IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 22, 2018, accepted October 23, 2018, date of publication November 9, 2018,

date of current version December 7, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2879811

An Efficient On-Demand Latency Guaranteed
Interactive Model for Sensor-Cloud

NGOC-THANH DINH™ AND YOUNGHAN KIM, (Member, IEEE)

Department of Electronics and Telecommunication, Soongsil University, Seoul 06978, South Korea

Corresponding author: Younghan Kim (younghak @ssu.ac.kr)

This work was supported in part by the Korea Government through the Institute for Information & Communications Technology Promotion
(IITP) Grant (Development of Content-Oriented Delay Tolerant Networking in Multi-Access Edge Computing Environment) under

Grant 2017-0-00613 and in part by the Ministry of Science and ICT, South Korea, through the Information Technology

Research Center Support Program, supervised by the IITP under Grant IITP-2018-2017-0-01633.

ABSTRACT Motivated by the Internet-of-Things (IoT) cloudification as the trend to implement
IoT applications, an efficient design for interactions between sensors and cloud is necessary. In this paper,
we propose an efficient interactive model that is designed for the sensor-cloud integration to enable the
sensor-cloud to simultaneously provide sensing services on-demand to multiple applications with various
latency requirements. In the proposed model, complicated functions are offloaded to the cloud, and only
the light-weight processes are executed at resource constrained sensor nodes. We design an aggregation
mechanism for the sensor-cloud to aggregate the application requests so that the workloads that are required
for sensors are minimized, thereby saving energy. The latency of sensing packets from sensor-to-cloud is
controlled by the sensor-cloud based feedback control theory. Based on the feedback from the sensor-cloud,
physical sensor nodes optimize their scheduling accordingly to save energy while maintaining the latency
of all sensing flows routed through them satisfied the requirements of applications. Extensive experimental
and analysis results show that the proposed model effectively controls the latency of sensing flows with a
low signaling overhead and a high energy efficiency compared with the state-of-the-art scheme.

INDEX TERMS Sensor cloud, IoT cloud, interactive model, latency guarantee, sensor cloud interactions.

I. INTRODUCTION

Recently, the sensor-cloud integration [2]-[11] has been
receiving a great extent of interest among researchers and
is being considered as a promising solution to solve exist-
ing limitations of traditional wireless sensor network (WSN)
models such as the sensor system management and sensing
data usage model. Sensor-cloud infrastructure constituting
WSN and cloud is an expanded form of cloud comput-
ing for sensing services. By integrating WSNs with the
cloud [11], [12], the sensor-cloud is able to provide sensing-
as-a-service (SSaaS) for multiple applications simultane-
ously, unlike the traditional sensing model that is built for
a dedicated application. In particular, the application model
in the sensor-cloud architecture [7], [8], [10] is presented as
follows:

« Physical sensor nodes collect sensing information from
the real world and forward them to the sensor-cloud.

o The sensor-cloud virtualizes physical nodes into virtual
sensors [13] which provide sensing-as-a-services for
applications or users.

« Applications or users request the sensor-cloud for sens-
ing services on demand.

One of the main objectives of the sensor-cloud is the
enabling of a single WSN to produce sensing services for
multiple applications at the same time while allowing applica-
tions or users to specify their requirements of sensing services
on-demand based on their budget and expectation [14], for
example, allowing applications to request sensing services
with their packet latency requirement [7], [8], [10]. For many
vertical Internet of Things (IoT) applications (i.e., mission-
critical IoT or industrial monitoring), the latency guarantee
is very important. Although the existing studies indicate that
enabling on-demand latency SSaS is one of main features of
sensor -cloud [7], [8], [10], [11], a study wherein an efficient
interactive model to enable such a feature in the sensor-cloud
has not yet been conducted.

This paper proposes an efficient interactive model for
sensor-cloud integration that enables the sensor-cloud to
serve periodic sensing services on-demand to multiple appli-
cations with different latency requirements. The model auto-
matically adjusts the wakeup schedule of sensors to satisfy
applications’ latency requirements. In the proposed model,
arequest aggregator is designed for the sensor-cloud to aggre-
gate requests of applications so that the required workloads

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

68596

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6698-8419

N.-T. Din, Y. Kim: Efficient On-Demand Latency Guaranteed Interactive Model for Sensor-Cloud

IEEE Access

for physical sensors are minimized to save energy. The aggre-
gator enables a sensor to run only a single schedule for
serving multiple applications at the same time. A QoS con-
troller is implemented on the sensor-cloud using the control
theory [15], [17] to control the end-to-end (e2e) latency
of sensing flows, gather feedback information from sens-
ing flows, compute control parameters, and guide sensor
nodes for adaptation. A lightweight scheduling controller
implemented at local physical sensors is used to adapt their
scheduling following guidance from the QoS controller. The
scheduling adaptation have two objectives as follows. Firstly,
the latency of data flows routed through a node is maintained
within a pre-defined range that meets requirements of appli-
cations. Secondly, the energy efficiency of physical sensors
is optimized.

In our design, complicated functions are offloaded to the
cloud. With rich resources of the cloud, more complicated
functions can be designed and executed for more complicated
scenarios, which cannot run within the resource-constrained
WSNs. Our proposed scheme can support dynamic latency
requirements and multi-application scenarios while only
light-weight processes are required at sensor nodes. The pro-
posed scheme is compared to the state-of-the-art approaches,
Delar [16] and DutyCon [15] in which each resource-
constrained sensor is required to run multiple controllers as
well as multiple schedules for cases of multi-flows, thereby
limiting the scalability and increasing the complexity. In addi-
tion, each sensor node in DutyCon is required to collect
feedbacks for scheduling adaptation, thereby incurring high
energy consumption and overhead as shown in section I'V.
The interactive sensor-cloud model in this paper is proposed
to address the limitations of DutyCon. Compared to the pre-
liminary version [1], this paper provides more insight into
the detailed design of the model with new mechanisms like
scheduling mechanism and saving modes for the QoS con-
troller. We also analyze behaviors and features of the schedul-
ing controller and how it interacts with the QoS controller
under various scenarios. We add stability analysis for the
system and simulation-based validation. We conduct more
experiments and present new significant results in compar-
ison with the state-of-the-art scheme.

In summary, we make the following contributions in this
paper.

o« We propose and implement an efficient interactive
model for the sensor-cloud that supports the provision
of on-demand sensing services to multiple applications
with different QoS requirements.

o We design an efficient aggregation mechanism to min-
imize the number of application requests that are sent
to WSNs, and a distributed feedback control mech-
anism for interactions between the QoS controller
on the sensor-cloud and the scheduling controller at
the sensor nodes. The mechanisms guarantee that the
latency requirements of the applications are satisfied
while energy consumption of sensors is optimized.
(section III)

VOLUME 6, 2018

o Through our comprehensive experimental and analysis
results, we present that the proposed model effectively
guarantees latency of sensing flows satisfied application
requirements and is more energy efficient compared
with the state-of-the-art scheme [15], [16]. (section IV)

Il. RELATED WORK

Over the last few years, a number of researches have indicated
the limitations of conventional WSN models [7], [8], [10],
[11], [18], [19] such as the sensing management models,
sensing pricing models, and the data usage models. Recently,
the sensor-cloud model [2]-[8], [10] has been proposed as
a potential approach and is attracting growing interest from
both academia and industry. The sensor-cloud architecture
is motivated by combining the ubiquitous data gathering
features of conventional WSNs with the powerful storage,
processing, and distributing of cloud computing for sensing
data. The integration between WSNs and the cloud enables
us to build sensor data collections as sensing-as-a-service
where sensing data can be distributed and shared by mul-
tiple applications at the same time, which differs from the
conventional sensing data usage model for a single dedicated
application. As a result, the utility of WSNs could be greatly
enhanced. The sensor cloud can also enhance the sensor
resource utilization, sensor management, and play a role as
a middle interface between physical WSNs and the cyber
world.

Although several sensor-cloud architectures have been
proposed [7], [8], [10], [14], [20]-[22], they share similar
basic designs as follows. Physical WSNs are responsible for
sensing data that are then collected by the sensor cloud.
The sensor cloud is responsible for sensing data process-
ing, storage, and providing sensing services to customers
(users and applications). Physical sensors are normally vir-
tualized into virtual sensors that are emulations of physical
sensors on the sensor cloud. Based on virtual sensors, the sen-
sor cloud can provide customized view sensing services to
users/applications. In the sensor cloud architecture, sensing
services are expected to be customizable and on-demand
based on the users/applications’s demands.

A number of initial studies have been done for detailed
designs for the sensor cloud based on different approaches
for different applications. In the previous works, we imple-
ment a sensor-cloud architecture for smart cities [23], for
mobile computing applications [18], and distributed interac-
tive digital signage systems [24]. Giancarlo et al. [25], [26]
exploit the sensor cloud for body sensor network (BSN)
for body monitoring. Fortino er al [21] and
Hassanalieragh et al. [27] raise opportunities and challenges
of the sensor cloud, in other words, IoT cloud (i.e., Internet
of Things’ cloud) for e-healthcare. Misra et al. [20] integrate
a sensor cloud for military services where virtual sensors
are used to provide utility services for a battlefield scenario.
Neto et al. [28] design a smart component for industrial
sensor cloud which will act in the factory shop-floor, creating
digital machines by means of sensing services. In another

68597

IEEE Access

N.-T. Din, Y. Kim: Efficient On-Demand Latency Guaranteed Interactive Model for Sensor-Cloud

work, Lyu et al. [29] investigate a scheduling problem of the
sensor cloud for smart-living.

Several preliminary real implementations [24], [30]—-[32]
of the sensor cloud have been carried out for testbed.
Most of the designs use NFV (networking function
virtualization) [33], [34] for the implementation of cloud
and virtual sensors due to their advantages. The detailed
implementation of a sensor-cloud with NFV is presented in
our previous work [24] in which the sensor-cloud is designed
to manage sensors and sensing data used in our interactive
digital signage system.

For many vertical IoT applications like industrial mon-
itoring and mission-critical IoT, latency guarantee is very
important. In addition, the main objectives of the sensor
cloud are as follows 1) enabling a single WSN to provide
sensing information for multiple applications 2) allowing
users and applications to specifying their own QoS require-
ments on demand based on their budget and expectation [14]
(i.e., applications can request sensing services with their own
packet latency requirement [7], [8], [10]). Although existing
studies show that enabling on-demand latency SSaS is one
of the main features of the sensor cloud [7], [8], [10], [11],
a study of an efficient interactive model between WSNs and
the cloud to enable such a feature has not been conducted.

The conventional latency control and optimization mech-
anisms [15], [19], [35], [36] are not designed to support
multiple applications and shared WSNs as well as on-demand
requirements, so they may be not applicable to sensor-cloud.
The detailed review of delay-aware mechanisms is presented
in [35].

For the latency enhancement, a delay aware flooding algo-
rithm (DEF) [37] is proposed as an effective flooding scheme
which uses a delay-ware tree adaptive mechanism to enhance
the packet latency. The algorithm is designed especially for
broadcast traffic. DASF [38] is another scheduling and for-
warding scheme designed for packet latency optimization.
In the algorithm, the distribution of delay with given param-
eters and network model is estimated to enable each node to
determine the maximum duty cycle interval. Packets are then
transmitted to a selected node that satisfies the expected delay
constrained success ratio. For the same objective, feedback
control for adaptive duty cycle is used in [39] for adapting
the sleep period based on traffic changes dynamically for
reducing the packet latency. In [40], Least square error (LSE)
rule is exploited with mean distortion level to enhance the
delay and transmission power at each node.

In [41], an adaptive routing and scheduling mechanism for
delay guarantee is proposed based on exploratory search. The
main idea is that a sensor node searches all neighbor sen-
sors to find nodes that can offer better delay and poten-
tially shorten the end-to-end latency. The sensor node then
changes to better routes. If there is no router available to
satisfy requirements, the sensor node adjusts the schedul-
ing. DGRAM [42] and TDGEE [43] are similar protocols
which are based on coordinated sleep and time slot reuse
to optimize latency of a node in accessing the channel.

68598

However, DGRAM is designed for WSNs with uniform node
density only. In EDGE [44], delay minimization is achieved
by exploiting path diversity of an opportunistic forward-
ing technique. In another approach, delay priority based
scheduling policies are used in [45] to jointly optimize the
end-to-end delay constraints and throughput requirements of
a flow.

DutyCon [15] is a well-known dynamic duty cycle con-
trol scheme in conventional WSNs for end-to-end delay
guaranteeing. DutyCon addresses limitations of the static
uniform duty cycle approach [15] which is inefficient and
works only for static traffic conditions with fixed net-
work parameters. For applicability with resource-constrained
nodes, the authors simplify the e2e packet latency guar-
antee problem by decomposing the e2e problem into a
problem set of single-hop delay guarantee for each data
flow. At each hop, a node collects feedback locally to
adapt its duty cycle so that the single hop latency require-
ment is achieved. The advantages of DutyCon are as
follows. Firstly, DutyCon supports dynamic traffic rates.
Secondly, DutyCon supports multi-flow scenarios. There-
fore, we select DutyCon as the state-of-the-art technique in
this paper. However, DutyCon has the following disadvan-
tages. Firstly, DutyCon does not support multi-application
scenarios and dynamic latency requirement. Secondly, each
sensor is required to run multiple schedules and multiple
controllers in cases of multi-flows, thereby limiting the scal-
ability and increasing the complexity. Thirdly, each node
has to gather feedback information by itself for scheduling
adaptation, thereby incurring high overhead. The interactive
sensor cloud model in this paper is proposed to address the
limitations of DutyCon.

Ill. THE PROPOSED INTERACTIVE MODEL

We now describe the proposed sensor-cloud interactive model
in detail using on-demand packet latency requirements of the
applications. Note that the model can also be used generally
for other factors like sensing frequency, packet reliability, etc.
Table 1 and Table 2 present the list of symbols and the list of
acronyms used in this paper.

A. SENSOR-CLOUD MODEL
In this subsection, we present the model for sensor-cloud
integration, as illustrated in figure 1.

1) PHYSICAL SENSORS

physical sensors form a physical WSN. We use the following
attributes for each sensor: ID (i.e., a unique integer label);
type iy with i; € 7 = {11, 12,..., T3}, a set of sensor
types (i.e., temperature, humidity, light,...) registered with
the sensor-cloud; and S, which contains scheduling parame-
ters (i.e., wakeup and sleep interval) to determine how long
a node sleeps and wakes up every cycle. We model a sensor
node i as follows.

i=(p,ir,is), iz €T.

VOLUME 6, 2018

N.-T. Din, Y. Kim: Efficient On-Demand Latency Guaranteed Interactive Model for Sensor-Cloud

IEEE Access

TABLE 1. List of symbols.

Symbol | meaning

T a set of sensor types (i.e., temperature, humidity)
Te a of sensor types requested by application «

Ly dedicated latency requirement of an application «
A a set of applications A = (a1, az, ..., an)

LA a set of latency requirements of applications in A
LS the consolidated latency requirement of applications
fi a sensing flow routed through node %

F; a set F' of sensing flows routed through node %
Ll actual packet latency of a sensing flow f;

¥ a set of virtual sensors

Yo a set of virtual sensors for application o

S1 a set of sensing data types of interest

RI a region of interest of an application

qTAS queue threshold adjusting step

¢ a set of physical sensors

D; duty cycle of node ¢

oy the queue length value of ¢

©i the queue threshold value of ¢

Ts sleep period of a sensor in a cycle

Tw wakeup period of a sensor

TABLE 2. List of acronyms.

Acronym | meaning

SC scheduling controller

PSM Physical Sensor Manager

VSM virtual sensor manager

QTU queue threshold update

LPL low-power listening protocol
CCA Clear Channel Assessment
CoAP Constrained Application Protocol
TOSSIM | TOSSIM simulator in TinyOS
CC2420 a RF transceiver type for sensors

2) SENSOR-CLOUD

sensor-cloud consists of virtual sensors that are software
images of the physical sensors in cloud environment and
responsible for providing sensing-as-a-service to applica-
tions [7]. We use the following attributes for a cloud c:
ID, resources, a set of t sensor types, and price options P
(i.e., price P; for sensing services with the QoS Qi
(i.e., packet latency) provided by a sensor, price P, for
sensing services with the QoS @, provided by the sensor).
According to sensor-cloud’s pricing models [5], [7], [14], the
price which sensing service consumers are charged is corre-
sponding to the QoS (i.e., packet latency) that they request
(i.e., P1 > Py with Q1 < Q). We model sensor-cloud c as
follows.

¢ = (¢ip, ¢, cp).

Definition: a virtual sensor can be considered as a software
emulation of a physical sensor, which receives its data from
the underlying physical sensor and provides sensing data
distribution transparently to users/ applications [7], [8], [10].
Virtual sensors inherit all attributes from their corresponding
physical sensors and contain metadata for mapping purposes.

VOLUME 6, 2018

3) APPLICATION

We use the following attributes to characterize an appli-
cation «: ID, a set of sensing data types of interest oy
(i.e., temperature, humidity, or light,...), a region of inter-
est agy (i.e., sensors in the region RE;| or sensors in the
region RE>), and quality of service requirements (i.e., packet
latency requirement LY, sensing interval, or data accuracy).
As sensor cloud is proposed to make applications transparent
from the underlying physical WSNs [7], we specify only csy
for an application [23]. We later define a mapping function
to map ag; to ¥, a set of sensor types. Each application
a may request a different latency requirement L, namely
a dedicated sensing latency requirement. We model an
application « as follows.

o = (ap, asy, ogr, L)

B. THE INTERACTIVE OPERATIONS

As shown in figure 1, the model consists of a down-stream
from cloud-to-sensors (C2S) for application requests and an
up-stream from sensors-to-cloud (S2C) for sensing traffic.

The sensor-cloud is considered as a middleware between
physical sensors and applications, which virtualizes physical
sensors into virtual sensors [23]. The virtual sensor manager
(VSM) manages all information of virtual sensors such as
metadata and applications which are using their sensing ser-
vices, and their current queue threshold, etc.

A mapping function to map a set of physical sensor nodes ¢
(.e., ¢ = {p1,p2, 3 ...}, with p; is the i’ physical sensor)
to a set of virtual sensors y (i.e., y = {vi, v2, v3, ...}, with v;
is the i virtual sensor) is modeled as follows

f})hy—>vir(§) =V

Based on the virtual sensors, the sensor-cloud distributes
sensing services to applications. Sensing requests of applica-
tions are processed in the model as follows.

1) A new application o requests a sensing service by
subscribing its request to SSaaS of the sensor-cloud. Based
on the quality of service demand and the cost limitation [7],
the application sends a request with the following specifica-
tions (1) asy, (2) region of interest agy, and (3) packet latency
requirement LY.

2) First, the SSaaS translates gy to T C 7, a set of actual
sensor types (ST), using a mapping function that is modeled
as follows.

fsi—sst(as) =15 =(1j: 7 € T)

With known 1 and agy, the VSM is called to allocate y,,
a set of virtual sensors which will be responsible for providing
sensing services to the application. We model the allocation
function as follows.

Jviratioc(QRI, T&k) = 7/; = (V/ L Vji—>type € T;) and
Yj—>location € ORI
3) The application requests are then forwarded and aggre-
gated at the Request Aggregator.

68599

IEEE Access

N.-T. Din, Y. Kim: Efficient On-Demand Latency Guaranteed Interactive Model for Sensor-Cloud

Application 1

Sensing_Request(latsgcy Ll) Sen
Sensmg equest(latency

Application 2

coo Application N

g Request(latency L3)

Applications

Downstream
application requests

Request Ag egator
Requirement up
consolidated latency requlrem

update request(new queue threshold)@

SSaaS

/R@t aggregation()

<¢—» Virtual Sensor Manager

QoS Controller

Upstream

Physical Sensor Manager

@ Sensor-cloud

sensing traffic

update_request(new queue @
threshold)

Physical WSNs

\@ Scheduling optimization

FIGURE 1. The proposed interactive model for the sensor-cloud.

4) In the Request Aggregator, the application requests are
processed. The aggregator determines whether or not a new
consolidated latency requirement is found for the physical
sensors. We define the consolidated latency requirement of a
set of applications as a combined representative requirement
for the application set. When sensing data meet the consol-
idated latency requirement, dedicated latency requirements
of each application are also satisfied. If the aggregator does
not detect any change in the consolidated latency requirement
(current sensing data already satisfies the requirement of
the new application), the application request is hidden from
sensor nodes.

5) If a new consolidated requirement for latency Lf is
found, the aggregator pushes a request piggybacked with
the new information of L{ to the QoS controller for latency
requirement update.

6) The QoS controller executes processing the received
request. It first checks if L can be satisfied with current sens-
ing data or not. If current sensing data satisfy L¢, the request
is then hidden from physical sensor nodes. Otherwise, the

68600

QoS controller prepares a queue threshold update (QTU)
by calculating a new queue threshold for physical sensors.
The detailed procedures for the request aggregator and queue
threshold calculation are presented in the next sections.

7) If a QTU is required, the QoS controller sends
QTU requests to the PSM (Physical Sensor Manager) with
the new queue threshold.

8) The PSM executes a mapping from the virtual sensor
set ¥, to a physical sensor set £. The mapping function is
modeled as follows.

fvir—>phy(y) ={ :fp;)l;_>vir(§)

9) The PSM then sends the QTU request to corresponding
physical sensors.

10) Upon receiving a QTU request, the physical nodes
update their queue threshold and adapt their scheduling
accordingly.

An aggregation scheme for the Request Aggregator is pre-
sented in the next subsection.

VOLUME 6, 2018

N.-T. Din, Y. Kim: Efficient On-Demand Latency Guaranteed Interactive Model for Sensor-Cloud

IEEE Access

C. THE REQUEST AGGREGATOR

When the request aggregator receives a new application
request for sensing services targeting for a set of virtual
sensors, it queries the VSM about detailed information for
the virtual sensors (i.e., current consolidated latency, appli-
cations). It then classifies virtual sensors into a set (i.e, y:),
that are used by the same application set (i.e., A) including
the new application.

We assume a virtual sensor set y,* which is requested by an
application set A including the new application. Their current
consolidated requirement for latency is L;. A new application
« has a dedicated latency requirement LY. The request Aggre-
gator is responsible for aggregating the application requests
to determine a single consolidated latency requirement of
sensing flows, which meets latency requirements of the appli-
cations in A.

Definition: A sensing flow f; meets a dedicated latency
requirement LY of an application « if its packet latency Lﬁ
is equal or lower than LY.

The aggregation procedures for application requests per-
formed at the aggregator are shown in Algorithm 1.

Algorithm 1 Aggregation Procedures for New Application
Requests

INPUT: v, A, L{, LY

OUTPUT: updating-flag, new L if updating-flag = 1
Initialize: updating-flag = 0

Repeat
if LY < LS then
Li =LY

updating-flag = 1
return updating-flag;
end if
return updating-flag;
UNTIL all application requests are processed.

According to the definition above, the consolidated latency
requirement is determined as the minimum dedicated latency
requirement of applications.

Given a set with N dedicated latency requirements
LA = (L', L7, ..., LN) requested by a set of N appli-
cations A = (ay, a7, ...,ay) for a virtual sensor set y:.
We denote L™ as the minimum latency requirement,
min(L;", L2, ..., L), of N dedicated latency require-
ments. According to the algorithm, we have

LE=LM"" < L%, Ya;eA

Therefore, if sensing data from y: satisfies L{, the data
also meet dedicated latency requirements of all applications
in A. We thus consider LS = L™" as the optimal con-
solidated latency requirement to minimize the number of
update requests transmitted to physical sensors for saving
energy. As the current value of L{ is also the existing appli-
cations’ minimum latency requirement, in the aggregation
algorithm we only compare the requirement of the new

VOLUME 6, 2018

application LY with LS. However, we specify a general aggre-
gation function as presented below. The purpose of the gen-
eral aggregation function is to find the updated minimum
latency requirement of applications when there are changes
(receiving new requirements, updating requirements, or ser-
vice un-subscription).

aggregation(L?) = min(L*', L®, ..., L%)

If a new consolidated latency requirement is determined
(updating-flag = 1), the aggregator sends a requirement
update request to the QoS controller. If the current L still
meets requirements of the applications including the new one
(updating-flag = 0), no update is required. The request of the
new application is hidden from physical sensor nodes. In this
case, both the new client and the network service provider
are beneficial. In particular, the new client may receive better
quality sensing traffic while the network service provider
can get more revenue without extra overhead consumption
in the WSNs. This is also an advantage of the proposed
framework.

D. THE SCHEDULING CONTROLLER AND QOS
CONTROLLER

The QoS controller on the sensor-cloud is used to control
the e2e packet latency of sensing flows. The QoS controller
interacts with the scheduling controller at sensor nodes and
enforces sensor nodes to adapt their operations for guarantee-
ing the latency requirement or optimizing energy consump-
tion. The interaction between QoS controller and scheduling
controller happens in the following cases: 1) the aggrega-
tor observes a new consolidated latency requirement for a
sensing flow, which is not satisfied by current sensing data
2) the QoS controller detects the latency of a sensing flow
is higher or significantly lower than the current consolidated
latency requirement.

Sleep latency [36] is considered as the main source of
the e2e packet latency in duty-cycled WSNs. Queuing delay
is popularly used to indicate sleep latency as well as other
sources of delay like congestion due to high incoming packet
rate or low link quality.

In the literature of traditional WSNs, several studies pro-
pose to adapt duty cycle of a node to guarantee a certain
latency requirement based on queue managements [15]. How-
ever, it still lacks a study for the duty-cycle control based
delay guarantee in dynamic environments where a node may
concurrently serve multiple applications and delay require-
ments may dynamically change overtime. Dealing with such
a dynamic characteristic is desirable in sensor-cloud.

We propose to enable the sensor-cloud to control [17] the
queue threshold of sensor nodes to guarantee on-demand
e2Ze latency requirements of applications. The queue thresh-
old of a node is considered as the maximum size allowed
for messages on its queue. The queue threshold is not the
queue capacity and the value of the queue threshold can be
adjusted depending on the latency requirement. The general
idea of designing the scheduling controller based on the

68601

IEEE Access

N.-T. Din, Y. Kim: Efficient On-Demand Latency Guaranteed Interactive Model for Sensor-Cloud

queue threshold is that the scheduling controller of node i
tends to adapt its sleep period so that its queue length value ¢;
is equal to or lower than the queue threshold. For example, if a
lower queue threshold is assigned and the packet generation
rate is a constant, the node needs to transmit more packets in
a control interval [17]. As a result, the node has to shorten
its sleep period and wake up more frequently to send data
packets. The packet delivery latency is thus reduced. In our
design, the queue threshold at a node i is inversely propor-
tional with its duty cycle value and directly proportional with
the latency of its sensing flows. For that reason, by controlling
the queue threshold, the QoS controller in the sensor-cloud
can control the duty cycle of sensors and the packet latency
of their sensing flows. Note that the end-to-end packet latency
mentioned in this paper is the sensor-to-cloud packet latency
which consists of sensor-to-sink latency and sink-to-cloud
latency. With a wired connection, the sink-to-cloud latency
is low and stable compared with the sensor-to-sink latency.
Therefore, we focus on adapting sensor-to-sink latency to on-
demand latency guarantee.

The QoS controller is responsible for checking average
latency of sensing data flows in each control interval I,
to detect flows with longer latency or significant shorter
latency compared with the latency requirement. The
QoS controller also gathers feedback from different flows,
calculates new queue thresholds for related sensor nodes, and
provides guidance to enable physical sensor nodes to adapt
their scheduling locally so that 1) packet latency of all flows
is controlled to meet their latency requirements and 2) energy
consumption of a sensor is optimized.

In our design, the scheduling controller running locally
at a physical sensor node is responsible for adapting the
node’s wakeup scheduling based on the queue thresh-
old value under guidance provided by the QoS controller.
In duty cycled WSNs, a node periodically sleeps for a sleep
period T and then wakes up with a wakeup period T, which
is long enough for transmitting a data packet and receiving
an acknowledgment. The cycle length of the node is equal to
T, + Ts. We assume T, as a constant. The queue length in a
control interval k (the length of control interval is I,.) of node i
is computed as follows.

¢zk = max(0, ¢)l{{_l + Pself + Piyy — Pout) (D

where Py, Piy, and Py are the number of transmit-
ted packets, incoming packets, and self-generated packets
(sensing packets produced at the sensor node) from the con-
trol interval k — 1 to the control interval k, respectively.
We denote P; as the number of input packets at the node i,
with P; = Pgejr + Pjy. We calculate Py, = RT\ 1. /(T +Ty),
with R as the packet transmission success ratio.

The QoS controller calculates queue threshold for a node
as follows.

Given a WSN modeled as a directed graph G = N, L
rooted at sink node which consists of a set of sensors N, a set
L of links, and a set F' of sensing flows. Each sensing flow
fi € F originated from the source node i is forwarded through

68602

1’s intermediate nodes, then to the sink and the sensor-cloud.
We assume f; has a latency requirement of Lj:" and denote
Lﬁ;, @i, and "™ as the current actual latency value of the
flow, the current queue threshold value, and the maximum
queue threshold value of i, respectively. We set ¢;"** equal to
queue capacity of i. We use average duty cycle as an indicator
for energy efficiency of a sensor node, and denote D; as the
average duty cycle of node i. The objective of the controllers
is to improve energy efficiency of the sensor node i (i.e.,
by minimizing D;) while maintaining the latency of all sens-
ing flows routed through i satisfied the latency requirement of
applications. We summarize the objective function as follows.

Objective: minimize D; subject to Lfi < Lﬁ‘v’fl

We first deflne an expected range for the latency of a flow
fias [Lf’ — €, L "]. The guard time € helps detect incipiently
excessive latency. The greater the value of € the quicker the
sensor-cloud can react to avoid the potentiality that the actual
latency of the flow does not meet the latency requirement
(for example, when the measured latency falls into the range,
QoS controller shouldn’t increase the threshold value further
to stop a growing trend of the latency, that may potentially
result in an excessive latency). If L{fl < LJ:” — €, energy
efficiency of sensors in the flow is not optimized. The reason
is that the sensors can still reduce their duty cycle for saving
energy so that Lﬁ falls into the expected latency range and the
latency requirement is still satisfied. We name this as a false
positive case. If L‘,,fz > L]:", this sensing flow does not satisfy
its latency requirement. We name this as a false negative case.

If the QoS controller detects an occurrence of a false
positive case or a false negative case at any flow f;, the con-
troller will adjust queue threshold value of corresponding
nodes to force the nodes for optimizing their energy con-
sumption locally and adjust latency of f; into the expected
range. We define the queue threshold adjusting step (gTAS))
of a node i as the gap value of its queue threshold in each
adjustment (for example, if gTAS; = 2, the queue threshold
of i is increased by 2 units in each adjustment).

The queue threshold adjusting step quAS,) of node i in f;
is proportional to the gap §. between Ly, and L i

8 = Lfi — L

We assume node i (i.e., a relay node) has a set F; of m
sensing flows F; =fl-1, R lj, . ,fi’" routed through i. Each
flow f; J may have a different gap & J- In our implementation,
we use the maximum value among "values of 8 to calculate
qTAS; as follows.

8 = max(8fv1, e, §f;m)

The purpose is to achieve a target that all sensing flows sat-
isfy their latency requirement. According to this policy, sat-
isfying the latency requirement of sensing flows at a node is
set a higher priority compared to saving energy. For instance,
if node i has flow f;* with an excessive delay (8fix > 0) and
another flow fiy having latency lower than the requirement

VOLUME 6, 2018

N.-T. Din, Y. Kim: Efficient On-Demand Latency Guaranteed Interactive Model for Sensor-Cloud

IEEE Access

(Sf,v < 0), our mechanism adjusts the node queue threshold
according to f7*.
The gTAS; (if required) is calculated as follows.

—min(@;, @; * 8f; /Lj;%) if false negative

min(@™™ — @i, @; * |5ﬁ|/LJ;") if false positive
2

1

After calculating ¢7AS for update required nodes
(i.e, nodes having sensing flows’ latency out of the expected
range or having a new consolidated requirement), the QoS
controller sends QTU requests to the required nodes through
the PSM, and updates the queue threshold value of corre-
sponding physical and virtual sensors. Upon the reception
of a QTU request, node i updates its queue threshold ¢; =
©;+qTAS;. The scheduling controller (SC) of i then computes
its new sleep period Tsk for a new control interval k [17] to
enhance its scheduling as follows.

TS =T Mgl — ¢ —06f -0l)

where 6 and X are the two control parameters [17] of SC,
which are simply real numbers reflecting the weights of the
remaining queue capacity (<pf‘ — ¢f) and the queue changing
velocity (¢f - ¢>f_1) in calculating the sleep period of a
node. The selection of 6 and A is presented in section IV.
The scheduling controller adapts 7 based on the value of
queue threshold gaf , queue changing velocity (qbf —¢>fc ~1),and
remaining queue capacity (gof - ¢>f‘) of anode. The remaining
queue capacity reflects the current traffic condition of a node
in comparison to the queue threshold. The queue changing
velocity indicates changes in incoming traffic rate as well as
the successful packet transmission ratio.

We also formulate the second version of SC (SC2) by
directly considering R as follows.

TE =T RS —¢H) —0(0f —¢f ™) @)

qTAS; =

The performance comparison of SC2 and SC is presented
in section IV to verify the necessity of considering R directly
as used in DutyCon [15].

It is easy to prove the proposed controlled system is stable
according to standard procedures of control theory [17]. The
stability analysis is presented in section IV.

1) FEATURES OF THE SCHEDULING CONTROLLER

We now analyze behaviors and features of the schedul-
ing controller regarding its parameters separately as fol-
lows. The scheduling controller at a node operates based
on guidance of the QoS controller as well as local queue
conditions.

For gal(‘ , when the QoS controller detects that latency of a
sensing flow through the node i does not meet the require-
ment, the QoS controller requests node i to reduce its queue
threshold. As the queue threshold value is decreased, its
local scheduling controller also reduces the sleep period for
quickly adjusting latency of the flow to an expected range.
On the contrary, once the QoS controller detects that latency

VOLUME 6, 2018

of a sensing flow through i falls below the expected range
which indicates an energy wasted scenario, the QoS con-
troller requests the node to increase its queue threshold. As a
result, the local scheduling controller at the node increases its
sleep period so that its energy consumption is reduced while
latency of the flow is adjusted to the expected range. In this
way, the QoS controller controls the queue length and latency
of flows through the node.

For ((pl(‘ — qbf‘), if the value of remaining queue capacity is
large, the scheduling controller allows the node to sleep more.
The smaller the remaining queue capacity the earlier the node
must wake up to transmit packets. A queue threshold protec-
tion mechanism is also implemented as follows. Whenever
the queue threshold is violated or there is a packet drop due
to queue overflow (i.e., the incoming traffic rate increases
significantly), the node reduces its sleep period to enable it
to forward packets faster to 1) protect the queue threshold
2) ensure the delay requirement under dynamic traffic rates.
Note that the queue threshold value is normally smaller than
the queue capacity.

For (d)f — ¢f_1), when incoming traffic rate at the node
increases, the scheduling controller tends to reduce the
sleep period of the node for accelerating packet forward-
ing and avoiding excessive queuing delay. Oppositely, when
the incoming traffic rate decreases, the controller tends to
allow the node sleeping more if latency of flows through
the node allows. In other cases, assuming other parameters
(i.e., traffic rate) as constant, if the successful transmission
ratio is decreased (i.e., in highly interference scenarios),
the node’s queue length will be increased up according to (1).
According to (3), the node has a tendency to reduce its sleep
period and wake up more frequently to transmit packets.
Combining (3) and (1), we find that the scheduling controller
at a node indirectly controls the latency of all sensing flows
routed through the node.

By exploiting powerful resources of the cloud, our model
enables the QoS controller to gather latency feedback infor-
mation of sensing flows, aggregate, and calculate queue
threshold for sensor nodes. Each related sensor node receives
and processes only one request. In other hands, if sensor
nodes calculate the queue threshold by themselves, they are
required to gather all latency feedback information from the
sensor-cloud. This may create flooding in the constrained
WSNs which is obviously inefficient. In addition, if a node
has multiple flows routed through it, constrained sensor nodes
may not have enough resources for gathering, containing
feedback information of all flows, and for queue threshold
computation.

2) LAZY MODE AND ACTIVE MODE OF QOS CONTROLLER

False cases may happen to a flow when 1) it has a new
consolidated latency requirement, 2) network conditions are
degraded severely, or 3) when burst packet transmission
from some nodes may affect the latency of several sens-
ing flows. However, burst packet transmission rarely occurs
in periodic sensing services. After detecting false cases

68603

IEEE Access

N.-T. Din, Y. Kim: Efficient On-Demand Latency Guaranteed Interactive Model for Sensor-Cloud

(i.e., both positive and negative), the controllers force latency
of sensing flows into the expected range. After that, latency
of the sensing flows may be kept stable within the expected
range.

To save computing resource for the QoS controller, we pro-
pose two operation modes for the QoS controller including
lazy mode and active mode. Whenever a false case occurs
to a flow, the active mode is enabled for the QoS controller.
Under the active mode, the QoS controller runs with a short
control interval, 19", to quickly detect and force latency of
the sensing flow into the predefined expected latency range.
If the QoS controller finds that latency of the sensing flow
achieves a stable state within the expected range during a
period equal to v consecutive control intervals and there
is no additional false cases, the QoS controller switches its
operations to lazy mode. In lazy mode, the QoS controller

. . lazy . .
runs with a longer control interval I, for saving computing
resources. In adaptive duty-cycled WSNs, each sensor may
operate with a different duty cycle, thus duty-cycled infor-
mation of a sender may need to be notified to its receiver. For
this feature, we reuse the technique [39], [46], [47] imple-
mented in our previous study for adaptive duty-cycled
schemes.

IV. PERFORMANCE EVALUATION

We conduct analysis and extensive experiments with a net-
work [48] consisting of one sink node, 54 temperature
sensors and 54 humidity sensors, one sensor-cloud, with
7 different applications. As implemented in our previous
work [49], HTTP-CoAP converter [49] are used to convert
HTTP requests of applications to CoAP requests. Each appli-
cation is assumed to request for one of the sensing data
types above. Application requests are encoded with XML
templates, which are then decoded using SensorML inter-
preter [23]. LPL and CTP [36], [46] are used as a duty
cycled MAC protocol and tree-based data collection protocol,
respectively. The QoS controller measures the latency of a
flow based on packets’ timestamps. We use the radio noise
model with closest-fit-pattern matching (CPM) [36]. To mea-
sure the costs like duty cycle, we record state changes in the
radio and use counters to accumulate time period in each
state. We use the default CCA checks setting (up to 400 times)
of the TinyOS LPL. Table 3 shows detailed parameters used in
the simulations. For other parameters, we use default values
of TOSSIM radio model for CC2420. The sensor-cloud with
virtual sensors can be implemented prototypes with Net-
work Function Virtualization (NFV) [33] approach available
in OpenStack [50] as presented in our previous work [24].
Results are obtained with the scheduling controller SC if the
controller SC2 is not mentioned explicitly. The performance
of the proposed model is compared with [15] in terms of
scalability and the number controllers for the cases of multi-
flows, and with [15], [16] in terms of energy efficiency and
packet latency for the case of a single latency requirement
because Delar [16] considers the case of a single latency
requirement only.

68604

TABLE 3. Parameters.

parameter value parameter value

Tw 10 ms Data payload 50 bytes
Platform CC2420 CCA checks 400 times
Tx energy rate | 17.4 mA Rx energy rate 18.8 mA
Lx energy rate | 18.8 mA A 0.0005

0 0.001 Igettve 1-5s
1=y 1 min Tx range 20 m

€ 5 —10%L, | Sensing interval | 5

—— Measured end—to—end latency

— — — Latency requirement 1

With new consolidated latency

Point with exessive requirement
latenc;

End—to—end latency (s)
w

0 100 200 300 400 500 600 700
Time (s)

FIGURE 2. End-to-end latency over time with different number
applications.

A. DYNAMIC NUMBER OF APPLICATIONS

Figure 2 presents the end-to-end latency over time of a
sensing flow compared to its consolidated latency require-
ments once seven applications are deployed. Each application
requests for sensing services (in an ascending order) with a
request interval of 100 s. Latency requirement requested by
applications 1% to 7" are 5.0 s, 3.0's, 4.0 s, 6.0 s, 2.0 s,
3.5 s, 2.5 s, respectively. The purpose of selecting a variation
of latency requirements is to expose performance behaviors
of the model under a different number of applications.

The figure shows that the e2e latency values fluctuate
around the line of latency requirement in all cases. In normal
cases, the latency graph fluctuates only slightly due to a small
latency variation at each hop. Significant changes in the end-
to-end latency occur once there are new application requests
with a new consolidated latency requirement. Whenever a
new consolidated latency requirement (i.e., at 400 s and 100 s)
or sudden excessive latency (i.e., at 180 s and 590 s) is
detected as presented in the figure, the controllers force the
packet latency quickly into the expected latency range. The
e2e latency of sensing flows is maintained and controlled
well closely under the consolidated latency requirement. The
results prove that the proposed model guarantees end-to-end
latency effectively.

Average duty cycle of sensors along the flow under a
various number of applications is presented in figure 3.
Figure 3 shows that duty cycle of sensors using our proposed
model does not rely on the number of application requests, but
the consolidated latency requirement. In particular, duty cycle
of a node changes when it obtains a new consolidated latency

VOLUME 6, 2018

N.-T. Din, Y. Kim: Efficient On-Demand Latency Guaranteed Interactive Model for Sensor-Cloud

IEEE Access

—— The proposed model

Duty cycle (%)
(¢

1 2 3 4 5 6 7
Number of applications

FIGURE 3. Average duty cycle vs. number of applications.

requirement (for example, under the request of 5" and 2"¢
applications). The framework actually hides sensing requests
by the 3"¢, 4" 6™ and 7™ applications from sensors. Adding
those applications does not affect duty cycle of sensors since
their dedicated latency requirement is already satisfied based
on the current consolidated latency requirement. Although
wireless sensor networks are shared among multiple appli-
cations, each sensor node is required to operate with only
a single schedule. This indicates that the model facilitates
sensing data reusability among applications and minimizes
the number of requests sent to physical sensors to conserve
energy. In this way, the model can achieve a good scalability.

As the current duty-cycled control schemes (i.e., Duty-
Con) for the e2e latency guarantee do not support multiple
applications with latency requirement changes, we compare
scalability between the proposed model with DutyCon in
experiments with a different number of flows.

B. DYNAMIC NUMBER OF FLOWS
In this section, we conduct experiments with a different
number of flows (from 1 to 7). Latency requirements for
7 flows are as same as those for the 7 applications described
above. We compare the proposed model to DutyCon [15],
the state-of-the-art latency guaranteed mechanism for tradi-
tional WSNs using control theory. Note that DutyCon also
supports multi-flow scenarios. In data collection traffic pat-
terns, each intermediate node may serve more than one sender
and sensing flows generated by different source nodes can
share the same intermediate node for packet relaying. Sensing
flows may have the different or same requirement for packet
latency. In DutyCon, a sensor node maintains a sleep schedule
and a controller for each flow. Therefore, each sensor may
be required to have several sleep schedules simultaneously
for multi-flow scenarios. As a result, a sensor may have to
waking up several times within a cycle when wakeup timers
of any of its sleep schedules fire. An intermediate node goes
to sleep only when all of its sleep schedules are in a sleep
state.

We do experiments with DutyCon and the proposed
scheme using a fixed latency requirement for sensing flows
through a node. We record behaviors of the sensor node

VOLUME 6, 2018

25
Q
2,
.8 Q ?
s Q
T 15} Q
g1 Q
: |o
on
£ 1f
g
=
w
0.5f
0
1 2 3 4 5 6 7

Number of flows

FIGURE 4. Signaling overhead ratio between DutyCon and the proposed
model vs. number of flows.

- The proposed model
61 I DutyCon 1

Required number of controllers within a node

Number of flows

FIGURE 5. Required number of controllers vs. number of flows.

when we add a number of additional flows routed through
the sensor.

Figure 4 illustrates the signaling overhead ratio of the
node operating with DutyCon and proposed model. In all
of the cases, the proposed model shows a lower overhead
even though overhead for QTU is taken into account. The
ratio increases considerably in proportional to the number
of sensing flows. The reason is that the sensor-cloud in the
proposed model gathers feedback information from flows and
computes the queue threshold value for the node. In DutyCon,
each sensor needs to operate multiple controllers for different
sensing flows and each sensor node is required to gather
feedback from all flows separately. The results can also be
explained using Figure 5 and Figure 6.

Figure 5 and figure 6 present the required number of con-
trollers and sleep schedules for a node when we increase the
number of flows through it. In the proposed model, all flows’
feedback information is aggregated by the sensor-cloud, thus
only one sleep schedule and one controller are required for
each sensor. In DutyCon, the number of sleep schedules and
controllers is proportional with the number of flows. This
leads to high overhead, increases the number of wakeups

68605

IEEE Access

N.-T. Din, Y. Kim: Efficient On-Demand Latency Guaranteed Interactive Model for Sensor-Cloud

I The proposed model
I DutyCon

Required number of sleep schedules

1 2 3 4 5 6 7

Number of flows

FIGURE 6. Required number of sleep schedules vs. number of flows.

7.5

7+ | —>— The proposed model
—+&— DutyCon

o
S

Average Duty cycle (%)
» o
A o o o

w
o

w

3 4 5 6 7
Number of flows

-
N

FIGURE 7. Duty cycle vs. number of flows.

for each sensor node, increase the complexity, and limits the
scalability of the overall system.

High signaling overhead and more frequent wakeups are
the main reasons which result in a high energy consumption
at nodes running with DutyCon compared to nodes running
with the proposed model, as illustrated in figure 7. Energy
consumption of DutyCon increases quickly when we increase
the number of flows. We find that the energy efficiency
improvement of the proposed model compared to DutyCon
is proportional to the number of flows.

C. SCALABILITY TEST

We now evaluate the scalability of the systems. We use a
stress testing method as follows. We conduct simulations
with an increasing number of sensing flows routed through
a node until it cannot accommodate a new flow due to out of
resources (processing, duty cycle, or storage). We use default
configurations of Skype motes in TOSSIM. At the end of
simulations, we compute the average number of flows that
each scheme can accommodate. We report the average results
of 10 runs.

Figure 8 shows the average number of sensing flows that a
sensor can accommodate in each scheme. The results indicate
that the proposed scheme achieves a significant scalability
improvement compared to DutyCon. While the proposed

68606

35
30t
w 251
2
o
= 20t
o
()
£ 15}
Z
10}
5,

DutyCon The proposed model

FIGURE 8. Scalability test: average number of sensing flows a sensor
node can accommodate.

TABLE 4. Controlling overhead ratios.

Parameter SC2/SC | DutyCon/SC
Average controlling overhead | 1.26 1.64
Average duty cycle 1.18 1.42

model can accommodate on average of 28.4 flows, that of
DutyCon is only 12.1 flows. This is due to the high overhead
characteristic of DutyCon as shown in figures 4, 5, and 6.

D. SC/SC2 AND DUTYCON'S OVERHEAD COMPARISON
IN NOISY ENVIRONMENTS

As SC2 directly considers the packet transmission success
ratio, similar to DutyCon, we are interested in evaluating
the control overhead of DutyCon, with SC and SC2 in a
noisy indoor environment (i.e., with dynamic interference)
as described in our previous work [46]. Controlling overhead
ratios are presented in Table 4.

Under stable network conditions, we witness that SC and
SC2 operate similarly while the controlling cost of SC2 is
only slightly greater than that of SC. However, in noisy
environments, the average controlling overhead of SC2 is sig-
nificantly higher than SC. The control overhead of DutyCon
is the most expensive. The reason is that SC2 and DutyCon
are very sensitive to changes in the channels. Changes in the
channels immediately affect the estimated value of R which
triggers adaptations and updates frequently. Considering R
directly may enable quick adaptation, but incurs high con-
trolling overhead. As a result, the average duty cycle of nodes
running DutyCon and SC2 are higher than nodes running SC.
In SC, small and temporary changes in the environment are
hidden from the controller. Environmental changes trigger
updates the SC controller only once they result in changes
in the queue output and input volumes.

E. DYNAMIC TRANSMISSION RATE

Through the previous experiments, we show clearly the ben-
efits of the proposed model in comparison with DutyCon
under a various number of applications and flows. We are now

VOLUME 6, 2018

N.-T. Din, Y. Kim: Efficient On-Demand Latency Guaranteed Interactive Model for Sensor-Cloud

IEEE Access

12

10 F =X The proposed model o -
—+& DutyCon
S —< Delar 8
E ol 4 |
Q
5 Y A
>
2 6r X 1
S
Q
)
<
5 oar 1
4
<
ot J
0
5 4 3 2 1

Packet generation interval (s)

FIGURE 9. Average duty cycle under various packet generation intervals.

—>*— The proposed model
—&— DutyCon

35F —<— Delar

Average packet latency (s)

3
5 4 3 2 1 0.5

Packet generation interval (s)

FIGURE 10. Average packet latency under different packet generation
intervals (the latency requirement is fixed at 5 s).

interested in studying the benefits and performance behaviors
of the proposed model compared to DutyCon and Delar [16]
when the traffic rate is changed. We conduct experiments
by changing the traffic rate in runtime while the latency
requirement is fixed at 5 s as follows. The packet generation
interval (/) of each sensor starts with a setting of 5 s and is
then decreased.

Figure 9 reports the average duty cycle of sensors running
with DutyCon, Delar and the proposed model when I is
decreased from 5 s to 1 s. When the packet generation interval
of source nodes decreases (i.e., the incoming traffic rate
increases), duty cycle of all nodes along the route increases.
However, DutyCon and Delar witnesses a faster increase in
duty cycle. Nodes running the proposed model consume less
energy than nodes running with DutyCon and Delar. The
gap between the proposed model and the two schemes is
increasingly greater when the incoming traffic rate increases.
The reasons discussed above can be used to explain the energy
efficiency improvement witnessed in the proposed model.
In addition, the improvement is achieved as the proposed
model solves a limitation of DutyCon which is interestingly
presented in figure 10.

Figure 10 shows the average e2e packet latency of a
flow under different packet generation intervals. When the

VOLUME 6, 2018

incoming traffic rate changes, controllers of Dutycon and the
proposed model adjust the scheduling parameters to meeting
the latency requirement. Because Delar doesn’t support the
automatic adjustment, separate experiments have been done
for each packet generation interval. In all schemes, average
packet latency is maintained below 5 s (the latency require-
ment). However, variation in the chart of DutyCon and Delar
is more significant than that of the proposed model. In some
experiments, we find that the latency is below 3.5 s. The aver-
age packet latency value fluctuates from 3.9 s to 5 s. While
latency values of the proposed scheme are controlled within
the expected range closely below the latency requirement,
latency values of DutyCon and Delar are considerably lower
than the requirement and not stable. This leads to wasted
energy consumption at sensor nodes because they may have
to wake-up more frequent than necessary to transmit packets.

The results of DutyCon can be explained using the follow-
ing reasons. First, the end-to-end packet latency of DutyCon
is controlled indirectly by multiple single hop controllers.
In each hope, DutyCon selects a sleep interval value for
nodes to ensure that the single hop latency is not greater than
the requirement for a single hop determined by DutyCon.
Variations in real latency values at every hop contribute to
a large variation of the end-to-end latency. Moreover, we also
observe that the adaptation of e2e latency in sensing flows
running DutyCon is slower than the proposed model because
all sensors are required to gather feedbacks. In addition,
nodes may not receive feedbacks for executing adaptation
at the same time. There is no control and validation on the
e2e latency directly in DutyCon. Second, DutyCon does not
consider to define lower bound for the e2e latency and to
control the packet latency of sensing flows within an expected
range. In other words, DutyCon is not optimized for energy
consumption of constrained sensors. In our model, the end-to-
end latency is controlled directly. An adjustment mechanism
is also designed to control the latency of sensing flows within
an expected range satisfied the requirement of applications
while energy consumption of sensors is optimized.

F. STABILITY ANALYSIS

In this subsection, we summarize the stability analysis of the
proposed system and verify conditions of the system stability,
following standard procedures of control theory [17].

In the steady state, gTAS — 0 and the measured end-to-
end latency should be within the expected range (L, — €, L;).
Therefore, we have the equilibrium for the latency at the
steady state, denoted as L**, as follows.

L —e<L¥ <L, 5)

In steady state, the queue length of a node converges to
its queue threshold. We denote P;* of node i as its average
incoming packet rate. Following standard procedures of con-
trol theory [17], we exploit the first-moment approximation
method to find the average steady state solutions of the
proposed system [51], [52] as presented in the appendix and
obtain the following results.

68607

IEEE Access

N.-T. Din, Y. Kim: Efficient On-Demand Latency Guaranteed Interactive Model for Sensor-Cloud

»
3

N e
o w o A
£

N
L

N
[9)]

| —©— control parameters (0.0005, 0.001)]

|| —— control parameters (0.02, 0.01) 4

-

Average queue length (packets)

o
S
.

0 100 200 300 400 500 600 700
Time (s)

FIGURE 11. Average queue length over time with the two different
groups of the control parameters (A = 0.0005; 6 = 0.001) and
(A = 0.02; 6 = 0.01).

g

o

o

>

o

2

=

[

%‘) 5t —6— control parameters (0.0005, 0.001)

2 ——— control parameters (0.02, 0.01)
4 L
3

0 100 200 300 400 500 600 700
Time (s)

FIGURE 12. Average duty cycle over time with the two different groups of
the control parameters (> = 0.0005; ¢ = 0.001) and (. = 0.02; ¢ = 0.01).

The scheduling controller of node i is asymptotically stable
if the two parameters, A; and 6;, satisfy:

4RT,, I,
0<r+420< oe (6)
P
1
RT, I
0<h<—2=° (7
2
Py

G. STABILITY ANALYSIS’S VALIDATION
To validate the stability analysis, we conduct simulations with
two different value pairs of the control parameters: (A =
0.0005,6 = 0.001) and (A = 0.02,6 = 0.01). A = 0.0005
and & = 0.001 are default values used in this paper, which
satisfy the stability condition in (29) and (30). The second
pair of the control parameters doesn’t satisfy (29) and (30).
Figure 11 presents the time evolution of average queue
length. The average queue threshold in this case is set to four
packets. The first chart with (A = 0.0005, 6 = 0.001) shows
a stable pattern of queue length. In particular, the average
queue length slightly fluctuates below the queue threshold
value. The second graph with the parameters A = 0.02 and
6 = 0.01) shows larger oscillation in queue length. The
large oscillation in queue length indicates a great oscilla-
tion in average duty cycle, as illustrated in figure 12. With
greater values of control parameters which don’t satisfy the

68608

stable conditions, the sleep period is adapted with a larger
interval when the network has changes. This enables a quick
adaptation, but also requires updates aggressively and high
energy consumption for updates since the queue threshold as
well as expected latency range are often violated. As a result,
the queue length convergence is not observed in the sec-
ond graph during experimental periods while average queue
length in the first graph converges to its queue threshold.

V. DISCUSSION AND CONCLUSIONS

This paper proposes an efficient interactive model which
enables the sensor cloud to guarantee latency require-
ments of multiple applications simultaneously. Experimental
results show that the proposed model effectively controls
the latency of sensing flows closely under the bound by the
latency requirement. Compared to the state-of-t