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ABSTRACT Synchronized dual-wavelength narrow-linewidth lasers and a wideband frequency-tunable
optoelectronic oscillator are simultaneously realized using mutual-injection-locked distributed feed-
back (DFB) lasers. The two laser modes serve as the seeding light and a microwave photonic filter for the
optoelectronic oscillation. Mutual-injection locking between the two DFB lasers through a delay fiber loop
results in synchronized narrow-linewidth operation. Microwave tuning from 19 to 41 GHz has been obtained
through thermal-tuning of the DFB lasers, with the single-sideband phase noises below −100 dBc/Hz at a
10-kHz frequency offset from the carrier. Laser linewidth has been reduced from several-MHz to kHz with
a linewidth reduction factor over 104.

INDEX TERMS Microwave photonics, microwave generation, semiconductor lasers.

I. INTRODUCTION
High-quality signals, including both microwave and pho-
tonic (laser) signals, are highly desirable in their respective
application fields. The phase noise and linewidth are two
closely related parameters in evaluating the signal quality in
terms of spectrum purity. Microwaves are usually evaluated
by the phase noise, while laser signals are usually evaluated
by the linewidth. Commercially available high-performance
microwave source can reach a phase noise level in the
range of −120 to −100 dBc/Hz at a 10-kHz offset from
the carrier frequency of 10 to 40 GHz. Commercial semi-
conductor lasers for optical communication normally have
linewidths around several-MHz. Narrow-linewidth semicon-
ductor lasers can reach linewidth below 10 kHz. Tradition-
ally, microwave phase noise and laser linewidth are two
parameters that need to be independently optimized due
to the difference in working principle and structure of the
microwave and photonic devices. With the emerging devel-
opment of microwave photonics, radio over fiber (RoF) and
high precision metrology technologies, there are increasing
demands on the adoption of both low-phase-noise microwave
source and narrow-linewidth lasers. One typical example is
the optical comb generation with narrow-linewidth [1], [2],

which can be used for coherent-detection links. In most cases,
this will result in two sets of expensive equipment or devices,
i.e. high-quality microwave sources, and narrow-linewidth
lasers. It would be attractive if both high-quality microwave
signal and narrow-linewidth laser can be simultaneously
obtained by only using ordinary microwave components and
semiconductor lasers. However, there is a lack of relevant
reports on such structures.

To obtain a high-quality microwave signal, optoelectronic
oscillator (OEO) structures are usually adopted due to its
superior performance in phase noise, especially at high fre-
quency [3]–[5]. The oscillation frequency of an OEO is deter-
mined by the center frequency of the narrowband bandpass
filter (BPF), which is usually realized through electrical BPF.
However, the bandwidth and tunability of the electrical
BPFs are limiting factors to high-performance tunable OEOs.
In recent years, various types of microwave photonic fil-
ters (MPFs) have been embedded into the oscillation loop to
overcome the limitation of the electrical BPF. Typical MPF
schemes include phase-to-intensity modulation (PM-IM) by
using a phase-shifted fiber Bragg grating (PS-FBG) [6], a tun-
able optical bandpass filter [7], [8] or the stimulated Brillouin
scattering effect [9], [10] to change the phase or amplitude
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of the phase modulated sidebands. A dual-mode amplified
feedback laser [11], [12], a Fabry-Perot laser diode [13] or
a DFB laser under external optical injection or delayed self-
feedback [14]–[17] can also be used as MPFs.

By using OEOs as the driving source, highly coherent
optical carriers can be obtained. However, by inspecting
the individual linewidth of the optical line components,
they are normally in the range of MHz or even worse.
To realize narrow-linewidth operation, dedicated narrow-
linewidth lasers are usually required [2]. Alternatively,
a delayed self-injection scheme can be used to reduce the
laser linewidth [18].

In this paper, we propose and demonstrate the simultaneous
realization of dual-wavelength narrow-linewidth lasers and a
frequency-tunable OEO based on optically mutual-injection-
locked thermally-tuned distributed feedback (DFB) lasers
with optoelectronic feedback. Only two thermally-tunedDFB
lasers, a single RF amplifier, a photodetector and two coils of
optical fiber are required in the proposed scheme. By tuning
the heating power, tunable microwave signal can be obtained
ranging from 19 GHz to 41 GHz with single-sideband (SSB)
phase noise below−100 dBc/Hz at a 10-kHz frequency offset
from the carrier. Two synchronized lasers with linewidth on
the level of kHz are obtained due to delayed self-injection.
The proposed structure can be used as the coherent car-
rier generators for RoF links or injection source for comb
generators.

FIGURE 1. (a) Schematic of the experimental setup. Cir, Circulator;
VOA, Variable optical attenuator; PC, Polarization controller;
PD, Photodetector; LNA, Low noise amplifier; EC, Electrical coupler;
OSA, Optical spectrum analyzer. (b) Illustration operation principle of the
two mutual-injection-locked DFB lasers.

II. PRINCIPLE AND EXPERIMENT SETUP
The schematic diagram of the proposed OEO is illustrated
in Fig. 1 (a). It is based on the mutual-injection locking of two

thermally-tuned DFB lasers (DFB1 and DFB2) with the assis-
tance of an optoelectronic oscillation loop (OE-Loop). The
oscillation frequency of the OE-Loop is determined by the
frequency difference between the two DFBs, the beating sig-
nal of which forms an equivalent MPF. The center frequency
of the OEO can be tuned by changing the wavelength of the
DFBs through thermal tuning. DFB2 is directly modulated by
the amplified RF signal converted from the beating signal via
a photodetector. Due to the photon-photon resonance effect,
a high modulation response can be achieved at the detuned
frequency. Neither a high-speed external modulator nor an
electrical BPF is necessary for this configuration.

The synchronization between the two DFBs is realized
through the optical mutual-injection locking between one
laser mode and the other laser’s sidebands either result-
ing from the modulation (via the directly modulated DFB2)
or the optical carrier regeneration (via DFB1). As shown
in Fig. 1(a), the light from DFB1 at a wavelength of λ1 (fre-
quency ν1) passes through Cir1 into an optical coupler (OC1).
One part (20%) of the light is used for the optical spectrum
and the linewidth measurement. The other part (80%) is
injected into DFB2 through Cir2 and regenerated as a side-
band at ν1 accompanying the main modes (wavelength λ2,
frequency ν2) of DFB2. Then, ν1 and ν2 pass through Cir2
again and are divided into two part by an OC2 (70:30). One
part (70%) of the optical power is detected by a photodetector
(Finisar XPDV2120R) to convert the beating signal into an
RF signal (f = ν1 − ν2), which is then amplified by an
RF low noise amplifier (LNA) with a gain of 40 dB from
20 to 40 GHz. The amplified RF signal is then used to directly
modulate DFB2. The other part (30%) of the optical power
is injected back into DFB1 and circulates through Cir1 and
DFB2 to form the optical mutual-injection loop (O-Loop).
In the OEO, the beating signal serves as the seeding signal
to initiate the oscillation. The required RF gain is lower than
traditional OEOs which start oscillation from noise. Once the
modulation starts, one of the modulation sideband of DFB2
will coincide with ν1 as shown in Fig. 1(b). The modula-
tion sideband will lock DFB1 in the O-Loop, resulting in a
synchronized dual-wavelength output.

On the other hand, the two DFBs are actually also injec-
tion locked by their delayed replica in the O-Loop. The
delayed self-injection will considerably reduce the laser
linewidth [19]. Besides, the equivalent bandwidth of theMPF
will also be narrowed due to the narrowed beating signals.

Frequency tuning is realized by controlling the wavelength
difference between the two DFBs through current-controlled
thermal tuning. The Ti thin-film heaters integrated with the
two DFBs have an electrical resistance of 1300 � which
provide a high wavelength tuning efficiency. The detailed
fabrication process and performance of the thermally-tuned
DFB laser can be found in our previous work [20]. The
thermal tuning speed is typically at the level of millisec-
onds. To further increase the tuning speed, an electri-
cally tuned distributed Bragg reflector laser (DBR) can
be used.
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A variable optical attenuator (VOA) is used to adjust
the injection strength and a polarization controller (PC) is
used to match the polarization state between the injection
light and the lasers. The output signal is monitored by an
electrical spectrum analyzer (ESA) (Agilent PXA N9030A)
and an optical spectrum analyzer (OSA) (Advantest Q8384).
In the linewidth measurement, a tunable optical filter is
used to select a single wavelength. The laser linewidth is
measured using a delayed self-heterodyne method with a
frequency-shift of 70 MHz, and a delay fiber of 85 km
(corresponding to a measuring limit of 750 Hz for Lorentz
lineshape).

FIGURE 2. (a) Optical spectrums of DFB1 at different heating power,
(b) optical spectrum of the two DFB lasers with O-Loop and OE-Loop
closed, (c) the generated 23.3-GHz microwave signal under a 1-MHz span.
Inset: the RF spectrum in a 1-kHz span with a 1-Hz RBW. (d) Measured SSB
phase noise spectrums of the generated signal with O-Loop closed (blue
line) and O-Loop opened by disconnecting port 1 of Cir1 (green line).

III. EXPERIMENT RESULTS
In the experiment, DFB1 was mounted on a Cu heat-
sink, while DFB2 was mounted on a GSG subcarrier. The
emission lights from both DFB lasers were coupled by
tapered fibers with anti-reflection coatings. The working
temperature was stabilized at 25circ by two thermo-electric
coolers (TECs), separately. The thermally-tuned optical
spectra of DFB1 (with a fixed bias current of 90 mA)
is shown in Fig. 2(a). With the heating power increasing
from 0 to 420 mW, the emission wavelength increased
from 1577.30 to 1579.41 nm, with a thermal tuning effi-
ciency of 0.005 nm/mW and a tuning range of 2.11 nm.
The side-mode suppression ratio of the emission light was
above 46 dB during the wavelength tuning. When DFB1
was biased at 90 mA with 9.90-mW heating power and
DFB2 was biased at 82 mA without heating, the output
power was 6.3 dBm and 5.7 dBm, and the peak wavelengths
were 1577.36 nm and 1577.17 nm, respectively, correspond-
ing to a beating frequency of 23.3 GHz. By closing the
O-Loop and the OE-Loop with an optical injection power
of −2.4 dBm and −4.3 dBm for DFB1 and DFB2 measured
at port 1 of each Cir, synchronized narrow-linewidth laser

modes and high-quality microwave signal were generated.
Fig. 2(b) shows the optical spectra of the two DFB lasers.
Fig. 2(c) shows the RF spectrum of the generated 23.3 GHz
signal in a 1-MHz span, showing a side-mode suppression
ratio over 65 dB. The inset in Fig. 2(c) provides a detail
of this signal in a 1-kHz span with a 1-Hz resolution band-
width (RBW). As shown in the blue line in Fig. 2(d), the SSB
phase noise is −107 dBc/Hz at a 10-kHz frequency offset
from the carrier when both the O-Loop and the OE-Loop are
closed. The maximal phase noise of the generated microwave
signal at the spurious modes is −88 dBc/Hz, indicating
a good side-mode suppression. For comparison, the phase
noise of the microwave signal when the O-Loop is open
by disconnecting the Cir1 at port 1 is plotted as the green
line in Fig. 2(d). With the O-Loop is open, the synchro-
nization between the two DFB lasers and the delayed self-
injection is blocked, the phase noise drastically deteriorates
from −107 dBc/Hz to −60 dBc/Hz at a 10-kHz frequency
offset from the carrier.

FIGURE 3. Variation of the (a) carrier frequency, (b) phase noise at a
10-kHz carrier frequency offset and (c) carrier power within 100 seconds
of continuous measurement.

FIGURE 4. Carrier frequency drifts in 20 miniutes.

The carrier frequency, phase noise and carrier power fluc-
tuations of the generated 23.3-GHz signal were measured by
using the ‘‘spot frequency’’ mode of the ESA at a sampling
rate of 1 sample per second. As shown in Fig. 3, within a
100-second continuous measurement, the carrier frequency
drift is < ± 400 Hz, the phase noise variation at a 10-kHz
carrier frequency offset is < ± 2 dB and the carrier power
variation is < ± 0.125 dB. During a 20-minute of continu-
ous observation in a room environment by using the ‘‘Max-
Hold’’ function of the ESA, as the trace shown in Fig. 4,
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FIGURE 5. (a) Linewidth of DFB1 and (b) DFB2 working in the
free-running state and the mutual-injection-locked state. F: Free-running
state; M: Mutual-injection-locking state. Inset in (a) and (b) zoom-in view
of the linewidth with DFB1 and DFB2 working in the
mutual-injection-locking state.

the frequency drift of this signal is less than 7 kHz without
mode hopping.

Fig.5 shows the linewidths of the two DFB lasers working
in the free-running state and the mutual-injection-locked state
with optoelectronic feedback. The linewidth evaluation of
the individual wavelength was accomplished with the assis-
tance of an optical tunable filter. As can be seen in Fig. 5,
the linewidth of DFB1 is reduced from 9.17MHz to 0.84 kHz
and DFB2 is reduced from 7.16MHz to 0.56 kHz with a com-
pression factor over 104. Even though the measured linewidth
has reached the linewidth measurement limit, it is still can be
deduced that the linewidth is on the kHz or sub-kHz level.

By tuning the heating power of DFB1 from 0 to 33.94 mW
with DFB1 biased at 90 mA, and DFB2 biased at 82 mA
without heating, the oscillation frequency can be continu-
ously tuned in a wide range from 18.3 to 43.3 GHz. Fig. 6(a)
shows the overlapped RF spectra of the generated microwave
signal, which was tuned in a 1-GHz step. The inset in Fig. 5(a)
is the 40.3-GHz microwave signal in a 1-kHz span with a
1-Hz RBW. The tuning range is limited by the bandwidth
of LNA, and the carrier power of the generated microwave
signal is a clearly roll-off of the frequencies below 19 GHz
and above 41 GHz due to insufficient gain. Further tuning
can be expected if a broadband electrical amplifier is adopted.

FIGURE 6. (a) Spectra of the generated microwave signal with a
frequency tuning range of 19 to 41 GHz with a tuning step of 1 GHz.
Inset: the 40.3 GHz microwave signal in a 1-kHz span with a 1-Hz RBW.
(b) The relationship between the oscillation frequency and heating
power (green + symbol) and its linear fitting curve (blue dash).

FIGURE 7. Measured SSB phase noise performance of the generated
signal at different oscillation frequencies.

As depicted in Fig. 6(b), the oscillation frequency increases
almost linearly with the increase of heating power at a linear
fitting slope of 0.727 GHz/mW.

Fig. 7 shows the SSB phase noise performance of the
generated microwave signal at different oscillation frequen-
cies. The lowest SSB phase noise was measured to be
−107 dBc/Hz at a 10 kHz offset from the carrier frequency
of 23.3 GHz, while the SSB phase noises at other frequencies
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were below −100 dBc/Hz, which indicates the advantage
of generating a low phase noise microwave signal at a high
frequency.

IV. CONCLUSIONS
In summary, we propose and demonstrate a synchro-
nized dual-wavelength narrow-linewidth laser generation
and frequency-tunable OEO scheme based on the optically
mutual-injection-locked thermally-tuned DFB lasers with
optoelectronic feedback. Two synchronized laser modes with
linewidth below kHz were realized. The beating signal also
functions as a narrow-passband microwave photonic filter to
determine the oscillation frequency. By tuning the heating
power of the thermally-tuned DFB laser, frequency-tunable
microwave signals ranging from 19 GHz to 41 GHz with
SSB phase noise below−100 dBc/Hzwere obtained. Broader
frequency tuning range can be expected by using a broadband
RF amplifier.
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