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ABSTRACT Research on how risk is perceived by drivers is vital to driving behavior research and driving
safety. As risk can be divided into subjective and objective risk, in this paper, we focus onmodeling subjective
risk perception by drivers using a deep learning method. Different drivers often perceive different levels of
subjective risk under the same driving conditions. In addition, different driving conditions or driving events
will have different effects on drivers. Based on these two risk perception features, in this paper, we first
design an experiment on a city road with two lanes to assess the level of subjective risk perceived by drivers
belonging to different groups. We then use a deep learning network-based method to abstract features of
the driving environment. These environmental features are integrated with driver risk perception data and
this information is used as training and testing data for the learning network. Finally, a long–short-term
memory-based method is adopted to model the subjective risk perception of individual drivers based on
traffic conditions and vehicle operation data from the driver’s vehicle. Our results show that the proposed
method can effectively model the subjective risk perception behavior of drivers, allowing for end-to-end risk
perception prediction in future driving assistance systems.

INDEX TERMS Driving behavior modeling, deep learning, traffic safety, risk perception.

I. INTRODUCTION
According to the 2015 traffic safety report from the World
Health Organization, 1.2 million lives are lost annually as a
result of traffic accidents [1]. Traffic accidents are also the
leading cause of death for people between 15 and 29 years
of age. Although the annual number of traffic deaths has
plateaued at 1.25 million in recent years, justifying the 50%
reduction goal by the 2020s is still far away. Unsafe driving
behavior is the main cause of traffic accidents, and is respon-
sible for 90% of all fatal crashes [2]. Specifically, distorted
and faulty perception of potential risk is one of the main
causes of road accidents [3]. Research by M.S. Horswill and
F.P. McKenna suggests that among driving skills, only hazard
perception is correlated with drivers’ accident histories [4].

Risk perception while driving is the subjective assessment
of the probability of a specified type of accident and how con-
cerned drivers are with the possible consequences [5]. As it
is based on judgement and situational awareness, risk percep-
tion is a type of behavior which varies among individuals [6].

Drivers operate their vehicles based on their perceptions of
current traffic conditions or events. Inappropriate risk percep-
tion leads drivers to fail to recognize or to ignore dangerous
situations, or to adopt risky driving behavior. Therefore, it is
vital that we investigate how driver risk perception works,
and use our understanding to develop the necessary interven-
tions or improvements for driving assistance systems in order
to achieve the goal of improving driving safety.

Perception of traffic risk is highly individualized and is
influenced by personal experience with the costs of accidents
and the rewards for risk-taking behavior [7]. Risk perception
is also correlated with objective driving conditions or events.
Therefore, this study aims to build a model which uses envi-
ronmental factors to simulate a particular driver’s risk percep-
tion behavior on a city road. As shown in Fig. 1, three steps
are proposed to reach this goal. First, a risk perception eval-
uation experiment is designed and conducted to collect risk
perception data from drivers and to verify that risk perception
is personalized. Second, objective features of the driving
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FIGURE 1. Research structure for risk perception modeling.

environment are abstracted and condensed into a usable form
which can be compared with driver risk perception. Finally,
a risk perception model based on deep learning network is
constructed to simulate the risk perception of a particular
driver in relation to the driving environment.

Many studies have analyzed driver risk perception, and we
can divide the approaches used into three major categories.
The first type of these studies is based on questionnaire
surveys or self-reported information from drivers, which is
effective for illustrating variations in human risk perception.
Siren and Kjær conducted textual interviews and group dis-
cussions to examine how older drivers conceptualize risk
perception [6]. Their results show that older drivers tended
to consider risk as something external (dangerous traffic con-
dition or risk driving behavior of other drivers) which can
be dealt with by internal means. Rafaely et al. conducted
a questionnaire survey to examine the difference between
older and younger adults in regards to driving safety [8].
Participants in both age groups were able to accurately assess
their own risk level when driving, but older participants
tended to overestimate the risk incurred by younger adults
and younger participants tended to underestimate the risks
taken by older adults. Questionnaire surveys are also effec-
tive for measuring the effects of some social factors which
affect driver risk perception, such as media influence [9],
socio-economic level and driving experience [10], cultural
influences [11], and so on. Since questionnaire studies reflect
the traits of groups or macro knowledge on driving risk per-
ception, they are not as useful when evaluating individuals.
In other words, questionnaire results can only reveal themajor
risk perception features of some groups. Additionally, sur-
vey results from questionnaires rely heavily on the samples
collected and are easily affected by fluctuation in the survey
objects.

The second approach employs driving simulators to collect
realistic driver behavior data from drivers encountering high
risk situations. By using simulators, the researchers can safely
collect risk perception data under realistic driving conditions.
Crundall et al. analyzed the different responses to risk of a

group of experienced drivers [12]. After exposing the drivers
to different hazardous traffic scenarios on the driving sim-
ulator, the authors proposed that the ability of a driver to
perceive risk is based on whether or not the driver can quickly
spot possible hazards. Dixit et al. used a left turn driving
scenario on a driving simulator to analyze the psycholog-
ical features of subjective risk perception by drivers [13].
They concluded that drivers with better risk perception ability
were more optimistic about executing the turn without crash.
Experienced drivers also tended to finish the task more safely
and efficiently. The use of driving simulators is also valuable
when analyzing the effect of specific driver traits on risk
perception, such as the responses of elderly drivers when
encountering hazardous situations [14], cognitive abilities
and the effects of distractions [15], the ability to scan for
hazardous objects [16], and so on. Driving simulator-based
research also has its shortcomings, however. Although simu-
lators can accurately recreate various driving conditions and
scenarios, they cannot reproduce the full complexity of real-
world driving conditions, and the simple background and
game-like interface also lowers accuracy and realism.

The third method used to study risk perception is to show
study participants video clips of real-world driving situations
to assess their risk perception abilities. The video clips can be
carefully selected to focus on unique, personalized features.
Borowsky et al. used six selected video clips to compare
the hazard perception abilities of young drivers (inexperi-
enced and experienced) with those of elderly drivers [17].
Their study found that older and experienced drivers are
more sensitive to risk, confirming the results of previous
studies [18], [19]. Crundall used thirty clips of hazardous
driving situations and ten of non-hazardous situations to com-
pare the responses of novice and experienced drivers [20].
Gugliotta et al. used 300 videos made by two experi-
enced drivers to explore the impact of situational awareness
and decision-making skills on hazard perception [21]. Risk
perception assessment using real-world video clips allows
subjects to experience real driving environments, and because
our modeling method is based on environmental factors
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which can be visually perceived by drivers, in this study
we also use real-world video to assess the risk perception
behavior of drivers.

Previous studies have, to a large extent, answered the
questions of how the psychological characteristics of various
demographic groups affect risk perception, and how different
levels of risk perception ability affect traffic safety. In this
paper, we want to go a step further and build a quanti-
tative personal risk perception model which can simulate
human risk perception, instead focusing on the phenomenon
of risk perception itself. There have been a few previous
attempts at quantitative modeling of driver risk perception
very similar to this study. Liu et al. used an adaptive neuro-
fuzzy inference system to model driver risk perception, and
found that risk prediction results can serve as an important
parameter for predicting the intersection crossing behavior
of other drivers [22]. The risk perception model was based
on a simple intersection scenario which only considered the
limited environmental factors of two vehicles crossing an
intersection. As a result, their risk perception model can-
not be used to model more complex driving environments.
Zhao et al. utilized fuzzy C-means clustering to examine
the driving states experienced by drivers in extreme detail,
where each cluster of data represents distinct risk perception
behaviors [23]. Risk labelling in this study is done using
thresholds of detailed analyses of driving states instead of
the cognition of drivers. Although Zhao et al. used the micro
driving states of drivers to analyze risk perception, they were
actually analyzing objective risk instead of subjective risk
perceived by drivers.

Risk perception can be treated as a human behavior similar
to writing or talking, both of which are the output of human
cognition results in response to the surrounding environment.
In addition, risk perception is a time sequence behavior which
is based on information about previous and current states,
most of which is obtained through the channel of vision.
Naturally, we want to use some time sequence informa-
tion processing methods for modeling driver risk perception.
Long Short-Term Memory network (LSTM) [24], which is
an improved form of Recurrent Neural Network [25], is a
powerful pattern recognition tool which is widely used in
the modeling of human-like behavior, such as image cap-
tioning [26], machine translation [27] and driving behavior
modeling [28]. Inspired by these previous research, in this
paper we use selected video clips to assess the risk perception
ability of drivers, and then use an LSTM-based method to
model their risk perception behavior.

The organization of this paper is as follows. Section II
presents the methods used to experimentally obtain driver
risk perception assessment data and describes our method
for abstracting driving environment features. Section III
describes the LSTM-based risk perception modeling pro-
cess. The group and personal modeling results are given
in the section IV. Finally, our discussion and conclu-
sion of this study are summarized in Sections V and VI,
respectively.

II. METHOD OF DATA COLLECTION
A. RISK PERCEPTION DATA COLLECTION
1) PARTICIPANTS
The participants in our study were 22 Japanese drivers from
24 to 74 years of age, all of whom hold Japanese driv-
ing licenses. They were grouped into four categories and a
detailed description of each group is given in Table 1.

TABLE 1. Descriptions of driver groups.

2) VEHICLE AND ROAD USED FOR DRIVING
VIDEO COLLECTION
The driving data and test videos were collected during real-
world driving. AMitsubishi i-MiEV electric vehicle equipped
with a Sony HDR-AS100V camera was used for data col-
lection, as shown in Fig. 2. The camera was placed inside
the vehicle and recorded the driving environment from the
driver’s point of view. The driving route was 5.2 km of two-
lane city road (left side driving, one lane traveling in each
direction) in Nagoya, Japan. Driving the entire route took

FIGURE 2. Experimental vehicle and data collection route.
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about 20 minutes. An on-board mobile phone and video cam-
era recorded vehicle status information and traffic conditions
during each driving session. The collection rate was 10Hz,
i.e., during each second we obtained 10 samples of CAN
data and 10 samples of driving environment feature images
(ten video frames). Details about the collected data and its
categorization will be introduced in Section II.B.

3) COLLECTION OF DATA FOR RISK PERCEPTION
ASSESSMENT
We used the driving videos collected from the real driving
of the experiment participants to assess the participants’
subjective risk perception behavior. Each of our 22 partici-
pants drove along the designated route twice. Videos were
collected during the morning, noon and afternoon, and a
total of 44 videos (22 drivers×2 trips) were collected for
our study. The videos were stored as MPEG-4 files with a
resolution of 1920×1080 per frame and then shown to 14 of
the participants on a 50-inch TV screen. These 14 participants
were asked to assign risk level scores for each frame while
viewing the videos, using a software application. The assess-
ment software interface is shown on the left of Fig. 3, and the
right side of the figure shows the viewing environment.

FIGURE 3. Software platform and video viewing environment used in our
experiment.

The 14 participants who were asked to evaluate the driving
videos were briefed on the research goal of the experiment
and then given detailed instructions for using the evaluation
software. The participants evaluated the risk levels observed
in their own driving videos as well as in those collected by
the other 21 participants. As the participants sat in front of the
TV screen and watched the videos, they pressed designated
keys on a keyboard corresponding to the risk level they
perceived at that point in the video. There were five risk level
buttons available on the keyboard (no feeling of risk, slight
feeling of risk, moderate feeling of risk, strong feeling of
risk and extreme feeling of risk), and the software application
recorded this risk perception data for each video frame. In our
risk assessment process we did not formulate a detailed defi-
nition of ‘risk’ or provide the participants with any guidelines,
because our goal was to model subjective risk as perceived
by the drivers, rather than to evaluate their risk perception
skills. For example, if a participant had poor risk perception
skills, our proposed learning network would need to simulate
his or her poor risk perception behavior, i.e., the learning
networkmodels the risk perception abilities of each particular
driver.

B. DRIVING ENVIRONMENT FEATURE
ABSTRACTION METHOD
Risk perception is a dynamic interaction between the driver,
the vehicle and the driving environment [22], so environ-
mental factors also affect driver risk perception. Therefore,
in order to accurately model the risk perception behavior of
drivers, we first need to find an effective way to summa-
rize information about the current driving environment and
convert that information into a format that can be processed.
In this study, traffic-related environmental factors are divided
into two types of features, static features and dynamic fea-
tures, as shown in Table 2. Static features are those environ-
mental factors which remain unchanged for a relative long
period of time, such as the type of road, the existence of
roadside buildings, traffic infrastructure, and so on. On the
other hand, dynamic features are those features of the traffic
situation and driver vehicle state which continuously change
over time, such as vehicle operation inputs and outputs,
the behavior of surrounding vehicles and the presence of
obstacles.

TABLE 2. Features of the driving environment.

1) STATIC ENVIRONMENTAL FEATURES
Most traffic accidents happen at intersections [29], so road
structure should be an important factor affecting the driver’s
perception of risk. The default road structure in our study is
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a straight road with two lanes, one for traffic moving in each
direction. Three special road structures are examined; con-
trolled intersections, uncontrolled intersections and curves.
Labeling the road structures in the videos is relatively easy,
because static environmental features remain unchanged for
relatively long periods of time.

2) DYNAMIC ENVIRONMENTAL FEATURES
The state of the driver’s vehicle (the ego vehicle) is obtained
from the vehicle’s on-board diagnostics (OBD). Although the
experiment’s participants cannot see the speed statistics or the
vehicle operation data for each driver, how the vehicle moves
in the video affects their risk sensitivity and risk perception.
When the ego vehicle is moving at high speed, study par-
ticipants had a tendency to perceive a higher level of risk.
Therefore, the dynamic features include six of the vehicle’s
operation parameters, representing the movement or opera-
tion of the ego vehicle.

The second type of dynamic environmental features are
those related to the traffic situation, such as the presence of
other vehicles or obstacles. Since drivers assess risk based
on the current driving environment, real-time automotive
object detection is used to summarize these traffic features
in a quantitative form. In this study we adopt a deep learn-
ing network-based, real-time object detection method called
YOLO [30], [31]. By using YOLO, the locations of the
vehicles and obstacles listed in Table 2 can be automatically
obtained, as shown in Fig. 4. Compared to other state-of-
the-art detection methods, YOLO is an end-to-end detection
method, in which the input is an image and the output is all
of the detected objects in specified classes, as well as their
positions in the image.

FIGURE 4. Environmental feature abstraction using YOLO.

However, YOLO also collects a lot of extraneous infor-
mation. For example, it also detects vehicles parked away
from the road and pedestrians who are not along the route of
the vehicle. These redundant features are generally ignored
by drivers and do not affect driver risk perception. As a
result, this redundant information is the noise which may
hinder the LSTM to learn which features are vital for predict-
ing a driver’s risk perception behavior. Therefore, we must
manually remove the objects which are unrelated to risk

perception to make the data sufficiently clean for the LSTM
network. The information which will be input to the LSTM
is shown in Fig. 5. The red point is the position of the
camera and the green dotted line is the forward-looking view
of the driver. The objects in the colored bounding boxes
are the objects detected by YOLO which are preserved for
risk perception modeling. The green and yellow bounding
boxes are the first and second vehicles detected on the oppo-
site side of the road. The red bounding box represents a
leading vehicle traveling in the same direction as the ego
vehicle. The light blue bounding boxes identify pedestrians,
bicycles or motorbikes, which are assumed to have random
directions of travel. The dark blue bounding box represents a
parked vehicle or motorbike on the driver’s side of the road,
while the white bounding box identifies a vehicle about to
merge into the road that may affect the current operating
status of the ego vehicle. The bounding boxes contain traffic
information which may be detected visually by the partic-
ipants when they watch the video clips. By using YOLO,
visual traffic information can be transformed into quantita-
tive information which can be processed later by the deep-
learning network.

FIGURE 5. Traffic information retained for risk perception modeling.

III. MODELING RISK PERCEPTION BEHAVIOR
USING LSTM
A. GROUP AND INDIVIDUAL FEATURES OF THE RISK
PERCEPTION DATA
Fig. 6 shows the risk perception distributions for each of the
four participant groups. We can see that when viewing the
same driving videos, the driving instructors were the most
sensitive to risk, followed by the experienced drivers, and
then the elderly drivers. The novice drivers were much less
sensitive to the risk compared to the other three groups.
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FIGURE 6. Statistical distributions of risk perception for each driver
group.

However, when examining the details of each individual
driver’s risk perception data, we can see that there is consid-
erable variation in risk perception ability within each group.
In Fig. 7, we compare the statistical properties of the risk
perception of each group when viewing the same video. The
vertical axis of Fig. 7 represents the ratios of perceived risk for
each group. The ratios of perceived risk represent how many
studies participants treat current time point as risk, 0 represent
for no one perceived current time as risk and 1 represents all
participants perceive the risk. Since risk perception among
the groups differs, and it also differs even within the same
group, we can see that risk perception is not consistent,
even among drivers with similar profiles. Therefore, in this
paper we use each participant’s risk perception data to con-
struct individualized risk perception models. Before training
the learning network, we converted the raw risk perception
data from five levels of perceived risk into a binary form
(perceived risk or no perceived risk).

B. RISK PERCEPTION MODELING USING LSTM
Risk perception by drivers is based on previous and current
traffic conditions, as well as on the movement of the driver’s
vehicle. Just as reading and writing are the cognitive result
of stimulation by the outside environment or reflection on
objective stimulation, the behavior of risk perception can be
treated as a time sequence information process or, in other
words, a long-term dependency. Long Short Term Memory,
first proposed by Hochreiter and Schmidhuber [24], is a
very effective method of time sequence modeling which can
be used to solve long-term dependency problems [25] and
to effectively model many human-like behaviors [26]–[28].
The risk perception process is analogous to human linguis-
tic behavior. Just as a human being says or writes a word
based on the previous several words, drivers perform risk
assessment based on previous traffic situations. For every
period of data collection, the collected environmental and
vehicle behavior data can be seen as a word generator. Just
as human beings cannot understand the overall meaning of a
sentence from a single word, but instead require a sequence
of words, one is also unable to make a risk judgment based
on a single snapshot of traffic information or vehicle state
data. Therefore, we utilize 17 kinds of traffic environment
feature data over a period of 3 continuous seconds to construct
a sequence of ‘words’, and each 3 second data segment is then
defined as ‘risky’ or ‘not risky’ by the experiment’s partici-
pants. The LSTM is designed so that the network will provide
the same risk assessment as the participant when encounter-
ing a similar combination of ‘words’. The use of 3 seconds of
feature input was an a priori choice in this study. The longer
the time sequence of the input data, the more difficult it is for
the network to process the larger number of features, and the
harder it is for the network to converge. Additionally, more
training data is needed if there is more input data in order to
avoid potentially under-fitting the network. If a shorter time
sequence of input data is used, the network might not be able
to obtain sufficient information for modeling driver risk per-
ception behavior and this could result in network over-fitting.

FIGURE 7. Statistical properties of the risk perception data for the members of each group when viewing the same video
(over time).
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FIGURE 8. LSTM network structure.

In Fig. 8, the framework of the LSTM network and the
inner structure of the hidden nodes are illustrated. Although
the network structure of LSTM is very similar to an RNN,
the major contribution of the LSTM is the introduction of a
‘forget gate’ cell.

The yellow part of the LSTM block in Fig. 8 is the forget
gate cell. The mathematical expression of the forget gate is
shown in (1) and (2), where σ represents the standard logistic
sigmoid function of the nonlinear block in the forget gate,
Wforget , bforget are the weight matrix and bias of the forget
gate cell respectively, st−1 is the network inner state of the
previous time period, and xt represents the current input to
the network. The forget gate cell determines the effect of past
information on the current time period.

Fforget = σ (Wforget · [st−1, xt ]+ bforget ) (1)

σ (x) =
1

1+ e−x
(2)

The second part of the LSTM block is the input gate cell,
which decides what new information should be added to the
new network inner state. Equations (3) and (4) are mathemat-
ical representations of the input gate.

Finput = σ (Winput · [yt−1, xt ]+ binput ) (3)

Snew = tanh(Wnew · [ht−1, xt ]+ bnew) (4)

The network’s inner state can be updated by the output
of the forget gate and input gate, as defined in (5), where
⊗ represents the scalar product of two vectors.

st = Fforget ⊗ st−1 + Finput ⊗ Snew (5)

The last component of the LSTM block is the output gate
cell as defined in (6). The output gate decides which parts of
the network state and current information to output.

yt = σ (Woutput · [yt−1, xt ]+ boutput )⊗ tanh(st ) (6)

In each time step, input xt will be evaluated by the LSTM
block, which will produce the output yt based on the current
input and the previous network inner state. In this study,
network input xt contains the information listed in Table 2.
All of the parameters are normalized into 0 to 1 before

being input into the network. Three seconds of risk percep-
tion data (30 data points) will be packed into one packet
of data and used as the LSTM network’s input. The out-
put of the LSTM is a predicted perceived risk. During
each training step, the network will compare its output
with the participant’s risk perception data and the calcu-
lated deviation will be used to adjust the inner parameters
(Wforget , bforget ,Winput , binput ,Wnew, bnew,Woutput , boutput )
of the LSTM block. This process is known as ‘back-
propagation through time’ (BPTT) [32]. After BPTT,
the LSTM will output the risk prediction results, which per-
forms the similar risk perception behavior of the participants’.

When training the LSTM network, a ‘sliding window’ is
used to construct the input data, as shown in Fig. 9. The
sliding window contains 30 data points and each sliding
step consists of 4 data points. By using a sliding window,
the packed input data is in a time sequence. For each time
step, the packet data will be updated with new data for the
next 0.4 seconds. This sliding window enables the network to
learn the driver’s risk perception behavior every 0.4 seconds
based on the previous 3 seconds of environmental features.
This is consistent with the human visual reaction time, which
ranges from about 0.3 seconds to 0.8 seconds [33].

FIGURE 9. Sliding window mechanism for training data composition.

The components of the LSTM network are constructed
using TensorFlow [34], which is an open-source, deep-
learning calculation platform, and the LSTM block is con-
structed using the LSTM cell provided by TensorFlow,
along with the network hyper-parameters shown in Table 3.
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FIGURE 10. Neural network for risk perception modeling.

TABLE 3. Hyper-parameters of the LSTM.

The final output of the LSTM will be put into a Softmax
binary classifier to calculate the probability of risk. The detail
modeling results will be discussed in the next section.

IV. RESULTS
The risk perception modeling results by using different meth-
ods are detailed in this section. First, the modeling perfor-
mance of a neural network (NN), a support vector machine
(SVM) [35] and two types of LSTM network are compared.
Second, based on the results of this comparison, a discrete
coding method for the LSTM is proposed in order to improve
modeling accuracy. Lastly, the individual modeling results
and risk contributing factors are given.

A. TRAINING DATA
As the risk perception model is approximating the risk per-
ception of an individual driver, the training and testing data
consist of each participant’s own risk perception assessment
data. We divided each participant’s data into six groups (four
training groups, one validation group and one testing group).
Each group contained about 10,000 data samples. The train-
ing process includes cross-validation, so each data group will
be treated as validation or testing data group to improve the
generalization ability and robustness of the network.

B. COMPARISON OF DIFFERENT MODELING METHOD
Since the type of learning methods affects the modeling
results, in this section we compare four kinds of learning
structures; a multi-layer neural network (NN), two LSTMs
(each with the different number of hidden nodes), and the
kernel-based method-support vector machine (SVM). The
structure of the NN is shown in Fig. 10. Two Rectified Linear
Unit (ReLU) layers [36] compose the hidden layers of the
NN, and the output layer is a binary classifier with Softmax.
Pt and Pf represent risk prediction probabilities for the next
point in time. Pt shows the probability given by the learning
network that the participant will detect or feel risk during
the next time period, while Pf is the probability that the
participant will not detect any risk. Our SVMwas constructed
using the MATLAB SVM toolbox [37]. The output layer of
the LSTMs and the SVM is also a binary classifier using
Softmax, so the output of these two methods is also in the
form of risk prediction probabilities Pt and Pf .

14 of the participants (five elderly drivers, two novices,
three driving instructors and four experienced drivers) was
selected as the analysis sample. As the modeling structure
proposed in this paper is in fact a type of classifier, which
simulates human behavior when classifying the current situ-
ation as either risky or not risky, the area under the curve of
receiver operating characteristics (AUC) [38] and the receiver

FIGURE 11. AUC values for each method when modeling each driver.
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FIGURE 12. ROC for each modeling method when modeling each driver.

operating characteristics curve (ROC) [39] are adopted as
the evaluation indices. The modeling performance of each
method is compared in Table 4. The appropriateness of using
the criterion of the AUC to judge whether or not a classifier is
effective depends on the context of the analysis. For example,
in medical diagnosis a very high AUC is defined as 0.95 or
even higher. However, in the fields of applied psychology
and the prediction of future behavior, an AUC value above
0.7 is considered to be very effective [40]. So in this paper,
we suggest that an AUC above 0.7 certifies that a classifica-
tion method can model risk perception well. As we can see
in Table 4, all of the methods we evaluated were effective
for modeling the risk perception of the various groups of
drivers, but the proposed LSTM based methods achieved the
best performance.

TABLE 4. AUCs for each modeling method.

FIGURE 13. Dividing the driving environment into districts.

The AUC values and ROC curves using each learning
method, for each of the participants in the experiment, are
shown in Fig. 11 and Fig. 12, respectively. From these results,
we can see that each method achieves different modeling
performance for each individual. Overall, the LSTM with
50 hidden nodes and the LSTM with 100 hidden nodes
achieved the best classification performance.

C. IMPROVING MODELING PERFORMANCE
Theoretically, LSTM should be more effective when model-
ing this type of time series information than the other meth-
ods. However, based on our results reported above, we found
that for some drivers the LSTM approach was less effec-
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FIGURE 14. Samples of discrete vehicle operation data.

FIGURE 15. Comparison of risk assessment modeling performance using
continuous and discrete data, for LSTMs with different numbers of hidden
nodes.

tive than the NN method. To investigate this phenomenon
we performed another experiment, in which we supplied

the training data in binary form to train the LSTM, using
0 or 1 to represent traffic environment factors (no present vs.
present) instead the exact positions of the objects. As a
result, we found that much higher AUC values were achieved.
We hypothesize that due to current size of the training data,
the raw training data in continuous form may lower the
LSTM’s modeling performance. As a result, the positions of
the surrounding traffic objects need to be encoded in a more
abstract way, instead of directly inputting raw position data
into the LSTM. Inspired by the improved results when using
binary traffic environment information, we tried replacing
the exact positions of the surrounding objects with general
locations. As shown in Fig. 13, the original positions of
the traffic objects (the yellow lines) were utilized to deduce
their location district. Then each frame of the assessment
videos was divided into districts and the position supplied by
YOLO was used to deduce which district the traffic objects
belong to.

The red dotted lines are the detected lane boundaries and
the green dotted line is the horizon, which intersects the
vanishing point. The Fig. 13 is now divided into four districts
(A,B,C and D). The A district is the lane used by the ego
vehicle, B is the opposite lane, and C and D are the areas
between the green line and red line adjacent to the driver’s
lane and the opposite lane, respectively. Traffic objects in the
video frame were then coded using the district in which the
yellow line under the objects was located, as shown in Fig. 13.
When using this improved traffic coding method, traffic fac-
tor information was reduced from 4 to 2 dimensions, and
each dimension’s variability was also limited. Information
about the state of the ego vehicle was also made discrete,

FIGURE 16. Individual risk modeling results.
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FIGURE 17. Risk prediction data correlated to images of traffic conditions.

FIGURE 18. Importance of various environmental factors on the risk assessments of participants from each of the four types of drivers.

based on distributions of the vehicle operation information.
An example of the discrete data is shown in Fig. 14.

A comparison of the results when using detailed posi-
tion and operation data versus district location and discrete
vehicle operation data is shown in Fig. 15. As we can see,
the performance of each of the LSTMmethods was improved
by using less precise data. We also investigated the effect
on modeling performance of using LSTMs with different
numbers of hidden nodes. We found that an LSTM with
75 hidden nodes achieved the best performance.

D. INDIVIDUALIZED RISK PERCEPTION PREDICTION
RESULTS
Modeling results for selected four individuals are shown
in Fig. 16. In order to illustrate learning network performance,
3,600 sequential data samples were selected. The blue line
represents the ground truth, based on evaluations result of
the same video by the selected four participants. The red line
represents the raw risk prediction probability of the LSTM
for each individual. As mentioned before, the output layer of

the LSTM is a binary Softmax classifier. Therefore, the raw
result of the LSTM is a risk probability. A threshold of the
probability is needed to determine whether the result repre-
sents a true or false risk prediction. The optimal threshold
can be obtained by maximizing the AUC. The red area is
the prediction result for each driver, which is calculated by
using the optimal threshold. Although the risk prediction
ability of each driver is different, our deep learning-based
risk modelingmethod canmodel each driver’s risk perception
well, with an average accuracy rate of 81.55%. Examples of
detailed risk prediction data as correlated to images of the
observed traffic conditions are shown in Fig. 17 and more
samples are given in Appendix.A and Youtube.

E. INDIVIDUALIZED RISK PERCEPTION FACTOR
CONTRIBUTION ANALYSIS
The participants in the experiment made their risk assess-
ments based on several environmental factors. In our studywe
also analyzed which factors were the most important for each
individual when making their risk assessments, using our
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FIGURE 19. Risk assessment distributions of two participants (1 = the
lowest level of perceived risk).

proposed model. For each participant’s set of risk estimation
data, we eliminated specific environment factors to identify
their effect on the final risk perception results. The effect
score was then calculated using (7).

Fn =
|Pn − Po|∑N
j=1(Pj − Po)

· sigmoid(Po) (7)

Fn represents the contribution or weight of the nth environ-
mental factor on a participant’s risk assessment in each risk
prediction step. For example F1 is the contribution of the 1st

environmental factor, which is steering angle. Pn is the risk
perception probability when the nth environmental factor is
eliminated from the test data,Po is the original risk perception
probability calculated using the test data containing all of
the environmental factors. N is the number of environmental
factors (in this study there were 17 such factors). The sigmoid
is a nonlinear function related to Po (this sigmoid function

was introduced to calculate the degree to which a particular
contribution factor effected a participant’s risk assessment).
After calculating, the environmental factors with biggest con-
tribution will be treat as the most important factors for the
individual to make risk perception. We selected representa-
tives of each of the four types of drivers and calculated the
weight of each environmental factor on their risk assessments.
Distributions of the influence of the various environmental
factors are shown in Fig. 18.

V. DISCUSSION
In this section, we want to provide a more detailed
review of our modeling results and provide additional
perspectives.

A. MODEL PERFORMANCE
As shown in the Fig. 15, the best AUC for the enhanced
version of the proposed model was 0.815, which demon-
strates that our modeling method can effectively classify the
risk perception behavior of drivers. Despite these favorable
results, some issues remain which need to be addressed. First,
our enhanced modeling method is in fact a binary classifier,
so it cannot provide complex information about risk percep-
tion such as the level of risk perceived or the risk category
directly. Second, when training the models we also discov-
ered that the modeling results were influenced by the risk
assessment performance of the participants as they viewed the
videos. As shown in Fig. 19, we picked two participants with

FIGURE 20. Samples of true risk perception correlated to images of traffic conditions(Upper left: risk predicted in intersection; Upper
right: risk from the second opposite vehicle; Bottom left: risk from the roadside pedestrian; Bottom right: risk from the front parked
vehicle).
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FIGURE 21. Samples of true risk perception correlated to images of traffic conditions(Upper left; risk from the parked vehicle. Upper
right; risk from the merging vehicle. Bottom left; risk from the crossing intersection. Bottom right; risk from the parked vehicle).

FIGURE 22. Samples of true risk perception correlated to images of traffic conditions (Upper left; risk from the left turn. Upper right; risk
from the left turn. Bottom left; risk from the pedestrian.Bottom right; risk from the pedestrian).

obviously different risk assessment distributions when view-
ing the same 44 videos. Clearly, participant Elder4 perceived
that most of the driving situations he observed were safe.

When we modeled the risk assessment behavior of these two
participants, the AUC of the model was 0.867 for Elder5 and
0.76 for Elder4. The likely explanation for this difference in
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FIGURE 23. Samples of true risk perception correlated to images of traffic conditions (Upper left; risk from the stop of the leading
vehicle. Upper right; risk from the stop of the leading vehicle. Bottom left; risk from the right turn.Bottom right; risk from the right turn).

FIGURE 24. Samples of false risk perception correlated to images of traffic conditions (Upper left; risk perception model did not predict
any risk. Upper right; risk perception model predict the risk approaching the intersection while the study participant did not. Bottom left;
same as the upper right figure.Bottom right; risk perception model did not predict the risk but after 1 seconds later).

performance is that when observers underestimate potential
risk, the result is that the training data contains insuffi-
cient risk features for the model to learn from. As a result,

the LSTM will have difficulty understanding which features
cause a particular participant to perceive the presence of
risk.
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B. LSTM NETWORK STRUCTURE’S EFFECT
In the course of this study, we changed the number of hidden
nodes of the LSTM and the form of the input training data
in order to find the optimal LSTM for our modeling task.
As the current optimal AUC is 0.815 (using common LSTM
structure [41] with 75 hidden nodes), there is much room for
improvement in our deep learning-based risk perceptionmod-
eling method. There are many ways to configure the network
structure of an LSTM; there are bi-directional LSTMs [42],
stack bi-directional LSTMs [43], LSTMs with attention [26],
and so on. Comparing the performance of these various
LSTM architectures will require the consideration of many
factors such as the recomposition of the training data and
design of the attention function. These investigations will be
the focus of our future research.

C. RESULTS OF INDIVIDUALIZED RISK
MODELING ANALYSIS
In this paper we constructed a risk perception model and
tested it using drivers from four different driver categories
(novices, elderly drivers, experienced drivers and driving
instructors). We then analyzed which environmental factors
most strongly influenced risk perception among represen-
tatives of each driver category. As we can see in Fig. 18,
the elderly driver was most focused on the leading vehicle,
followed by the two ego vehicle states of steering and gas
pedal operation, which is consistent with the results of a study
by Siren and Kjær which found that older drivers tended
to think of risk as something external [6]. We can also see
in Fig. 6 that the novice drivers were much less sensitive
to risk compared to the drivers from the other three groups.
We can also observe Fig. 18 that the selected novice driver
was most sensitive to velocity of the ego vehicle, possibly
because novice drivers feel anxious when driving at high
speed. We can also see that risk factors from the outside
environment made up only 10% of the important risk factors
for our novice driver, leading to the conclusion that this driver
has little ability to perceive or predict risk in a dynamic traffic
environment. The driving instructor and experienced driver
were also very sensitive to speed, but the percentages of
important risk factors originating from the outside environ-
ment were 27% and 26%, respectively, for these two drivers.

VI. CONCLUSION
In this paper, we proposed a method of modeling driver risk
perception based on a deep learning network. We believe
that this study has made several contributions to the fields
of risk perception and driver behavior modeling: As far as we
know, this is the first time a deep learning network has been
used for risk perception modeling in a study which included
factors related to both the status of the ego vehicle and infor-
mation about the external driving environment. Our research
integrates the driving environment in order to construct a
risk perception model which can break down the factors
influencing risk perception to the micro-factor level. As a
result, our proposed modeling method allows us to recognize

situations in which a particular driver will feel they are at
risk, or will perceive the presence of risk. We were also able
to realize end-to-end risk perception analysis for our model
by using YOLO, which is a real time, environmental factor
abstracting method, to detect the presence of environmental
features along the route and establish their locations. The
inputs to our model are video data from the driver’s view of
the road ahead and data about the current status of the driver’s
own vehicle. Using a deep learning based network, the output,
which is binary data representing the presence or absence of
perceived risk, can be used to predict a risk perception result
similar to the driver’s. The real-time capability of our model
means it could be used to provide a human behavior-based
foundation for safe decision making for future intelligent
driving assistance systems.

On the other hand, our research also contains some limi-
tations. The selected environmental factor categories are not
sufficient to model the entirety of the driving environment.
In this study, we only collected the data needed to model
driver behavior on a selected, relatively uniform experimental
road. It will be difficult to adapt our current model to other
driving environments, such as multi-lane highways, country
roads (without clear road boundary), night driving, and so
on. What’s more, the results of our analysis are relatively
simple, because we only wanted to determine whether or not
the driver will perceive risk. The limited size and depth of
the training data also make it difficult for the LSTM network
to model more complex features. As a result, when using the
currently available data set, it is difficult to train the network
to obtain the desired risk category details. In the future,
we need to collect environmental data from more complex
driving situations in order to make our model more general.
The dimensions of the training data also need to be expanded
to satisfy the need for complex feature abstraction.

APPENDIX
SAMPLES OF RISK PERCEPTION CORRELATED TO
IMAGES OF TRAFFIC CONDITIONS
A. SAMPLES OF TRUE AND FALSE RISK PERCEPTION
CORRELATED TO IMAGES OF TRAFFIC CONDITIONS
Ground truth represent the risk perception made by the
study participants, the proposed modeling makes estimation.
The yellow bounding box are the top two contributor for
the risk perception. A few representative samples are listed
in the Appendix.A. We also offer more examples on the
Youtube. The website address is https://www.youtube.com/
watch?v=F8BhHtFxS18.
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