance-based gait analysis methods require fore-
ground and background subtraction in pre-processing, which
causes additional time complexity and also affect the perfor-
mance due to imperfect background-foreground subtraction.
Appearance-based approaches are also adversely affected
by clothing variations and carrying variations. To handle
these issues Kusakunniran et al. [32] proposed an approach
to extract gait features directly from raw videos. In this
approach, space-time interest points (STIP) are detected
in the spatiotemporal domain. Concatenation of Histogram
of oriented gradients (HOG) and a histogram of optical
flow (HOF) is used as STIP descriptor.

Abdelkader et al. [101] proposed a gait model to extract
the stride length and cadence of a person gait for auto-
matic identification and verification. Their approach works
better with low-resolution videos. Non-parametric back-
ground modelling technique was used for extraction of
the foreground object, and two features were extracted,
i.e., cadence and step length. Bounding box width has
been used to extract the human gait cycle. Bayesian deci-
sion approach has been used for classification. The method
was robust to different factors such as lighting, cloth-
ing and tracing errors and stride length. Cadence param-
eters are principally efficient for classification under view
variation.

¢: ENHANCED SPATIOTEMPORAL APPROACHES

In traditional spatiotemporal approaches, gait is considered
as a sequence of templates, which consumed massive storage
space and computational time complexity for evaluation is
high. To overcome this issue Man and Bhanu [31] proposed
a new spatiotemporal gait representation, which is termed
as Gait Energy Image (GEI). In GEI motion information is
represented in a single image by preserving the temporal
information.

The GEI is defined as

1
GGj) = Y 1G.0.0) (12)

Where N defines the number of silhouette frames in the
gait cycle, ¢ represents the frame number in a gait cycle
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at a moment of time and 7 (7, j) is the original silhouette
image with (i, j) values in the 2D image coordinate. A sample
GEI is shown in Fig.16.The GEI templates are beneficial for
space storage and computational time. GEI templates are less
sensitive to noise.

FIGURE 16. Gait Energy Image (GEI) from silhouettes of each subject gait
frames, taken from [31].

Rida et al. [95] proposed a gait recognition approach using
a modified phase—only correlation approach based on GEI
representation. This framework applied supervised feature
extraction method, which was able to select relevant dis-
criminative features for human recognition under clothing,
carrying and intraclass covariates. They employed band-pass-
type spectral weighting function to improve the phase-only
correlation (POC) method to enhance the recognition perfor-
mance. This is an efficient and effective approach to match
images with low texture features.

In another work Rida et al. [96] applied the group lasso to
segment GEI to select discriminative human body parts which
reduce intra class variations. GEI prove to be an efficient
gait silhouette template for human recognition. However, GEI
loses information in a gait sequence which affects perfor-
mance due to changes caused by covariate conditions such
as clothing, carrying conditions and view variations. Static
shape information of human gait silhouette proved to be an
important feature for silhouette-based gait recognition [132].

Due to these issues in GEI, Sarkar ef al. [48] proposed
a novel gait feature representation approach termed as Gait
Entropy Image (GEnI). Shannon Entropy method has been
used on gait silhouettes to distinguish between a static and
dynamic portion of GEI. Entropy over the complete gait cycle
represented as

k
1G.j)=7)  Pxlog, Pr(i.j) (13)

Here (i, j) are pixel coordinates and P(i, j) is the probability
of pixel (i, j). GEnl obtained by scaling and discretizing I (i, j)
I(i,)) —min( (i,j)) x 255
GEnl(i, j) =)~ min () x 2
max (I (i, j)) —min (/ (i, /))
In another variant of GEI, to preserve the temporal informa-
tion from loss, Wang et al. [98] proposed a method known as
Chrono-Gait Image (CGI), which is based on multi-channel
temporal encoding scheme. In CGI, the contour image of the
gait frame was encoded with multi-channel mapping function

(14)
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within the same gait sequence to generate single CGI. A sam-
ple of CGI temporal templates shown in Fig.17.

FIGURE 17. An example of CGI templates taken from Wang et al. [98]. The
first row shows silhouette frames of the subject, the second row depicts
the multi-channel contour image, and the last row defines generated CGI
templates of a gait period.

The Chrono-Gait Image (CGI) [98] is defined as
- I N .
CGLG.J) = Dy P ) (15)

.. n; .
Pej) =) " CG)) (16)
Where N is the number of frames in the 1/4 gait periods and

Px (i, j) represents the sum of total n; multichannel contour
images C; (i, j) in 1/4 gait period.

2) STATISTICAL FEATURE METHOD

In gait recognition, silhouette statistical features usually
describe the shape and motion patterns. Procrustes shape
analysis [35], [99], [130] and Elliptic Fourier descrip-
tors [130] are most used approaches to describe the shape
features of a gait silhouette. Velocity moments [139], Zernike
velocity moments [131], etc. can be used to describe silhou-
ette motion features. Statistical methods are more robust to
noise. In gait recognition, shape provides greater discrimina-
tive information than its kinematics.

Based on this theory, Wang et al. [99] proposed statisti-
cal shape analysis approach for human identification. They
employed Least Median of Squares (LMedS) method for
background subtraction and gait signature obtained by using
Procrustes shape analysis approach. Three viewing angles
0°, 45°, 90° were evaluated using classifiers NN, kNN and
ENN. They have been able to achieve better recognition
rate above 85% for three view angles. Wang et al. [100]
proposed another approach based on silhouette shapes for
recognition. Their method was based on statistical princi-
pal component analysis (PCA) method. Background sub-
traction was performed to extract spatial silhouettes shapes,
and the eigenspace transformation applied to extract features.
They apply spatiotemporal correlation (STC) and normalized
Euclidean distance (NED) similarity measures with the near-
est neighbor classifier for evaluation.

The appearance of an individual change with variation
in different clothing, which results in a problem for gait
recognition. To handle this situation Nandy et al. [97] pro-
posed a statistical shape analysis method based on GEIL
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They segmented the GEI of an individual subject and
extracted GEI edge contour features.

In [99] Wang et al. proposed a statistical (appearance)
features of gait for recognition which are static. Combining
static and dynamic features of human gait for recognition
proposed by Wang et al. [36]. In this work, Procrustes shape
analysis used for extracting static information of the human
body and dynamic features were extracted from trajectories
of lower limb joint angles. The framework is a combination
of model-based and appearance based methods. ENN used
for evaluation of static features and dynamic features. Simi-
larity measurement between two gaits was based on distance
measures, i.e., smaller the distance more similar the gaits.
They achieved the correct classification rate of approximately
above 90% for individual features and fusion of features.

A wok on sequences based object analysis and description
was done by Shutler and Nixon [131]. In this work statis-
tical shape and motion in image sequences are described
by zernike velocity moments. The reason for employing
Zernike moments is that due to the non-orthogonal nature
of Cartesian velocity moments, Zernike moments have less
correlation description even in large databases. This less
correlated description improves performance under noise as
compared to Cartesian velocity moments. Two image sets
were generated to apply velocity moments, i.e., first was
a binary silhouette or spatial templates (ST), which gives
shape information while optical flow images or temporal
templates (TT) provide motion information. They employed
kNN classier and leave-one-out rule for evaluation.

A baseline algorithm proposed by Collins et al. [102],
in which human identification was based on body shape
and gait. The method was based on matching 2D silhou-
ette images extracted from keyframes across gait sequences.
The approach was robust against noisy video data and not
affected by clothing color and texture. However, the method
as sensitive to view variations because of matching 2D shape
silhouettes.

VI. APPLICATIONS OF GAIT RECOGNITION

In this section, we outline the possible applications of gait
recognition. We consider two important applications areas:
soft biometric and clinical analysis. The soft biometric area
covers applications of gait recognition in gender recognition
and age estimation. The second application area is concerned
with the detailed analysis of the gait motion data, which may
be used in the clinical analysis of, e.g., orthopedic patient
diagnosis, Parkinson patient diagnosis.

A. SOFT BIOMETRIC

Application of gait as a gender recognition improves a com-
puters perception capability and is useful in many applica-
tions such as intellectual and visual surveillance which track
moving objects, classify them into different classes. Gait
based gender classification is used to divide the tracked object
into two categories: male and female, which can improve
search speed and efficiency of retrieval of a suspect in a vast
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video database. In customer statistics, gender classification
helps the manager to know more about their customer interest
and provide better service to them.

Average gait image for gender recognition has been pro-
posed by Li et al. [41]. They had segmented human gait
silhouette into seven components (such as head, arm, trunk,
thigh, front-leg, back-leg, and feet). The analysis was done
on motions of different parts of a human silhouette. They had
analyzed that head, back-leg and feet are not useful for gender
recognition. Regarding the walking surface or the carrying
of a briefcase, arm, and thigh component reduce the gender
recognition. They used SVM for classification.

To overcome the drawbacks of current approaches for
collecting gait sequences with unrealistic assumptions such
as a person walk in a fixed direction or a predefined path,
J Lu et al. [103] proposed an approach based on arbitrary
walking directions gait sequences, to investigate human iden-
tity and gender recognition. The first extracted human gait
silhouette images by background subtraction and clustered
them. They considered a cluster based averaged gait image
as features set. To minimize intra-class sparse reconstruction
error and maximize inter-class sparse reconstruction error,
they propose a sparse reconstruction based learning method,
to learn a distance metric, so that discriminative information
can be used for recognition. Sudha and and Bhavani [104]
presented a spatiotemporal approach for gender classifi-
cation. They had extracted five binary moment features
and four anatomical features from the human silhouette.
To evaluate the performance they applied probabilistic neural
network (PNN) and support vector machine (SVM) on the
CAISA-B dataset. Supervised modelling approach proposed
by Hu ez al. [42], where shape and temporal dynamics of
both genders are integrated into a sequential model termed
as a mixed conditional random field (MCRF), which pro-
vides various spatiotemporal features. They had segmented
the silhouette image into a grid of 2x2 and 4x4 and depicted
that combining these grids is sufficient for gait shape rep-
resentation. Cross race-based gender classification has been
proposed by Yu et al. [105].

They combined human knowledge to analyze which body
component provides better gender classification rate. They
used gait energy image as gait feature and segmented it
into five components: head and hair, chest, back, waist
and buttocks and legs. The support vector machine has
been used to evaluate the potential of gait-based gender
classification.

Fusion of multiview for gender classification proposed
by De [106] and tensor data has been extracted from
GEI for recognition. To reduce dimensionality multi-linear
principal component analysis (MPCA) has been employed.
Pose based gender recognition based on gait depth image
captured through Microsoft Kinect has been proposed by
Kastaniotis et al. [60]. Gait motion features were extracted
using an angular representation. They created a new dataset
using Microsoft Kinect, consisting of 5 sequences performed
by 30 volunteers.
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To overcome the problem of some open visual surveil-
lance systems such as airports, railway stations and build-
ing entrances where it is difficult to collect gait samples
in advance for identification purpose. Under such circum-
stances, recognizing another biometric attribute such as gait
based age information estimation of concern person may also
prove to be useful and desirable. Lu and Tan [43] presented
a new approach for human age estimation based on gait fea-
tures. To well characterize and correlate the age and gender
information for age prediction, the said approach learns a
multi label-guided subspace. They extracted Gabor magni-
tude and Gabor phase information from gait sequences and
performed multiple feature fusion to enhance the age esti-
mation performance. GEI has been used for feature extrac-
tion because of its robustness and effectiveness. Hidden
Markov Model (HMM) based age estimation proposed by
Zhang et al. [128], in which they consider shape variations
among subject on the basis of contour.To reduce the dimen-
sionality, Frame to Exemplar Distance (FED) has been
employed, and HMM was trained on FED feature vector and
achieved correct classification rate of 80%.

B. CLINICAL ANALYSIS

In recent years human gait analysis plays a vital role in
video surveillance for security, and identification. Quantita-
tive measurement of gait patterns, e.g., cadence, gait speed,
and step length, provide valuable information on the develop-
ment of aging and disease diagnosis.

Weiss et al. [107] analyzed kinematic and kinetic gait
changes in rheumatoid arthritis (RA) patients in comparison
with healthy individuals. They examine levels of functional
disabilities of gait parameters. They proposed a 3D motion
model to analyse the kinematic and kinetic features of arthri-
tis patients and healthy persons. Their study revealed that RA
patient’s lower limbs have decreased in kinematic and kinetic
gait parameters as compared to healthy individuals.

Gait analysis also proved to give promising results in
Parkinson disease detection. Saad et al. [108] proposed an
approach to detect freezing of gait (FOG) in Parkinson’s dis-
ease patients; which is due to sudden failure of the walk. For
the data acquisition to detect FOG, they used the multi-sensor
device. The acquired signals were analyzed to extract time
and frequency domain features, and principal component
analysis has been used to select optimal features that effi-
ciently represent the freezing of gait features. The combined
Gaussian neural network technique has been used in the
freezing of gait (FOG) for classification. The benefit of using
the combined Gaussian neural network (GNN) is that it has
fast learning capability to obtain high accuracy with fewer
weights and reflects the complexity of the data to separate
into different classes.

Human-machine communication and computer intelli-
gence are swiftly developing into interdisciplinary areas.
Human gait analysis for Parkinson’s disease detection
can be accomplished by specialized cameras with spe-
cific sensors which detect movement with high precision.
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Tupa et al. [109] have proposed an approach for the detection
of gait disorder which is due to Parkinson disease. They
employed Kinect sensors to extract individual subjects gait
disorder data. The motive of using the Kinect sensor is that it
is much less expensive and has sufficient accuracy for many
applications. The RGB camera in MS Kinect records video
image frames with a frequency of 30fps (frames per second).
Information stored by both RGB camera and depth sensor
is of 640x480 resolution. They used a neural network to
evaluate the efficiency of the proposed approach.

VII. GAIT RECOGNITION RESEARCH CHALLENGES
Physiological or behavioral characteristics of an individual
person prove to be an efficient resource for automatic iden-
tification or verification for surveillance and security appli-
cations. Many biometric traits like fingerprint, face, and iris,
have proven great importance for human identification or ver-
ification, but these traits suffer due to their obtrusive, and
perceivable nature. Biometric gait is one of the most popular
behavioral traits and has advantages over other physiological
traits (such as the face, DNA, and iris.) due to unobtrusive,
non-invasive and non-perceivable nature, which makes it a
robust biometric trait for human identification or verification.

Some factors which affect the effectiveness of gait like
carrying conditions, viewpoint variations, walking surface,
clothing conditions, elapsed time, footwear, physical condi-
tions (such as pregnancy, leg or foot injuries), even drunken-
ness can change walking patterns of a person. These factors
classified into three categories as shown in Fig.18. Among
the covariates as above, one of the crucial challenges that
frequently occurs in gait recognition is occlusion, especially
in real-world surveillance and control access. Occlusion can
occur because of multiple factors (person crossing the probe
gait leads to hiding its gait patterns, or two or more person
walking in a group). The affect of covariates mentioned above
is investigated for single gait recognition (person walking
alone under different covariates).A recent study on persons
walking in a group (two or more) termed as multi-gait, has
been investigated by Chen et al. [90].

FIGURE 18. Covariate factors are affecting the performance of a gait
recognition system.
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In this section, we have analyzed covariate factors, Exter-
nal factors (view variations, appearance changes due to cloth-
ing and carrying conditions) and occlusion factors (Static and
Dynamic) that affect gait performance and investigate what
measures have been taken to what extent to overcome these
issues.

A. GAIT OCCLUSION

Generally, in gait recognition, we require full gait cycle, but
in case of occlusion, we are unable to acquire complete gait
cycle (for example, a person walking in front of the probe
gait or, one or more subjects walking with each other), shown
in Fig.19. So it becomes a challenging issue to extract a
complete gait cycle. Gait occlusion is classified into two
classes [61]: 1) static occlusion and 2) dynamic occlusion.

FIGURE 19. Different classification of occlusion. First and second row
samples are taken from dataset created by [61] and last row samples
taken from MPII-2 person dataset [133]. First rows show static occlusion,
in which white silhouette object is walking in front of two standing
objects. Second and third row defines two cases of dynamic occlusion.
Case-l, in which two persons cross each other during walking and Case-II,
in which two persons are walking side by side.

1) Static occlusion, probe gait is occluded by standing
people or by some other static obstacles (like beams,
pillar, living or non-living objects).

2) Dynamic occlusion is divided into two cases. In the first
case when one or more walker cross the probe subject
and occlude their gait and in the second case, when
two or more person walks together, this is also termed
as multi gait.

Hofmann et al. [61] proposed a novel dataset for gait
recognition to handle static and dynamic inter-subject occlu-
sion problem. They proposed two baseline algorithms based
on the color histogram and GEI. They have estimated that
color histogram information is more variant to change in
clothing while GEI is an efficient gait recognition method
because it captures temporal motion information based on
gait cycle, which is invariant to appearance-based features.
Based on [61] dataset, Roy et al. [110] proposed a novel
approach for gait recognition in the presence of occlusion.
In their approach, they detect the occluded silhouettes frames
and then reconstruct them using Balanced Gaussian Process
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FIGURE 20. Shows the average accuracy rate of covariates (view and
appearance change).

Dynamic Model (BGPDM). They achieved the reconstruc-
tion accuracy of 90%.

Multi-individuals walking together is another factor which
affects the gait pattern and is termed as multi gait. Multi
gait is the motion which is composed of at least two per-
sons walking together, have the same walking speed and
not separated temporally. Multi gait recognition is helpful
in intelligent video monitoring systems because if multi-gait
cannot be recognized accurately, then it gives an immense
advantage to criminals to escape easily by walking along
with other people when gait monitoring system monitors
them.

Participant segmentation in multi-gait recognition is a
challenging aspect. Chen et al. [90] proposed an approach
for multi gait recognition, in which the hypergraph parti-
tion was proposed for human segmentation. After segmen-
tation of each participant, multi-linear canonical correlation
analysis algorithm (UMCCA) was used for recognition of
each participant. Hypergraph partition was employed after
using human detection and tracking technology for achieving
better segmentation of participants. Hypergraph-based seg-
mentation proved promising results because it can describe
the details of the small pixel area of human body parts.
In a recent study, superpixels proved to be an efficient
approach for object segmentation under occlusion scenario.
Based on this Chen et al. [111], proposed superpixels based
human graphlets for accurately tracking and detection of
multi-objects (participants in multi gait). Superpixels based
graphlet creation was based on two approaches: simple linear
iterative clustering (SLIC) which is faster in computation and
is memory efficient and Region Adjacency Graph (RAG).
Conditional Random Field (CRF) was employed to esti-
mate the latent variables. After segmentation of the subject,
dynamic features were extracted based on dense trajectories
due to its efficiency. In another work, Chen et al. [112] used
hierarchical association for participant tracking and solving
the Maximum a Posterior problem using the Hungarian algo-
rithm. Edgelet features were used to detect participant body
parts and static and dynamic characteristics were used for
better gait classification. To minimize the effect of occlusion
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TABLE 7. Outline work done in gait recognition under view variation, appearance change conditions.

S Reference /year
No.

Methodology

Covariate condition

Muramatsu et al.

Proposed arbitrary view transformation model (AVTM) that compares gait trait pairs from an

[114],2015 arbitrary view. Proposed model eliminated the discrete of view transformation model (VIM)
and improved the accuracy of RankSVM.
2 Ridaetal Proposed a supervised, modified phase-only correlation (MPOC) for selecting
[95],2015 discriminative features to enhance gait recognition under different covariates.
3 Jiaetal Proposed a novel view-invariant gait recognition approach, based on gait silhouette
[30],2015 contours analysis and view estimation. Gait flow image is extracted by the Lucas-Kanade
method,andProcrustes shape analysis (PSA) has been employed to estimate the mean
shape of head and shoulder.
4 Aroraetal Proposed a Gait Information Image(GII) based on information set theory and extract two gait
[115],2015 features that are Gait Information Image with Energy Features (GII-EF) and Gait Information
Image with Sigmoid feature (GII-SF).
5 Choudhuryetal. They proposed a two-phase view-invariant multiscale gait recognition approach (VI-MGR).
[116],2015 This approach is also effective to variation in clothing and carrying condition. In first phase
entropy of limb portion of gait energy image is employed with VI-MGR for gait matching
and in second phase gait matching is done using multiscale shape analysis.
6 Nandy et al. Proposed a novel statistical shape features from GEI edge contour to mitigate the effect of
[97],2016 cloth variation in appearance change
7 Ridaetal Body part selection based on motion and group lasso to select discriminative parts which
[96],2016 are robust to the intraclass variations
8 Zengetal Deterministic learning theory employed to eliminate the effect of view variations for efficient
[117],2016 gait recognition. Spatiotemporal features of eachsubject extracted to represent gait motion.
9 Wuetal Proposed a deep convolutional neural network to identify the most discriminative gait
[118],2016 pattern changes which help for identification human.
10 Choudhury etal. Proposed an average gait key-phase image(AGKI) based on five key phases on gait image
[119], 2016 sequences to mitigate unpredictable variations in appearance change
11 Lietal Proposed a video sensor-based gait representation, which employed deep convolutional
[34],2017 features and joint Bayesian to model view variance.
12 Ebenezeret al. Genetic algorithm based automatic template segmentation to extract boundary for gait
[120],2017 recognition. The proposed approach tested on Gait energy image, gait entropy image,and
active energy image templates.
13 Tanmay et al. Perceptual Hash algorithm(PHash) values havebeen computed over leg region of the Gait
[121],2017 Energy Image to identifies the view variations and compares PHash values of different
subjects view variations stored in the database
14 Lishaniet al. Vertically or horizontally GEI is segmented into equal regions to extract Haralick features for
[37],2017 robust gait recognition under appearance change
15 Chaurasiaetal.  Proposed a novel algorithm for dynamic and static feature extraction based on Discrete
[122],2017 Fourier Transform (DFT) and Random Walk (RW) representation.
16 Sharma et al. Proposed a new gait feature representation approach based on information set theory,
[134],2018 derived from fuzzy set theory. Bipolar sigmoid feature generated from gait information image
(GlII), termed as GII-BPSF.
17 Sunetal Proposed a model based approach for gait recognition using Kinect v2 sensor to tackle
[135],2018 view variation problem. 21 body joints captured form 3D skeleton.

View variation (Cross view)

View variation + Appearance
change (Clothing + Carrying)

View variation

Appearance Change (Clothing
+ Carrying) + Speed variation

View variation + Appearance
change (Clothing + Carrying)

Appearance Change
(Clothing)

View variation + Appearance
change (Clothing + Carrying)

View variation

View variation (cross view +
cross walking)

Appearance Change (Clothing
+ Carrying)

View variation

View variation + Appearance
change (Clothing + Carrying)

View variation + Appearance
change (Clothing + Carrying)

Appearance Change (Clothing
+ Carrying)

Appearance Change (Clothing
+ Carrying)

View variations + Appearance
Change (Clothing + Carrying)

View variations

and to recover the occluded area accurately, they employed

B. VIEW AND APPEARANCE CHANGES

an occupancy map method. They used tensor analysis to
preserve relationship and structure information of subjects
in a multigait dataset. Tensor analysis has good capability to
describe high dimension features.
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Among various gait challenges, two most challenging prob-
lems need to be addressed namely: (1) view angle varia-
tions and (2) subject’s appearance change that occurs due to
clothing variations and carrying conditions. Gait recognition
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TABLE 8. Year wise summary of future work proposed from 2015 to as on July 2018.

No.

Reference / Year

Future Scope

10

11

12

13

14

Tafazzoli et al.
[33]/2015
Rida et al.
[95]/ 2016

Rida et al.
[123]/2015

Arora et al.
[115] /2015
Liet al.
[34]/ 2017

Choudhury et al.

[116]/2015

Nandy et al.
[97]/2016

Nandy et al.
[124] /2017

Bouchrika et al.
[75]/2015

Kastaniotis et al.

[86] /2015

Lishani et al.
[37]/2017

Tanmay et al.
[121]/2017

Chaurasia et al.
[122]/2017

Sun et al.
[135]/2018

Propose to generalize the genetic feature selection method on other view angle variations and
outdoor data.

Their proposed method is sensitive to view angle variations and proposed to have robust view
variation approach based on pose estimation technique.

Propose to investigate the proposed feature selection mask on view angle variation between
training and testing data and extend their analysis on more datasets.

In future, their proposed approach can be investigated under view variation condition.

Propose to evaluate their approach to other covariates, i.e., appearance change (clothing,
carrying conditions) and more view angle variations.

Propose to increase the view-invariant feature that can help to improve identification rate in the
absence of matching probe view in the gallery and enhance feature subsets selection in order to
capture most inter-subject discriminatory features that improve recognition under covariate
factors.

Their proposed approach is sensitive to speed variation and dependent on view angle. In
future, they propose to extend their proposed approach to speed variations and employ
Eigenspace transformation approaches to reduce the dimension of feature space.

In future to increase training subjects with significant variations in clothing conditions and also
include feature analysis in the frequency domain.

Aimto investigate the scalability issue of gait recognition and how it performs via increasing
the number of subjects in the dataset

Propose to investigate their approach to investigating abnormalities in walking, falling
prediction and mental state assessment based on gait.

In future investigate the performance of the proposed method under other covariate factors
such as walking surface and also study other features capable of improving the performance of
our proposed approach.

In future to explore more complex classier to improve gait recognition and explore features that
are invariant to appearance change

Future work to incorporate varying speed information in their proposed work

Focus to employ adaptive scheme to improve the recognition. Joint estimation through other
devices will improve its generalization.

under view angle variations has been classified into three

states [113]:

« Fixed view angle gait recognition, in which both probe
and gallery gait are captured from the same view

angle.
o Cross view angle gait recognition, in which probe and

gallery gait are captured from different view angles.
o Multiview gait recognition, in which single view probe
gait features are recognized with multiview gallery gait

feature vector.
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Table 7, summarizes the study on view variation and
appearance changes, from the year 2015 to July 2018.
Figure 20 depicts the average accuracy achieved based on
methods proposed by different researchers considering view
and appearance change covariates in table 7.

VIil. FUTURE PERSPECTIVES

Many approaches on vision-based gait recognition have been
developed and have achieved promising results, but there are
still some performance issues that make gait recognition a
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FIGURE 21. Working of proposed system along with sample frames of proposed multigait dataset which include three view directions (Frontal,

Lateral, and Oblique).

challenging problem for real-world deployment. Some spe-
cific future research perspectives are as follows:

A. GAIT DATASET CREATION

Recently there have been several gait datasets available, but
these datasets are vulnerable to geographical and demo-
graphic restrictions. In addition to that researchers employ
their own rules, even created under constrained environment
and available datasets were on single gait.

This extends researchers to a new direction of research,
to recognize a probe subject based on gait in real time sce-
nario (for example multiple subjects walking together or in
the crowd). This raises a significant challenge, requiring
research, i.e., how to handle occlusion (static and dynamic
discussed in section VII-A) and moreover, to build a
dataset of gait covering occlusion along with existing covari-
ates (such as view variations, carrying conditions, clothing
variations, etc.).

B. MULTIVIEW COVARIATE CONDITION

Silhouette based gait recognition is severely affected by view
variations and is an open research issue for model-free based
gait recognition. Current research algorithm achieved good
recognition accuracy under lateral view (side view), but per-
formance is compromised for other view angles. So there
can be a possibility to have an effective approach to solve
this issue, such as multiple cameras to capture different
view sequences and to design sophisticated view-invariant
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algorithms to cope with the issue of recognizing a particular
subject under multiple view angles with less error rate.

C. APPEARANCE CHANGE CONDITIONS

Human natural gait appearance can change due to many
factors such as walking surface, footwear type, clothing vari-
ations, and carrying conditions, etc. These changes in human
gait lead to new research directions for researchers, to identify
the unique features that are less sensitive to appearance and
may be employed to improve recognition accuracy. This issue
can also lead researchers from different regions to create a
database that severely affects gait recognition due to appear-
ance change, for example in Indian subcontinent women wear
saree (traditional dress) which affects gait patterns as com-
pared to women wearing short skirts, jeans. Such a dataset is
still not available to the best of our knowledge.

D. ADAPTIVE BACKGROUND MODELLING

Segmentation of human walking silhouette in unconstrained
conditions is still an unsolved problem of automated
gait recogntion system. Traditional segmentation of human
gait which was still based on background subtraction
approaches [28], [29].This leads possibility to have adaptive
background modelling for object segmentation and can han-
dle unconstrained conditions like dynamic background, clut-
tered background, presence of shadows, motion of cameras,
inconsistent lighting conditions and occlusion.
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E. FEATURE SPACE REDUCTION
Traditional gait based human recognition has mostly been
evaluated without explicitly considering the most relevant
gait features, which has affected performance. Even genetic
algorithm(evolutionary approach) has been used for opti-
mized feature selection [33], but still more work needs to
be done for efficiency improvement. To tackle this issue,
optimized search approaches ( like bioinspired approaches,
particle swarm optimization, hybrid approaches, etc.) can be
employed to retrieve a subset of relevant features that can
improve performance accuracy.

Moreover, Table 8 presents the future work of the current
articles published in reputed journals (web of science) from
2015 till July 2018.

IX. PROPOSED WORK

We have proposed to work on gait recognition considering
dynamic occlusion under multi gait scenario. This study aims
to analyze that the minimum number of frames can be ade-
quate for recognition under dynamic occlusion Objectives of
the proposed work are as follows:

1) Creating a dataset of multigait in an unconstrained
environment.

2) Considering three view variations (lateral, oblique and
frontal) based on [27], shown in Fig. 21.

3) We consider a model based approach because of robust-
ness against view variations, background cluttering,
and detection of body segments.

4) Apply a segmentation approach to extract body seg-
ments to develop a geometrical model.

5) Reconstruct the occluded objects.

6) Extract model based gait features for individual identi-
fication under the multigait scenario.

7) Apply optimization approach for feature selection and
also apply soft computing for classification to improve
accuracy.

X. CONCLUSION

Gait as a behavioral biometric trait is a dominating research
area because of its unobtrusive and non-perceivable charac-
teristics, which can be suitable for visual surveillance moni-
toring.

This article is an extensive survey of existing research
efforts in the area of vision-based gait recognition systems.
The article summarized the contribution of various authors in
the field of gait analysis from the period of the Renaissance.

In recent years of research, kNN classifier has been dom-
inantly used by authors in their research work for classi-
fication. Recently Deep learning has been explored in gait
recognition and has achieved promising results, while deep
learning required a larger dataset to work.

The article extensively surveys feature extraction
approaches in model-based and model-free gait recognition.

The article surveyed the vision-based and sensor gait
database created since 1998. OUISIR and CASIA are the

VOLUME 6, 2018

largest gait database which considers most covariates factors
that affect the gait recognition performance.

After surveying articles on vision based gait recognition
from 2012 to July 2018, found that 38% of articles have used
CASIA-B dataset for analysis of their proposed model for gait
recognition.

Two application areas of gait have been reviewed i.e. soft
biometric and clinical diagnosis. These domains defined that
how gait analysis helpful for soft biometric (such as gender
classification and age estimation) and clinical diagnosis (such
as lower limb disorder, Parkinson patient diagnosis, etc.).
Still, more research can be needed under these application
domain, especially for clinical diagnosis to have an auto-
mated system for prediction of gait based diseases at early
stages.

After investigating state-of-the-art in human recognition
based on gait, it is concluded that more work is desired to be
done in order to achieve accuracy under different covariate
conditions. The accuracy achieved above 90% has been only
under normal walking conditions, but performance falls due
to, i.e., view variations, appearance changes, and occlusion.
These are the open research issues that can be explored more
by researchers.

This paper has provided useful references and investigate
approaches proposed in recent years that can be extended for
future research in the field of gait recognition and make it
applicable for practical deployment.

APPENDIX
Here we provide the URLs for images that are taken from the
internet.

Figure 2: http://www.clinicalgaitanalysis.com/history/
ancients.htmlhttps://en.wikipedia.org/wiki/Giovanni_
Alfonso_Borellihttp://www.scientificlib.com/en/Physics/
Biographies/WilhelmEduardWeber.htmlhttps://www.imdb.
com/name/nm1155956/http://www.clinicalgaitanalysis.com/
history/ww?2.htmlhttp://www.clinicalgaitanalysis.com/
history/modern.htmlhttp://www.betterphotography.in/
perspectives/great-masters/etienne-jules-marey/48592/
https://www.nap.edu /read/4779/chapter/14https://www.
europeana.eu/portal/en/record/2020801/dmglib_handler_
biogr_17004.htmlhttp://cvrc.ece.utexas.edu/aggarwaljk/
index.htmlhttps: //me.queensu.ca/People/Deluzio/JAM/files/
Baker.pdf.

Figure 6: https://www.bayometric.com/identification-
verification-segmented-identification/

Figure 21: https://www.shutterstock.com/imagevector/
vector -flat-cartoon-lens-photo-camera- 777796435
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