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ABSTRACT Target tracking is an important application of underwater wireless sensor networks (UWSNs).
Due to the energy constraint and energy imbalanced dissipation of underwater nodes, it is a challenge to
maximize the energy efficiency and balance energy consumption simultaneously. In this paper, we propose
an adaptive sampling algorithm for target tracking in UWSNs to address this issue. First, for maximizing the
energy efficiency, we design an adaptive sampling interval adjustment (ASIA) method using a two-input-
single-output fuzzy logic controller. In this method, the sampling interval is adaptively adjusted to make the
actually uncertainty equal to the uncertainty threshold, which minimizes the sampling frequency and then
reduces the energy consumption of information exchange. Second, for balancing the energy consumption,
we develop a dynamic uncertainty threshold adjustment (DUTA) method using a single-input-single-output
fuzzy logic controller. According to the residual energy of network nodes, the DUTA method dynamically
adjusts the uncertainty threshold in the ASTA method, which changes the sampling frequency for avoiding
premature death of nodes. Finally, the simulations show that, compared to the existing adaptive sampling
algorithm, the proposed algorithm not only saves about 36% of energy but also alleviates the imbalance of
energy consumption in different parts of the tracking area.

INDEX TERMS Underwater wireless sensor networks (UWSNS5), target tracking, adaptive sampling, fuzzy

logic controller.

I. INTRODUCTION

In the past few decades, underwater wireless sensor networks
(UWSN:s) have attracted more and more attention in military
and civilian fields [1]. UWSNs have many advantages such
as self-organization, continuous operation, and wide cover-
age [2]. Due to these advantages, UWSNs provide a promis-
ing solution to target tracking in large three-dimensional
underwater area [3]. In UWSNs, nodes are mostly powered by
batteries, and it is difficult to replace or recharge batteries in
underwater environments [4]-[6]. What’s worse, underwater
acoustic channel characteristics, such as limited bandwidth,
large propagation delay, and high bit error rate, result in
higher energy consumption of underwater acoustic commu-
nication than terrestrial radio communication [7]—[9]. There-
fore, designing more energy-efficient algorithms for target
tracking in UWSNs is critical and challenging to prolong the
lifetime of nodes.

Since increasing the sampling interval during target track-
ing can reduce the sampling frequency and then reduce the
energy consumption of information exchange between under-
water nodes, some efforts have been made in the adaptive
sampling algorithm to improve energy efficiency. Kose and
Masazade [10] proposed an adaptive sampling algorithm that
determined the sampling interval by minimizing the predicted
uncertainty of the estimated target position at the next sample
moment. Compared to the algorithm that sampled a target
using a fixed minimum sampling interval, this algorithm
reduced the sampling frequency and energy consumption
while providing similar estimation performance. Some works
[10]-[15] determined the sampling interval by a value larger
than the minimum predicted uncertainty, in order to fur-
ther reduce the sampling frequency and energy consump-
tion. Kose and Masazade [10] proposed another algorithm
which determined the sampling interval based on the 110%
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value of the minimum predicted uncertainty. This method
significantly reduced the sampling frequency and energy con-
sumption, but the uncertainty was sometimes too large or too
small. Too large uncertainty made the user unable to accept
the estimated target position, too small uncertainty led to
too little energy savings. Xiao et al. [11]-[13] set an uncer-
tainty threshold and selected the sampling interval by making
the predicted uncertainty at the next sampling moment as
large as possible without exceeding the uncertainty threshold.
This algorithm not only reduced energy consumption but
also avoided the problem of too large or too small uncer-
tainty. However, the sampling interval of this algorithm was
only selected from a limited number of candidate values. So
Lin et al. [14], [15] proposed an improved algorithm which
determined the sampling interval by solving an equation
that the predicted uncertainty at the next sampling moment
equalled to the uncertainty threshold. This algorithm further
reduced the sampling frequency and energy consumption
without exceeding the uncertainty threshold.

However, there are two shortcomings in [15]. Firstly, with-
out exceeding the uncertainty threshold, the energy saved is
the most when the actually obtained uncertainty is equal to
the uncertainty threshold. Since the predicted uncertainty is
inaccurate, the actually obtained uncertainty is less than the
uncertainty threshold, that is, the energy efficiency has not yet
reached the maximum. Secondly, increasing the uncertainty
threshold can reduce the sampling frequency and then reduce
the energy consumption of information exchange between
underwater nodes. In UWSNSs, the energy consumption in
different parts of the tracking area is imbalanced [16], which
will lead to premature death of some nodes and shorten the
lifetime of networks [17]. The algorithm in [15] does not
consider using a dynamic uncertainty threshold to change the
sampling frequency for balancing the energy consumption.

To overcome these two shortcomings, in this paper, we pro-
pose an adaptive sampling algorithm for target tracking
in UWSNSs. Firstly, instead of using the predicted uncer-
tainty, we design an adaptive sampling interval adjustment
(ASTIA) method using a two-input-single-output fuzzy logic
controller. In this method, the sampling interval is adap-
tively adjusted to make the actually uncertainty equal to
the uncertainty threshold, which minimizes the sampling
frequency and then reduces the energy consumption of
information exchange. Secondly, Instead of using a fixed
uncertainty threshold, we develop a dynamic uncertainty
threshold adjustment (DUTA) method using a single-input-
single-output fuzzy logic controller. According to the residual
energy of network nodes, the DUTA method dynamically
adjusts the uncertainty threshold in the ASIA method, which
changes the sampling frequency for avoiding premature death
of nodes. Finally, simulations have been carried out to verify
the correctness of the analysis and the effectiveness of the
proposed algorithm.

In summary, the main contributions of this paper include:

o« We design an adaptive sampling interval adjustment

(ASIA) method using a two-input-single-output fuzzy
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logic controller to adaptively adjust the sampling inter-
val. This method achieves maximum energy efficiency
without exceeding the uncertainty threshold.

o We develop a dynamic uncertainty threshold adjust-
ment (DUTA) method using a single-input-single-output
fuzzy logic controller to dynamically adjust the uncer-
tainty threshold in the ASIA method. This method alle-
viates the imbalance of energy consumption in different
parts of the tracking area.

The remainder of this paper is organized as follows:
Section II describes the system model of target tracking in
UWSN:Ss. Section III describes the details of the proposed
algorithm. Section IV evaluates the performance of the pro-
posed algorithm through a simulation experiment. Section V
concludes the paper.

Il. SYSTEM MODEL OF TARGET TRACKING IN UWSNs

A. ARCHITECTURE OF UWSNs

Fig. 1 shows a reference architecture for target tracking in
UWSNSs. There are three types of nodes in the networks
according to the deployment position [18]-[20].

o Surface nodes are deployed on the surface of the
water. Each surface node is equipped with an acous-
tic transceiver to communicate with other nodes in the
water, and equipped with a radio transmitter to commu-
nicate with other surface nodes and the command center.

« Bottom nodes are anchored to the bottom of the water.
Each bottom node uses an acoustic transceiver to inter-
connect with other nodes, and uses optical cables to
interconnect with the command center.

o Submarine nodes are deployed in underwater via AUVs,
ROVs, or gliders. Nodes can adjust their position in
order to form a three-dimensional tracking area. Nodes
also are equipped with acoustic transceivers.

FIGURE 1. The architecture of underwater wireless sensor networks.

The above three types of nodes are constructed into
a network through single-hop or multi-hop acoustic com-
munication, cooperate with each other for target tracking,
and communicate with the command center through optical
cable or radio.

B. DYNAMIC CLUSTERING METHOD
To obtain target data with high energy efficiency, dynamic
clustering methods are usually used for target tracking in
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UWSNs. In those methods, several nodes are selected to form
a cluster at each step of the target tracking. Each cluster con-
sists of a cluster head (CH) node and several cluster member
(CM) nodes. The CH node is responsible for managing the
intra-cluster and inter-cluster collaboration, while CM nodes
are responsible for obtaining target data and sending data
to the CH node. In this paper, a dynamic clustering method
based on the nearest neighborhood collaboration is used [21].
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g Head Node Member Node Node
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O
O
o
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O

FIGURE 2. The process of forming a cluster based on the nearest
neighborhood collaboration.

Fig. 2 shows the process of forming a cluster based on
the nearest neighborhood collaboration. The red-black fish-
shaped object represents the estimated position of the tar-
get. The pentagram-shaped object is the closest node to the
estimated position of the target, and is selected as the CH
node. Assuming that the detection distance of all nodes is r.
All nodes in the dashed circle are the neighbor nodes of the
estimated target position, and all the nodes in the solid circle
are the neighbor nodes of the CH node. The CH node selects
nodes in the intersection of the two circles as CM nodes,
which are represented by solid blue circles. Nodes that are
not used at the current step are represented by black circles.

C. DISTANCE MEASUREMENT METHOD
After forming a cluster, distances between cluster member
nodes and the target need to be measured. In this paper,
the 3DUT algorithm is selected as the distance measurement
method because it does not require time synchronization [16].
Fig. 3 shows the process of measuring the distance between
a cluster member node and the target. The cluster head node
sends a ping to the target at the time fcy, and receives the
echo at the time 7., . The distance between the cluster head
node and the target d; can be calculated by

di = C - (tcy — tcm)/2, ey

where C is the underwater sound speed. After the cluster
member node receives the echo from the target, the time
difference between the arrival of the ping and the echo At
can be calculated by

At =(d) +dr)/C — d3/C, 2)
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FIGURE 3. The process of measuring the distance between a cluster
member node and the target.

where d, is the distance between the cluster member node
and the target, d3 is the distance between the cluster member
node and the cluster head node. d3 can be calculated through
the operation of the cluster head coordinates and the cluster
member coordinates. After the cluster head node receives At
from the cluster member node, d> can be calculated by

d=At-C+dy—d. 3)

D. TARGET POSITION ESTIMATION METHOD

After obtaining all distances between cluster member nodes
and the target, the cluster head node can calculate the posi-
tion of the target by some methods. As shown in Fig. 4(a),
when there is no distance measurement error, the trilateration
method can determine the intersection of three circles [22].
The centers of these three circles are the coordinates of the
cluster member nodes, the radii are the distances from the
cluster member nodes to the target, and the intersection is
the target position. Because the distance measurement error
is inevitable, these circles may not intersect at one point,
as shown in Fig. 4(b). To solve this problem, the least squares
method is used to find a best estimated position of the target
by minimizing the sum of the squares of the residuals of
cluster member nodes from the estimated target position [23].
However, the least squares method does not consider the

Cluster Member
Cluster Member

Node 3
®

Cluster Member
Node 1

®
Cluster Member
Node 2

(@ (b)
FIGURE 4. Determining the target position. (a) Determining the target

position when the measured distances have no error. (b) Determining the
target position when the measured distances have errors.
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correlation between the previous and current target data, does
not know any statistical information related to the estimated
quantity, and the result of its positioning solution is poor in
robustness. In order to improve the accuracy and stability
of the position estimation, the extended kalman filter (EKF)
algorithm is adopted.

Define target’s process state vector at the k—th step as

X (k) = (x(k), % k), yk), 3(k), z(k), 2k, “

where x(k), y(k) and z(k) are the x-, y- and z-coordinates of the
target, x(k), y(k) and z(k) are the x-, y- and z-velocities of the
target. In this paper, we only consider a single target tracking
problem, and a constant velocity target motion model [24]
with state equation

Xk)y=F(T(k—-1)X(k—-1)+vk—1), 4)

where T'(k—1) is the sampling interval between the (k—1)—th
step and the k— th step, F(T(k — 1)) is the state transition
matrix, v(k — 1) is the process noise which is assumed to
be zero mean gaussian noise with process noise covariance
matrix Q(T'(k — 1)). The F(T'(k — 1)) can be expressed by

1 Tk—1) 0 0 0 0
0 1 0 0 0 0

lo o 1Tk-DO o0
F=lo o o 1 0o o | ©
0 0 0 0 1Tk-1

0 0 0 0 0 1
The Q(T (k — 1)) can be expressed by

Oap 0 0
Tk —=1))=q-| 0 Qu 0 |, (N
0 0 QO h
where ¢ is the intensity of the process noise, Qg is given by
[Tk —-13/3 Tk —1)2/2]
Qoup = |:T(k 1?2 Tk-1) | ®

Suppose there are n cluster member nodes involved in
target tracking at the k—th step CM,(k), ..., CM,,(k), which
give the measurements of the target z;(k), ..., z,(k). The mea-
surement equation for the entire cluster is as

z1(k) h1(X(k)) wi(k)
2k || mady || wak
Z(k) = : = : :
k) (X (k) wn(k)
— WX (k) + w(k). )

where h;(X(k)) is the measurement function of CM;(k) (i =
1,2, ...n), wi(k) is the uncorrelated measurement gauss white
noise of CM;(k) with covariance R;(k), h(X (k)) is the vector
form of the measurement functions, w(k) is the vector form
of the measurement noises with covariance matrix R(k). The
process and measurement noise are assumed to be mutually

independent. R(k) can be expressed by
R(k) = diag [Rl(k), Ry(k), ,R,,(k)] . (10)
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The h;(X (k)) can be expressed by

hi(X (k) = ((x(k) — xcp; (k) 4 (v(k) — yeu, (k))?
+ (z(k) — zem,()H2 (1)

Where (xcum,(k), yem;(k), zcm;(k)) denotes the position of
CM;(k). h(X (k)) have the jacobian matrix H (k)

H(k)
() —xem, (K) - yE) —yeu, (k) 2k —zea, (k)
7 (X (k) (X (k) (X (k)
) ~xen®) R~y k) 2k)~zcnt, ()

= hXk)

ha(X (k)

ha(X (k)

x(k)—xcu, () O k) —yeu, (k) 0 200 —zcn, (k)
| (X (k) I (X (K)) hy (X)) 4
(12)

EKF is a recursive estimator, and can be divided into
predict phase and update stage [25]. The predict phase uses
the estimated state of the previous step to predict an estimate
state of the current step. The update phase combines the
current prediction with current measurement data to refine
the estimated state. Equations for predict phase and update
stage are as follows.

Predict:
Xklk —1) = F(Ttk — 1)X(k — 1]k — 1) (13)
P(klk — 1) = F(T(k — 1)P(k — 1|k — DF(T(k — 1))T
+O(T(k — 1)) (14)
where
X (klk — 1) Predicted state estimate,
P(k|k — 1) Predicted covariance estimate.
Update:
§(k) = Z(k) — h(X (k|k — 1)) (15)
S(k) = H(k)P(k|lk — DHT (k) + R(k) (16)
K (k) = P(k|k — 1)H (k)T S(k)~! (17)
)?(k|k)=f((k|k—1)+1((k)§z(k) (18)
P(klk) = (I — K(k)H(k))P(k|k — 1) (19)
where
(k) Innovation residual,
S(k) Innovation covariance,
K(k) Kalman gain,
X (k|k) Updated state estimate,
P(k|k) Updated covariance estimate.

After the above EKF operations are used at the k—th step,
the cluster head node obtains the estimated position of the tar-
get (x(k|k), y(k|k), Z(k|k)), and the measure of the estimated
accuracy of the state estimate P(k|k).
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FIGURE 5. The process of target tracking using the adaptive sampling algorithm at the k—th step.

Ill. DETAILED DESCRIPTION OF THE ADAPTIVE
SAMPLING ALGORITHM FOR TARGET

TRACKING IN UWSNs

A. THE PROCESS OF TARGET TRACKING USING THE
ADAPTIVE SAMPLING ALGORITHM

Target tracking is a recursive process consisting of several
steps, and each step performs the same operation. So this
subsection only takes the operation of the k—th step as an
example. As shown in Fig. 5, at the k— th step, the pro-
cess of target tracking using the adaptive sampling algorithm
includes the following operations:

1) CH (k) receives data from CH(k — 1) to complete the
cluster head switch.

2) CH(k) selects CM (k)s using the method given in Sub-
section II-B to form a cluster.

3) CH(k) obtains distances between the CM (k)s and the
target using the method presented in Subsection II-C.

4) CH (k) runs the EKF algorithm to get the target state
estimation X (k|k) and the covariance matrix P(k|k)
provided in Subsection II-D

5) CH (k) uses the dynamic uncertainty threshold adjust-
ment method explained in Subsection III-D to calculate
the uncertainty threshold at the k—th step @, (k).

6) CH (k) uses the adaptive sampling interval adjustment
method explained in Subsection III-C to yield T (k) that
the sampling interval between the k—th step and the
(k + 1)—th step.

7) CH (k) selects the CH (k + 1) uses the method given in
Subsection II-B.

8) CH (k) sends data to CH (k 4 1) to complete the cluster
head switch.

B. TRACKING ACCURACY AND ENERGY CONSUMPTION

1) TRACKING ACCURACY

The estimated position error and the uncertainty of the
estimated target position are often used to stand for the
tracking accuracy. The estimated position error, which is
defined as the distance between the true position of the
target (x(k), y(k), z(k)) and the estimated target position
(x(klk), y(k|k), z(k|k)) [23], can be expressed by

W(k) = ((x(k) — 2(k[k))* + (v(k) — (k|k))?
+ (z(k) — 2k kD2 (20)

However, the true position of the target is not available in the
actual target tracking, the cluster header node only can get
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the target state estimation X (k|k) and the covariance matrix
P(k|k), which is the measure of the estimated accuracy of the
target state. In this paper, the uncertainty of the estimated
target position ®(k), which is defined as the trace of the
position covariance matrix, is used to stand for the tracking
accuracy [26]. The state covariance matrix P(k|k) can be
expressed as

o011 012 013 014 015 016
021 022 023 024 025 026
031 032 033 034 035 036 ) Q1
041 042 043 044 045 046
051 052 053 054 055 056
061 062 063 064 065 066

P(kk) =

According to (4), the associated position covariance matrix
Y. (k|k) can be represented by

o1l 013 015
Y(klk)=| o031 o033 035 |. (22)
051 053 055

The uncertainty of the estimated target position ®(k) can be
represented by

D(k) = trace(X(k|k)) = 011 + 033 + 055, (23)

where o011, 033 and oss5 are the uncertainty of the estimated
target position in the x-, y- and z-coordinates.

Define &y, (k) as the uncertainty threshold at the k—th
step. Tracking accuracy at the k—th step is considered sat-
isfactory if

O(k) = Pipr(k). (24
Otherwise, it is considered to be unsatisfactory.
2) ENERGY CONSUMPTION
According to the energy model [27], to transmit b bits data

from one sensor node to another over a distance d, the energy
consumption is

Ecom(b,d) = E(b,d) + E(b), (25)
Ei(b,d) = Eje X b+ Egp(b, d), (26)
Ey(b) = Er X b, 27)

where E;(b,d) and E,(b) are the energy consumed by the
transmitter and receiver, E;, and E, are the unit energy
consumed by the electronics of the transmitter and receiver
to process one bit of data, Egp(b, d) is energy consumed by
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the power amplifier to ensure the transmission of underwater
acoustic signals. Eg;p(b, d) can be expressed as

Eamp(b, d) = P(d) x l;) (28)

where P;(d) is the transmission power which a function of
the distance d, v represents the data transmission speed.
In UWSN:Ss, the acoustic signals propagate in a spherical fash-
ion [28]. P;(d) is related to the transmission power intensity
at 1m from the source Iy and the source level SL [29]

Pi(d) = 47 x 1% x Iy, (29)
I

SL = 10log —>, (30)
Tref

where /.7 15 0.67 x 10718 4Pa. According to the passive sonar
equation [30], the minimum source level SL is

SL —TL — NL 4+ DI = DT, (31)

where TL, NL DI and DT are transmission loss, noise level,
directivity index and detection threshold respectively. 7L can
be expressed by [31]

TL = 20logd + ad x 1073 + A, (32)

where « is the absorption coefficient, A is the transmission
loss anomaly that accounts for multipath propagation, refrac-
tion and other phenomenon. According to (29), (30), (31),
and (32), P;(d) can be expressed by

20logd+adx 10~3+A+NL—DI+DT
0

x 0.67 x 10718
(33)

P(d) = 47 x 10

Suppose there are n cluster members at the k—th step
CM (k), ..., CM,(k), and their distances from the cluster head
is dcmy (k) ---» dem, (k) The distance between the cluster head
CH (k) and the estimated position of the target is /1. CM;(k)
(i € 1,2,...n) has the largest distance from the estimated
position of the target I, CM;(k) (j € 1,2, ...n) has the largest
distance from the cluster head /3. Based on the energy model
and the process of target tracking previously given, the energy
consumption of information exchange at the k—th step can be
expressed by

Etotal (k) = Esr(k) + Ese(k) + Eme(k) + Est(k)v (34)
Exr(k) = Er(bsr)a (35)
Eso(k) = E(bse, I3) +n - Ey(bge)

n
+ Y Eybse, demmy) + 1 - Er(bse),  (36)
i=1

Epe(k) = Et(bpe, h + )+ (n+n+1) - E-(bie)

n
+ > Ei(bmer domw) + 1 Er(bme),  (37)
i=1

Eg(k) = Ei(bst, ds (k)), (38)

where E;yqi(k) is the total energy consumed at the k—th
step, Es-(k) is the energy consumed in receiving data from
CH (k — 1) to complete the cluster head switch, E.(k) is the
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energy consumed in selecting cluster members, E,,.(k) is the
energy consumed in measuring distances, Es; (k) is the energy
consumed in transmitting data to CH (k 4 1) to complete the
cluster head switch, b, bse, bie, bg; are the number of bits
in the data packet used in receiving data from CH(k — 1),
selecting cluster members, measuring distances, transmitting
datato CH(k + 1), dg; (k) is the distance between CH (k) and
CH (k + 1). In this paper, we ignore the energy consumption
by running algorithm and calculating data.

C. ADAPTIVE SAMPLING INTERVAL

ADJUSTMENT METHOD

Fig. 6 illustrates the adaptive sampling interval adjustment
(ASIA) method based on a two-input-single-output fuzzy
logic controller. The uncertainty of the estimated target
position ®(k) can be calculated according to (23), and the
uncertainty threshold ®,,,(k) can be obtained according to
the description of Subsection III-D. Define E(k), the error
between the uncertainty threshold and the uncertainty at the
k—th step, as

E(k) = ®pr(k) — P(k). (39)

Define EC(k), the error change ratio in the sampling interval
Tk —1),as
E(k)—E(k—1)
ECk)= ———. 40
(k) Th—1) (40)
According to the input E(k) and EC(k), the output
TC(k), which corresponds to the amount of time to incre-
ment or decrement the current sampling interval 7'(k — 1),
can be obtained by the FLC.

T(k-1)
Ede) P el
T(—1)
FLC |TE® EI_) (k)
20 o, (- (k) t,
D, (k)

FIGURE 6. The adaptive sampling interval adjustment method based on a
two-input-single-output fuzzy logic controller.

As shown in Fig. 7, the implementation process of the FLC
comprises of three steps [32]:
1) Fuzzification: The fuzzification process converts crisp
inputs to fuzzy sets via input membership functions.
As showed in Fig. 8, there are two membership func-
tions for the inputs E(k) and EC(k) and one for the
output TC(k). Membership functions are stored in
the knowledge base. For E(k) and EC(k), the fuzzy
states both are labeled in the linguistic terms of Neg-
ative Big (NB), Negative Medium (NM), Negative
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FIGURE 7. The implementation process of the fuzzy logic controller.

Small (NS), Zero (ZO), Positive Small (PS), Positive
Medium (PM), and Positive Big (PB). TC(k) falls
into one of seven fuzzy states: Decrease Big (DB),
Decrease Medium (DM), Decrease Small (DS), No
Change (NC), Increase Small (IS), Increase Medium
(IM) and Increase Big (IB). The universe of discourse
of E(k), EC(k)and TC (k) are [—VE, VE],[—VEC, VEC]

and [—Vrc, Vrc] respectively.

2) Fuzzy Reasoning: After inputs are fuzzified, fuzzy rea-
soning uses the rule base and knowledge base to map
the input values to an output fuzzy set. The rule base
is a set of rules based on the experimental data and
experiences of the human experts. TABLE. 1 shows the
rule base for the adaptive sampling interval adjustment
method. There are two steps in the fuzzy reasoning
process. The first step, implication, is to find the set
of all rules that correspond to the input membership
states from the rule base, and to choose the minimum
value of the degree of membership of the inputs among
the matching rules. The second step, aggregation, is to
combine the output fuzzy sets for each rule into a single

fuzzy set for output variable by the max method.

3) Defuzzification: To obtain a crisp output value from
the aggregated output fuzzy set, defuzzification must
be done. In order to get smooth output, the centroid
calculation method is selected as the defuzzification
method. After defuzzification, the numerical output

TC (k) can be obtained.

TABLE 1. Rule base for the adaptive sampling interval adjustment
method.

]
]
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FIGURE 8. Membership functions for the adaptive sampling interval
adjustment method. (a) Membership function of input variable E (k).

(b) Membership function of input variable EC (k). (c) Membership
function of output variable TC (k).

After the FLC implementation, the addition of the cur-
rent sampling interval T(k — 1) and the sampling interval
adjustment amount 7C (k) generates a new value for the next
sampling interval T (k).

D. DYNAMIC UNCERTAINTY THRESHOLD

ADJUSTMENT METHOD

As shown in Fig. 9, the target enters the tracking area from
the free area, passes through the outer, middle and inner part
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of the tracking area in turn, and approaches the protected
area. In order to detect the target as soon as it enters into the
tracking area, the nodes of the outer part of the tracking area
have higher duty cycles and higher energy consumption than
the nodes of the inner nodes [16]. To alleviate the imbalance
of energy consumption, from the inner part to the outer part,
the uncertainty threshold is increased, the sampling frequency
and energy consumption are reduced. A single-input-single-
output fuzzy logic controller is used to describe this relation-
ship that the closer the target is from the free area, the higher
the uncertainty threshold.

Cluster Cluster Unused
Target * Head Node b Member Node o Node
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Inner Part Middle Part Outer Part
@]
E’ ) o © ® o _
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FIGURE 9. The effect of adjusting uncertainty threshold on sampling
frequency and energy consumption.
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FIGURE 11. Membership functions for the dynamic tracking accuracy
threshold adjustment method. (a) Membership function of input variable
D(k).

TABLE 2. Rule base for the dynamic uncertainty threshold adjustment

L method.
\ Rule Antecedent Consequent
y(k|k) R D(k) D, (k) 1 if D(k) is (SS) then ®4,,-(k) is (SS)
L-§(k| k) > FLC . . : :
2 if D(k) is (SM) then ®4,,-(k) is (SM)
3 if D(k) is (SL) then ®;,,-(k) is (SL)
4 if D(k) is (M) then ®4p,,-(k) is (M)
5 if D(k) is (LS) then ®,,,. (k) is (LS)
FIGURE 10. The dynamic uncertainty threshold adjustment method based
on a single-input-single-output fuzzy logic controller. 6 if D(k) is (LM) then ®;,.-(k) is (LM)
7 it D(k) is (LL) then ®,,,. (k) is (LL)

Fig. 10 illustrates the dynamic uncertainty threshold
adjustment (DUTA) method based on a single-input-single-
output fuzzy logic controller. At the k—th step, the distance
from the target to the protected area D(k) can be defined as

D(k) = L — y(k|k), (41)

where L is the length of the tracking area in the y-direction,
y(k|k) is the estimated y-coordinate of the target. According
to the input D(k), the output ®,,-(k) can be obtained by the
FLC. The implementation process of the FLC is similar to
that of the Subsection III-C, but membership functions and
the rule base are different. As shown in Fig. 11, both the input
and output membership functions use seven fuzzy states,
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which are Small-Small (SS), Small-Medium (SM), Small-
Large (SL), Medium (M), Large-Small (LS), Large-Medium
(LM), and Large-Large (LL). The universe of discourse of
D(k) and @, (k) are [0, L] and [THyin, THpqy ] respectively.
TABLE. 2 shows the rule base for the dynamic uncertainty
threshold adjustment method.

IV. SIMULATION EXPERIMENT
In this section, a simulation experiment is carried out to
analyze the performance of the proposed algorithm. There
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are five different sampling algorithms in this experiment. The
FLAS(DT) algorithm, which jointly use the ASIA method
and the DUTA method, is the adaptive sampling algorithm
proposed in this paper. The EEDAS algorithm, which is the
adaptive sampling algorithm in [15], is used to compare with
the FLAS(DT) to evaluate the performance of the ASIA
method. The FLAS(FT) algorithm, which uses the ASIA
method and a fixed uncertainty threshold, is used to compare
with the FLAS(DT) to evaluate the performance of the DUTA
method. The MINS algorithm uses the fixed sampling interval
Tomin- The MAXS algorithm uses the fixed sampling interval
Timax- The MINS algorithm and MAXS algorithm are fixed
sampling algorithms used to compare with the above three
adaptive sampling algorithms.

A. SIMULATION SETTINGS

As shown in Fig. 12, the tracking area is a cube of
1000m x 1000m x 1000m. The free area is on the right side
of the tracking area, and the protected area is on the left side
of the tracking area. They are not presented in the figure.
In the tracking area, blue circles stand for the underwater
wireless sensor nodes and the number of nodes is 125. All
nodes are assumed to be stationary and randomly deployed
using a uniform distribution throughout the tracking area and
can locate their position with the help of the localization
algorithm [33].

O sensorNode
Real Target Trajectory
-------- Estimated Trajectory

1000

FIGURE 12. Real target trajectory and its estimated trajectory using the
proposed algorithm.

As shown in Fig. 12, the target aims to travel from point
(200, 200, 200) to point (800, 800, 800) with a constant
velocity (Sm/s, Sm/s, 5Sm/s). The intensity of the process
noise is ¢ = 0.01. The variance of measurement noise for
all nodes is 49. The initial EKF estimation of the target
position is (205, 205, 205) and the initial covariance matrix
is 91, where I is the identity matrix. The fixed uncertainty
threshold is 10. The dynamic threshold is bounded within
[THuin, THpmax] = [7, 13]. The sampling interval is bounded
within [Tyin, Tinax] = [0.5, 4]. The membership parameters
VE, VEC, and VTC are 3, 2, 2 respectively. For energy
consumption model, the following parameters are used: v =
4kbits/s, « = 21dB/km, A = 21dB, NL = 70dB, DI = 0dB,
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DT = 20dB, E;, = E,, = 50nJ /bit, and by, = bse = bye =
bgy = 256bit.

In our simulations, the Monte Carlo method is used.
We track the target 120 seconds per trial, and the number of
trials is Nyi4; = 100. Due to the existence of the process noise,
the target trajectories in these trials are different.

B. SIMULATION RESULTS

Fig. 12 shows the successful tracking process of the
FLAS(DT) algorithm in a randomly selected trial. The esti-
mated trajectory lies very closely to the real target trajectory.

25

20 - —

o
T

Number of Trials
S

. . . . . .
66 68 70 72 74 76 78 80 82
Number of Tracking Steps

FIGURE 13. Histogram of the number of tracking steps per trial using the
proposed algorithm.

Fig. 13 shows the histogram of the number of tracking
steps per trial using the FLAS(DT) algorithm. Because of
the difference in trajectories, the number of tracking steps per
trial varies between 67 and 80.

Fig. 14 shows that the average number of cluster nodes per
step of the five algorithms is 15.74, 15.52, 15.43, 15.39 and
15.64 respectively. Although the number of cluster nodes per
step is variable, it is much larger than the minimum require-
ment 4. Redundant cluster nodes at each step reduce the effect
of different number of cluster nodes on the uncertainty of the
estimated target position. The almost same average number of
cluster nodes per step reduces the effect of different number
of cluster nodes on the energy consumption.

Fig. 15 shows that the average sampling interval per step
of the five algorithms is 0.50s, 1.08s, 1.69s, 1.69s and 4.00s
respectively. The larger the sampling interval, the less the
number of samples, the less energy is consumed. Due to the
effect of the ASIA method, the FLAS(DT)’s average sam-
pling interval per step is almost the same as the FLAS(FT)’s,
and is much larger than EEDAS’s.

For adaptive sampling algorithms, the sampling interval
per step is different, the total number of tracking steps per trial
is also different. Therefore, for a fair comparison, we partition
the 120 second tracking period of a trial into smaller 6 second
time windows, calculate the average uncertainty of the esti-
mated target position and the average estimated position error
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FIGURE 14. The average number of cluster nodes per step of the five
algorithms.
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FIGURE 15. The average sampling interval per step of the five algorithms.

in each of these time windows. Let N, be the total number
of samples from the target fall in time window [6(¢ — 1), 6¢].
Define ®g (r) as the average uncertainty of the estimated
target position of the 7th time window of 100 trials as follows,

Ntrial 1

Niotal

Dey(1) = Y Y. @

Nirial i me[6(1—1),6t]

=1
where CD’,',, is the estimated uncertainty at the sampling
moment m in the jth trial. Similarly, define We(¢) as the
average estimated position error of the rth time window
of 100 trials as follows,

Nirial

S Y W @

Wes(t) =
Ntrial =1 Ntotal mel6(i—1),6t]

where W, is the estimated position error at the sampling
moment m in the jth trial.

The different sampling intervals of the five algorithms
significantly affect the respective uncertainty. Fig. 16 shows
the uncertainty of the estimated target position of the five
algorithms consisting of their respective ®¢g(t). Since the
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initial EKF covariance matrix is inaccurate, the estimated
uncertainty is very large at the beginning. Due to the effect of
EKEF, the estimated uncertainty then drops quickly. To balance
the uncertainty and energy consumption, the three adaptive
sampling algorithms EEDAS, FLAS(FT), and FLAS(DT)
all attempt to make the uncertainty of each step equal to
the uncertainty threshold. Due to the error in the predicted
uncertainty, EEDAS’s uncertainty is smaller than the fixed
threshold. In contrast, FLAS(DT)’s and FLAS(FT)’s are very
closely to the fixed threshold and the dynamic threshold
respectively. MAXS’s uncertainty is always much larger than
the fixed threshold. MINS’s uncertainty is always much
smaller than the fixed threshold. As shown in Figure 17,
the average uncertainty per step of the five algorithms is 4.70,
8.05, 10.72, 10.62 and 16.62 respectively. Due to inaccurate
initial estimates, FLAS(FT)’s value 10.72 is slightly higher
than the fixed threshold 10. EEDAS’s value 8.05 does not
reach the fixed threshold 10. Fig. 16 and Fig. 17 can prove
that the ASIA method can achieve the maximizes energy
efficiency without exceeding the uncertainty threshold, and
has better performance than the EEDAS algorithm.

35 T
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—V- EEDAS
30 FLAS(FT)
—O~ FLAS(DT)
—#— MAXS
> 25 *\ ====Fixed Threshold
_% v e Dynamic Threshold
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Z 18 \\ * | S e 7]
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] o
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Sampling Moment (s)

FIGURE 16. The uncertainty of the estimated target position of the five
algorithms.

20
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Tracking Uncertainty
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FIGURE 17. The average uncertainty of the estimated target position per
step of the five algorithms.
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FIGURE 18. The estimated position error of the five algorithms.
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FIGURE 19. The average estimated position error per step of the five
algorithms.

Fig. 18 shows the estimated position error of the five algo-
rithms consisting of their respective We (). The estimated
position error of the five algorithms is similar to the uncer-
tainty. FLAS(DT) and FLAS(FT) can control the estimated
position error around 3. Since the uncertainty used by the
EEDAS is less than the threshold, the estimated position
error is smaller than FLAS(DT)’s and FLAS(FT)’s. As shown
in Figure 19, the average estimated position error per step of
the five algorithms is 2.00, 2.60, 3.04, 3.02 and 3.90 respec-
tively. EEDAS’s value 2.60 is smaller than FLAS(DT)’s
and FLAS(FT)’s. Although the estimated position error of
EEDAS is reduced, this is at the cost of increasing the number
of samples.

Since the tracking period per trial is the same, the differ-
ence in the sampling interval of the five algorithms causes a
difference in the average number of tracking steps per trial.
As shown in Fig. 20, the average number of tracking steps per
trial of the five algorithms is 241.00, 111.68, 71.40, 71.63,
and 31.00 respectively. MINS’s number of tracking steps is
the largest, and MAXS’s number of tracking steps is the
smallest. FLAS(DT)’s number of tracking steps is almost the
same as FLAS(FT)’s, and much smaller than EEDAS’s.
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FIGURE 20. The average number of tracking steps per trial of the five
algorithms.
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FIGURE 21. The total energy consumption of the five algorithms.

Since the average number of cluster nodes per step of
the five algorithms is almost the same, the average energy
consumption per step of the five algorithms is also almost
the same. In the entire target tracking process, the greater the
number of tracking steps, the greater the total energy con-
sumption. As shown in Fig. 21, the total energy consumption
of the five algorithms is 664.56J,302.21J, 191.06J, 191.18J
and 82.53J respectively. Both FLAS(DT) and FLAS(FT)
algorithms save about 36% of energy in comparison to the
EEDAS algorithm, and save about 71% of energy in compar-
ison to the MINS algorithm. Although the MAXS algorithm
consumes the least energy, its estimated position error is too
large. By comparing the performance of the five algorithms
in estimated position error and energy consumption, it can
be proved that the ASIA method of the proposed algorithm
can greatly reduce energy consumption while providing good
estimation performance.

Compared to the FLAS(FT) algorithm, the FLAS(DT)
algorithm can dynamically adjust the uncertainty threshold
according to the estimated position of the target. As shown
in Fig. 16, as the target gradually approaches the left edge
of the tracking area, the estimated uncertainty threshold is
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getting lower and lower. Different uncertainty thresholds can
cause different estimated uncertainty and energy consump-
tion. The estimated uncertainty of the FLAS(DT) algorithm
also decreases with the dynamic threshold line. With the
sampling moment 60s as the demarcation point, the left part
of the FLAS(DT) algorithm has high uncertainty, few sam-
pling steps, less energy consumption, while the right part
has low uncertainty, more sampling steps, and more energy
consumption. This can prove that the DUTA method can
dynamically adjust the uncertainty threshold to alleviate the
imbalance of energy consumption.

V. CONCLUSION AND FUTURE WORK

In this paper, an adaptive sampling algorithm for target track-
ing in UWSNSs is proposed to maximize energy efficiency and
balance energy consumption simultaneously. For maximiz-
ing energy efficiency, the adaptive sampling interval adjust-
ment (ASIA) method uses a two-input- single-output fuzzy
logic controller to adaptively adjust the sampling interval.
For balancing energy consumption, the dynamic uncertainty
threshold adjustment (DUTA) method uses a single-input-
single-output fuzzy logic controller to dynamically adjust
the uncertainty threshold in the ASIA method. The sim-
ulation results demonstrate that, compared to the existing
adaptive sampling algorithm, the proposed algorithm not only
improves the energy efficiency but also alleviates the imbal-
ance of energy consumption.

In the future, we aim to study dynamic clustering methods
and cluster node selection methods, in order to reduce the
number of cluster nodes and energy consumption. This paper
uses EKF as target position estimation method. EKF can only
deal with zero mean gaussian noises, and more advanced
methods are required for non-gaussian noises.
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