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ABSTRACT Because of the non-uniformity of the electric power CPS network and the dynamic nature
of the risk propagation process, it is difficult to quantify the critical point of a cyber risk explosion. From
the perspective of the dependency network, this paper proposes a method for quantitative evaluation of the
risk propagation threshold of power CPS networks based on the percolation theory. First, the power CPS
network is abstracted as a dual-layered network-directed unweighted graph according to topology correlation
and coupling logic, and the asymmetrical balls-into-bins allocation method is used to establish a ‘‘one-to-
many’’ and ‘‘partially coupled’’ non-uniform power CPS characterization model. Subsequently, considering
the directionality between the cyber layer and the physical layer link, the probability of percolation flow
is introduced to establish the propagation dynamic equations for the internal coupling relationship of each
layer. Finally, the risk propagation threshold is numerically quantified by defining the survival function of
power CPS network nodes, and the validity of the proposed method is verified by the IEEE 30-bus system
and 150-node Barabasi-Albert Model.

INDEX TERMS Electric power CPS, interdependent network, percolation probability, propagation
dynamics.

I. INTRODUCTION
With the advancement of smart grid strategy, a large number
of electrical equipment, data collection equipment and com-
puting equipment are interconnected through two physical
networks: the power grid and the cyber network. Traditional
power systems with physical equipment as the core have
gradually evolved into highly coupled Cyber Physical Sys-
tems [1]. A power CPS integrates the physical environment
of the computing system, communication network and power
system through 3C technology to form a multi-dimensional
and heterogeneous complex network system with real-time
perception, dynamic control, resource optimization, cyber
fusion and interdependence [2], [3]. It is because of this
dependency that the security of the cyber system can signif-
icantly affect the operation of the physical system. The risks

in the cyber system space may also lead to power outages in
the power grid [4].

In recent years, experts and scholars at home and abroad
have studied and summarized the causes and laws of power
accidents over the years, and they have found that when the
failure rate of cyber system components exceeds a certain
level, power system accidents occur [5]. The existence of
cyber system risks such as attack behavior, security risks,
and risk explosion may lead to the abnormal operation or
failure of components, and such failures may propagate from
a single component to the entire power grid. Due to the high
degree of coupling in a cyber-physical system, even if the risk
is small, once it propagates, the butterfly effect it generates
may propagate over a wide range, which will adversely affect
the cyber system and the power grid. When the risk causes
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the loss of parts beyond a certain limit, it may even cause a
large-scale blackout at a critical value.

Therefore, determining the critical condition of security
risks that can widely propagate in the power CPS network or
the assessment of a security risk propagation threshold is of
important theoretical and practical significance. The security
risk propagation threshold has always been a primary concern
in the study of complex network theory [6]. In a typical
complex network, there are two main methods for assessing
security risk thresholds of a power CPS network:

1) One is the use of the dynamical equation of propagation
based on the epidemiological propagation model [7], [8],
wherein the SIS and SIR propagation models are the two
most widely used classical propagation models [9], [10].
However, the use of this model requires the network under
study to be a uniform single network, and the model has strict
conditions for use and low universality. Although the actual
power CPS network is a non-uniformly coupled network, the
above method is no longer applicable.

2) Another method is to set up a time-domain discrete
differential equation group for transmission of power based
on the reduction theory [11], [12] and establish a time-domain
discrete mathematical model for cyber flow using finite
automata [13], [14]. In power CPS, there are essential dif-
ferences in the transmission mechanism between power flow
and cyber flow. It is difficult for this method to fully consider
the characteristics of these two flows [15], and this method
ignores the overall dynamics of the network. The analytical
expressions are mostly implicit function expressions, and it is
difficult to present the solving method.

Based on existing research, this paper considers the direc-
tionality and coupling relationship of the link lines between
the cyber network and the physical network in the power CPS
network and establishes the power CPS network characteri-
zation model. Then, on this basis, this paper uses the theory
of percolation flow to propose the risk propagation dynamic
model of a power CPS network and provide a numerically
quantitative evaluation of the model by defining the sur-
vival function of the power CPS network node. Finally, this
paper illustrates the effectiveness of the method by practical
examples.

II. CHARACTERIZATION MODEL OF NON-UNIFORM
POWER CPS NETWORK
The quantitative assessment of the risk propagation threshold
for power CPS networks first requires an effective and real-
istic network model. From the perspective of interdependent
networks, there is an interdependence relationship between
cyber networks and physical networks. That is, the cyber
network is the ‘‘brain’’ and control system of the physical
networks; the physical network provides energy for the cyber
network [16], and they are interdependent and coupled into
a two-tiered complex physical cyber fusion system. Most
existing power CPS network modeling uses ‘‘one-to-one’’
coupling [17]; however, in an actual power system, a cyber
node can only control one physical node, and one physical

node can provide energy for multiple cyber nodes. In terms of
the number of deployments and control methods, the number
of cyber nodes is much larger than the number of physical
nodes. Therefore, the dependency between the physical net-
work and the cyber network node is ‘‘one-to-many’’ coupling.
There are such nodes in the actual power system: it is highly
autonomous and does not depend on the coupling network to
be able to operate normally. Therefore, the ‘‘partial coupling’’
of nodes is more in line with the characteristics of the actual
power CPS network.

Because there are many differences in the connection
modes and types of equipment for power CPS, to construct
the characterization model of a non-uniform power CPS,
the following definitions and assumptions are made based on
complex network theory in this paper:

1) Taking the plant station level as the research unit,
the cyber network (including the cyber systems and dispatch
centers of each power station) and physical sites (including
power plants, substations, and converter stations) are con-
sidered to be equivalent cyber nodes and physical nodes,
respectively.

2) The communication line between the cyber sites is
equivalent to the edge of the cyber network. The transmission
line between the physical sites is equivalent to the edge of the
physical network.

3) Considering the directionality and dependencies
between the links of the physical network and the cyber
network, the links between the layers are undirected edges,
and the edges between different layers are directed edges.

4) Loops and multiple edges on the line are merged.
Based on the above definitions and assumptions, the topol-

ogy of the cyber network and the physical network is
abstracted based on the complex network theory and
expressed as two unweighted partial directed graphs
Gc and Gp, where Gc represents the cyber network and Gp
represents the physical network.

A. PHYSICAL LAYER CHARACTERIZATION
The physical layer model can be abstracted as a complex
network unweighted graph, Gp =< Vp,Ep >, where Vp is
the node (power plants, substations, and converter stations),
Ep is the edge (transmission lines), Vp = {1, 2, 3 . . . ,Np} is
the node set of the physical network, Ep = {Epij} is the set of
connection edges of the physical network, and Ap = (apij) is
the adjacency matrix of the physical network. Edges between
physical layer nodes do not consider the direction, nor do
they consider the capacity between the edges. In the coupling
model, if a physical node fails, the cyber node that depends
on its energy also fails.

B. CYBER LAYER CHARACTERIZATION
The cyber network node is the control and processing center
of the corresponding physical layer network node. In the
cyber model, all relevant functions are considered to be com-
pleted in the abstract node. Similar to the physical layer
model, the cyber layer model is abstracted as a complex
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network weightless graph, Gc =< Vc,Ec >, where Vc is the
node (server, computing device, and data acquisition device),
Ec is the edge (communication line), Vc = {1, 2, 3 . . . ,Nc}
is the node set of the cyber network, Ec = {Ecij} is the set
of connection edges of the cyber network, and Ac = (acij) is
the adjacency matrix of the cyber network. Edges between
cyber layer nodes also do not consider directions. In the
coupling model, if a cyber node fails, the cyber node cannot
communicate with its neighbor nodes. At the same time,
because the invalid cyber node controls the corresponding
physical node, its corresponding physical node also fails.

C. CYBER-PHYSICAL COUPLING
CHARACTERIZATION MODEL
Through the above modeling method, an independent physi-
cal layer model and cyber layer model are obtained. Because
there are ‘‘one-to-many’’ and ‘‘partially coupled’’ dependen-
cies between the physical network and the cyber network,
it is necessary to couple the two interdependent networks
into a two-layer network model using an effective method.
A large amount of data shows that the physical network and
cyber network are in line with the characteristics of scale-
free networks, and the degree distribution of nodes meets
the power-law distribution characteristics. This paper builds
a two-layer coupling network based on the asymmetric Balls-
into-Bins distribution algorithm [18]: only one node in Gc
supports linking to a node in Gp, and each node in Gp can
link to multiple Gc nodes.
The sizes of the physical network and the cyber network

are denoted by |Gp| and |Gc|, respectively. To allocate links
between the physical layer and the cyber layer nodes, it is
assumed that the nodes in Gp are all bins, the nodes of Gc
are balls, and |Gc| is independent and evenly put in |Gp|. The
probability that each ball is assigned to the i-th bin is 1/|Gp|.
For any 1≤ i ≤ |Gp|, all balls are assigned to the i-th bin by
lpi. |Gc| is independent and evenly put in |Gp|. The probability
that each ball is assigned to the i-th bin is 1/|Gp|. For any
1≤ i ≤ |Gp|, all balls are assigned to the i-th bin by lpi,

Pr(lp,i = k) =
(
|Gc|
k

)
·

(
1
|Gp|

)k
·

(
1−

1
|Gp|

)|Gc|−k
(1)

The Gc nodes supported by each node in Gp obey the
binomial distribution B (|Gc|, 1/|Gp|). In this system model,
the link from Gp to Gc is directional. If there are two edges
from Gp to Gc, it indicates that there is interdependence
between the two points in Gp and Gc. For the ith node
in Gp, one link is randomly selected from its k links as a
bidirectional link. This means that the Gp node supports the
Gc node and the Gc node controls the i-th Gp node. For any
1 ≤ i ≤ |Gp|, 1 ≤ j ≤ |Gc|, and defined event εij, the j node
inGc controls the i node ofGp. For any defined event εj, select
the j node in Gc as the operation center. When εi,,j ∩ εh,j = ∅
and i 6= j, then:

Pr(εj)=
|Gp|∑
i=1

Pr
(
εi,j
)
=

|Gp|∑
i=1

Gc|∑
k=1

Pr
(
lp,i=k

)
·
k
|Gc|
·
1
K

(2)

Because each node in Gc has only one internal link and
Gc is a scale-free network, the node degree distribution in
Gc follows the Bernoulli distribution, and formula (2) is
improved as:

Pr(εj) =
|Gp|
|Gc|
·

|Gc|∑
i=1

Pr
(
lp,i = k

)
=
|Gp|
|Gc|

(3)

It can be seen that the probability of two-way links in the
network is |Gp|/|Gc|. Through the above method, the charac-
terization model for a ‘‘one-to-many’’ partial coupling power
CPS non-uniform network can be established, as shown
in Fig. 1.

FIGURE 1. Power CPS coupling model.

III. CONSTRUCTION OF RISK COMMUNICATION
DYNAMICS MODEL BASED ON PERCOLATION
PROBABILITY
At present, there have been many simplifications for the
network. It is believed that physical node failure causes the
coupled cyber node to fail, and the failure of the cyber node
will also cause the physical node to fail [19]. However,
in a power cyber-physical system, important nodes (such
as substations) widely use an uninterrupted power supply
(such as UPS). Thus, node failure does not affect the normal
operation of the power system for a short period of time [20].
Therefore, when considering the control and dependencies of
the power CPS, when the cyber node fails, the communication
line may not be disconnected, and the physical node failure
may not necessarily cause the cyber node to fail. For this
reason, this paper considers the directionality and dependence
of the coupling between the cyber network and the physical
network. If node A is controlled by node B, node A will fail
when node B fails; if node A is linked to node B, node A
does not depend on node B. When node B fails, node A does
not fail. Because the propagation of risk in the network is
directional, hierarchical, and dynamic, when studying the risk
propagation mechanism in the power CPS network, the risk
propagation process can be equated to the deletion of nodes
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or edges in the coupling network. Here, we introduce the
probability of percolation to simulate the failure probability
of the nodes between the networks. The seepage probability
is based on the analysis probability based on the various
structures of the graph and its evolution process. It compares
the risk propagation process to the process in which the
points and edges in the network are infected with a certain
probability. That is, failure of the cyber node leads to the
failure of the physical node in the coupled network with a
certain probability 8, which leads to the propagation of the
next level of percolation. Taking Fig. 2 as an example to
simulate the failure process of cyber network and physical
network coupling.

FIGURE 2. The process of interactive transmission between the cyber
network and physical network. (a) Initial state. (b) Step 1. (c) Step 2.
(d) Step 3.

1) In the initial stage, there are 4 power nodes and 10 cyber
nodes running in the coupling network. When node 2 is
attacked in the cyber network, the failure propagates in the
network due to the coupling relationship between the net-
works, as shown in Fig. 2.

2) In the largest connected subgraph in the cyber network,
node 2 in the cyber network is linked to node 1 in the
physical network, and node 2 controls node 1. Therefore,
when deleting cyber node 2, it is necessary to delete node 1
and the corresponding edges. Because node 1 in the physical
network supplies power to nodes 1 and 3 in the cyber network
at the same time, when the nodes in the physical network
are deleted, nodes 1 and 3 in the cyber network must also
be deleted, as shown in Fig. 2(b).

3) Judging the maximum connected subgraph in the
physical network, it can be known that when the physical
network node 2 fails, the remaining nodes are valid accord-
ing to the dependence of the network, which further causes

the nodes 4, 5, and 7 of the cyber network to be disabled.
The physical network and the cyber network failed node are
deleted, and the result is shown in Figure 2(c).

4) By analogy, node 3 in the physical network is deleted,
and node 6 and node 9 in the cyber network are deleted at the
same time, as shown in Fig. 2(d).

5) When the fault propagation stops, only node 8 and
node 10 remain in the cyber network, and only node 4 in the
physical network can still function normally.

Based on the percolation theory below, by mapping the
intentional attacks of cyber nodes into random attacks,
the propagation dynamics equations are established for the
internal coupling relations of each layer. In this process,
the fault propagation begins with Gc, then affects Gp, then
returns to Gc, and so on, repeating the above process until
the system is stable. Before performing the percolation oper-
ation, it is assumed that a node will perform the percolation
operation only if the following conditions are met:

1) The node must be linked with a certain functional
node, otherwise it is considered to be invalid, except for the
autonomous node;

2) The nodemust belong to the largest connected sub-graph
of its own network; otherwise, it is considered to be invalid.

The communication process is shown in Fig. 3. The
node randomly attacks a proportion of Gc networks. Then,
the number of remaining functional nodes in the Gc network
is G′c1 = Gc · (1 − 8) = µ′1 · Gc, and the number of
nodes belonging to the largest connected subgraph in G′c1 is
set to Gc1,Gc1 = G′c1 · F(µ

′

1, λc). Among them, µ′1 and µ1
represent the remaining function nodes and the ratio of the

FIGURE 3. Flowchart of power CPS network penetration process.
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largest connected group to all nodes, respectively. F(µ′1, λc)
is the probability that a node belongs to the largest connected
group and λc is a power index.
According to the percolation flow, the propagation dynam-

ics equations for each stage are established as shown in Fig. 3.

A. GC NETWORK CLUSTER STATUS
First, a proportion8 of nodes inGc are randomly removed to
start the risk propagation of the power CPS network. At this
stage, the 8 · Gc nodes in Gc are deleted and the internal
links of these nodes are also deleted. When the link between
nodes is deleted,Gc is decomposed into clusters. At this time,
the remaining number of functional nodes in the Gc network
is G′c1.

|G′c1| = |Gc| · (1−8) = |Gc| · µ
′

1 (4)

Because it is assumed that only the nodes contained in the
largest connected subgraph can run, if this condition is not
satisfied, some nodes and related edges are deleted. Here,
we use Gc1 to represent the maximum connected subgraph
after a Gc fault:

|Gc1| = |G′c1| · F(µ
′

1, λc) = |Gc| · µ1 (5)

In the formula,µ′1 andµ1 represent the remaining function
nodes and the ratio of the largest connected group to all nodes.
F(µ′1, λc) is the probability that a node belongs to the largest
connected group, and λc is a power index (same as below).

B. GP NETWORK CLUSTER STATUS
In the first step, deleting the link between the nodes affects
Gp. Because Gc loses the link, some nodes and links in Gp
are also deleted. It is observed here that the links deleted in
Phase 1 include unidirectional links and bidirectional links
and now focus on bidirectional links because the nodes in Gp
depend on them. According to formula (3), the probability
that each node in Gp has a bidirectional link is |Gp|/|Gc|;
therefore, the expected number of deleted bidirectional links
is (|Gc| − |Gc1|) (|Gp |/|Gc|), which is also the number of
nodes that must be deleted inGp.G′p2 is used here to represent
the remaining node set in Gp. There are still two-way links in
the network:

|G′p2| = |Gp| − (|Gc| − |Gc1|) ·
|Gp|
|Gc|

= µ′1 · F(µ
′

1, λc) · |Gp| (6)

µ′2 = µ
′

1 · F(µ
′

1, λc) (7)

The largest connected group of G′p2 is represented by Gp2.

|Gp2| = |G′p2| · F(µ
′

2, λp)

= µ′2 · |Gp| · F(µ
′

2, λp) (8)

µ2 = µ
′

2 · F(µ
′

2, λp) (9)

C. DYNAMIC RECURSIVE EQUATION OF COUPLED
NETWORK RISK PROPAGATION
Repeating the above process, the entire network will reach the
final stable state, and a series of recursive equations can be

used to represent the remaining components of the different
stages of the network Gc and Gp, as shown in Table 1.

TABLE 1. Recursive equations of the remaining components of
Gc and Gp at different stages.

When the propagation behavior stops, the following equa-
tion is established:{

µ′2j+1 = µ
′

2j+3 = µ
′

2j−1

µ′2j = µ
′

2j+2 = µ
′

2j−2
(10)

Because there are no more components in the largest con-
nected subgraph in the two networks, here we order x =
µ′2j+1 = µ

′

2j+3 = µ
′

2j−1, y = µ
′

2j = µ
′

2j+2 = µ
′

2j−2. At this
point, we can obtain{

x = 8 · y · F(y, λp)
y = 8 · y · F(x, λc)

(11)

When 0≤ x and y ≤1 in both networks, the remaining ratio
of the nodes in the final steady state can be calculated by lim

j→∞
µ2j = y · F(y, λp)

lim
j→∞

µ2j+1 = x · F(x, λc)
(12)

At this point, a complete solution to the remaining compo-
nents of Gc and Gp is obtained and the nontrivial solutions of
x and y are solved. Then, the remaining number of nodes can
be calculated.

IV. QUANTITATIVE ESTIMATION METHOD FOR SURVIVAL
FUNCTION-BASED PROPAGATION THRESHOLD
Through the analysis of the process of the risk propagation
percolation, a series of recursive equations are obtained to
solve the remaining components of the network. However,
these recursive equations are implicit equations, and it is dif-
ficult to numerically quantify the risk propagation threshold
of the network. This paper solves this problem by defining
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TABLE 2. Symbols used.

the survival function of the power CPS network node, the key
part of which is the solution to µ2j and µ2j+1, which is also
equivalent to solving the x and y in the implicit function (11).
Table 2 shows the symbols used in this section:

The power CPS network threshold evaluation process is
shown in Fig. 4.

FIGURE 4. Flowchart of power CPS network threshold evaluation process.

First, we define the risk set of the power CPS coupling
networkDcps =< Ncps,Ecps >, whereNcps is a set of network
nodes that are at risk, Ecps is a set of directed edges. Ncps =
{R, S}, and Ncps is described by the node risk value R and the
node affected by the risk propagation factor S. R ∈ [0, 1] and
the value of S is represented by the probability that node Si
fails. Risk sets can formally store and express the risk status
of network nodes.

Then, the degree distribution function of the power CPS
network N is defined according to the distribution character-
istics of degree-free network node degrees [21]:

G0,n (u) =
∞∑
k=0

pr (dN = k) · uk (13)

The dN follows the internal node degree distribution func-
tion of the network N , and Pr(dN = k) represents the prob-
ability that a node has k internal links. Because the initially
established network model is a scale-free network, the degree
distribution of the network follows the power law distribution,
that is, Pr(dN = k) = k · k−λ, where k is a constant and the
power law index varies with different network structures.

After removing the 1-8 proportional node from the power
CPS coupling networkN , the survival function of the remain-
ing nodes is defined based on the risk set and the scale-free
network degree distribution function and is represented
by FN . {

FN (8) = 1− G0,N (u)
u = 1−8+8 · G0,N (u)

(14)

wherein, FN (8) ≤ 1, for a single infinite scale-free net-
work N that has a power index, when 2< λ <3, FN (8, λ) ∈
k ·81/(3−λ), and k is a constant.
Assume that the node degree distribution functions of Gp

andGc arePr(dp = k) = ka·k−λp andPr(dc = k) = kb·k−λc,
respectively, where ka and kb are constants. Combining the
equations, we can obtain a set of equations:

x = 8 · y · F(y, λp)
y = 8 · y · F(x, λc)
F(y, λp) = 1− G0,p(u1)
u1 = 1− y+ y · G1,p(u1)
F(x, λc) = 1− G0,c(u2)
u2 = 1− x + x · G1,c(u2)

(15)

Suppose F(y, λp) = k1 · y1/(3−λp) and F(x, λc) = k2 ·
y1/i(3−λc), where k1 and k2 are constants determined by theGp
andGc network structures, respectively. Equation (15) can be
simplified as follows:{

x = 8 · y · k1 · y1/(3−λp)

y = 8 · k2 · y1/(3−λc)
(16)

After eliminating y, we can obtain

x = k1 · k
(1+ 1

3−λp
)

2 ·8
2+( 1

3−λp
)
· x

(1+ 1
3−λp

)·( 1
3−λp

)
(17)

The right side of (17) can be reduced to C · xη, where

η = (1+
1

3− λp
) · (

1
3− λp

) (18)

When 2 < λp, λc < 3, η is far greater than 1. Here,
we can see that (17) has a trivial solution x = 0, which shows
that there is no node in the maximum connected sub-graph,
that is, due to the risk of wide propagation in the network,
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the network is caused to completely collapse. Additionally,
through computer simulation, it was found that when x > 0
and the removal ratio is greater than a certain value, the net-
work starts to completely decompose. By setting y = x as
the reference line, if the implicit function curve crosses the
reference line, it means the implicit function has a solution.
As shown in Fig. 5, when k1 = 2, λc = λp = 2.5,8 = 0.2,
the curves converge at 0.635, which implies that under this
network, the propagation threshold is 0.635, that is, when the
removal ratio is greater than 0.635, the network is completely
decoupled.

FIGURE 5. Effective solution of the curve.

Therefore, when the following formula is satisfied,
the threshold occurs:

k1 · k
(1+ 1

3−λp
)

2 ·8c
2+( 1

3−λp
)
= 1 (19)

Thus, the critical value for the solution of x is:

8x =
2+ 1

3−λp

√
k−11 · k

1
λp−3

2 (20)

Similarly, we calculate the critical point of y:

8y =
1+ 1

3−λc

√
k−12 · k

1
λc−3
1 (21)

The condition x, y ∈ [0, 1] is satisfied, and the system
threshold 8cps is the largest value in [8x ,8y]. Therefore,
(11) always has two solutions. 1) x = y = 0, which is a
simple solution. 2) The other depends on 8cps. If 8 > 8cps,
the entire system will crash; otherwise, the system’s largest
connected sub-graph will continue to work.

V. EXPERIMENTAL DESIGN AND ANALYSIS OF RESULTS
A. EXPERIMENTAL DESIGN
The proposed propagation dynamics model is used to simu-
late the seepage process of non-uniform power CPS networks.
The physical layer of the power cyber physical system is the
IEEE 30 node standard model. The cyber layer is a 150-node
scale-free network based on the Barabasi-Albert model with
parameters N = 150,m = 2,m0 = 3, and average
degree < k >≈ 4. Asymmetric balls-into-bins allocation

method is used between the two layers to establish a ‘‘one-
to-many’’ coupling method. Based on this, a coupling model
of 180-node power CPS constrained by various parameters
is constructed. The coupling network has 30 power nodes,
107 communication nodes, 43 load nodes, 21 power lines,
125 information lines, and 84 coupling branches. Part of the
network structure is shown in Figure 6. The association rela-
tionship is performed by using the Pajek simulation software
with flat visualization, as shown in Fig. 7.

FIGURE 6. 180 node power CPS coupled network structure.

FIGURE 7. 180 node power CPS coupling topology.

For the constructed 180-node power CPS ‘‘one-to-many’’
coupled network topology, the statistical topology degree
distribution is shown in Table 3.

It can be seen from the table that most nodes in the network
have degrees 1 and 2, and there are several nodes with large
degrees in the network. Such nodes are important nodes in
the network, and the nodes that are invalid or not functioning
properly have a huge impact on the entire network.
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TABLE 3. Distribution of network node degree.

TABLE 4. The variation of node failure ratio with 8.

B. EXAMPLE ANALYSIS OF THE EVALUATION MODEL
Random attacks and deliberate attacks were carried out on
the established models. The number of remaining nodes in
the power CPS network that accounted for the proportion of
all nodes in different attack modes was completely de-listed
from the entire network.

1) EVALUATION AND ANALYSIS OF NETWORK NODE
FAILURE RATE UNDER RANDOM ATTACK
First, based on the constructed one-to-many coupling net-
work topology of power CPS, the nodes in the cyber net-
work are randomly removed, and the infiltration process in
the entire coupled network is simulated by Java and Matlab
to calculate the maximum connectivity in the network of
each stage of seepage propagation. The number of subgraph
nodes is the ratio of the original network nodes. As shown
in Table 4, by continuously increasing the value of the
removal ratio 8, it was found that when the 8 increased to
0.39, the network began to de-column; when 8 increased
to 0.46, the maximum-connected sub-graph completely
collapsed.

Through the analysis of the results, it can be found that
there is a critical point 8cps in the power CPS coupling
network. When the removal ratio 8 is less than the critical
point, the proportion of the maximum connected subgraph
failed nodes does not change; when the removal ratio 8 is
greater than this critical point, the proportion of the failed
nodes of the largest connected subgraph gradually increases,
eventually equaling 1. Therefore, there is a threshold for the
number of attack nodes in the power CPS network. Above
this threshold, the network structure undergoes a qualitative
change, all nodes in the cyber layer and the physical layer fail,
and the fault range is extended to all nodes.

To further prove the above phenomenon and change the
network parameter setting, letGc = 1000,Gp = 10000,m =
2, and m0 = 3. Then, construct the BA-BA coupling network
and calculate the power index, respectively: λc = λp =

2.2, λc = 2.2, λp = 2.33, λc = 2.2, λp = 2.5 in the three
cases. The failure ratio of theGc network and theµ2j+1 phase
of the Gp network node changes with the removal ratio 8,
where the values and simulation results are shown in Fig. 8.

The analysis results show that with the disengagement of
the Gc network, the coupled network Gp is also decomposed,
and the double-layer networks are, respectively, disjointed at
the same stage. This also shows that in a dependent network,

FIGURE 8. The variation of node failure ratio at each stage of 8.

when a network is attacked, the network coupled with it is
also affected by the same strength. In addition, by analyzing
the network decomposition process of the µ2j phase and the
µ2j+1 phase, it can be found that when the failure rate of the
single-layer network node exceeds the threshold, the entire
coupling network is completely disjointed.

In the case where the above three network parameters
are unchanged, the change of the failure ratio of the entire
coupled network node with the removal ratio 8 is further
analyzed. The simulation results are shown in Fig. 9.

FIGURE 9. The variation of node failure ratio with 8.
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TABLE 5. The variation of node failure ratio with 8.

Through single-layer network and coupled network sim-
ulation analysis, it can be concluded that because the nodes
in the electric power CPS dependent network must rely on
the nodes of other networks, when a network is attacked,
the coupled network is also implicated, resulting in a cas-
cading failure phenomenon. For different structures in the
‘‘one-to-many’’ coupled node network, there is still a network
threshold phenomenon, and when the nodes of the same
proportion are removed, the network failure ratios of differ-
ent structures are also different. For networks with different
structures, the network propagation thresholds are generally
different.

2) EVALUATION AND ANALYSIS OF NETWORK NODE
FAILURE RATE UNDER DELIBERATE ATTACK
Similarly, a deliberate attack method was used for the above
experiment to further analyze the threshold of the coupled
network. It can be seen from Table 3 that there are 22, 24, 25,
and 28 nodeswith large degrees in the network.When the four
nodes are deliberately removed, the network is quickly dis-
connected, and the entire network is immediately paralyzed.
When an attacker has a deep understanding of the network
topology, a deliberate attack on an important node in the
networkwill have a destructive effect on the coupled network.
When deliberately removing a small degree node, the network
unwinding speed is equivalent to that when randomly remov-
ing a node. At this time, the change of the proportion of the
remaining nodes of the maximum connectivity subgraph with
the removal ratio 8 is shown in Table 5. When 8 increases
to 0.35, the network begins to de-collapse; when8 increases
to 0.41, the largest Unicom sub-graph completely collapses.

Using the same network parameters, let Gc = 1000,Gp =
10000,m = 2, and m0 = 3 and construct λc = λp =

2.2, λc = 2.2, λp = 2.33, λc = 2.2, λp = 2.5 in the
coupling scale-free network. In the deliberate attackmode, by
deliberately removing the node of the f8 ratio, the coupling
network µ2j stage Gp network and µ2j+1 stage Gp network
node failure ratio changes with the removal ratio 8 value.
The simulation results are shown in Fig. 10. On this basis,
we analyze the change of the node failure ratio with the
removal ratio devaluation of the entire coupled network under
the deliberate attack mode. The result is shown in Fig. 11.

Through the analysis of the simulation results, it can be
found that in the deliberate attack mode, as the removal ratio
increases slowly, the number of network failure nodes starts
to increase slowly, but when f8 increases to the network
threshold, the coupling network is quickly decomposed, and
the growth rate becomes increasingly fast. When the net-
work node removal ratio is only 0.2, the network is basically

FIGURE 10. The variation of node failure ratio at each stage of 8.

FIGURE 11. The variation of node failure ratio with 8.

completely flawed. When further deliberately attacking a
large number of nodes in the network, the entire network is
immediately in a state of collapse, and the damage of the
entire network is much larger than that of the random attack,
and the fault propagation is more serious.

3) COMPARATIVE ANALYSIS OF NETWORK THRESHOLDS
UNDER DIFFERENT COUPLING MODES
Under the above network parameter constraints, the network
risk propagation thresholds under the random attack and
deliberate attack mode of a ‘‘one-to-one’’ coupled network
and ‘‘one-to-many’’ coupled network are compared. The sim-
ulation results are shown in Fig. 12.

The simulation results show that the model and method
can effectively determine the risk propagation threshold of
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FIGURE 12. Network threshold comparison under different coupling
modes.

complex dependent networks. The network of different struc-
tures often has different propagation thresholds; compared
to random attacks, the impact of deliberate attacks on the
network is to a greater extent. Because the ‘‘one-to-one’’
coupling method oversimplifies the network structure, it is
considered that when a node fails, the corresponding node
also fails, and the directionality between the coupled network
topologies is not considered, leading to a larger removal ratio.
The network risk propagation threshold of the one-to-one
couplingmethod is larger than that of the ‘‘one-to-many’’ net-
work, and the network disjointing speed is too fast, whereas
the ‘‘one-to-many’’ network considers the directionality of
the coupled network, which is closer to the actual network
situation. The resulting threshold can better and more accu-
rately reflect the security performance of the network.

VI. CONCLUSION AND FUTURE WORK
Based on the characteristics of power CPS in smart grids
and the theory of interdependent networks, this paper takes
into account the directionality and interdependence between
the link between the physical network and the cyber network
and proposes a characterizationmodel for non-uniform power
CPS network. Based on this model, this paper uses the theory
of percolation to establish the dynamic model of the coupling
of a power CPS and then proposes the survival function of
the node to quantitatively evaluate this model. Simulation
experiments show that the proposed method can effectively
estimate the risk propagation thresholds of non-uniform and
partially coupled networks. The threshold level is related to
the scale of the power CPS network and the network topology
(the power exponent and coupling mode of the network),
and the risk propagation thresholds of power CPS networks
with different structures are also different. The results of
coupling network attacks are compared with random attacks
and deliberate attacks. It is found that the intentional attack
propagation behavior has a greater impact on the network.
At the same time, the security risk propagation threshold can
not only predict the critical point of risk explosion but also

be used as a standard to measure network topology security.
The greater the security risk propagation threshold of the
network topology, the more difficult the risk spread is and the
higher the security is of the network topology. According to
the threshold constraint, the critical value of the security risk
propagation burst of the power CPS can be defined, and the
prediction of the security risk explosion under the complex
system can be improved.

By further combining a new generation of artificial intel-
ligence technology to consider the hardware characteristics
and grid constraints of power cyber-physical systems, and
it is the next step of research to reveal the risk propagation
mechanism of power CPS network from the essence of math-
ematics, improve the predictive ability of network security
risk outbreak, and formulate corresponding defense strategy
according to the propagation path analysis.
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