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ABSTRACT Cyber-physical systems produce large amounts of data that are stored in domain-related data
lakes in a variety of formats. By using the big data technologies that enable efficient data processing,
the value of the data increases, as these technologies can turn the data into actionable information that
influences important decision-making processes. However, a broader view of the operational environment,
an investigated phenomena, and challenges related to them can frequently be obtained after combining data
frommany data sets located in various big data lakes. This requires contact points in both data lakes that must
be flexibly joined because in many cases, data sets do not correspond to one another directly. In this paper,
we show fuzzy join operation for flexible combining big data lakes. The fuzzy join transforms numerical
values of common attributes of joined data sets into fuzzy sets and uses such a representation in the join
operation. We propose two variants of the join operation that transforms crisp numerical values of joining
attributes into: 1) fuzzy numbers and 2) linguistic terms. The fuzzy join operation is implemented and tested
in the declarative U-SQL language that is used for scalable and parallel querying in big data lakes. The
ideas presented here are exemplified by a distributed analysis of cardiac disease data on Microsoft Azure
cloud. The results of the conducted experiments confirm that the fuzzy join can enrich data sets that are
used in making critical decisions and, as a highly scalable cloud-based solution, can be successfully used in
processing large volumes of data delivered by cyber-physical systems.

INDEX TERMS Cyber-physical systems, big data, fuzzy logic, querying, cloud computing, biomedical data
analysis, declarative languages.

I. INTRODUCTION
Sensor-based and communication-enabled cyber-physical
systems (CPSs) continuously generate large volumes of data
which necessitates the use of Big Data techniques to process
the data and to improve scalability, security, and efficiency of
various processes [1]. The term Big Data frequently describes
challenges that arise when data sets are so large that the
conventional databasemanagement systems and data analysis
tools are insufficient to process them [2]. The challenges
include capture, curation, storage, search, sharing, transfer,
analysis and visualization of data [3]. However, even in
sensor-rich CPSs covering various areas of our lives we are
still able to analyze only a small percentage of the data that
is captured and stored. For example, health care providers are
usually only interested in 10-20% of the data produced by

IoMT (Internet of Medical Things) devices within telemed-
ical CPSs, discarding the rest due to the lack of the need
to analyze it or the lack of the idea that such analyzes may
be useful. The Big Data technologies promise to turn at
least a part of the remaining 80-90% of the unused data
into actionable information. These technologies change our
thinking about what we can analyze and how we can improve
current decision-making processes in many areas of our lives.

Huge storage spaces, which are one of the distinctive fea-
tures of the era of Big Data that we entered several years
ago, fueled by progress in the storage space delivery pro-
vided by cloud computing, allow us to collect various types
of structured, semi-structured, and unstructured data in data
lakes created within various types of CPSs [4]–[8]. When
having various data sets in a CPS-related data lake it may
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FIGURE 1. Joining two data lakes from various cyber-physical systems on the basis of common attributes
(Age, BMI, and Gender).

turn out that some of those data sets share common attributes
and, intentionally or not, complement one another [9]. Data
sets in various data lakes may describe the same phenom-
ena (e.g., engine vibrations or astronomical observations),
the same cases (e.g., exceeding a certain level of temperature
in the blast furnace), or the same types of cases (e.g., patients
with particular types of diabetes), or profiles (e.g., molecular
profiles of patients affected by a tumor), but do not directly
correspond with one another (e.g., they do not describe the
same patient in a biomedical data lake). They cannot be
naturally joined to present a broader view of the investigated
phenomena. To clarify this problem better, let us consider the
following real-life scenarios.

SCENARIO 1
Two groups of doctors investigate the risk of particular
heart-related incidents among patients. They have different
intuition on what to investigate, which translates into vari-
ous features they monitor within medical CPS. Therefore,
patients are tested for various blood features. These two
groups of doctors produce two different data sets in their
data lakes with the information on patients having some
common characteristics, like gender, age, BMI (body mass
index), NYHA functional classification (New York Heart
Association functional classification), and red blood cell mor-
phology characteristics (Fig. 1). However, they also collect
other blood characteristics that are driven by their investi-
gations and intuition. For example, the first group collects
blood biochemical parameters, like enzyme activities: AST,
ALT, GGT; ALP and CK, substrate concentrations: total
proteins, albumin, globulins, cholesterol, triglyceride, Ca, P,
Mg, glucose, urea and creatinine. Meanwhile, the second
group collects antioxidative parameters in the serum, like SH,
CER, TAC, LPH. They may want to combine these two data
sets to enrich the picture of the disease or the phenomena by
joining them on common attributes (Fig. 1). But the precise
join is not appropriate for this case, since characteristics
collected in both data sets do not apply to the same patients.

SCENARIO 2
A group of doctors investigate cases of heart-related inci-
dents in patients from a particular region of a country. They
collect some common characteristics, like gender, age, BMI,
NYHA classification, and various serum characteristics in
their CPS-related data lakes. They want to supplement their
data set with the information on frequent eating habits among
people of the same profile living in this region. They need
to flexibly combine their data set with the external data sets
provided by the National Department of Agriculture orWorld
Health Organization (WHO). This scenario will be covered
in Sect. III.

SCENARIO 3
Patients after heart-related incidents or older people are mon-
itored at homes with the use of sensors that are connected to
various IoT devices. A part of data is sent through a mobile
phone, and another part through a base unit or IoT gateway
of a home health monitoring system (Fig. 2). Sensor readings
are sent to a common storage place, e.g., a health cloud and
its data lake. Sensor readings are sent at a different pace.
Then, if an alert is triggered in a particular moment on the
basis of exceeded value of one of the monitored parameters
(e.g., blood pressure or a fall of a person), which may lead to
possibly dangerous situation, we want to take and analyze all
of the monitored parameters of the patient (e.g., temperature,
respiration, pulse, blood pressure, vital signs) for the speci-
fied, near-incident moment. However, since these parameters
are not saved in the same data sets of the data lake and not in
the same moments, we have to join them on the time of the
incident, taking into account that the moment in time must be
flexible. The flexibility can be implemented by using the idea
of opening umbrella as it is presented in Fig. 3.
All presented scenarios, in which attributes cannot be

joined in a simple manner, motivate the use of fuzzy equi-
join operations. The goal of this paper is to show how we
can flexibly combine Big Data Lakes with the use of the
fuzzy join, extend the picture of the studied phenomena, and
have a broader view on its challenges. We present two novel
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FIGURE 2. Sensor-based telemedical cyber-physical system for monitoring patients or older people at home, sending sensor readings to the Cloud and
its data lake. Parameters related to detected dangerous situations, like falls, are sent to the Cloud, where they are joined with periodic readings from
body sensors with the use of fuzzy join.

FIGURE 3. The idea of opening umbrella for flexible joining sensor
readings on the time of an event.

variants for the join operation that rely on the transformation
of numerical values of joining attributes to: (1) fuzzy num-
bers, and (2) linguistic terms. Both approaches are formally
defined in Sect. III of the paper. We also show original imple-
mentation of the proposedmethods in the scalable AzureData
Lake environment (Sect. IV) and define several metrics for
evaluation of presented ideas (Sect.V).

II. RELATED WORKS
The term fuzzy join is not new in the world scientific
literature, but so far it has mainly be applied to join-
ing or matching text, not numerical data. For example,
Ananthakrishna et al. [10] and Chaudhuri et al. [11] proposed
an algorithm for eliminating duplicates in dimensional tables
in a data warehouse on the basis of textual similarity and
fuzzy match operations for online data cleaning. Both works
were devoted to fuzzy matching of tuples from relational
tables on the basis of textual attributes, and became the
foundation for the fuzzy lookup and the fuzzy grouping trans-
formations in the Microsoft SQL Server Integration Services.
Recent works in this area, e.g., presented by Afrati et al. [12],
Deng et al. [13], Kimmett et al. [14], Yan et al. [15],
are devoted to performing fuzzy (textual) joins against large
collections of data with the use of Big Data technologies,
including Hadoop and Spark. Yu et al. [16] presented a

detailed survey on the used methods. Several works are
devoted to join complex data on the basis of vector simi-
larity. Das Sarma et al. [17] proposed to use a technique
called ClusterJoin for finding pairs of records with similarity
score exceeding a certain threshold. Threshold-based simi-
larity is also used by De Francisci Morales and Gionis [18]
who proposed the similarity self-join, but authors dedicated
their solution for data streams. Similarity join is also used
by Kalashnikov [19] for combining multi-dimensional data
sets and by Silva et al. [20] for joining data in relational
databases. MapReduce-based similarity join was proposed
by Fries et al. [21] and Ma et al. [22] for joining high-
dimensional vector data, and by Nie et al. [23] for entity
resolution. Zhao et al. [24] proposed a distributed similar-
ity join operator for multi-dimensional arrays dedicated to
processing an increasing volume of multi-dimensional data
that are largely processed inside distributed array databases.
An experimental survey ofMapReduce-based similarity joins
for Big Data sets is presented in [25]. These works confirm
that joining similar data with proximity-based and inequality-
based predicates is necessary in many domains to solve exist-
ing problems. However, although some of them address the
challenges of the Big Data, they do not address problems
raised in scenarios presented in Sect. I. In these works the
terms fuzzy join or similarity join are used to reflect soft
character of the join operation, which usually bases on the
proximity of strings, not numerical values. In fact, none of
these works apply fuzzy techniques in the join operation
performed.

Meanwhile, the last two decades have brought several
applications of fuzzy sets theory for the representation and
retrieval of imprecise data in relational databases. Buckles
and Petry [26] introduced similarity-based models, where
the ordinary equivalence relation between domain values is
replaced by similarity relations. Similar works were carried
out by Shenoi and Melton [27], [28] who proposed proximity
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relations. In possibility-based models [29]–[33] attribute val-
ues can be modeled as fuzzy sets on attribute domain. Various
extensions to the declarative SQL query language, including
SQLf [34], FQUERY [35], Soft-SQL [36], fuzzy Gener-
alised Logical Condition [37], FuzzyQ [38]–[40], and oth-
ers [41], allowed for flexible data retrieval from relational
databases or from fuzzy data warehouses [42], [43]. They
are noteworthy, as they deliver various fuzzy techniques for
data exploration, like fuzzy filtering, fuzzy inference, gener-
alization with fuzzy linguistic variables, and fuzzy grouping.
However, they do not address the volume characteristic of Big
Data, which are produced by CPSs.

The latest works in this area, including
Khorasani et al. [44] and the Fuzzy Search Library for Data
Lake Analytics (FSL4DLA) proposed by
Małysiak-Mrozek et al. [5], enable performing scalable fuzzy
relational operations in Big Data environments. The approach
proposed by Khorasani et al. [44] implements these oper-
ations as MapReduce procedures (jobs) in Hadoop. It is
also the first solution that allows fuzzy theory-based fuzzy
join for big numerical data. The FSL4DLA proposed by
Małysiak-Mrozek et al. [5] implements various information
retrieval operations in the Azure Data Lake cloud environ-
ment and, in contrast to the MapReduce implementation of
Khorasani et al., allows for declarative, scalable querying of
big data lakes with the U-SQL language. However, so far it
has not allowed for fuzzy joins.

The solution presented in this paper extends capabili-
ties of the Fuzzy Search Library for Data Lake Analytics
(FSL4DLA) proposed by Małysiak-Mrozek et al. [5] toward
performing fuzzy joins on Big Data sets. The range of novel-
ties proposed and presented in the paper covers: (1) enabling
the fuzzy join operation for large data sets, (2) providing two
variants of the join operation – (i) by representing attribute
values as fuzzy numbers, and (ii) through assignment to
linguistic value, (3) allowing the fuzzy join operation in
declarative queries, which simplifies information retrieval.

III. FUZZY EQUI-JOIN
In relational algebra [45], [46] an equi-join is an inner
join that uses an equivalence operation (i.e., attributeA =
attributeB) to match rows from different tables. Fuzzy equi-
join adds some flexibility while matching rows and does
not assume strict equivalence of attribute values, but their
similarity.

Let us consider two data lakes DL1 and DL2 pro-
viding two data sets schematized to rowsets R of the
schema χR = A1,A2, . . . ,Ak ,R1,R2, . . . ,Rm and S of
the schema χS = A1,A2, . . . ,Ak , S1, S2, . . . , Sn, where
attributes A1,A2, . . . ,Ak are common (or related) for both
rowsets:

{A1,A2, . . . ,Ak} = χR ∩ χS , (1)

k is the number of common attributes in rowsets R and S,
R1,R2, . . . ,Rm are remaining attributes of the rowset R, and
S1, S2, . . . , Sn are remaining attributes of the rowset S.

FIGURE 4. Two sample rowsets from two data lakes sharing common
attributes: gender (Ge), Age, BMI.

For example, Fig. 4 shows two rowsets Heart disease
(abbrev. HD) and Eating habits (abbrev. EH) with common
attributes, i.e., Gender (Ge), Age, BMI, and additional
informative attributes WBC and HGB for the rowset HR, and
Sugar and Veget for the rowset EH. The WBC (White
Blood Cell Count, 103/mm3) and the HGB (Hemoglobin,
mmol/L) are blood morphology markers taken from patients
with a heart-related incident, and Sugar and Veget show
consumption of sugar and vegetables (cal/day) for people in
a particular age and gender.

For the rowsets R and S we define the fuzzy equi-join as
follows:

R F̃G S = 5χR∪χS∪χ∼ (σ̃
λ
R.A1≈S.A1 ∧ R.A2≈S.A2 ∧ ... ∧ R.Ak′≈S.Ak′

(R× S)), (2)

where F̃G is the symbol used for the fuzzy join oper-
ation, 5χR∪χS∪χ∼ is the regular projection operation as
defined in the relational algebra, χR ∪ χS ∪ χ∼ is the
new schema for the produced rowset containing attributes
of both rowsets R and S, and additional attributes pro-
duced by the fuzzy operation (represented by schema χ∼),
σ̃ λR.A1≈S.A1 ∧ R.A2≈S.A2 ∧ ... ∧ R.Ak′≈S.Ak′

is the fuzzy selection
operation as defined in [5], and R×S is the Cartesian product
of the rowset R with the rowset S.
The

R.A1 ≈ S.A1 ∧ R.A2 ≈ S.A2 ∧ . . . ∧ R.Ak ′ ≈ S.Ak ′

(3)

is called the fuzzy join condition, and is actually the filtering
condition in the fuzzy selection operation σ̃ . The ≈ is a
fuzzy match operator for comparing and matching values
of joining attributes Ai (for i = 1 . . . k ′, where k ′ ≤ k),
λ is a minimum membership (or similarity) degree (cutoff
threshold) for which the whole fuzzy search condition in the
fuzzy selection must be satisfied, k ′ is the number of joining
attributes. The prefix equi- is added to the term fuzzy join
to emphasize the fact that values of joining attributes must
approximately match to one another (we use the approximate
match operator ≈), but the fuzzy join can rely on other
operators (e.g., fuzzy greater& or fuzzy lower., like in fuzzy
selection conditions used in our extensions to Doctrine Query
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Language for object-relational mapping [47], [48]). The set of
joining attributes is a subset of the set of common attributes:

{A1,A2, . . . ,Ak ′} ⊆ χR ∩ χS , (4)

where k ′ ≤ k , which means that not all common attributes
must participate in the fuzzy equi-join as joining attributes.
For example, joining the two rowsets presented in Fig. 4 is
possible with the use of one or more of the common attributes
(Ge, Age, BMI). The join operation can be performed tra-
ditionally, i.e., as a natural join, with the use of all of the
three common attributes. However, the returned resulting
rowset would be too narrow or empty. The join operation
can also be performed as the fuzzy equi-join with the use
of the Age or BMI attributes, or both. This should provide a
much broader result set, which can be advantageous in many
situations, e.g., it could allow to study various possible depen-
dencies between certain facts, like the dependency between
values of blood morphology markers and eating habits.

The fuzzy equi-join can be implemented in various ways.
In the following sections, we show two variants of the fuzzy
join operation:

1) by representing values of joining attributes as fuzzy
numbers,

2) by assigning crisp values of joining attributes to lin-
guistic values defined by fuzzy sets.

A. FUZZY JOIN ON FUZZY NUMBERS
The first implementation of the fuzzy join operation assumes
fuzzification of values of the joining attributes and represent-
ing them as fuzzy numbers. This process is schematically
shown in Fig. 5. Having the function φ(A) that fuzzifies
attributes of the join condition given as follows:

φ(A) : t(A) −→ {(t(A), µ(t(A)))}, (5)

FIGURE 5. Schematic overview of the fuzzy join performed by
representing joined values of a single joining attribute (A) as fuzzy
numbers.

whereµ(t(A)) is themembership function defining a fuzzy set
for each value of the attribute A in tuple t , we can perform a
fuzzy-equi join with fuzzified values of the joining attributes
by comparing them and examining their similarity:

R F̃G∧ S = 5χR∪χS∪χ∼
(σ̃ λφR1(R.A1)≈φS1(S.A1) ∧ ... ∧ φRk′ (R.Ak′ )≈φSk′ (S.Ak′ )

(R× S)), (6)

where F̃G∧ is the symbol used for the fuzzy join operation
performed by representing attribute values as fuzzy numbers.

The fuzzification functions φRi and φSi (i = 1, . . . , k ′,
k ′ is the number of joining attributes) are different for var-
ious (pairs of joining) attributes. For example, we can use
different functions for the fuzzification of the attribute BMI
and the attribute Age. In formula 6 we also assume that
the fuzzification functions φRi and φSi can be different for
each of corresponding attributes from both rowsets R and S.
For example, we can use different spreads of the triangular
membership function or even different types of membership
functions (triangular, trapezoidal, Gaussian) when fuzzify-
ing the attribute BMI from the rowset Heart disease and
the attribute BMI from the rowset Eating habits. However,
in practice, we use the same fuzzification function (in terms of
the type and the parameters) for each pair of joining attributes
(R.A1, S.A1), (R.A2, S.A2), . . . , (R.Ak ′ , S.Ak ′ ). This leads to
the following (simplified) definition of the fuzzy-equi join:

R F̃G∧ S = 5χR∪χS∪χ∼
(σ̃ λφ1(R.A1)≈φ1(S.A1) ∧ ... ∧ φk′ (R.Ak′ )≈φk′ (S.Ak′ )

(R× S)), (7)

where {φ1, φ2, . . . , φk ′} is the set of common functions
for fuzzifying joining attributes A1,A2, . . . ,Ak ′ from both
rowsets R and S. The set χ∼ of additional attributes produced
by the fuzzy equi-join contains the similarity degree for each
pair of joining attributes:

χ∼ = {µ1(R.A1, S.A1), . . . , µk ′ (R.Ak ′ , S.Ak ′ )}, (8)

For example, the fuzzy join with the use of the BMI
attribute between two rowsetsHeart disease (abbrev.HD) and
Eating habits (abbrev. EH) for the λ = 0.5 can be formally
written as follows:

HD F̃G∧ EH = 5HD∪EH∪χ∼

(σ̃ 0.5
φ(HD.BMI )≈φ(EH .BMI )(HD× EH )). (9)

The fuzzification of the joining attributes and examina-
tion of their similarity is presented in Fig. 6. The results
of performing the fuzzy join operation on the basis of the
BMI attribute and, additionally, the Gender attribute from
two sample rowsets from Fig. 4 for the given λ = 0.5
cutoff threshold are shown in Fig. 7. The example dis-
plays selected eating habits and blood morphology param-
eters for people of the same gender that have similar BMI.
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FIGURE 6. Matching fuzzified values of the BMI attributes in the fuzzy
join condition: a) two BMI values satisfying the join condition, b) two BMI
values that do not satisfy the join condition for the given λ cutoff
threshold.

FIGURE 7. Results of the fuzzy join operation performed by representing
attribute values as fuzzy numbers on the basis of the BMI and the Gender
attributes from two sample rowsets for the given λ cutoff threshold.

Formally, the operation presented in Fig. 7 can be written
as follows:

HD F̃G∧ EH = 5HD∪EH∪χ∼

(σ̃ 0.5
φ(HD.BMI )≈φ(EH .BMI )∧HD.Ge=EH .Ge

(HD× EH )). (10)

The selection σ consists of two filtering conditions: (1) the
fuzzy one on the BMI attributes from both rowsets (values of
the BMI from both rowsets should be similar), and (2) the
crisp one on the Gender attributes from both rowsets (values
of theGender attributes should be equal). Such a report allows
to check if there is any correspondence between eating habits
and morphology parameters of people with heart-related
incidents.

The produced report shows both values of the BMI (from
HD and EH rowsets), the similarity degree between them
(MDegBmi), gender and age from both rowsets (GeHD,
GeEH, AgeHD, AgeEH, respectively), eating habits (Sugar
and Veget), and blood morphology markers (WBC, HGB).

B. FUZZY EQUI-JOIN WITH LINGUISTIC VALUES
Fuzzy join can be also performed by assigning crisp values
of the joining attributes from both rowsets to most appropri-
ate linguistic values of predefined linguistic variables. This
process is schematically illustrated in Fig. 8. Then, a regular
(natural) join can be performed on the linguistic counterparts

FIGURE 8. Schematic overview of the fuzzy join performed through
assignment of joined values of the common joining attribute (A) to
appropriate linguistic value.

of the joining attributes. For the same two rowsets R and S
from a data lake (or two independent data lakes), we can
define the fuzzy equi-join with linguistic values as follows:

R F̃GL S = 5̃χR∪χS∪χ∼
(σT̃L1(R.A1)=T̃L1(S.A1) ∧ ... ∧ T̃Lk′ (R.Ak′ )=T̃Lk′ (S.Ak′ )

(R× S)), (11)

where F̃GL is the symbol used for the fuzzy join operation per-
formed through assignment to linguistic values, 5̃χR∪χS∪χ∼
is the extended projection with a fuzzy transformation [5],
σT̃L1(R.A1)=T̃L1(S.A1) ∧ ... ∧ T̃Lk′ (R.Ak′ )=T̃Lk′ (S.Ak′ )

is the standard
selection operation [45], [46] with the filtering (selection)
condition T̃L1(R.A1) = T̃L1(S.A1) ∧ . . . ∧ T̃Lk ′ (R.Ak ′ ) =
T̃Lk ′ (S.Ak ′ ), which is actually the join condition for the fuzzy
join operation.

The extended projection with a fuzzy transformation per-
forms assignment of (crisp) values of the rowset attributeAi to
appropriate linguistic values. The fuzzy transformation T̃ (Ai)
used in the extended projection consists of two component
transformations:

T̃ (Ai) =
〈
T̃L(Ai), T̃µ(Ai)

〉
, (12)

The T̃L(Ai) component transformation (used also in the
filtering/join condition in the selection operation, see def-
inition of the fuzzy join in Eq.11) assigns and returns a
linguistic value l of the defined linguistic variable L =
{l1, l2, . . . , l|L|}, |L| ∈ N+, for the value of an attribute Ai
from each tuple t of the rowset R and S, in such a way that:

∀t∈R,S ∃l∈L T̃L(t(Ai)) = l

∧µl(t(Ai)) = max{µl1 (t(Ai)), µl2 (t(Ai)), . . . , µl|L| (t(Ai))}.

(13)
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FIGURE 9. Linguistic variable vBMI and its linguistic values
(Underweight, Normal, Overweight, Obese), and the assignment of
sample values of the BMI attribute to appropriate linguistic value.
Defined on the basis of simplified BMI classification of World Health
Organization (WHO) with boundaries corresponding to µ(BMI) = 0.5.

The linguistic variable L must be defined by an expert who
knows the domain of the data or on the basis of existing
standards. Additionally, the T̃µ(Ai) component transforma-
tion calculates the membership degree of the value t(Ai) of
an attribute Ai for each tuple of the rowsets R and S to the
linguistic value l the tuple was assigned to:

∀t∈R,S T̃µ(t(Ai)) = µl(t(Ai)). (14)

The schema of the rowset produced as a result of the fuzzy
join χR ∪ χS ∪ χ∼ consists of all attributes of the rowsets
R and S, and the set χ∼ of additional attributes produced
by the fuzzy transformation T̃ (Ai). For each pair of joining
attributes (R.Ai, S.Ai), the set χ∼ of additional attributes
produced by the fuzzy join contains linguistic values for
both attributes (R.Ai and S.Ai), and similarity degrees µi
showing the compatibility between the attribute values and
the linguistic values:

χ∼ = {l(R.A1), µ1(R.A1, l), l(S.A1), µ1(S.A1, l),

l(R.A2), µ2(R.A2, l), l(S.A2), µ2(S.A2, l), . . . ,

l(R.Ak ′ ), µk ′ (R.Ak ′ , l), l(S.Ak ′ ), µk ′ (S.Ak ′ , l)}, (15)

The compatibility degree is calculated as it is presented
in Fig. 9. Since values of each of the joining attributes
(R.Ai, S.Ai) are assigned to linguistic terms l(R.Ai) and
l(S.Ai), this produces two compatibility degrees µi(R.Ai, l)
and µi(S.Ai, l) per each pair of joining attributes.
Fig. 10 shows results of the fuzzy equi-join through assign-

ment to linguistic values for the sample data from Fig. 4.
The linguistic variable vBMI and its linguistic values used
in the assignment step (fuzzy transformation) are presented

in Fig. 9. Likewise in the example presented in the previous
section, the join is performed on the BMI attribute, and addi-
tionally, on the Gender attribute between two rowsetsHeart
disease (abbrev. HD) and Eating habits (abbrev. EH). This
operation can be formally written as follows:

HD F̃GL EH = 5̃HD∪EH∪χ∼

(σT̃L (HD.BMI )=T̃L (EH .BMI )∧HD.Ge=EH .Ge
(HD× EH )). (16)

Likewise in the example presented in the previous section,
the selection σ consists of two filtering/join conditions. How-
ever, in contrast to the previous example, in this case both of
the filtering/join conditions are crisp: (1) the natural join is
performed on the BMI attributes from both rowsets assigned
to linguistic values (named fuzzy sets), and (2) the natural join
is performed on the Gender attributes from both rowsets.

The assignment of the values of the joining attributes
(BMI, both from the rowset HD and the rowset EH) and
calculation of the similarity degree is presented in Fig. 9.
Results of the fuzzy join on the basis of the BMI attribute and,
additionally, the Gender attribute from two sample rowsets
from Fig. 4 are shown in Fig. 10. Again, the example shows
selected eating habits and blood morphology parameters for
people of the same gender that have similar BMI. However,
the similarity of BMI is now calculated through assignment
to a linguistic value.

The produced report shows both values of the BMI (from
HD and EH rowsets, BmiHD and BmiEH), the linguistic val-
ues they were assigned to (bmiLingHD and bmiLingEH),
the similarity degrees between the value of the BMI and the
linguistic value the BMI was assigned to (MDegBmiHD and
MDegBmiEH), gender and age from both rowsets (GeHD,
GeEH, AgeHD, AgeEH, respectively), eating habits (Sugar
and Veget), and blood morphology markers (WBC, HGB).
The linguistic values (bmiLingHD and bmiLingEH) in
each row (tuple) are equal, which allows to verify that the join
was performed correctly. However, real values of the BMI
in both rowsets (BmiHD and BmiEH) are different, which
confirms that both rowsets were joined with the fuzzy join.

IV. IMPLEMENTATION
Both techniques for performing fuzzy join presented in
Sect. III were implemented in the Azure Data Lake envi-
ronment. We used two main components of the Azure
Data Lake environment: (1) Data Lake Store (DLS) for
petabyte scale, unlimited storage for data in various formats,

FIGURE 10. Results of the fuzzy join operation through assignment of BMI attribute values to linguistic terms and by joining the Gender
attributes from two sample rowsets.
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and (2) Data Lake Analytics (DLA) for the efficient and scal-
able analysis of data. We implemented both fuzzy equi-join
techniques by extending the spectrum of methods available
in the Fuzzy Search Library for Data Lake Analytics [5]. The
Fuzzy Search Library for Data Lake Analytics (FSL4DLA)
allows fuzzy searching, filtering, transformation, and group-
ing data in the Data Lake Analytics environment. It uses the
U-SQL declarative queries to perform various operations on
large volumes of data in a distributed execution environment
of the Microsoft Azure cloud. We extended the FSL4DLA
with a set of methods that help in calculations related to
performed fuzzy join operations. We also exposed two new
specific predicates and one function that can be used in the
U-SQL scripts when performing fuzzy joins:
• bool Udfs.AreSimilar(field1, spread1,
field2, spread2, lambda), from the Udfs
module of the FSL4DLA, which is used to exam-
ine whether two numeric values from field1 and
field2 fuzzified with the use of spread1 and
spread2 (two fuzzy numbers) match each other with
the minimum similarity (membership or compatibility)
degree lambda;

• double Udfs.SDegree(field1, spread1,
field2, spread2), from the Udfs module of the
FSL4DLA, which returns the similarity degree between
two numeric values from field1 and field2, fuzzi-
fiedwith the use of spread1 and spread2 (two fuzzy
numbers);

• bool Udl.AreSimilar(field1, field2,
lingvar), from the Udl module of the FSL4DLA,
which is used to examine whether two numeric values
from field1 and field2 match each other after
assigning them to a linguistic value from the linguistic
variable lingvar.

The field1 and the field2 are joining fields (joining
attributes in the fuzzy equi-join) from two joined rowsets.
Predicates AreSimilar were developed in two different
modules of the FSL4DLA library, i.e., the Udfs module
withmethods implementing operations on fuzzy numbers and
the Udl module with methods for operating on linguistic
variables and linguistic values. Both predicates have similar
function (hence the same name) – examine the compatibility
of two attribute values – return the value of true or false, and
are used in the WHERE clause of the U-SQL query statements.

Sample U-SQL code for the fuzzy equi-join operation on
the basis of the BMI attribute (where values are represented
as fuzzy numbers) and the Gender attribute from two sam-
ple rowsets, for the given λ cutoff threshold, is presented
in Listing 1. The script (part QP1) extracts data from the
source files declared in lines 8-9, and produces two rowsets
@hd and @eh (lines 10-20). The select statement located in
QP2 (lines 22-33) performs fuzzy equi-join between these
rowsets with the use of the BMI attribute. Values of the BMI
attribute from both rowsets are fuzzified and represented
by triangular membership functions (fuzzy sets) with the
spread equal to 3 (line 32). Thebool Udfs.AreSimilar

Listing 1. Sample U-SQL code for the fuzzy equi-join operation on the
BMI and the Gender attributes from two sample rowsets, for the given λ
cutoff threshold. Values of the BMI attributes are represented as fuzzy
numbers.

predicate is used to verify if values of the BMI attributes
match to one another. Fuzzified values of the BMI must
match to one another with the similarity degree λ ≥ 0.5. The
SELECT clause in lines 24-29 displays selected attributes
from both rowsets, and the similarity degree between fuzzi-
fied BMI attributes by invoking the Udfs.SDegree func-
tion (line 25). The rowset produced as a result of the fuzzy
join is saved to the Data Lake Store in the text format in the
OUTPUT statement in QP3 (lines 34-37).

The invocation of the bool Udfs.AreSimilar pred-
icate in line 32 can be also replaced by the invocation of the
Udfs.SDegree function in the same place, as it is pre-
sented in Listing 2. In both cases, the U-SQL script produces
results that were presented in Fig. 7.

Listing 3 shows sample U-SQL code for the fuzzy equi-
join operation performed through assignment of the BMI
attribute values to linguistic terms and by joining theGender
attributes from two sample rowsets. Similarly to the previous
case, the script (part QP1) extracts data from the source files
declared in lines 8-9, and produces two rowsets @hd and
@eh (lines 10-20). Then, in lines 22-23 (QP2), it declares
and defines the vBMI linguistic variable and its linguistic
values (in the U-SQL code represented by the @bmiLV string
variable). Trapezoidal membership functions (encoded by T)
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Listing 2. Sample U-SQL code for the fuzzy join operation through
attribute fuzzification on the basis of the BMI and the Gender attributes
from two sample rowsets, for the given λ cutoff threshold with the
invocation of the SDegree function in the joining condition. Values of the
BMI attributes are represented as fuzzy numbers.

Listing 3. Sample U-SQL code for the fuzzy equi-join operation through
assignment of the BMI attribute values to linguistic terms and by joining
the Gender attributes from two sample rowsets.

are used to define each linguistic value (Underweight,
Normal, Overweight, Obese). The definition is con-
sistent with the one shown in Fig. 9. The SELECT state-
ment located in QP3 (lines 25-38) performs fuzzy equi-join
between these rowsets with the use of the BMI attribute.
However, for each row of both rowsets, values of the BMI
attribute are first assigned to corresponding linguistic value.

This is done in two places – in the SELECT clause and in
the WHERE clause. Invocation of the Udl.AreSimilar
predicate in the WHERE clause (line 38) transforms the
crisp, numerical value of the BMI attributes to linguistic
values defined in the @bmiLV (vBMI) variable, and checks
if the values match to one another. Two invocations of the
Udl.LingVal function in lines 28 and 31 transform val-
ues of the BMI from both rowsets and display them (return
to the produced rowset @fjoin, line 26). Additionally,
the Udl.MDegree is invoked in lines 29 and 32 in order
to return the membership (compatibility) degree between the
crisp, numerical value of the BMI and the linguistic value it
was assigned to. Again, the rowset produced as a result of the
fuzzy join is saved to the Data Lake Store in the text format
in the OUTPUT statement in part QP4 (lines 40-43).

The invocation of the bool Udl.AreSimilar predi-
cate in line 38 can be also replaced by the invocation of the
Udl.LingVal function in the same place, as it is presented
in Listing 4. In both cases, the U-SQL script produces results
that were presented in Fig. 10.

Listing 4. Sample U-SQL code for the fuzzy join operation through
assignment of the BMI attribute values to linguistic terms and by joining
the Gender attributes from two sample rowsets, with the invocation of
the Udl.LingVal function in the joining condition.

V. EXPERIMENTAL RESULTS
Both of the implemented techniques of fuzzy join were tested
in the Azure Data Lake environment. During the tests we
focused on the functionality, the effectiveness, and the per-
formance of the presented methods. Tests were performed on
two data lakes with medical data related to cardiomyopathy
obtained from Medical University of Silesia in Zabrze and
with eating habits, for which the cross product gives almost
3 billion rows. We narrowed the first data set to the one
that contained cases that were interesting from the medical
point of view (dilated cardiomyopathy) and were further
investigated, producing the final rowset with 0.6 billion rows.
In this section, we show that by using the fuzzy join we are
able to enrich the outcome of the standard join operation and
add similar cases on the basis of flexible joining conditions.
During our experiments we used several measures to assess
the effectiveness of fuzzy querying. They allow to express
how much the returned result is enriched by using the fuzzy
join and assess the quality of the enrichment.

Selectivity of query is a measure that represents the per-
centage of rows for which the query (with its filtering condi-
tions) is expected to return the true value. The selectivity is a
decimal value between 0 and 1 expressed as a ratio between
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the cardinality of the output rowset RO and the cardinality of
the processed input rowset RI :

Selectivity =
card(RO)
card(RI )

, (17)

where card returns the number of rows for the given rowset.
Since, we perform the join operation on two rowsets, we will
investigate the selectivity of the join condition over the Carte-
sian product of the two rowsets R and S, which constitutes a
possible input rowset for the query:

RI = R× S, (18)

therefore:

Selectivity =
card(RO)
card(R× S)

. (19)

Relative cardinality, as defined in [49], is expressed as
follows:

RelCard(RFO) =

∑
t∈RFO

µRFO
(t)∑

t∈R×S
µRI (t)

. (20)

where RFO is the output rowset of the query with the fuzzy join
operation, RI is the input rowset as defined in Eq. 18, and t is
a tuple.

For the fuzzy equi-join performed by representing attribute
values as fuzzy numbers the µRFO is calculated as follows:

µRFO
(t) = min {µ1(R.A1, S.A1), . . . , µk ′ (R.Ak ′ , S.Ak ′ )},

(21)

where µ1, µ2, . . . , µk ′ are similarity degrees calculated for
each pair of joining attributes as defined in Eq. 8.

For the fuzzy equi-join performed through assignment to
linguistic values the µRFO is calculated as follows:

µRFO
(t) = min {µL1(R.A1, S.A1), . . . , µLk ′ (R.Ak ′ , S.Ak ′ )},

(22)

where µL1, µL2, . . . , µLk ′ are, calculated for each pair
of joining attributes A1,A2, . . . ,Ak ′ , mean compatibility
degrees between the attribute values from both rowsets and
the linguistic value they were assigned to. Since each pair
of joining attributes produces two compatibility degrees (see
Fig. 10) that are returned together with linguistic terms,
in order to reflect how well they contribute to the enrich-
ment of the output rowset, we have to include both of them.
We decided that their contribution will be calculated as the
mean of both of compatibility (membership) degrees:

µLi(R.Ai, S.Ai) =
µi(R.Ai, l)+ µi(S.Ai, l)

2
, (23)

where µi(R.Ai, l) is the membership (compatibility) degree
of the value of the joining attribute Ai from the left rowset (R)
of the join and the linguistic value l it was assigned to, and
µi(S.Ai, l) is the membership (compatibility) degree of the
value of the joining attribute Ai from the right rowset (S) of

the join and the linguistic value l it was assigned to (defined
in formula 14).

Fuzzy join changes flexibility of queries executed against
data lakes. Flexibility of the query QF containing the fuzzy
join operation expresses the contribution of additional rows
R1O returned by the fuzzy query (with respect to the rowset
RNO returned by its counterpart with the natural-join operation)
in the output rowset RFO of the query with the fuzzy join
operation:

Flex(QF ) =
card(R1O )

card(RFO)
=
card(RFO \ R

N
O )

card(RFO)
. (24)

For example, if the query with the fuzzy equi-join condition
hd .BMI ≈ eh.BMI returns 100 rows, card(RFO) = 100, and
its counterpart with natural join condition hd .BMI = eh.BMI
returns 20 rows, card(RNO ) = 20, the number of additional
rows would be 80, card(R1O ) = 80, and the flexibility of the
fuzzy query would be Flex = 0.8.
Confidence of the output rowset RFO allows to assess how

much the inclusion of fuzzy join conditions influences the
compliance of the output rowset with the join criteria:

Conf (RFO) =

∑
t∈R×S

µRFO∩R
N
O
(t)∑

t∈R×S
µRFO

(t)
=

∑
t∈R×S

µRNO
(t)∑

t∈R×S
µRFO

(t)
, (25)

assuming that RNO ⊆ RFO, which always holds.
Uncertainty of the output rowset RFO is defined as follows:

Uncr(RFO) =

∑
t∈R×S

µR1O
(t)∑

t∈R×S
µRFO

(t)
=

∑
t∈R×S

µRFO\R
N
O
(t)∑

t∈R×S
µRFO

(t)
, (26)

Uncr(RFO) = 1− Conf (RFO). (27)

Precision allows to assess the relevance of the output
rowset RFO. Fuzzy precision is calculated according to the
following formula [50]:

FPrec =

∑
t∈R×S

µRFO
(t)

card(RRO)
, (28)

where RRO denotes the set of relevant (correct or expected)
rows.

The effectiveness of both techniques for fuzzy join in
querying big data with the use of queries shown in Listings 1
and 3 is presented in Tables 1 and 2. Additionally, the last row
in Tables 1 and 2 contains values of the same measures for
crisp counterparts of the fuzzy join conditions (e.g., natural
hd .BMI = eh.BMI vs. fuzzy hd .BMI ≈ eh.BMI ). As can
be observed in Table 1 for the fuzzy equi-join performed by
representing values of the joining attributes as fuzzy numbers,
the decreasing value of the λ-cutoff threshold makes the
join operation more flexible. Flexibility of the join operation
depends on the assumed λ threshold, the fuzzification of the
attributes used in the join condition (used spreads), and the
input rowsets (source data). For example, flexibility of the
fuzzy query presented in Listing 1 reaches a high level of
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Flex = 0.628 (Table 1) already for λ = 0.9, since there
are many rows from both rowsets that match to each other
and can be joined. Further increasing of the flexibility of the
join operation causes that more and more rows are joined to
each other from both rowsets, which is also visible in the
growing selectivity (Selc) and relative cardinality (RCard).
For λ = 1.0 selectivity and relative cardinality are identical,
since only rows with µRO (t) = 1.0 qualify for the output
rowset RO. Then, their values become increasingly divergent.
Larger differences suggest that rows with lower membership
degree are joined and returned in the final rowset. For λ = 1.0
(crisp join condition) the query joins and returns only 1% of
rows (Selc = 0.01), while for λ = 0.5 (fuzzy join) it joins
and returns 10% of possible rows (Selc = 0.104). This shows
the enrichment of the output rowset. Uncertainty of the output
rowset increases and the confidence of the rowset decreases
proportionally with the growing flexibility and decreasing λ.
Relatively high values of the uncertainty and low values of the
confidence for λ = 0.5 reflect that within the 9%of additional
rows the output rowset was enriched with (in R1O ) dominate
those that were produced by the fuzzy join (those that have
similar, but not equal values of the BMI attribute). The quality
of the enrichment is reflected in values of the fuzzy precision,
which is high, e.g., FPrec = 0.729 for λ = 0.5. This shows
that rowswere joinedwith high values of the similarity degree
and are highly relevant in the output rowset.

TABLE 1. The effectiveness of the fuzzy join operation performed by
representing values of the joining attributes as fuzzy numbers for the
sample query from Listing 1 for various λ.

The effectiveness of the fuzzy join performed through
assignment to linguistic values can be observed in Table 2.
The result of the experiment presented in Table 2 shows
that this join technique flexibly joins similar rows that were
assigned to the same linguistic term. Flexibility and selec-
tivity remain at the same level as for the first join technique
for the λ = 0.5, and the relative cardinality and the fuzzy
precision are even higher. This proves that this join technique
provides good enrichment capabilities with high quality of
the produced outcome.

Scalability of fuzzy queries performed with the use of
FDL4DLA library in the Azure Data Lake environment was

TABLE 2. The effectiveness of the fuzzy join operation through
assignment to linguistic values for the sample query from Listing 3.

presented in our previous work [5]. In terms of the execution
time, the fuzzy equi-join performed by assigning attribute
values to linguistic terms is faster (5.8 minutes on the tested
volume of data) than the fuzzy equi-join performed by repre-
senting the attribute values as fuzzy numbers (13.6 minutes
on the tested volume of data).

VI. DISCUSSION AND CONCLUDING REMARKS
Large volumes of data produced and processed within the
cyber-physical systems possess a huge informative potential,
which needs to be discovered in order to enrich the spec-
trum of performed analyses in smart solutions for humanity.
Adding some flexibility when combining a variety of data
sets during these analyses is one of the important steps of
the Data-to-Information Conversion level in the 5C archi-
tecture of cyber-physical systems [51]. It is particularly
advantageous for those CPSs, which require integration of
stream or offline historical data coming from various sen-
sors used in distributed medical monitoring, manufactur-
ing, industrial control systems, intelligent transportation, and
other domains.

The fuzzy equi-join presented in the paper provides this
flexibility and can be successfully used to combine vari-
ous, usually Big Data sets produced by sensors and IoT
devices, or collected by IoT hubs or monitoring servers.
It allows performing the join operation on the basis of elastic
joining conditions. The elasticity is achieved by fuzzification
of attributes either by representing their values as fuzzy num-
bers, or by assigning to a linguistic value of the predefined
linguistic variable. This leads to two variants of performing
the fuzzy join operation. Both of them have some advantages
and disadvantages. The first variant of the fuzzy join, which
represents attribute values as fuzzy numbers, can be applied
quickly to any data without a deep knowledge of the data,
the nature and even the domain of the data. The λ-cutoff
threshold (minimummembership degree) and spreads used in
the fuzzification of attribute values can be determined dynam-
ically, ad hoc, by trials and errors, or can be dynamically
regulated, e.g., extended (like the opening umbrella in Fig. 3).
On the other hand, testing various values of the spread and λ
on large data sets may lead to time-consuming calculations.
Therefore, it is advised to first make some tests on smaller
data sets in order to adjust these values. The second variant
of the fuzzy join, which assigns attribute values to linguistic
terms, lessens the disadvantage of the dynamic adjustment
of particular parameters, but needs the linguistic variable
with all the linguistic values to be determined earlier. The
linguistic variable, its values (i.e., fuzzy sets), and underlying
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membership functions must be defined priorly by the domain
specialist (e.g., a production engineer or an information engi-
neer in a factory). This can be difficult in some domains due
to the nature of data, nature of a process being monitored, or a
lack of the specialist, but once the linguistic variable is
defined, the join process occurs according to transparent rules
as the domain of data is appropriately divided. Therefore,
the first variant of the fuzzy join will be particularly useful
when combining those readings from two or more sensors,
which are shifted in time, while the second variant will be
beneficial if we work on historical, offline data sets and the
domain is easily divisible (e.g., according to existing medical
standards).

Our solution adds two new variants of the flexible join
operation to the collection of join operations mentioned in
Sect. II. It extends the group of fuzzy join operations for
string data, which calculate the similarity of texts and are
not appropriate in processing numerical measurements from
sensor-based IoT devices. It allows to perform the fuzzy sets-
based join for Big Data lakes, like some of the SQL-based
solutions for relational databases, but on a much larger
scale, for Big Data sets, and in schemaless Big Data Lake
environments, which is not possible in highly-structuralized
relational databases. Finally, it perfectly complements the
fuzzy equivalent join operation presented in [44], which com-
bines tuples from two data sets by calculating the absolute
difference of crisp values of the joining attributes and by
matching the difference to a predefined fuzzy set of imple-
mented fuzzy comparator. This solution and the two variants
of the fuzzy join operation presented in our paper address
the characteristics of the 5V model of Big Data, especially
the volume, the variety, and the velocity. Both of them allow
to perform the join on various data sets and to distribute
the join-related data processing in higly-scalable Big Data
environments. However, Khorasani et al. [44] utilized the
Hadoop clusters for the operation and this approach requires
implementation of a particular MapReduce job for every
join operation performed. Our solution is more flexible in
this regard, as users operate in a declarative environment by
writing U-SQL scripts with commands similar to the SQL
queries. The join operation is a part of the U-SQL query,
which is executed in a parallel execution environment of the
Azure Data Lake. Both solutions allow to scale computations
on the Cloud, which facilitates the accommodation of the
dynamic growth of data in cyber-physical systems.

The fuzzy join operations presented in the paper were
developed as an extension to the FSL4DLA library [5] for
fuzzy data processing and querying in the Cloud. The pro-
posed fuzzy join techniques have a general purpose – they are
not limited only to processing and querying biomedical data,
but also other types of data. The FSL4DLA library is fully
a cloud-dedicated solution, which enables peta-scale storage
and wide processing capabilities. This also does involve some
consequences and poses some limitations. The necessity to
operate on the specific cloud platform and to adapt to the
specificity of the Azure Data Lake environment is one of

them. Moreover, the use of cloud resources requires a paid
subscription for the Microsoft Azure cloud, where the Azure
Data Lake is hosted. However, on the other hand, as a cloud-
dedicated solution, it exempts possible users from the main-
tenance of the whole hardware infrastructure kept on the
premises.

For the cyber-physical systems that store their data in vari-
ous data lakes the fuzzy join operation presented in the paper
becomes an intuitive alternative to combine related entities.
The declarative character of the U-SQL simplifies the imple-
mentation of the join operation for users. The Big Data envi-
ronment of the Azure Data Lake allows to perform fuzzy join
operations for large amounts of data from various domains.
Finally, clouds enable scaling all computations related to
data processing and accommodate the growth of data. These
characteristics are highly required as the growth of data in
modern cyber-physical systems seems to be unavoidable and
the growth rate is constantly increasing.
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