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ABSTRACT In this paper, an adaptive neural network (NN) backstepping control method is designed for a
class of uncertain fractional order nonlinear systems with external disturbance and input saturation, in which
the fractional Lyapunov stability theory is used to construct the controller. The complicated unknown
fractional order nonlinear function is approximated by a radial basis function (RBF) NN in each step,
and the virtual control law and parameters update law are presented based on the backstepping algorithm
procedures. At the final step, an adaptive RBFNN controller is constructed, in which no knowledge of system
uncertainty and the upper bound of the disturbance is required. Then, a theorem is presented to address that
the asymptotical convergence of the tracking error can be guaranteed. The effectiveness of the proposed
scheme is illustrated by two simulation examples.

INDEX TERMS Adaptive control, fractional order, neural networks (NNs), input saturation, nonlinear
system.

I. INTRODUCTION
Fractional order calculus is mentioned by Leibniz in 1695 for
the first time [1], which has many interesting properties
and some potential applications receiving lots of attention
from engineers [2]–[6]. Recently, many results of the frac-
tional order nonlinear systems regarding theory and appli-
cations are growing continuously [7]–[12]. The reason is
that the model of the physical phenomena including vis-
coelastic structures or heat conduction can be established
concisely and precisely using the fractional order differ-
ential equations [13]. In addition, the control performance
of fractional order controllers is better than the classical
controllers due to their general forms, hereditary and non-
locality [14]. Due to the existence of parameter uncertainties
and noises, the uncertain fractional order system control is
a very attractive and challenging research field, and several
research results have been reported, such as the sliding mode
control [15]–[17], the adaptive control [18]–[21], the neural
network control [22], [23] and the fuzzy control [24], [25].

Adaptive backstepping control method is an important
and widely used technique to control uncertain integer order
nonlinear systems with triangular structure [26], [27], which

establishes a systematic framework using intermediate vari-
ables recursively and constructs a Lyapunov function for the
overall closed loop system. With the advantages (such as
superior tracking, transient performance and global stability),
the adaptive backstepping technique has been extended to
control fractional order nonlinear systems by some scholars.
There are mainly two classes of Lyapunov functions used
to analyze the stability of the closed loop system. The first
one is the direct Lyapunov method [4], [28], [29], in which
an inequality lemma [30] is used to find fractional order
Lyapunov candidate functions. The second one is the indi-
rect Lyapunov method [20], [21], [31]–[33], in which the fre-
quency distributed model of the fractional order system [34]
is introduced so that the indirect Lyapunov method can be
applied to design the controller.

Adaptive neural network (NN) control schemes have been
found to be very useful for the control of integer order
nonlinear systems, primarily by its inherent capability to
model and control highly uncertain, nonlinear and complex
systems [35], [36]. The radial basis function (RBF) NN is
considered as a two-layer network [37], [38], which is one
of the very effective tools in functional approximations and
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widely applied to handle uncertain information [39], [40].
So far,there are many research results on adaptive NN con-
trol of fractional order nonlinear systems. In [22], a robust
adaptive NN control is presented for a fractional order rota-
tionalmechanical systemwith uncertainties and disturbances.
In [41], an adaptive fractional sliding mode controller based
on dual RBF NNs is given to enhance the performance of
a three-phase shunt active power filter. In [42], an adaptive
NN backstepping control method is proposed for a class of
fractional order chaotic systems subjected to backlash-like
hysteresis nonlinearities. Although lots of efforts have been
put into fractional order algorithm, there are still short of
results on how to apply backstepping control algorithm for
uncertain fractional order system with input saturation.

Input saturation is a usually occurred nonlinearity in con-
trol devices, which is the most dangerous nonlinearity in
the closed-loop control systems. Input saturation can gravely
restrict the performance of system, or result in oscillations
in the output response, which may lead to instability and
divergence of the system. Therefore, the effect of input satu-
ration should be considered when designing and implement-
ing nonlinear fractional control systems. Motivated by the
above analyses and discussions, an adaptiveNNbackstepping
control method is given for a class of uncertain fractional
order nonlinear systems with external disturbance and input
saturation in this paper. Compared with the extant results,
the contributions of this paper are summarized as:

1) It is the first time handling tracking control problem for a
class of uncertain fractional order nonlinear system subjected
to input saturation based on RBFNN and backstepping recur-
sive algorithm. Comparing [25], the structure of the uncertain
integer order nonlinear systems considered in this paper is a
triangular structure.

2) Based on backstepping control scheme, the RBF NN is
used to approximate the fractional order nonlinear functions
in each step of the backstepping, and the fractional order
adaptation laws are given to estimate the parameters of the
RBFNN. Then, an adaptiveNN fractional order backstepping
controller is constructed based on the fractional Lyapunov
stability theory.

3) A fractional order compensator is designed to approxi-
mate the unknown upper bound from the external disturbance
and input saturation, which can ensure system stability and
the tracking error asymptotical convergence.

The remainder of this article is organized as follows.
In Section 2, the basic definitions on the fractional inte-
grals and derivatives and the preliminary results on frac-
tional order systems are presented. The detailed controller
design and the stability analysis of the fractional order con-
trol system is given in Section 3. In Section 4 simulation
results are presented to illustrate the validity of the proposed
approach. Conclusions are given in Section 5.

II. PRELIMINARIES
The fractional order integrodifferential operator is an
extended concept of the integer order integrodifferential

operator [43]. There are several definitions regarding the frac-
tional derivative, and the Caputo definition is one of the most
used in engineering applications. The fractional order integral
of continuous function f (t) with respect to t and the lower
terminal t0 is defined as follow

t0Iαt f (t) =
1

0 (α)

∫ t

t0

f (τ )

(t − τ)1−α
dτ (1)

where 0 (α) =
∫
∞

0 e−t tα−1dt is the well-known Eulers
Gamma function. The α−th Caputo fractional derivative is
defined by

t0Dαt f (t) =
1

0 (n− α)

∫ t

t0

f (n) (t)

(t − τ)α+1−n
dτ (2)

where n−1 < α < n, n ∈ Z+ and t0Dαt is the classical α−th
order derivative operator. To simplify the notation, t0Dαt is
abbreviated as Dα when t0 = 0.
The Laplace transform on (2) can be given as∫
∞

0
e−stDαf (t) dτ = sαF (s)−

n−1∑
k=0

sα−k−1f (k) (0) (3)

where F (s) is the Laplace transform of f (t).
Definition 1 [2]: The Mittag-Leffler function is defined as

Eα,γ (ζ ) =
∞∑
k=0

ζ k

0 (αk − γ )
(4)

where ζ is a complex number, and α, γ are positive constants.
The Laplace transform of (4) is

L
(
tγ−1Eα,γ

(
−atα

))
=

sα−γ

sα + a
(5)

Lemma 1 [2]: For a complex number β and two real num-
bers α, ν satisfying 0 < α < 1 and

πα

2
< v < min {π, πα} (6)

the following equation holds for ∀n ≥ 1:

Eα,β (ζ ) = −
n∑
j=1

1
0 (β − αj) ζ j

+ o
(

1

|ζ |n+1

)
(7)

and v ≤ |arg (ζ )| ≤ π when |ζ | → ∞.
Lemma 2 [2]: Let α satisfy 0 < α < 2 and β be an

arbitrary real number. If there exists a positive constantµ such
that

(
πα
/
2
)
< µ ≤ min {π, πα}, then one has∣∣Eα,β (ζ )∣∣ ≤ C

1+ |ζ |
(8)

where C > 0, µ ≤ |arg (ζ )| ≤ π , and |ζ | ≥ 0.
Definition 2 [7]: g : [0, b)→ I is a continuous and strictly

increases function satisfying g (0) = 0, then g belong to
class-K .
Lemma 3 [7]: Assume that the origin is an equilibrium

point of a nonautonomous fractional order nonlinear system

Dαx (t) = f (t, x (t)) (9)
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where f : I × � → R is Lipschitz continuous. If there
is a Lyapunov function V (t, x (t)) and class-K functions
gi (i = 1, 2, 3) to satisfy

g1 (‖x (t)‖) ≤ V (t, x (t)) ≤ g2 (‖x (t)‖)

DαV (t, x (t)) ≤ −g3 (‖x (t)‖) (10)

then (9) is asymptotically stable.
Lemma 4 [30]: If x (t) is a smooth function, then

1
2
Dα

(
x(t)T x (t)

)
≤ x(t)TDα (x (t)) , ∀t ∈ I (11)

The RBF NN is a feed-forward neural network with three
layers: input layer, hidden layer and output layer. Any smooth
nonlinear functions can be approximated by the RBFNNwith
any precision.
Lemma 5 [44]: For any smooth function f (X) on a com-

pact set� and an expected accuracy ε, there exists a RBF NN
θ∗Tϑ (X) so that

f (X) = θ∗Tϑ (X)+ δ (X) , |δ (X)| ≤ ε (12)

i.e.

θ∗ = argmin
θ

[
sup
X

∣∣∣f (X)− θTϑ (X)∣∣∣] (13)

where θ =
[
θ1 θ2 . . . θl

]
∈ Rl is the weight vector, X ∈ �

is the input vector, l > 1 is the neural network node number;
ϑ (X) = [ϑ1 (X) , ϑ2 (X) , . . . , ϑl (X)]T , and ϑi (X) being
chosen as the common Gaussian functions with the form

ϑi (X) = exp

(
−(X − µi)T (X − µi)

η2

)
, i = 1, 2, . . . , l

(14)

where µi = (µi1, µi2, ..., µin)T is the center of the respective
field and η is the width of the Gaussian function.

III. ADAPTIVE NEURAL NETWORK BACKSTEPPING
CONTROLLER DESIGN
Consider the fractional order nonlinear systems described as
follows 

Dαx1 = x2 + f1 (x̄1)
Dαx2 = x3 + f2 (x̄2)
...

Dαxn−1 = xn + fn−1 (x̄n−1)
Dαxn = bu (υ (t))+ fn (x̄n)+ d (t)
y (t) = x1

(15)

where 0 < α < 1 is the system commensurate fractional
order, x =

(
x1 x2 . . . xn

)T
∈ Rn, x̄i =

(
x1 x2 . . . xi

)T
∈

Ri are the state vectors, and y ∈ R is the output, fi (x̄i) ,
i = 1, . . . , n are the unknown smooth nonlinear function,
d (t) ∈ R is an unknown external disturbance, u (υ (t)) is
an input saturation defined as [45]

u = sat (υ (t)) =


umax, υ ≥ umax

υ, umin < υ < umax

umin, υ ≤ umin

(16)

where υ is the input signal of the input saturation nonlinearity,
umax > 0 and umin < 0 are the unknown constants.
For (16), the input saturation function can be approximated

by a smooth piecewise function defined as

g (υ) =

umax · tanh
(

υ
umax

)
, υ ≥ 0

umin · tanh
(

υ
umin

)
, υ < 0

=


umax ·

e
υ

umax − e−
υ

umax

e
υ

umax + e−
υ

umax
, υ ≥ 0

umin ·
e

υ
umin − e−

υ
umin

e
υ

umin + e−
υ

umin

, υ < 0

(17)

and sat (υ (t)) in (16) can be rewritten as

u = sat (υ) = g (υ)+1(υ) (18)

where 1(υ) = sat (υ)− g (υ) is bounded, satisfying

|1(υ)| = |sat (υ)− g (υ)|

≤ max {umax (1− tanh (1)) , umin (tanh (1)− 1)}

= D (19)

With the theorem of the mean, there exists a con-
stant µ, 0 < µ < 1 to make

g (υ) = g (υ0)+ gυµ (υ − υ0) (20)

where

gυµ =
∂g (υ)
∂υ

∣∣∣∣
υ=υµ

υµ = µυ + (1− µ) υ0 (21)

Remark 1:Mean value theorem: For a function p(x), if it is
continuous in the interval [c, d] and derivable in the interval
(c, d), then there exists at least one point ξ, c < ξ < d , such
that: p(c)− p(d) = ṗ(ξ ) (c− d) holds.
By selecting υ0 = 0, (20) can be represented as

g (υ) = gυµυ (22)

Substituting (18) and (22) into (15), a new expression of
the system (15) can be obtained as

Dαx1 = x2 + f1 (x̄1)
Dαx2 = x3 + f2 (x̄2)
...

Dαxn−1 = xn + fn−1 (x̄n−1)
Dαxn = bgυµυ + fn (x̄n)+ b1(υ)+ d (t)
y (t) = x1

(23)

Let yd be a known smooth reference signal. Our aim is to
establish a proper controller υ such that the tracking error
e1 = y − yd converges to an arbitrary small region of zero.
Then, a recursive backstepping algorithm is presented, which
can be separated as the following steps.
Step 1: Based on Lemma 5, the unknown function f1 (x̄1)

from (23) can be approximated by a RBF NN as follow:

f̂1 (x̄1, θ1) = θT1 ϑ1 (x̄1) (24)
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where parameter estimation θ1 ∈ Rm1 . The ideal parameter
θ∗1 is given by

θ∗1 = argmin
θ1

[
sup
x1

∣∣∣f1 (x̄1)− f̂1 (x̄1, θ1)∣∣∣] (25)

Let

θ̃1 = θ
∗

1 − θ1

ε1 (x̄1) = f̂1
(
x̄1, θ∗1

)
− f1 (x̄1) (26)

be the parameter estimation error and the optimal approxima-
tion error, respectively. Assume that the optimal approxima-
tion error remain bounded, one can obtain

|ε1 (x̄1)| ≤ ε̄1 (27)

where ε̄1 > 0. One can obtain

f̂1 (x̄1, θ1)− f1 (x̄1)

= f̂1 (x̄1, θ1)− f̂1
(
x̄1, θ∗1

)
+ f̂1

(
x̄1, θ∗1

)
− f1 (x̄1)

= θT1 ϑ1 (x̄1)− θ
∗T
1 ϑ1 (x̄1)+ ε1 (x̄1)

= −θ̃T1 ϑ1 (x̄1)+ ε1 (x̄1) (28)

It follows from (15), (26) and (28) that

Dαe1 = Dα x̄1 − Dαyd
= x̄2 + f1 (x̄1)− Dαyd
= x̄2 + f1 (x̄1)− f̂1 (x̄1, θ1)+ f̂1 (x̄1, θ1)− Dαyd
= x̄2+θ̃T1 ϑ1 (x̄1)−ε1 (x̄1)+θ1

Tϑ1 (x̄1)−Dαyd (29)

Let a virtual control input υ1 (e, x̄1, yd ) be

υ1 (e, x̄1, yd ) = −θ1Tϑ1 (x̄1)− k11e1−k21sign (x̄1)+Dαyd
(30)

where k11 and k21 are design parameters. Let

e2 = x2 − υ1 (31)

Substituting (30) and (31) into (29) gives

Dαe1 = e2 − k11e1 − k21sign (e1)+ θ̃T1 ϑ1 (x̄1)− ε1 (x̄1)

(32)

Selecting the Lyapunov function candidate V1 as

V1 =
1
2
e21 +

1
2σ1

θ̃T1 θ̃1 (33)

and design a fractional order adaptation law as follow

Dαθ1 = σ1ϑ1 (x̄1) e1 (34)

where σ1 > 0 is the design parameter. Due to the fractional
order derivative of a constant is zero, based on (34) one can
obtain

Dα θ̃1 = Dαθ∗1 − D
αθ1 = −Dαθ1 (35)

Then, according to (32), (34), (35) and Lemma 4, one has

DαV1 =
1
2
Dα

(
e21
)
+

1
2σ1

Dα
(
θ̃T1 θ̃1

)
≤ e1

(
e2−k11e1−k21sign (e1)+θ̃T1 ϑ1 (x̄1)−ε1 (x̄1)

)

−
1
σ1
θ̃T1 (σ1ϑ1 (x̄1) e1)

= e1e2 − k11e1e1 − k21sign (e1) e1 − ε1 (x̄1) e1
≤ e1e2 − k11e21 − (k21 − ε̄1) |e1| (36)

Step 2: From (23) and (31), one has

Dαe2 = Dαx2 − Dαυ1
= x3 + f2 (x̄2)− Dαυ1
= x3 + F2 (x̄2) (37)

where F2 (x̄2) = f2 (x̄2)−Dαυ1 is an unknown function. Just
like step 1, F2 (x̄2) can be approximated by a RBF NN as
follow

F̂2 (x̄2, θ2) = θT2 ϑ2 (x̄2) (38)

where parameter estimation θ2 ∈ Rm2 . Then, (37) can be
presented as follow

Dαe2 = x3 + F2 (x̄2)

= x3 + θ̃T2 ϑ2 (x̄2)− ε2 (x̄2)+ θ
T
2 ϑ2 (x̄2) (39)

where ε2 (x̄2) = F̂2
(
x̄2, θ∗2

)
− F2 (x̄2), satisfying

|ε2 (x̄2)| ≤ ε̄2, ε̄2 > 0.
Define the estimated error θ̃2 = θ

∗

2 − θ2, and the following
equation can be obtained using Caputo’s definition

Dα θ̃2 = Dαθ∗2 − D
αθ2 = −Dαθ2 (40)

Let a virtual control input be

υ2 = −θ2
Tϑ2 (x̄2)− k12e2 − k22sign (e2)− e1 (41)

where k12 and k22 are design parameters. Let

e3 = x3 − υ2 (42)

Substituting (41) and (42) into (39) gives

Dαe2=e3−k12e2−k22sign (e2)+ θ̃T2 ϑ2 (x̄2)− ε2 (x̄2)− e1
(43)

Selecting the Lyapunov function V2 as

V2 = V1 +
1
2
e22 +

1
2σ2

θ̃T2 θ̃2 (44)

and design a fractional order adaptation law as follow

Dαθ2 = σ2ϑ2 (x̄2) e2 (45)

where σ2 > 0 is the design parameter. Then, according
to (40), (43), (45) and Lemma 4, one has

DαV2 = DαV1 + e2Dα (e2)−
1
σ2
θ̃T2 D

αθ2

≤ e1e2 − k11e21 − (k21 − ε̄1) |e1|

+ e2e3 − k12e22 − k22sign (e2) e2 + θ̃
T
2 ϑ2 (x̄2) e2

− ε2 (x̄2) e2 − e1e2 − θ̃T2 ϑ2 (x̄2) e2
≤ e2e3−k11e21−k12e

2
2−(k21−ε̄1) |e1|−(k22−ε̄2) |e2|

(46)
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Step i, 3 ≤ i ≤ n− 1: Let

ei = xi − υi−1 (47)

Just like the procedures in step 1 and 2, one has

Dαei = xi+1 + fi (x̄i)− Dαυi−1
= xi+1 + Fi (x̄i) (48)

where Fi (x̄i) = fi (x̄i)−Dαυi−1 is an unknown function, and
υi−1 is a virtual control input. Let

F̂i (x̄i, θi) = θTi ϑi (x̄i) (49)

where parameter estimation θi ∈ Rmi .
Define the estimated error θ̃i = θ

∗
i − θi, and the following

equation can be obtained

Dα θ̃i = Dαθ∗i − D
αθi = −Dαθi (50)

From (49), (48) can be rewritten as follow

Dαei = xi+1 + θ̃Ti ϑi (x̄i)− εi (x̄i)+ θ
T
i ϑi (x̄i) (51)

where εi (x̄i) = F̂i
(
x̄i, θ∗i

)
− Fi (x̄i), satisfying |εi (x̄i)| ≤ ε̄i,

ε̄i > 0.
Let a virtual control input be

υi = −θi
Tϑi (x̄i)− k1iei − k2isign (ei)− ei−1 (52)

where k1i and k2i are design parameters.
Substituting (47) and (52) into (51) gives

Dαei=ei+1−k1iei−k2isign (ei)+ θ̃Ti ϑi (x̄i)− εi (x̄i)− ei−1
(53)

Selecting the Lyapunov function Vi as

Vi = Vi−1 +
1
2
e2i +

1
2σi

θ̃Ti θ̃i (54)

and a fractional order adaptation law is designed as

Dαθi = σiϑi (x̄i) ei (55)

where σi > 0, then its derivative based on (50), (53), (55) and
Lemma 4 is expressed as

DαVi = DαVi−1 + eiDα (ei)−
1
σi
θ̃Ti D

αθi

≤ ei−1ei −
i−1∑
k=1

(
k1ke2k + (k2k − ε̄k) |ek |

)
+ eiei+1 − k1ie2i − k2isign (ei) ei + θ̃

T
i ϑi (x̄i) ei

− εi (x̄i) ei − ei−1ei −
1
σi
θ̃Ti (σiϑi (x̄i) ei)

≤ eiei+1 −
i∑

k=1

(
k1ke2k + (k2k − ε̄k) |ek |

)
(56)

Step n: Let

en = xn − υn−1 (57)

From (23) and (57), one has

Dαen = bgυµυ + fn (x)+ b1(υ)+ d (t)− D
αυn−1

= bgυµυ + b1(υ)+ d (t)+ Fn (x) (58)

where υn−1 is a virtual control input, and Fn (x) = fn (x) −
Dαυn−1 is an unknown function. Let

F̂n (x, θn) = θTn ϑn (x) (59)

where parameter estimation θn ∈ Rmn . Define the estimated
error θ̃n = θ

∗
n − θn, and one can get the following equation

Dα θ̃n = Dαθ∗n − D
αθn = −Dαθn (60)

From (59), (58) can be rewritten as

Dαen=bgυµυ+b1(υ)+d (t)+θ̃
T
n ϑn (x)−εn (x)+θ

T
n ϑn(x)

(61)

where εn (x) = F̂n
(
x, θ∗n

)
−Fn (x), satisfying |εn (x̄n)| ≤ ε̄n,

ε̄n > 0.
The following assumption is presented to proceed.
Assumption 1: The external disturbance d (t) is bounded,

i.e., |d (t)| ≤ d̄ , for ∀t ≥ 0 where constant d̄ > 0 is
unknown.

According to (19) and Assumption 1, one can find that
b1(υ)+ d (t) is bounded with an unknown upper bound h∗,
i.e

|b1(υ)+ d (t)| ≤ |b|D+ d̄ = h∗ (62)

Let us establish the controller u as follow

υ (t)=
1

bgυµ

(
−θTn ϑn (x)−k1nen−(k2n+h) sign (en)−en−1

)
(63)

where k1n and k2n are design parameter, and h is the estima-
tion of the unknown constant h∗.
Let h̃ = h∗−h, then the following equation can be obtained

Dα h̃ = Dαh∗ − Dαh = −Dαh (64)

Substituting (57) and (63) into (61) gives

Dαen = −k1nen − (k2n + h) sign (en)− en−1
+ b1(υ)+d (t)+θ̃Tn ϑn (x)− εn (x) (65)

Selecting the Lyapunov function Vn as

Vn = Vn−1 +
1
2
e2n +

1
2σn

θ̃Tn θ̃n +
1
2ρ

h̃2 (66)

where σn, ρ > 0. To update θn and h, design the following
fractional order adaptation laws

Dαθn = σnϑn (x) en (67)

and

Dαh = ρ |en| (68)

Just like the procedures in step i, 3 ≤ i ≤ n − 1, the
derivative of Vn is

DαVn=DαVn−1 + enDα (en)−
1
σn
θ̃Tn D

αθn −
1
ρ
h̃Dα h̃

≤ en−1en −
n−1∑
k=1

(
k1ke2k + (k2k − ε̄k) |ek |

)
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− k1ne2n−(k2n+h) |en|−en−1en+(b1(υ)+d(t)) en
+ θ̃Tn ϑn (x) en − εn (x) en − θ̃

T
n ϑn (x) en − h̃ |en|

≤ −

n−1∑
k=1

(
k1ke2k + (k2k − ε̄k) |ek |

)
− k1ne2n − (k2n+h− ε̄n) |en| + (b1(υ)+ d (t)) en
− h̃ |en|

≤ −

n−1∑
k=1

(
k1ke2k + (k2k − ε̄k) |ek |

)
− k1ne2n − (k2n + h− ε̄n) |en| + h |en| − h̃ |en|

≤ −

n∑
k=1

(
k1ke2k + (k2k − ε̄k) |ek |

)
(69)

Based on above design procedures, the follow theorem
gives the stability of the closed loop system.
Theorem 1: Consider the fractional order system (15) with

input saturation, if the NN controller is designed as (63)
with (30), (41) and (52), and the fractional adaptation laws are
chosen as (34), (45), (55), (67) and (68), then under a proper
choice of design parameters k1i > 0, k2i > ε̄i, σi > 0 and
ρ > 0, i = 1, 2 . . . , n, the tracking error e1 = y− yd tend to
zero asymptotically when t →∞.

Proof: According to step 1, 2, i, n, if the control input is
designed as (63) with (30), (41) and (52), and the adaptation
laws are chosen as (34), (45), (55), (67) and (68), then under
a proper choice of design parameters k1i > 0, k2i > 0,
σi > 0 and ρ > 0, i = 1, 2 . . . , n, the derivative of Lyapunov
function Vn satisfy

DαVn ≤ −
n∑

k=1

(
k1ke2k + (k2k − ε̄k) |ek |

)
(70)

Denote s2 (t) = 1
2

n∑
l=2

e2l +
n∑
i=1

1
2σi
θ̃Ti θ̃i +

1
2ρ h̃

2, one gets

Vn = 1
2e

2
1 + s

2 (t). Then, e21 ≤ 2Vn. From (70) one gets

DαVn ≤ −k11e21 (71)

The fractional order integral of (71) is obtained as

Vn (t)− Vn (0) ≤ −k11Iαt e
2
1 (t) (72)

Based on (72), one gets e21 ≤ 2Vn (0)−2k11Iαt e
2
1 (t). There

exists λ (t) ≥ 0 such that

e21 (t) = 2Vn (0)− 2k11Iαt e
2
1 (t)− λ (t) (73)

Denoting E1 (s) = L
(
e21 (t)

)
and 0 (s) = L (λ (t)),

the Laplace transform of (73) is described as

E1 (s) =
2Vn (0)

s
− 2k11

1
sα
E1 (s)− 0 (s) (74)

That is

E1 (s) = 2Vn (0)
sα−1

sα + 2k11
−

sα

sα + 2k11
0 (s) (75)

Based on (5), the solution of (75) can be obtained as

e21 (t) = 2Vn (0)Eα
(
−2k11tα

)
− λ (t)

(
t−1Eα,0

(
−2k11tα

))
(76)

Since that Eα,0 (−2k11tα) ≥ 0 and t−1 ≥ 0, then one
can get

e21 (t) ≤ 2Vn (0)Eα
(
−2k11tα

)
(77)

Based on Lemmas 1-3, the tracking error e1 = y− yd tend
to zero asymptotically.
Remark 2: Theorem 1 proposes the stability analysis of the

proposed adaptive NN backstepping algorithm in this paper,
in which the fractional order stability criterion is adopted
and the complicated unknown function derived from dif-
ferentiating a compound function with a fractional order is
approximated by the RBF NN in each step.
Remark 3: The input saturation function is approximated

by a smooth piecewise function and rewritten as a linear
function by mean value theorem, which is convenient for
controller design.
Remark 4: The unknown upper bound h∗ is determined by

the external disturbance and input saturation. To estimate the
unknown upper bound h∗, a fractional order compensator is
used, which can ensure system stability and the tracking error
asymptotical convergence.
Remark 5: Dαiυi−1 contains the error form the parameter

estimation θi−1 for the ideal parameter θ∗i−1 to approximate
unknown function fi (x̄i), which is not precise signal. Then,
Dαiυi−1 is considered as the unknown function in this paper,
which is conducive to implement the controller comparing
Dαiυi−1 considered as the known function.
Remark 6: The sign function employed in the con-

troller (63) with (30), (41) and (52) may result the chatter-
ing phenomenon. To eliminate the chattering phenomenon,
the sign function can be replaced by the continuous function,
such as arctan (10·). Although the asymptotical stability of
the tracking error may not be ensured, the tracking error may
get into a smaller range of zero.

IV. SIMULATION
The following simulation two examples results are put for-
ward to illustrate the effectiveness of the presented method.

There are several independent packages providing the nec-
essary functionality for working with fractional order sys-
tems and controllers [46], [47], such as CRONE toolbox,
Ninteger and FOMCON toolbox. The FOMCON toolbox for
MATLAB is a fractional order calculus based toolbox for
system modeling and control design, which is used in this
paper.
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A. EXAMPLE 1
Consider a commensurate fractional order nonlinear system
as follows

Dαx1 = x2 − 0.08x21

Dαx2 = x3 +
x2 − 0.3x21
1+ x41

Dαx3 = 3u (υ)− e−x
2
1 x2 sin (5x3)+ d (t)

(78)

where α = 0.5, and the initial state x (0) =
[
0.5 1 2

]T .
f1 (x1) = −0.08x21 , f2 (x̄2) =

x2−0.3x21
1+x41

and f3 (x̄3) =

e−x
2
1 x2 sin (5x3) are the unknown nonlinear functions. The

input saturation u (υ) is described as

u (υ) = sat (υ (t)) =


5, υ ≥ 5
υ, −5 < υ < 5
−5, υ ≤ −5

(79)

The reference signal yd is chosen as sin (t+0.3) and will
be tracked by the system output, the disturbance signal d (t)
is chosen as 0.1 (sin (t)+ cos (t)). sign (·) is replaced by
arctan (10·) in the presented controller to avoid the chattering
phenomenon.

The membership functions are chosen to deal with the
unknown nonlinear terms

ϑ (x1) = exp
(
−
(
x1 − xk1

)2
/0.25

)
ϑ (x̄2) = exp

(
−

(
x1 − xk1

)2
0.25

−

(
x2 − xk2

)2
0.25

)

ϑ (x̄3)= exp

(
−

(
x1−xk1

)2
0.25

−

(
x2 − xk2

)2
0.25

−

(
x3 − xk3

)2
0.25

)
xk1 ∈ {0.5k1 − 2| k1 = 1, 2, . . . , 6}

xk2 ∈ {k2 − 2| k2 = 1, 2, 3}

xk3 ∈ {0.5k3 − 1.5| k3 = 1, 2, . . . , 5} (80)

where the initial condition is θ1(0) = 06×1, θ2(0) = 018×1
and θ3(0) = 090×1.
The design parameters are chosen as k11 = k12 =

k13 = 13, k21 = k22 = k23 = 0.01, σ1 = σ2 = σ3 = 3,
gυµ = 1 and ρ = 2.

Fig. 1, 2, 3, 4, 5 and 6 show corresponding simulation
results. Fig. 1 shows trajectories of system output y and
reference signal yd , demonstrating that the tracking error
e1 = y − yd can be guaranteed to be small enough and
have a rapid convergence with the unknown system model
and input saturation. However, the tracking error e1 gets into
a smaller range of zero and does not stop at zero. There
are two main reasons for this result: 1) arctan (10·) is used
to replace sign (·) to eliminate the chattering phenomenon,
so that asymptotical convergence of the tracking error can
not beassured; 2) There is approximation error from unknown
nonlinear functions approximated by RBF NN.

Fig. 2 indicates the trajectories of the system
states x2 and x3, which displays the boundedness of the

FIGURE 1. Trajectories of y , yd and tracking error.

FIGURE 2. State trajectories x2 and x3.

FIGURE 3. Evolution of the norm of the RBF NN parameters.

systems states. Fig. 3 and Fig. 4 depict the norm of parameters
estimation of the RBF NN and the estimation of the upper
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FIGURE 4. Evolution of the estimation of the upper bound of h.

FIGURE 5. Evolution of the control input.

bound of h are bounded, and Fig. 5 shows the system input
saturation u (υ) is bounded as well, which is demonstrating
the boundedness of the signals in the closed loop adaptive
system.

B. EXAMPLE 2
Consider the fractional order Chua-Hartley’s system [48]

D0.98x1 = x2 +
10
7

(
x1 − x31

)
D0.98x2 = x3 + 10x1 − x2

D0.98x3 = u (υ)−
100
7
x2 + d (t)

(81)

where the initial state x (0) =
(
−2 −1 1

)T . The input
saturation u (υ) is described as

u (υ) = sat (υ (t)) =


15, υ ≥ 15
υ, −15 < υ < 15
−15, υ ≤ −15

(82)

The reference signal yd is chosen as sin (t+0.1) and will be
tracked by the system output, the disturbance signal d (t) is

chosen as 0.3 (sin (t)+ cos (t)). The membership functions
are chosen as

ϑ (x1) = exp
(
−
(
x1 − xk1

)2
/0.25

)
ϑ (x̄2) = exp

(
−

(
x1 − xk1

)2
0.25

−

(
x2 − xk2

)2
0.25

)

ϑ (x̄3) = exp

(
−

(
x2 − xk2

)2
0.25

)
xk1 ∈ {0.5k1 − 2| k1 = 1, 2, . . . , 6}

xk2 ∈ {k2 − 2| k2 = 1, 2, 3} (83)

The design parameters are chosen as k11 = k12 =
k13 = 23, k21 = k22 = k23 = 0.1, σ1 = σ3 = 0.1, gυµ = 1
and σ2 = ρ = 0.01.

FIGURE 6. Trajectories of y , yd and tracking error.

FIGURE 7. State trajectories x2 and x3.

Fig. 6 presents the tracking error e1 can be guaranteed to be
small enough. Fig. 7 indicates the trajectories of the system
states x2 and x3, revealing that the systems states are bounded.
Fig. 8 and Fig. 9 depict the norm of parameters estimation
of the RBF NN and the estimation of the upper bound of h
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FIGURE 8. Evolution of the norm of the RBF NN parameters.

FIGURE 9. Evolution of the estimation of the upper bound of h.

FIGURE 10. Evolution of the control input.

are bounded, and Fig. 10 shows the input saturation u (υ) is
bounded as well.

All of the aforesaid simulation results show that the system
output follows the desired reference signal in a small enough

region, all the closed loop signals are bounded, and the
effectiveness of the presented adaptive RBFNNbackstepping
control scheme is demonstrated.

V. CONCLUSION
In this paper, an adaptive NN backstepping tracking control
scheme is presented for a class of uncertain fractional order
nonlinear systems with external disturbance and input satu-
ration. By using the RBF NN approximate approach and the
adaptive backstepping scheme, the tracking control problem
with the restricted condition of the unknown nonlinear terms
and input saturation is studied, and a robust adaptive NN con-
troller is constructed based on the fractional Lyapunov stabil-
ity theory. Under the proposed control scheme, the tracking
error of the closed-loop system can reach a small enough
neighborhood of zero. The effectiveness of proposed method
demonstrated by two simulation examples.
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