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ABSTRACT With the growing popularity of location-based social networks (LBSNs), time-specific POI
recommendation has become important in recent years, which provides more accurate recommendation
services for users in specific spatio–temporal contexts. In this paper, we propose a spatio–temporal distance
metric embedding model (ST-DME) for time–specific recommendation, which exploits both temporal and
geo-sequential property of a check-in to effectively model users’ time-specific preferences. Specifically,
we divide timestamps of user’ check-ins into different time slots and adopt Euclidean distance rather than
inner product of latent vectors to measure users’ preferences for POIs in a given time slot. We also apply
a transition coefficient based on users’ most recent check-ins to incorporate geo-sequential influence in
users’ check-in behaviors. A weighted pairwise loss with a hard sampling strategy is adopted to optimize
latent vectors of users, POIs, and time slots in a metric space. Extensive experiments are conducted to
demonstrate the effectiveness of our proposed method and results show that ST-DME outperforms state-
of-the-art algorithms for time-specific POI recommendation on two public LBSNs data sets.

INDEX TERMS Time-specific POI recommendation, location-based social networks, distance metric
embedding.

I. INTRODUCTION
Location-based social networks (LBSNs), such as Yelp and
Foursquare, have become prevalent, in which users are able
to share their preferred point-of-interests (POIs) in the form
of check-ins. With the rapid development of location acquisi-
tion and mobile communication technologies, time-specific
POI recommendation plays an important part in LBSNs as
it can predict users’ real-time preferences to provide more
precise recommendation services when specific temporal
scenarios are given. To achieve better performance for the
time-specific POI recommendation task, two important prop-
erties of users’ check-ins are needed to be considered. One
is the temporal periodic property, which means that users
have some time-specific check-in habits at specific time peri-
ods [1], [2]. For example, a user usually visits POIs around
his/her work place at weekday while he/she is more likely
to visit some leisure places near his/her home at weekend.
The other is the geo-sequential influence in users’ check-in
behavior. Previous studies have shown that users’ successive
check-ins exist significant geographical and sequential corre-
lations especially when their time intervals are small [3]–[5].

The geo-sequential influence is also important for time-
specific POI recommendation as it captures spatio-temporal
continuity of users’ check-in behavior so that recommenda-
tion results not only suit users’ personalized tastes but also
take check-ins’ spatio-temporal contexts into consideration.
Although POI recommendation in LBSNs has been widely
investigated by previous studies [6], [7], the time-specific
POI recommendation task is still not well defined and solved.
Sowe aim at designing a novel recommendationmodel which
incorporates the two important properties of users’ check-
in behavior jointly for time-specific POI recommendation
in LBSNs.

For the time-specific POI recommendation task, there are
two main challenges. One lies in the difficulty of precisely
learning users’ dynamic preferences in time-specific scenar-
ios, which needs to effectively model interactions among
users, POIs, and spatio-temporal contexts in LBSNs. The
other one is the data sparsity issue [1], [2]. A user usually
visited only a small number of POIs, resulting in an extremely
spare user-POI matrix. This imbalance is further aggravated
in the time-specific recommendation task as fewer check-ins
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are contained in a specific time interval for a user. Existing
methods are not able to deal with these problems effectively.

In light of these issues, we propose a spatio-temporal
distance metric embedding model (ST-DME), which incor-
porates both geo-sequential and temporal properties of
users’ check-in behaviors via a distance metric embedding
model to capture users’ fine-grained preferences in given
spatio-temporal contexts. Compared with popular matrix fac-
torization models in recommender systems, distance metric
embedding model is able to cluster similar users or items due
to the triangle inequality property of a distance metric [8]. For
example, if POI v is liked by both user u and u′, the model
will pull u and u′ close to each other in the distance metric
space. The exploration of potential similar user and items also
helps alleviate the data sparsity issue. Specifically, we divide
timestamps into different time slots and represent users, POIs
and time slots as latent vectors in a Euclidean space so that
their potential relationships can be effectively explored for
the recommendation task. To measure users’ time-specific
preferences, we fuse Euclidean distances between latent vec-
tors of users and POIs as well as time slots and POIs as a
joint metric with a weighted scheme. We also apply a coef-
ficient which exploits geo-sequential influence from users’
most recent check-ins on the fused distance to model users’
sequential transitions. The fused metric is small when the
candidate POI is close to the given user and time slot in the
metric space, which indicates that the candidate POI suits
his/her interests in given spatio-temporal contexts.

In the training phase, ST-DME jointly optimizes latent
vectors of users, POIs and time slots by a weighted pairwise
ranking loss with a hard sampling strategy, which introduces
a ranking loss weight to punish positive sample at a low rank
and optimize the margin between users’ visited and unvisited
POIs in the metric space. For inference, ST-DME calculates
the fused distances to all candidate POIs for the given user
and time slot so that the nearest POIs in the metric space
are presented accordingly. Experimental results on two public
LBSN datasets show that ST-DME outperforms state-of-the-
art methods for time-specific POI recommendation.

To summarize, the contributions of our work are:
• A distance metric embedding model for time-specific
POI recommendation is proposed, which exploits tem-
poral and geo-sequential influences in users’ check-in
behavior to model users’ time-specific preferences for
POIs. The model can not only learn users’ personalized
preferences in a given time slot but also cluster similar
users and time slots to capture their latent relationships.

• A joint transition coefficient is designed to integrate the
geo-sequential influence in users’ successive check-ins,
which can model users’ sequential check-in transitions
and introduce the latest user preference for more accu-
rate recommendation results.

• A weighted pairwise loss with a hard sampling strategy
is adopted to maximize the margin between users’ vis-
ited and unvisited POIs in the metric space and punish
visited POIs at a low rank with a weight associated its

rank position, which is helpful to get a better ranking
result for personalized recommendation.

The remainder of this article is organized as follows:
Section 2 reviews recent work for POI recommendation and
distance metric embedding models in recommender systems.
Section 3 reveals geo-sequential and temporal influences in
users’ check-in behaviors. Section 4 defines the time-specific
POI recommendation task and Section 5 details our proposed
ST-DME model. Experimental settings and results are pre-
sented in Section 6. Finally, Section 7 concludes this article
and discusses future directions.

II. RELATED WORK
A. POI RECOMMENDATION
POI recommendation in LBSNs is of great importance
and has been widely investigated. Existing studies have
exploited various influences on user check-in behaviors in
LBSNs or their joint effects for the task, such as social
connections, geographical influences and content informa-
tion. Reference [9] proposed a unified collaborative filtering
framework for location recommendation which linearly fuses
user interest, along with the social and geographical influ-
ences. Reference [10] developed a novel location-content-
aware probabilistic generative model that quantifies and
incorporates both local preference and item content informa-
tion for spatial item recommendation. Reference [11] inves-
tigated the spatial clustering phenomenon from the novel
perspective of two-dimensional kernel density estimation and
presented a geographical matrix factorization model for per-
sonalized POI recommendation task. [12] learned potential
check-ins from users’ friends and incorporated social, geo-
graphical and categorical influences in LBSNs for more accu-
rate POI recommendation. Reference [13] proposed a new
framework named Visual Content Enhanced POI recommen-
dation (VPOI), which further incorporates visual contents for
POI recommendation task.

Recently, sequential associations in users’ check-in
sequences have been investigated for successive/next POI
recommendation which aims to predict users’ next move-
ments in a near future. [3] utilized the personalized Markov
chain in the check-in sequence and took usersąŕ movement
constraints into account for successive POI recommenda-
tion. Reference [5] exploited the knowledge of sequential
patterns of usersąŕ check-in behaviors via a graph-based
embedding model to track the dynamics of user preferences
and predict their next movement. Reference [14] proposed a
novel latent representation model named POI2Vec for both
future visitor prediction and POI recommendation, which
incorporates the geographical influence in the framework
of word2vec [15]. To further boost the performance of suc-
cessive/next POI recommendation, some studies have also
utilized the time slots of users’ recent check-ins to model
users’ temporal transitions. Reference [16] proposed a col-
laborative retrieval model which utilizes users’ last check-
in POIs and corresponding timestamps to predict their next
movement. Reference [17] developed a fourth-order tensor
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factorization-based approach to recommend users their inter-
ested POIs by jointly considering their geographical, categor-
ical and temporal transitions.

However, methods above fail to support time-specific rec-
ommendation scenarios which can satisfy users’ real-time
needs and are quite common in LBSNs.

For the time-specific POI recommendation task, most pre-
vious studies focus on the discussion of temporal periodic
patterns such as hour-of-the-day and day-of-the-week at a
given timestamp. Reference [1] divided time into periodic
time slots and made use of the periodic temporal prop-
erty in their collaborative filtering recommendation method.
Reference [2] presented a new ranking based geographical
factorizationmethodwhich exploits both spatial and temporal
contexts for time-specific scenarios. Reference [18] boosted
the performance of the recommendation task by introducing
latent regional and temporal factors to model user mobility.
However, most existing methods did not model the sequential
patterns in LBSNs to capture spatio-temporal continuity of
users’ check-in behaviors for time-specific scenarios, which
limited their performance for more accurate recommenda-
tion. So we argue that it is necessary to incorporate both
sequential and temporal periodic influences for the time-
specific POI recommendation task.

There have been only few attempts that incorporate both
temporal and sequential influences in LBSNs for time-
specific POI recommendation. Reference [19] and [20]
adopted the popular word2vec framework to embed sequen-
tial associations between POIs in their latent vector repre-
sentations which are similar to some work for successive
POI recommendation. While word2vec-based methods only
implicitly exploit the sequential patterns in users’ check-
ins and fail to distinguish common asymmetric transitions
in LBSNs (e.g. transition v → v′ and v′ → v). Thus,
they only lead to suboptimal performance for the sequential
influence modelling. As users’ current preferences for POIs
are also strongly associated with their recent activities, it is
more effective to explicitly utilize users’ recent check-ins in
recommendation models. Reference [21] developed a
ranking-based pairwise tensor factorization framework with
a fine-grained modeling of user-POI, POI-time, and POI-POI
interactions to effectively support time-specific recommenda-
tion scenarios. [22] retrieved users’most related recent check-
ins as predecessors to predict their time-specific preferences
for POIs. However, it is still a challenge for existing studies
to investigate potential relationships among users and POIs in
time-specific scenarios due to the data sparsity issue andmore
explorations should be conducted to learn users’ dynamic
preferences for time-specific POI recommendation.

B. DISTANCE METRIC EMBEDDING IN
RECOMMENDER SYSTEMS
Users’ check-in behaviors in LBSNs are implicit feed-
backs and existing recommendation methods for implicit
feedbacks are usually based on matrix/tensor factorization
(MF/TF), which utilizes inner-product of latent vectors to

measure a user’s preference for an item. However, recent
studies [4], [8] have demonstrated that distance metric
embedding (DME) models are able to capture common pref-
erences from similar users more effectively than traditional
MF/TF based recommendation methods. DME-based models
adopt a distance metric such as Euclidean distance rather
inner-product to measure a user’s preference for an item.
DME is able to cluster similar users and items in the metric
space due to the inherent triangle inequality property of a
distancemetric, which captures potential relationships among
multiple items more effectively than MF-based methods.

Compared to MF-based algorithms for implicit feed-
backs, there is relatively little work for DME-based methods.
Reference [4] introduced two separate distance metric spaces
to model user preference and sequential transition for next
new POI recommendation. Reference [8] proposed collabora-
tive metric learning by learning a joint metric space to encode
not only users’ preferences but also user-user and item-item
similarity. However, all these methods fail to incorporate both
geo-sequential and temporal influences in LBSNs, and thus
it is not able to support time-specific POI recommendation
effectively. Since the application of DME in the time-specific
POI recommendation task has not been well investigated,
we incorporate both geo-sequential and temporal influences
into the DME framework for the recommendation task in this
article. Specifically, we design a novel DME-based recom-
mendation model to measure a user’s time-specific prefer-
ence for a POI, which is also able to learn common temporal
preferences from similar users more intuitively. As shown
in our experiments, the proposed DME-based model outper-
forms state-of-the-art methods significantly.

III. CHECK-IN BEHAVIOR ANALYSIS
A. DATASETS
We investigate users’ check-in behaviors on two public
check-in datasets. The first one is the Foursquare check-ins
within Tokyo, which are collected by crawling foursquare-
tagged tweets [23], [24] from April 2012 to February 2013.
The second one is the Gowalla check-ins within New York
County, which are crawled by [25] and [26] with the Gowalla
APIs to collect check-in data generated before July 2011.
Each check-in contains user-ID, POI-ID and timestamp. Each
POI has a unique location which is given by LBSN platforms
and presented in the form of longitude and latitude coordi-
nates. Following the previous work [1], [4], we also remove
users who have visited fewer than 5 POIs and POIs which
have been visited by fewer than 5 users to reduce noise and
achieve more reliable empirical results. Statistics of the two
datasets after data pre-processing are shown in Table 1.

B. GEO-SEQUENTIAL INFLUENCE
Firstly, we investigate the geo-sequential influence on users’
consecutive check-ins. We calculate the cumulative distribu-
tion function (CDF) of geographical distance between users’
consecutive check-ins. To be specific, given any geographical
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TABLE 1. Statistics of the two datasets.

FIGURE 1. CDF of geographical distance between users’ consecutive
check-ins.

distance d , the CDF calculates the probability that distance
between two consecutive check-ins is not longer than d .
For simplicity, we estimate the probability by calculating
the ratio of consecutive check-ins whose distances are not
longer than d . The CDF curves of the two datasets are plotted
in Figure 1.

Based on the results in Figure 1, we can find that users’
current check-in behaviors are highly geographically related
to their most recent check-ins since both the CDF curves
for the two datasets increase fast when the geographical dis-
tance is small, indicating that users’ most check-in transitions
occur in nearby areas. More specifically, for the Foursquare
dataset, 85% consecutive check-ins are less than 10km. For
the Gowalla dataset, almost all consecutive check-ins are
less than 10km. Similar observations are reported in previous
work [3], [4]. The CDF curves have also shown that users’
consecutive check-ins in the Gowalla dataset are more geo-
graphically concentrated than that in the Foursquare dataset
because the geographical scope of the Gowalla dataset is
much smaller than that of the Foursquare dataset, as shown
in Table 1.
The results on the two datasets demonstrate that users

prefer to visit POIs which are closer to their most recent
check-ins. Thus, we can utilize the location of a user’s
most recent check-in to introduce a geographical punishment
for POI recommendation so that POIs which are far away
from the user’s most recent check-in are less likely to be
recommended.

FIGURE 2. Temporal patterns in users’ check-in behaviors.

FIGURE 3. An illustration for the optimization strategy of metric learning
in this article. The algorithm optimizes latent vectors of users and POIs in
the metric space by pulling visited POIs closer to the corresponding user
and pushing users’ nearest unvisited POIs away until all unvisited POIs
are pushed beyond the safety margin. Besides, similar users are pulled
closer to each other in the metric space due to the gradients from
common visited POIs.

C. TEMPORAL PATTERNS
We further explore temporal patterns in users’ check-in
behaviors by comparing their check-in probabilities at dif-
ferent time slots and results on the two datasets are shown
in Figure 3, respectively. The check-in probability at each
time slot is estimated by calculating the check-in frequency
in the corresponding time slot.

From Figure 2, we can find that users’ check-in behav-
iors do exhibit different temporal patterns as their check-in
probability distributions over hours of weekday and weekend
show significant differences. Additionally, users’ temporal
patterns also differs on the Foursquare and Gowalla datasets,
revealing the drift of users’ temporal preferences across dif-
ferent regions. To be specific, for the Foursquare dataset,
users take much more check-ins during 7:00-10:00 and
18:00-20:00 on weekdays, which usually indicates that they
go to work in the morning and spend their leisure time
after work in the evening. The difference is relatively small
for the Gowalla dataset while there are still more check-
ins during 11:00-15:00 on weekdays, which may indicate
a lunch break for users. It is also worth to mention that
users in the Gowalla dataset have more check-ins after night
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than users in the Foursquare dataset, showing their different
temporal preferences that users in New York County seem
enjoying more night lives than users in Tokyo. In sum-
mary, the differences of users’ temporal check-in behaviors
between the two datasets implicitly reveal different local cul-
ture or policies between Tokyo and New York County, which
should be the key factors that determine local users’ temporal
preferences.

Since users’ check-in behaviors exist significant tempo-
ral patterns, it is necessary to take temporal contexts of
users’ check-ins into consideration for more accurate POI
recommendation.

IV. PROBLEM DEFINITION
For ease of presentation, we give the definitions of the key
data structures and notations used for the time-specific POI
recommendation task in this article.
Definition 1 (POI): A POI is defined as a uniquely identi-

fied place (e.g., a park or a restaurant) in LBSNs.
A POI has two attributes: identifier v and its geographical

location lv. Location lv is presented in terms of longitude and
latitude coordinates. Notation V is used to denote the set of
all POIs.
Definition 2 (Check-in Activity): A check-in activity gen-

erated by a user is composed up of a triple (u, v, t) which
indicates user u visits POI v at timestamp t .
Definition 3 (User Profile): The notation U is used to

denote the set of all users. For each user u ∈ U , a user profile
Du is created, which is a sequence of check-in activities
generated by user u. In particular, notation Vu is used to
denote the set of POIs which are visited by user u.
Definition 4 (Time Slot): Given a timestamp t , we consider

two types of temporal periodic information, i.e., hour-of-the-
day and day-of-the-week, and divide t into the corresponding
time slot, denoted as t̃ . Give 24 hours in a day and week-
day or weekend in a week, we have 48 different time slots.
Notation Vt̃ denotes the set of POIs which have been visited
in the corresponding time slot t̃ .
Problem 1 (Time-Specific POI Recommendation): Given

a user u ∈ U with all his/her previous check-in records
Du before timestamp t and a set of POIs V , we aim to
recommend top-k new POIs that u would be interested in at
given timestamp t .

When timestamp t is given, the corresponding time slot t̃
and u’s recent check-ins before t is also determined accord-
ingly. Thus, geo-sequential and temporal periodic informa-
tion in users’ check-ins can be employed to boost the per-
formance in time-specific scenarios. It is also worth to note
that the time-specific POI recommendation task is more
challenging than traditional/successive POI recommendation
as it needs to incorporate both geo-sequential and temporal
influences in a unified way to generate users’ time-specific
preferences. Methods for traditional and successive POI rec-
ommendation usually fail to support time-specific scenarios
and are not applicable for the time-specific POI recommen-
dation task.

V. SPATIO-TEMPORAL DISTANCE METRIC
EMBEDDING MODEL
In this section, we introduce our proposed spatio-temporal
distance metric embedding model (ST-DME) for the time-
specific POI recommendation task. Specifically, we map
users, POIs and time slots to a Euclidean space to calculate
the fused distance metric and apply a joint transition coeffi-
cient on the distance to incorporate geo-sequential influences
in users’ check-in sequences. We adopt a weighted pair-
wise optimization criterion to maximize the distance margin
between a user’s visited and unvisited POIs in the metric
space and optimize latent vectors of users, POIs and time
slots.

A. MODELLING USERS’ TIME-SPECIFIC PREFERENCES
VIA DISTANCE METRIC EMBEDDING
In this article, we propose to employ distance metric embed-
ding model to measure users’ time-specific preferences,
which is able to cluster similar users, POIs and time slots in
a distance metric space to reveal their latent relationships.

Specifically, each user, POI and time slot defined in
Section 3 are mapped to a K -dimensional Euclidean space
and represented as a latent vector, denoted as X (u), X (v) and
X (t̃), respectively. Then, a user’s preference for a POI in a
given time slot is measured as a fused distance metric which
is calculated as follows:

d(u, v, t̃)=α‖X (u)− X (v)‖2+(1−α)‖X (t̃)−X (v)‖2 (1)

where ‖ · ‖ is the Euclidean distance between latent vectors
and α ∈ [0, 1] is the parameter to control the weights of the
two distances. In Equation 1, ‖X (u) − X (v)‖2 measures u’s
personalized preference for v. If u is interested in v, their
latent vectors in the metric space are close to each other,
i.e., ‖X (u) − X (v)‖2 should be small. Otherwise, the dis-
tance is large. ‖X (t̃) − X (v)‖2 captures temporal popularity/
frequency of v in the given time slot t̃ . If v is often visited
by users in time slot t̃ , ‖X (t̃) − X (v)‖2 should be small.
Otherwise, the distance between their latent vectors is large.
The metric d(u, v, t̃) fuses the two distances with a weighted
scheme which captures both users’ personalized preferences
and temporal popularity of POIs for time-specific POI rec-
ommendation. Particularly, if the weight parameter α is set
to 1, the fused distance only learns users’ general interests
and no temporal periodic information is exploited. While α
is set to 0, the metric only captures temporal popularity of
POIs and the recommendation model is non-personalized.
In addition, the fused distance metric is also able to cluster
similar users and time slots in the metric space due to the
triangle inequality property. For example, if POI v has been
visited by user u and u′, the distance metric will not only pull
both u and u′ closer to v in the metric space but also pull u
and u′ closer to each other. In other words, similar users and
time slots are clustered in the metric space by co-visited POIs
with distancemetric embedding, which can help model users’
time-specific preferences more effectively and is also helpful
to the interpretation of recommendation results. As we map
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users, POIs and temporal periodic patterns to the same metric
space, users who share similar temporal patterns can be pulled
closer to each other in the metric space as well, which is help-
ful to learn common preferences from users who share similar
temporal patterns and further alleviate the data sparsity issue.

Different with traditional recommendation tasks
(e.g., goods, book and movie), POI recommendation is
always closely tied with user mobility. The spatio-temporal
continuity of users’ check-in sequences have restricted their
potential active regions. In other words, it is impractical for
a user to visit a POI which is far away from his/her last
check-in in a short time and users always tend to visit POIs
which are close to their recent check-ins, showing significant
geographical and sequential preferences. Therefore, it is
necessary to take such geo-sequential properties in users’
check-in behaviors into consideration for more accurate POI
recommendation. So we also design a joint transition coeffi-
cient in this paper to assign the geo-sequential influence on
our DME-based POI recommendation model.

We update the distance metric between a user and a POI
by applying a joint transition coefficient, which is calculated
based on users’ successive check-in transitions within a time
interval 1T . Given user u’s last check-in POI v′, we use
notation cv′v to denote the scaling coefficient of the transition
v′→ v. cv′v is calculated by Equation 2:

cv′v = (
1+ lv′v
1+ fv′v

)γ (2)

where lv′v is the geographical distance from POI v′ to v, fv′v
is the observed frequency of transition v′ → v within 1T
and γ is the parameter to control the power of geo-sequential
influence. fv′v reveals the popularity of transition v′ → v in a
time interval. cv′v will pull candidate POI v close to the given
user u in the metric space when v is geographical proximity
to u’s last check-in POI v′ and often visited right after v′. cv′v
can be also regarded as a penalty coefficient which penalizes
a transition that has a long geographical distance and low
popularity. If transition v′ → v has a long distance but high
popularity, POI v still can be recommended as cv′v can be
small due to a large fv′v in the denominator. Therefore, cv′v
can be seen as a trade-off between geographical distance and
transition popularity.

Given a user u with his/her most recent check-in POI v′,
his time-specific preference for POI v with geographical and
sequential influence is measured by a distance metric which
is calculated by Equation 3:

dv′ (u, v, t̃)=cv′v(α‖X (u)−X (v)‖
2
+(1−α)‖X (t̃)−X (v)‖2)

(3)

where the transition coefficient cv′v is applied to add the
geo-sequential influence from users’ most recent check-ins.
According to Equation 2 and 3, user u’s time-specific prefer-
ence for POI v is jointly determined by his/her personalized
interests, the temporal periodic patterns, the geographical dis-
tance to last check-in POI v′, and the popularity of transition
v′ → v. cv′v should be small if the transition v′ → v has

a strong geo-sequential correlation so that user u and POI v
is closer to each other under the given spatio-temporal by
the measure of the distance metric. In addition, dv′ (u, v, t̃)
is able to distinguish users’ asymmetric check-in transitions,
e.g., transition v′ → v and v → v′, by applying the joint
transition coefficient as sequential popularity fv′v and fvv′ in
the denominator of the coefficient are usually different.

Since users’ check-in behaviors exist strong geographical
and sequential correlations, it is reasonable to exploit their
most recent check-ins to capture such correlations and learn
the latest user preference. Additionally, involving geograph-
ical influence also helps alleviate the data sparsity issue as
the geographical distance to users’ most recent check-in POIs
can be seen as a constraint to their potential activity areas.
Therefore, POIs that are far away from their recent check-
ins and have low transition popularity can be ruled out from
the candidate set by the punishment of the joint transition
coefficient cv′v in Equation 2.

B. WEIGHTED PAIRWISE OPTIMIZATION CRITERION
To optimize latent vector representations of users, POIs and
time slots in the metric space, we adopt a weighted pairwise
optimization criterion in this article, which uses a hard sam-
pling strategy and applies a ranking loss weight to get better
performance for the POI recommendation task.

Specifically, for each observed check-in (u, v, t), we firstly
sample a set of unvisited POIs for user u, denoted as N−.
Then, we choose the POI which is the closest to user u and
time slot t̃ in the metric space from N−, denoted as v∗. The
time-specific loss function to be minimized is defined in a
pairwise manner, which is given in Equation 4:

L tm=
∑

(u,v,v∗,t̃)

w[m+ dv′ (u, v, t̃)−dv′ (u, v
∗, t̃)]+ + λ‖2‖2

(4)

where [·]+ = max(0, ·) is the standard hinge loss, m is the
safety margin size, v′ is user u’s most recent visited POI
before check-in (u, v, t), 2 = {X (u),X (v),X (t̃)} denotes
all the parameters to be optimize and λ is the parameter
of regularization term. w is a ranking loss weight which is
introduced by [27] to achieve better performance for top-k
recommendation. Specifically, w punishes the positive item
v at a low rank with a weight associated with its rank in
the recommendation list for user u and time slot t̃ , which is
calculated by Equation 5:

w = log(r(u, v, t̃)+ 1) (5)

where r(u, v, t̃) sorts all POIs according to their distances to
u and t̃ in the metric space and returns the rank of POI v.
As directly computing r(u, v, t̃) at each gradient decent step
is time-consuming, an approximated rank is introduced to
accelerate the calculation process. Specifically, we count the
number of unvisited POIs whose hinge loss is greater than
0 in N−, denoted as J . So the estimated rank for the tuple
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(u,v, t̃) is derived by the Equation 6:

r̂ = b
J ∗ |V |
|N−|

c (6)

where |V | is the number of all POIs and |N−| is the number
of sampled unvisited POIs for each observed check-in.

The loss function of distancemetric embedding is designed
to punish users’ nearest unvisited POIs by pushing them
out of a safety margin in the metric space and assign
high ranks to their visited POIs, which is meaningful in a
top-k recommendation task to get a better ranking result.
Figure 4 illustrates the optimization strategy of metric learn-
ing for the POI recommendation task in this article.

It is worth to mention that our proposed ST-DME model is
significantly different from the PRME model [4], which is a
distance metric embedding method for next POI recommen-
dation. We argue that ST-DME is able to model users’ check-
in behaviors more effectively than PRME and reasons are
given as follows: First, PRME fails to model the asymmetric
sequential transitions in LBSNs as it measures sequential
correlations between POIs using Euclidean distance, which
is a symmetric metric and not able to make a distinction
between transition v′ → v and v → v′. In contrast,
ST-DME adds the influence of geographical and sequential
correlations by applying a joint transition coefficient, which
is calculated according to both the geographical distance and
observed frequency of a transition, and is more effective
and efficient to model asymmetric sequential transitions than
PRME. Second, ST-DME adopts a hard sampling strategy to
punish users’ nearest unvisited POIs and introduces a ranking
loss weight to punish visited POIs at low ranking positions,
which both help obtain a better recommendation performance
than PRME. Moreover, PRME does not consider temporal
periodic influence on user preference and fail to support time-
specific scenarios in this article.

C. LEARNING ALGORITHM
We estimate the parameters of ST-DMEmodel byminimizing
the loss function in Equation 8 using mini-batch stochastic
gradient decent (SGD). To be specific, for each observed
check-in (u, v, t), we randomly sample POIs which are not
visited by u and calculate the approximated rank wuv by
Equation 4 first. Then, we select the unvisited POI with the
minimum distance to check-in (u, v, t) in the metric space to
update parameters2 = {X (u),X (v),X (t̃)} and the procedure
is descried as bellow:

2← 2− η ·
∂L tm
∂2

(7)

where η is the learning rate of updating parameters.
Algorithm 1 summarizes the learning procedure of

ST-DME model. The time complexity of training ST-DME
is O(I · |D| · |N−| · K ), where I is the number of iterations,
|D| is the number of observed check-ins in the training set,
|N−| is the number of sampled unvisited POIs and K is the
latent vector dimensionality.

Algorithm 1 ST-DME Model Learning Algorithm
Require: check-in data D, vector dimensionality K , time

interval1T , safety margin sizem and component weight
α

Ensure: latent vectors 2 = {X (u),X (v),X (t̃)}
1: Initialize 2 with Normal distribution N (0, 1/K )
2: Calculate the transition coefficient matrix based on

observed check-in transitions in 1T
3: repeat
4: for each check-in (u, v, t) in D do
5: Sample unvisited POIs and compute the approxi-

mated rank r̂ according to Eq. (6)
6: Choose the unvisited POI v∗ with the minimum

distance to (u, v, t̃) and compute the loss according
to Eq. (4)

7: Update X (u), X (v), X (v′) and X (t̃) according to
Eq. (7)

8: end for
9: until Convergence
10: return 2 = {X (u),X (v),X (t̃)}

VI. EXPERIMENTS
Extensive experiments are conducted to compare our pro-
posed ST-DME model with the state-of-the-art approaches
and demonstrate the effectiveness of our method for the time-
specific POI recommendation task. Additionally, impacts of
different factors and hyper-parameters in ST-DME are inves-
tigated in the experimental part as well.

A. EXPERIMENTAL SETTINGS
Our experiments are conducted on the two check-in datasets
introduced in Section 3, which are widely used to evaluation
POI recommendation methods by previous studies. To train
and evaluate our model for the time-specific POI recommen-
dation task, we rank each user’s check-in records according to
their timestamps for both datasets. Then, the former 70% of
each user’s check-ins are taken as the training set, the next
10% as the tuning set and the recent 20% as the test set.
We only recommend newPOIs for a user which are not visited
by the user in his/her training set.

B. COMPARATIVE METHODS
We compare our proposed ST-DMEmodel with the following
state-of-the-art recommendation methods to demonstrate the
effectiveness of our model.
• Time-POP: A non-personalized recommendation
method which only recommends the most popular POIs
in the given time slot.

• BPR-MF: BPR-MF is a ranking-based factorization
method which combines Bayesian Personalized Rank-
ing criterion [28] with the popular ranking-based matrix
factorization in the learning process.

• UTS: UTS [1] is a collaborative filtering based rec-
ommendation method which fuses spatial and temporal
influences in a weighted scheme to recommend time-
specific POIs for a user.
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• Rank-GeoFM: Rank-GeoFM [2] is a ranking-based
geographical factorization model for time-aware POI
recommendation. Both geographical and temporal peri-
odic information in LBSNs are incorporated to support
time-specific recommendation scenarios.

• GE: GE [19] is a graph-based embedding model which
jointly learns the vector representations of POIs, regions
and time slots. GE further calculates a user’s dynamic
preferences by summing the vectors of POIs he/she
has visited before the given timestamp in the form of
exponential decay.

• STELLAR: STELLAR [21] is a ranking-based pairwise
tensor factorization framework with a fine-grained mod-
eling of user-POI, POI-time, and POI-POI interactions
to incorporate both sequential and temporal influences
for time-specific POI recommendation.

Other parameters of comparative methods are set as
reported in their corresponding papers.The best performance
of each method on the two dataset is reported. For our pro-
posed ST-DME model, the parameter γ in Equation 2 is set
to 0.25 empirically and other key parameters are discussed in
the following subsection.

C. EVALUATION METRICS
Following the existing studies [19], [29]–[31], we use two
popular metrics: Acc@k andMean Reciprocal Rank (MRR),
to evaluate the performances of recommendation methods.
Acc@k: For each check-in record (u, v, t) in the test set

Dtest , we calculate user u’s preference scores at the given
timestamp t for the ground-truth POI v and all other unvisited
POIs by u. Then, we obtain a top-k recommendation list
for the test case by recommending k-highest scored POIs.
If the ground-truth POI v appears in the recommendation list,
we have a hit for this test case, denoted as hit@k . The Acc@k
metric is defined as the average hit rate on all test cases:

Acc@k =
#hit@k
|Dtest |

(8)

where #hit@k is the number of hits over the whole test set
and |Dtest | is the number of all test cases.
MRR: MRR measures the average rank of ground-truth

POIs in all test cases, which is defined as

MRR =
1
|Dtest |

∑
(u,v,t)∈Dtest

1
rt (u, v)

(9)

where rt (u, v) is the rank of ground-truth POI v in u’s rec-
ommendation list at the timestamp t . A large value of MRR
usually indicates a high quality of ranking.

D. PERFORMANCE COMPARISONS
In this subsection, we discuss the performance of ST-DME
and other recommendation methods on the two datasets.
Figure 4 and Table 2 show the comparative results for the
performance of all algorithms. We only present the results
where k is set to 5, 10 and 20, as a greater value of k is usually
ignored for a typical top-k recommendation task.

FIGURE 4. Performance comparisons in terms of Acc@k.

TABLE 2. Performance comparisons in terms of MRR.

Several observations are made from the results: 1) It is
obvious that our proposed ST-DME outperforms other
comparative methods on both datasets, showing ST-DME
is effective for the time-specific POI recommendation task.
2) Time-POP falls behind all the comparative methods, indi-
cating personalized recommendation algorithms are more
effective than non-personalized ones for the task. 3) BPR-MF
performs worse than other personalized algorithms as it only
simply factorizes the user-POImatrix without considering the
spatio-temporal context of each check-in behavior, which is
critical in location-based services. 4) Both UTS and Rank-
GeoFM exceed BPR-MF as they introduce the temporal and
geographical associations between users’ check-in activi-
ties. However, they ignore the sequential association in user
mobility and are not able to learn latest user preference
as well. 5) GE significantly outperforms other comparative
algorithms except STELLAR and ST-DME, showing the ben-
efit of utilizing the sequential influence in users’ check-in
sequences. However, GE models a user’s latest preferences
by summing the latent vectors of all his/her visited POIs
with a time-decay manner, which only implicitly exploits
the sequential associations between users’ check-ins and
may introduce too much noise for time-specific scenarios.
6) STELLAR achieves best performance than other methods
except ST-DME because it explicitly exploits users’ most
recent check-ins as the sequential contexts to model more
accurate user preference, showing that the sequential contexts
do play an import part on users’ check-in behaviors for time-
specific POI recommendation.While STELLAR suffers from
the data sparsity as it cannot cluster similar users and time
slots. 7) ST-DME outperforms all comparative methods, indi-
cating the advantage of incorporating geographical associa-
tion, sequential transition and temporal periodic pattern via
distancemetric embedding. ST-DME is able to pull users who
share common preferences or temporal patterns closer to each
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other in the metric space, which also helps alleviate the data
sparsity issue and improve recommendation performance.

The performance of all algorithms in terms ofMRRmetric
agrees with that in terms of Acc@k metric, which further
demonstrates the effectiveness of our proposed ST-DME
model. In summary, ST-DME is able to achieve a higher
quality of ranking results than state-of-the-art time-specific
POI recommendation algorithms. ST-DME achieves best per-
formance on both datasets, which also indicates that our
method can be easily applied in different cities or regions to
capture local users’ behavior patterns.

E. IMPACT OF DIFFERENT FACTORS
We also conduct experiments to show the benefits from
each component of ST-DME. Specifically, we design three
variant versions of ST-DME model. ST-DME-v1 is a simpli-
fied model in which geographical weights for all POI pairs
are set to 1 so that geographical associations in successive
check-in behaviors are wiped out from the ST-DME model.
ST-DME-v2 eliminates the impact of sequential transitions
by assigning same transition frequency to all POI pairs.
ST-DME-v3 is designed to ignore the temporal characteristics
of user mobility by set α = 1 so that no specific temporal
periodic pattern is utilized. Finally, ST-DME is the com-
plete model which integrates user preference, geographical
influence, sequential transition and temporal contexts in a
joint manner. The comparative results for these variants are
presented in Figure 5.

FIGURE 5. Demonstration of ST-DME Variants.

From Figure 5, we observe that involving geographical
influence and sequential transition between successive check-
ins do bring significant performance improvement on both
datasets. We also observe that geographical influence plays a
more important part than sequential transition on the Gowalla
dataset while sequential transition is more important on the
Foursquare dataset, which indicates the differences of user
mobility pattern in different regions. The integration of tem-
poral contexts has provided further performance improve-
ments on the two datasets.

F. PARAMETER SENSITIVITY ANALYSIS
We investigate the impacts of several key hyper-parameters
in our proposed ST-DME model, which are vector dimen-
sionality K , safety margin size m, component weight α and
time interval1T . We choose the metric Acc@10 to show the
impact on the performance of ST-DME model with various

values of hyper-parameters. Experiments are conducted on
both the Foursquare and Gowalla dataset.

FIGURE 6. Effects of hyper parameters.

Figure 6(a) and 6(b) firstly present the effects of vector
dimensionality K and safety margin m on the performance.
The performance of ST-DME increases with K as high
dimension representation can involve more latent informa-
tion and capture the relationship in the metric space more
precisely. A large margin size m also brings the performance
improvements of ST-DME because the larger margin size is
able to distinguish users’ preferences for POIs more effec-
tively. However, a larger K value will need longer training
time. Empirically, we set K = 100 and m = 10 to achieve a
trade off between recommendation performance and training
times.

The effects of component weight α and time interval 1T
are depicted in Figure 6(c) and 6(d). In Figure 6(c), ST-DME
shows better performance at α = 1 than that at α = 0 on both
datasets, indicating that users’ personalized preferences still
play a more important part than temporal influences in their
check-ins. The best performance is obtainedwhen α is around
0.5 on the two datasets. Therefore, we set α = 0.5 in our
experiments. Figure 6(d) demonstrates the impacts of time
interval1T on the performance of model. ST-DME achieves
best performance on the Gowalla dataset when 1T is set
to 0.5 hours while the best performance is obtained on the
Foursquare dataset when1T is set to 2 hours. An explanation
is that users’ successive check-in behaviors in the Gowalla
dataset is more dense than in Foursquare, which indicates
different user mobility patterns in New York City and Tokyo.
In addition, the performance of ST-DME drops with a larger
1T as it may introduce more noise. We empirically set
1T = 0.5 and 2 hours for the Gowalla and Foursquare
datasets, respectively.

VII. CONCLUSIONS AND FUTURE WORK
In this article, both geo-sequential and temporal periodic
properties in users’ check-in behaviors are employed for
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time-specific POI recommendation. As most existing meth-
ods are not able to solve the time-specific POI recommen-
dation effectively, a novel distance metric embedding model,
named ST-DME, is proposed to capture users’ time-specific
preferences in given spatio-temporal contexts. To effectively
explore potential relationships among users, POIs and time
slots, we map them into a Euclidean space and design a
fused distance metric to measure users’ temporal preferences.
We also design a transition coefficient which exploits geo-
sequential influence from users’ most recent check-ins to
capture the spatio-temporal continuity of user’ movement.
Extensive experiments are conducted to evaluate the per-
formance of ST-DME and other comparative methods on
two publicly available datasets. The results show that our
proposed ST-DME model is able to achieve better perfor-
mance than state-of-the-art methods for time-specific POI
recommendation by introducing distance metric embedding
to jointlymodel interactions among users, POIs and time slots
in a Euclidean space.

Future work will focus on the extension of ST-DME to
incorporate more side information of users and POIs into
ST-DME for content-aware recommendation.
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