
Received September 13, 2018, accepted October 17, 2018, date of publication November 9, 2018,
date of current version December 18, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2879156

Structural Regression Model Based Inverse
Sparse Representation for Tracking Objects
XIAOWEI AN 1, NONGLIANG SUN2, AND MAOYONG CAO 1
1College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
2College of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590, China

Corresponding authors: Nongliang Sun (nl-jackson@vip.163.com) and Maoyong Cao (my-cao@263.net)

This work was supported in part by Leading Talents of Shandong University of Science and Technology, in part by the 863 Sub-project
Verification Platform for Dynamic Evolution Technology of Mine Disaster under Grant 2015AA016404-4, in part by the Shandong
Province Higher Educational Science and Technology Program under Grant J17KA075, and in part by the National Nature Science
Foundation of China under Grant 61801270.

ABSTRACT In order to reduce the calculation cost and improve the robustness of appearance model, this
paper presents an optimal object tracking method that consists of improved inverse sparse representation
and global spatial envelope. First, partial least squares regression-based structural model is adopted, which
easily facilitates target template sparsely represented by candidate dictionary. Furthermore, candidates with
nonzero coefficients are easily selected as possible tracking results. Meanwhile, partial occlusion and
slight appearance changes are effectively alleviated during the tracking process. Second, spatial envelope
in the frequency domain is utilized to select the best candidate from the inverse sparse representation
process. Multiple scales and orientations-based Gabor filters are established to obtain the Gist information,
which keeps the potential structural attributes of local appearance models to tolerate appearance variation.
In addition, the Bayesian inference framework is used to exploit candidate samples, and a simple model
update scheme is employed to alleviate drifting caused by temporal varying multi-factors. The qualitative
experimental results show that the proposed tracking algorithm provides a better performance in some
dynamic scenes.

INDEX TERMS Optimal appearance model, partial least squares regression, inverse sparse representation,
Gist.

I. INTRODUCTION
Object tracking is a major research direction in computer
vision. Several algorithms have been employed for numerous
vision applications in the past years [1]–[3]. The main chal-
lenges of tracking process are partial occlusion, fore/back-
ground clutter, illumination changes, pose and scale variation.
Therefore, it is a crucial task to describe the model to avoid
similar influences [2].

Generally, a tracking method consists of three important
parts: motion model, observation model and localization
strategywithin the whole tracking process. Themotionmodel
provides the most similar candidate sets for consecutive
matching. The observation model measures the likelihood of
the possible candidates, and the localization strategy updates
the observation model adaptively according to the variations
of target appearance.

Numerous model schemes have given different expla-
nations in this scenario. In [4], the incremental visual

tracker (IVT) developed a subspace model that could deal
with the appearance changes based on principle component
analysis. Method presented in [5] treated visual tracking as a
multi-task sparse subspace learning problem. Yang et al. [6]
proposed a tracking method based on super-pixels (SPT)
which kept the potential structural information in the local
model. Liu et al. [7] proposed the statistical representation
based on meanshift model which constructed discriminative
patch-wise sparsity histogram. Zhong [8] proposed a fusion
model which consisted of discriminative and generative fea-
tures that treated the observation model as sparsity rep-
resentation. ASLA [9] combined the spatial information
with a novel alignment-pooling strategy to model the target
appearance. Sevilla-Lara [10] took distribution fields (DFs)
to model the target appearance which resulted from the gradi-
ent descent method. In order to improve the target appearance
robustness, [11] and [12] used the trivial patches to make
the sparse dictionary. Wang et al. [13] and Bai et al. [14]
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FIGURE 1. Illustration of the proposed algorithm.

exploited patch-based regression model to represent the
local appearance. Through L1 minimization, the responses
to the base-vectors were checked to identify the object
image patches. But the aforementioned applications always
demanded much computation cost in real-time process. Slow
tracking speed is still inferred by the multiple sparse decom-
positions. To reduce the computation cost, [15] proposed the
inverse sparse representation where template was coded by
the candidate sets, and the coefficients gave the measurement
of similarity between the candidates and templates. However
the update strategy for local appearance model still could not
avoid complex boosting procedures.

Recently, the convolution neural network (CNN) based
methods and its variants have attracted more attention in
visual process. In [16], a compact structure was constructed
by multi-layers in order to facilitate the extraction of discrim-
inative information in the tracking process. Zhang et al. [17]
presented effective feature distribution to avoid complex cal-
culation in the data pre-training. However, it is still low
calculation speed in the tracking. Meanwhile, large sets of
pre-training processes were needed that labeling and training
ground-truths data always spend complex-high cost in the
visual data collection. Wang and Ge [18] combined inverse
sparse representation and the double-structural network that
easily labeled all candidate samples simultaneously. Inspired
by Wang et al. [13], Bai et al. [14], Wang et al. [15], and
Wang et al. [18], to improve the robustness of observation
model and to avoid the complex calculation cost of the model,
this paper proposes a novel tracking method based on the
inverse sparse model with optimal structural regression.

In this paper, the least absolute shrinkage and selection
operator(LASSO) based sparse decomposition is avoided fre-
quently being used in each loop because it wastes too much
computation cost. After localization of possible candidates,

partial least squares regression exploits the potential infor-
mation of local patch weight distribution which facilitate
to update dictionary. Moreover, to alleviate the drifts, Gist
descriptor from spatial envelope is employed to select the
optimal candidate choice in the tracking model. Fig. 1 illus-
trates the proposed algorithm. The proposed method offers
several advantages in the tracking process as follows:

1). It offers a novel representative structural regression
model based inverse sparse representation(SRMISR).

2). Structural regression model by partial least squares for
inverse sparse representation largely saves computation cost
and exploits the potential structural information within local
variant appearance model so that it is able to detect the target
accurately and can run in real-time.

3). Spatial envelope is employed into this work that takes
a novel evaluation scheme for selecting the best candi-
date. Multiple orientations and scales based gabor filters
are adopted to extract the target representation, which can
preserve the structure features of candidates more effective.

The rest of the paper is organized as follows: Section II
presents the preliminary related knowledge. Section III
presents the details of the proposed algorithm which com-
bines inverse sparse representation and utilization of new
local patch-weights distribution that results from partial least
squares regression. Meanwhile, we present a novel way that
facilitates candidates selection. Section IV presents compar-
ative experiments that prove the effectiveness and efficiency
of our algorithm. Section V concludes with a discussion of
the results and recommendations for the future work.

II. BACKGROUND INFORMATION
This section first briefly introduces the bayesian inference
tracking framework. Then we present some important nota-
tions used in this paper.
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A. BAYESIAN INFERENCE TRACKING FRAMEWORK
Given consecutive video frames, let Xt denotes the state
vector which describes the target motion variables. In this
paper, affine transformation is employed to describe six state
variables Xt = {xt , yt , θt , st , δt , φt} : denoting x, y tran-
sition, rotation angle, scale, aspect ratio, skew direction at
time t . [19]

let {Zt } denotes the corresponding observation vectors. The
bayesian inference can be described as following (1):

p(Xt |Z1:t−1) =
∫
p(Xt |Xt−1)p(Xt−1|Z1:t−1)dXt−1

p(Xt |Z1:t ) =
p(Zt |Xt )p(Xt |Z1:t−1)

p(Zt |Z1:t−1)
(1)

Where X1:t = {Xi}i=1:t represent target motion state vectors
up to t-th time and Z1:t = {Zi}i=1:t stand for the correspond-
ing observations. p(Xt |Xt−1) is the state transition model
between the reference frame and candidate frame.

Generally, particle filter treats the posterior p(Xt |Z1:t ) as
N weighted sampling particles {Xit ,βββ

i
t }i=1,...,N . According to

the different global weights {βββ it }i=1,...,N in the distribution,
the new state

_

Xt =
∑N

i=1 βββ
i
tX

i
t can be predicted.

B. INVERSE SPARSE REPRESENTATION FORMULATION
M candidate states {XMt+1} given by particle filtering at the
(t + 1)-th frame can be obtained in the previous target region
of interest(ROI) neighborhood of t-th frame. Observation
matrices from the candidate sets {XMt+1} can be coded for
dictionary {Dt+1} = [X1t+1,X

2
t+1, . . . ,X

M
t+1] ∈ R

d×M .
Afterwards, sparse decomposition of template tt ∈ Rd×1 is

presented by non-negative combination of sparse coefficients
{b∗t+1} = [b1t+1, b

2
t+1, . . . , b

M
t+1] ∈ R1×M while template

reconstruction error achieves the minimum constraint with
penalty term λ under optimal local patch weight distribution
wt+1 as shown in (2):

arg min ||wt+1
⊙

(tt − Dt+1b∗t+1)|| + λ||b
∗

t+1||1

s.t. b∗t+1 = 0 (2)

Fig. 2 shows that ROI in the template frame can be repre-
sented by the global samples from the candidate frame with
sparse combination coefficients{b∗t+1}.

C. PARTIAL LEAST SQUARES REGRESSION MECHANISM
Partial least squares regression (PLSR) is the optimal statisti-
cal learning tool for describing the correlation among obser-
vation sets through the estimation of a low dimensional latent
space which maximizes the separation between samples with
different characteristics [20]. The PLSR builds new predictive
variables which are called latent variables that make a link
between the n × p matrix G of features and the n × q vector
H of the response class labels.

The general regression of multivariate PLSR [21] is as
shown in (3)

min ||Hnq − GnpWpq|| (3)

FIGURE 2. Inverse sparse representation process.

HereWpq is the regression coefficient matrix with p× q size.
Actually G and H are decomposed as shown in (4):

Gnp = TnrPpr T + Enp
Hnq = UnrQqr T + Fnq (4)

Here Tnr and Unr are n × r size low-dimensional latent
representation of G and H . Ppr and Qqr are the matrices of
loadings. Enp and Fnq are residuals. According to the nonlin-
ear iterative partial least squares (NIPALS) algorithm [20],
PLS is able to calculate the weight vectors wi as in (5):

max(COV (ti, ui)) = max(COV (H,Gwi)) (5)

Here ti and ui are the corresponding i-th column vectors in Tnr
andUnr , respectively. {wi} is the i-th column vectors in the set
of weight vectorWpq. Afterwards, iterative calculation about
the obtained column vector ti and ui is shown in (6), also pi
and qi are the corresponding i-th column vectors in P and Q,
respectively. Then the G and H are able to be iteratively
denoted as (7)

pi = (GT ti)/tiT ti
qi = (HT ui)/uiT ui (6)

G ← G− tiGT

H ← H− uiHT (7)

If the residual min ||Hnq−GnpWpq|| is smaller than the setting
threshold in the (7) iteration, the latent factors vectors wpq is
obtained completely.

D. SPATIAL ENVELOPE BASED GIST DESCRIPTOR
Spatial envelope with different particular frequencies and
orientations describe the spatial frequency structure in images
effectively that preserve latent relations, thus patterns of
orientation-dependent frequency are extracted fluently [22].
According to the frequency information captured by the con-
volutional process, the representation of target candidate is
enhanced more. Gabor convolutional kernel has been identi-
fied as the most similar profile of cortical simple cell recep-
tive fields. It shows that effective characteristics of selectivity
and locality which are optimal in the spatial envelope domain.
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FIGURE 3. Selection of positive and negative labels; solid rectangle labels
the filtering optimal state that is also the positive case for PLS. dashed
rectangles are negative cases for partial least squares regression.

Impulse response G for gabor filtering processing is denoted
in [23].

G (r, c, σ, θ) =
1

2πσ 2 exp(−
r2 + c2

2σ 2 )

× exp(j2π(r cos θ + c sin θ ))

j =
√
−1 (8)

where (r, c) represents a pixel position in the image, σ and
θ represent the bandwidth and the orientation of gabor filter,
respectively. The Gist descriptor is denoted by filtering the
image based on banks of gabor filters. In other words, Gist
descriptor is a combination of gabor descriptors with multiple
directions and scales.

III. PROPOSED ALGORITHM
The main contribution of this work is presented in this
section. A generic approach for incorporating partial least
squares regression and inverse sparse representation is pre-
sented. A novel candidate selection scheme for the final
target localization guided by the Gist descriptor governing
optimal global physical attributes of the object is proposed
and described within details.

A. STRUCTURAL REGRESSION MODEL BASED INVERSE
SPARSE REPRESENTATION(SRMISR)
After ROIs sampled from dynamic scene, each normalized
sample from template and candidate sets will be segmented
into non-overlapping K parts that facilitate sparse decompo-
sition as shown in Fig. 4. Template region of interest tt ∈
Rd×1 is manually labeled groundtruth in the t-th frame. The
consecutive candidate image is factorized into column vectors
then normalized by initial weights following the uniform
distribution. So each local patch in the column vectors can be
adaptively adjusted in subsequent tracking process to main-
tain enough structural information which exist inside local
appearance model.

For the sparse decomposition, based on the dictionary
subsets {Dt+1}, the selected non-zero coefficients b∗t+1 com-

FIGURE 4. K Parts - local patch weights {wi } ∈ {w1,w2,w3, . . . ,wK }. (a)
K colorful segments represent different local patch weights. (b) Local
weight patch.

FIGURE 5. Optimal local weight distribution.

pactly represents the same attributes as input signal tt ∈ Rd×1.
Particle filtering optimal state Xoptmt+1 in the (t + 1)-th frame
under the inverse sparse representation can be denoted in (9)
and shown as Fig. 2

Xoptmt+1 =

M∑
i=1

bi
t+1
Xi
t+1

s.t. bit+1 ≥ 0 (9)

OnceXoptmt+1 has been obtained in the candidate frame, some
positive ROIs and negative ROIs can be easily established
according to the filtering target position as shown in Fig. 3.
These ROIs also follow the processing way as shown

in Fig. 4, which owns K segmentations respectively in order
to facilitate local weight distribution under the proposed fol-
lowing structural regression model.

Gn×p = [{Xpositivet+1 }1×p, {X
negative
t+1 }(n−1)×p]

Hn×p = [{1}1×p, {−1}(n−1)×p] (10)

Fig. 6 lists the inputs of vector G in the PLS calculation.
Moreover, H input is also labeled {1 or −1} by the same cor-
responding elements inG as given in (10). The corresponding
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FIGURE 6. PLS inputs vector of G:K local weight patches in positive and n negative ROIs.

weight for i-th local patchwi is obtained following the process
in (3) and (7) adaptively following the sampling way shown
in Fig. 3 and Fig. 6.

Local patch weights {wi} are proposed to facilitate track-
ing object robustly when appearance varies sharply, such
as partial occlusion or deformation. As shown in Fig. 5,
small-variation patches take high values in the appearance
weight distribution that warmer colors represent the stable
local patches. Meanwhile, occlusion or deformation patches
are assigned lower weights that present more cool colors.

According to local patch weights {wi} in partial least
squares structural regression and the optimal particle states
X∗t+1 with non-zero coefficients b∗

t+1
in the inverse sparse

representation, the similarity of observation model between
the states Xt+1 and Xt can be estimated easily following
the (2).

B. OPTIMAL CANDIDATE SELECTION BY GIST
DESCRIPTOR
The optimal state Xoptm generated by inverse sparse
representation with local weight distribution is described by
brutal combination of non-zero coefficients bt+1 and its cor-
responding (t + 1)-th candidate states X∗

t+1
in the (9). This

way may accumulate the tracking deviation due to sparse
decomposition in the tracking looping process. In order to
represent the generic target more accurately, this paper adopts
the anisotropic filter bank to construct Gist descriptor for
selection of optimal candidate.

This paper adopts the filter bank with four scales and eight
orientations as shown in Fig. 7.
The i-th inverse sparse candidate state Xi

t+1
in (t + 1)-th

frame is split into a grid on various scales and the output of
each cellular grid is calculated using a series of gabor filter

FIGURE 7. Symmetric filter bank with four scales and eight orientations.

bank. Each normalized image of Xi
t+1

firstly convolves with
the symmetric filter bank resulting in thirty-two feature maps
of the same size of the input. Then n × n regions split each
feature map that can extract totally 32 × n2 region maps(n2

regions×32 feature maps). Finally, each region map is aver-
aged and serialized into Gist descriptor that contains 32× n2

new features ψX i
t+1

in the spatial envelope energy spectrum
as shown in Fig. 8. To provide better evaluation between the
reference in (t)-th frame and the inverse sparse candidates
in (t + 1)-th frame, this paper adopts the cosine distance to
compare the new 32 × n2 features of the reference ψXRef

t
and the inverse sparse candidates ψX i

t+1
for selecting the

most similar candidate Xi
t+1

as the best one as (11) and (12).
Fig. 9 shows the selection for optimal candidate by cosine
evaluation.

s.t. argmin
< ψXRef

t
,ψX i

t+1
>

||ψXRef
t
|| • ||ψX i

t+1
||

(11)

Xoptmt+1 = Xit+1 (12)
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FIGURE 8. Gist descriptor spatial envelope energy spectrum
(16 ∗ 16 regions).

FIGURE 9. Selection for optimal candidate by cosine evaluation
(16 ∗ 16 regions).

C. MODEL UPDATE MECHANISM
During the tracking process, it is necessary to update the
template tt adaptively based on the sparse reconstruction error
errt+1(13):

errt+1 = ||tt − (wt
⊙

Dt+1bt+1)||l0 (13)

When errt+1 is more than a proper threshold τ , the template tt
described in the Section. 3.2 will be iteratively updated by
the (14).

tt+1 = ttµ+ (1− µ)(wt
⊙

Dt+1bt+1)

s.t. bt+1 > 0

s.t. errt+1 > τ (14)

IV. EXPERIMENTAL EVALUATION AND ANALYSIS
The proposed algorithm is implemented using Matlab on a
computer with specifications of 2.66-GHz Intel Pentium(R)
CPU and 8.0-GBmemory. In all the experiments, target areas
are selected manually in the first frame image (target ROI)
and modeled as above procedures. The L1 sparse minimiza-
tion solution is supported by SPAMS package [24] and the
regularization constant λ is set to 0.1. Three hundred particles
are sampled for providing the candidate sets in each tracking
loop.

The proposed algorithm is tested by multiple video clips
that contain the nine video sequences [25]. In order to deal

FIGURE 10. Fish tracking results.

FIGURE 11. Singer1 tracking results.

FIGURE 12. Singer2 tracking results.

with the tracking error, the groundtruth of tracking object
is labeled manually in each frame. All affine transforma-
tions are possessed by 32×32 normalized patch. All pictures
are normalized for 640×480 pixels size. The size of local
patches is set 8×8 pixels. In order to prove the superiority
of the proposed algorithm, this work employs several state-
of-the-art challenging algorithms that are related with sparse
constraints, including ISPCN(tracker via inverse sparse rep-
resentation and convolutional networks) [18], CNT(tracker
via convolutional networks without training) [17], TLD [26],
MIL(multiple instance learning) [27], ASLAS(tracker via
structural local sparse appearance) [9].

Fig. 10, 11 and 12 shows that our tracker achieves better
results in the illumination variation cases. The good perfor-
mances are attributed to the Gist descriptor that owns the
stable capability of feature description. The proposed algo-
rithm also performs best in spite of the complex background
environment such as Fig. 12 that singer walks and sings in the

VOLUME 6, 2018 69983



X. An et al.: Structural Regression Model-Based Inverse Sparse Representation for Tracking Objects

FIGURE 13. Face occlusion1 tracking results.

FIGURE 14. Face occlusion2 tracking results.

FIGURE 15. Dog tracking results.

stage with the severe illumination variation. In addition, there
are serious pose variations while the camera focuses on the
singer pose cross the whole process. As shown, singer1 video
clips are influenced by the stage lights variation in which only
our method are able to deal with scale change properly as
shown in the Fig. 11. For fish video clips, the fish model
undergoes drastic illumination variation with some motion
blurring. We can see that ISPCN tracker is not able to track
accurately in the Fig. 10. It is easily influenced by the dras-
tic illumination variation easily. The tracking process faces
abruptly interruption in almost 275-th frame. However, our
tracker always give an important focus on the target, also give
the lowest average center error.

Fig. 19.a. 19.b and 19.c give the final corresponding results
of fish, singer2 and singer1 respectively. According to the
error plot line in Fig. 19, the proposed algorithm also shows
the optimal stability.

FIGURE 16. Basketball tracking results.

FIGURE 17. Fleetface tracking results.

FIGURE 18. Human2 tracking results.

For occlusion cases(Fig. 13 and Fig. 14), two human faces
are all partially occluded by the book. The proposed algo-
rithm obtains good results in this situation. The reasons are
as follows :1) the partial least square model in the feature
distribution to some extent improves the proposed tracker
robustness. 2) the occluded parts are able to be alleviated by
only applying the parts without occlusion. In addition, sparse
representation based CNT, ISPCN achieve good results by
its multi-fusion appearance model. Meanwhile, traditional
trackers such as MIL and ALSA are also able to take the
unique solutions to occlusion. TLD trackers also give similar
performances in this simple case within a certain error range
as shown in Fig. 19.d . Fig. 14 belongs to heavy occlusion
case that has either severe and long-time partial occlusion.
Fig. 19.e shows the robustness of the proposed algorithm in
dealing with rotation and heavy occlusion. Since Gist feature
describes the target appearance discriminatively, although
particle candidates undergo heavy occlusion, the updated
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FIGURE 19. Center error representaion. (a) Fish. (b) Singer2. (c) Singer1. (d) FaceOcc1. (e) FaceOcc2. (f) Fleetface. (g) Human2.
(h) Basketball. (i) Dog.
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TABLE 1. Average center error.

TABLE 2. Average overlapping rate.

templates have no large variation in the global level, which
makes inverse sparse coefficients of template higher than that
of the bad candidates.

For non-rigid deformation cases(Fig. 16 and Fig. 15), tar-
gets undergo abrupt pose variations. It is rather difficult to
locate target position when the discriminative appearance
always changes in feature distribution. However the proposed
algorithm achieves better center error rate than other trackers
in Fig. 16. Especially after 180-th frame, TLD, ISPCN, CNT
have large error variations but the proposed algorithm still
keeps the low error rate. The benefits from the proposed
algorithm contain the robustness of model description. Such
deformable case often presents low and dense representation
errors as shown in Fig. 19.h. Fig. 15 shows that the dog target
is always running forward the woman. This case has either
deformable pose and variable scale in the whole process. The
motion variations result in target appearance changing signif-
icantly. Because the proposed algorithm adopts online model
update strategy, Gist feature excludes the local deformation
in the candidate selection. The proposed algorithm achieves
a good result in Fig. 19.i.
For accidental rotation cases shown in Fig. 17 and Fig. 18,

targets face abrupt appearance variations caused by large
degree rotation. The proposed algorithm seems effective to
deal with such challenging cases. This is the reason that the
proposed appearance model is robust and stable against the
outliers, Gist feature obtains discriminative identification in
the tracking. Fig. 19.f and 19.g confirm the effectiveness
of the proposed algorithm in the long-term tracking. Fig. 18
shows that the proposed algorithm gets lower error comparing
with others. Many trackers lose the target when they undergo
abrupt pose variations.

In order to evaluate the performance, Tab. 1 and Tab. 2
report the comparisons based on average error rate and

average overlapping rate respectively. This way that all the
algorithms on the same computer configuration are obtained.
The center error rate and the overlapping rate are employed
in this section. It is found that the case of low average center
error rate and of high overlapping rate will be defined as
good performance. As shown in both figures, the proposed
algorithm gets favorable performance against others.

V. CONCLUSION
This paper presents the optimal structural regression model
based inverse sparse representation for tracking algorithm.
Comparing with the other sparse representation based track-
ers, two key advantages exist in the proposed method. Firstly,
considering the potential characteristics of local patches,
optimal weights with spatial structural information among
local patches are exploited to describe more compact target
appearance. To dynamically depict the model appearance,
the local weight update scheme in the structural regression
process is utilized by the partial least squares regression. This
alleviates the drift problem more efficiently and effectively
by the proposed method, when the environmental occlusions
occur to the tracker. Weights distribution in different patches
also facilitates the inverse sparse representation in the track-
ing process. Explicitly the dictionary construction complexity
is avoided for the reason that dictionary is coded by candi-
date sets of particle samples for the sparse representation.
Secondly, incorporating Gist descriptor in frequency domain,
optimal set of candidate is more easily selected in global level
to jointly capture the target appearance variations. Collections
of variant directional wavelet filters (e.g., the gabor feature)
are efficiently integrated into the learning process that fur-
ther improves the discriminative power of optimal candidate
selection. Furthermore, the proposed tracker achieves a better
performance in the challenging variation environment having
illumination with good accuracy. Currently we are working
on a new algorithm that merges more discriminitive features
which are expected to reduce the calculation cost and improve
the robust tracking.
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