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ABSTRACT Test case prioritization (TCP) plays an important role in identifying, characterizing, diag-
nosing, and correcting faults quickly. The TCP has been widely used to order test cases of different
types, including model inputs (also called abstract test cases). Model inputs are constructed by modeling
the program according to its input parameters, values, and constraints, and has been used in different
testing methods, such as combinatorial interaction testing and software product line testing. The Interaction
coverage-based TCP (ICTCP) uses interaction coverage information derived from the model input to
order inputs. Previous studies have focused generally on the fixed-strength ICTCP, which adopts a fixed
strength (i.e., the level of parameter interactions) to support the ICTCP process. It is generally accepted that
using more strengths for ICTCP, i.e., mixed-strength ICTCP, may give better ordering than fixed-strength.
To confirm whether mixed-strength is better than fixed-strength, in this paper, we report on an extensive
empirical study using five real-world programs (written in C), each of which has six versions. The results
of the empirical studies show that mixed-strength has better rates of interaction coverage overall than fixed-
strength, but they have very similar rates of fault detection. Our results also show that fixed-strength should
be used instead of the mixed-strength at the later stage of software testing. Finally, we offer some practical
guidelines for testers when using interaction coverage information to prioritize model inputs, under different
testing scenarios and resources.

INDEX TERMS Test case prioritization, model input, interaction coverage, mixed-strength, fixed-strength.

Due to limited testing resources, when conducting testing
in practice (for example in regression testing), the execution
order of test cases can be critical, and more important test
cases in a test set should be executed as early as possible.
A well-ordered test case execution sequence may be able to
identify faults faster than a poorly-ordered sequence, thus
allowing activities such as fault characterization, diagnosis,
and correction, to be started as soon as possible. The process
of determining the order of test cases in a test set is called test
case prioritization (TCP) [1], and has been used extensively
in many testing situations, such as regression testing [2].

Many TCP algorithms have been proposed to guide the
prioritization of different types of test case, including code
coverage-based prioritization [1], [3], search-based prioriti-
zation [4], [5], and adaptive random prioritization [6]–[9].
A model input [10] (also called an abstract test case [11])
is an important type of test case [12], and can be obtained
based on a model of the software under test (SUT): It con-
sists of a fixed number of parameters that influence the
SUT, a finite set of values for each parameter, and a set
of constraints on parameter values. Each model input is
constructed by assigning a value to each of the parameters.
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Model inputs have been widely used in testing, including for
highly-configurable systems testing [13], [14], the category-
partition testing method [12], and combinatorial interaction
testing [15]. Model input prioritization has also been studied
extensively in recent years, especially in the field of combina-
torial interaction testing [16]–[18] and software product line
testing [19], [20].

The interaction coverage is the information derived from
the model input itself, represented by the parameter-value
combinations covered by the model input. It has been
widely used to guide the model input prioritization, and
is called interaction coverage-based test case prioritization
(ICTCP) [17], [18], [21]–[23]. Previous studies have mainly
focused on fixed-strength ICTCP, which adopts a fixed value
for strength (i.e., the level of parameter interactions) to sup-
port the whole ICTCP process [18], [21]–[23]. It is expected
that ICTCP using more strengths may provide better ordering
of test cases than using fixed-strength TCP, but it can be more
time-consuming, because more information is required to be
considered.

To determine whether mixed-strength is better than fixed-
strength, we conducted empirical studies on five real-world
programs (written in C), each of which contains six versions,
according to some quality evaluation metrics. Based on the
experimental results, we present some empirical findings,
and provide some practical guidelines for testers when fac-
ing the prioritization problem of model inputs. In summary,
the main contributions of this work are as described as
follows:

1) We investigated 63 ICTCP techniques, involving
6 fixed-strength techniques, and 57 mixed-strength tech-
niques, and compared mixed-strength against fixed-strength
for the same maximum prioritization strength.

2) We conducted empirical studies to investigate the
testing effectiveness and efficiency of mixed-strength and
fixed-strength, from the perspective of the rate of interac-
tion coverage, the rate of fault detection, and prioritization
cost.

3) We present empirical findings and analysis comparing
mixed-strength and fixed-strength.

4) We provide some practical guidelines for testers about
how to choose mixed-strength and fixed-strength techniques,
when prioritizing the model inputs under different testing
scenarios and resources.

The rest of this paper is organized as follows: Section I
introduces some background information about model inputs,
and test case prioritization. Section II describes the research
questions, and Section III presents the experimental setup.
Section IV reports on the empirical studies, analyzes the
results, and answers the research questions. In addition, it pro-
vides some practical guidelines for testers, and also discusses
the limitations of this work. Section V reviews some related
work about combinatorial interaction testing, and test case
prioritization. Finally, Section VI concludes the paper and
proposes future work.

I. BACKGROUND
In this section, we introduce the topic of model input and test
case prioritization (TCP).

A. MODEL INPUT
The software under test (SUT) is generally influenced by
a number of parameters or factors (such as configurations,
features, components). Typically, each parameter can have a
fixed number of possible values, or levels. Generally, there
may be constraints on parameter values, with some value
combinations being infeasible.

We define the input parameter model [11] used to model
the SUT as follows:
Definition 1: An input parameter model, Model(P =

{p1, p2, · · · , pk},V = {V1,V2, · · · ,Vk}, C), represents the
information about the test object — p1, p2, · · · , pk , are the
k parameters; each Vi is the set of possible values for
the i-th parameter (pi); and C is the set of value combination
constraints.

TABLE 1. An example for input parameter model.

For example, Table 1 gives an input parameter model with
two constraints for an application of Partition and Volume
Creation, where four parameters are included, of which the
first two parameters have two values, the third parameter has
three values, and the last parameter has four values. Since
the file system ‘‘FAT’’ is limited to the size less than 7096,
and the file system ‘‘FAT32’’ is limited to the size less
than 32000, two value combination constraints are obtained.
To simplify the problem, each parameter is denoted by pi (i =
1, 2, 3, 4), and each value is labelled by an integer, beginning
with 0 and incrementing by 1, from p1 to p4 (see Table 1).
After that, we have the following input parameter models

for this example: Model({p1, p2, p3, p4}, {{‘‘0’’, ‘‘1’’}, {‘‘2’’,
‘‘3’’}, {‘‘4’’, ‘‘5’’, ‘‘6’’}, {‘‘7’’, ‘‘8’’, ‘‘9’’, ‘‘10’’}}, C =

{p3 = ‘‘4’’ → p4 = ‘‘7’’, p3 = ‘‘5’’ → p4 6= ‘‘10’’}.
Because specific values of each parameter have no impact on
the model, without loss of generality, we can use the follow-
ing abbreviated version: Model(|V1||V2| · · · |Vk |, C). In addi-
tion, we adopt the description method of the constraint set C,
previously used in [24], the example above can therefore be
represented as: Model(223141, C = {‘‘4’’ → ‘‘7’’, ‘‘5’’ →
¬‘‘10’’}).

An input parameter model (if available) can be used to con-
struct model inputs [10] (also called abstract test cases [11])
for testing the test object. A definition of the model input is
given as follows:
Definition 2: A model input, denoted (v1, v2, · · · , vk ), is a

k-tuple, where vi ∈ Vi (i = 1, 2, · · · , k).
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If all the value constraints in C are satisfied, then a
model input is said to be valid, otherwise invalid. An exam-
ple of a valid model input for the previous model is
(‘‘1’’, ‘‘3’’, ‘‘6’’, ‘‘7’’); and an example of an invalid one
is (‘‘0’’, ‘‘2’’, ‘‘5’’, ‘‘10’’), which violates the constraint
(‘‘5’’→ ¬‘‘10’’).
Definition 3: A λ-wise value combination is a k-tuple

(̂v1, v̂2, · · · , v̂k ), involving λ parameters with fixed values
(named fixed parameters) and (k − λ) parameters with
arbitrary allowable values (named free parameters), where
0 ≤ λ ≤ k and

v̂i =

{
vi ∈ Vi, if pi is a fixed parameter
‘‘− ’’, if pi is a free parameter

(1)

The λ-wise value combination is also called λ-wise
schema [15]. In order to describe the problem clearly (without
loss of generality), the free parameters are not considered.
In other words, a λ-wise value combination is actually a
λ-tuple. Each model input could cover some λ-wise value
combinations. For example, a model input (‘‘0’’, ‘‘2’’,
‘‘5’’, ‘‘9’’) covers four 1-wise value combinations, i.e., (‘‘0’’),
(‘‘2’’), (‘‘5’’), and (‘‘9’’); and four 3-wise value combinations,
i.e., (‘‘0’’, ‘‘2’’, ‘‘5’’), (‘‘0’’, ‘‘2’’, ‘‘9’’), (‘‘0’’, ‘‘5’’, ‘‘9’’),
and (‘‘2’’, ‘‘5’’, ‘‘9’’). Similar to model inputs, the λ-wise
value combination may also be valid or invalid, for exam-
ple, a 2-wise value combination (‘‘0’’, ‘‘2’’) is valid; while
another one (‘‘5’’, ‘‘10’’) is invalid. A valid model input cov-
ers valid λ-wise value combinations that are valid, regardless
of λ values.

To simplify the notation, we define a function ψ(λ, tc)
for a model input tc that returns the set of all λ-wise value
combinations covered by tc, i.e.,

ψ(λ, tc) = {(vj1 , vj2 , · · · , vjx )|1 ≤ j1 < j2 < · · · < jλ ≤ k}

(2)

Similarly, a function ψ(λ,T ) for a set T of model inputs is
defined to return the set of all λ-wise value combinations
covered by all model inputs in T , i.e.,

ψ(λ,T ) =
⋃
tc∈T

ψ(λ, tc) (3)

The size of ψ(λ, tc), i.e., |ψ(λ, tc)|, is equal to C
(
k, λ

)
(i.e., the number of λ-combinations from k elements).

B. TEST CASE PRIORITIZATION
Test case prioritization (TCP) schedules test cases so that
those with higher priority, according to some criteria, are
executed earlier than those with lower priority. When the
execution of all test cases in a test suite is not possible, a well-
designed execution order can be very important. The problem
of test case prioritization can be defined as follows [1]:
Definition 4: Given a tuple (T , �, f ), where T is a test

suite, � is the set of all possible permutations of T , and f
is a fitness function from � to real numbers, the test case

prioritization problem is to find a prioritized test set S ∈ �
such that:

(∀S ′) (S ′ ∈ �) (S ′ 6= S) [f (S) ≥ f (S ′)] (4)

There are many fitness functions to support the TCP pro-
cess, for example fault detection [1], and code coverage [4].

II. RESEARCH QUESTIONS
As we know, mixed-strength ICTCP (abbreviated as
MICTCP) uses more strengths (i.e., more information) than
fixed-strength (FICTCP for short) to guide the prioritization
of model inputs. Therefore, it is expected that MICTCP
may provide higher speed to cover value combinations than
FICTCP. This leads our first research question:
RQ1: How well does MICTCP compare with FICTCP in
terms of interaction coverage rate?

Similarly, it seems likely that MICTCP could generate pri-
oritized model inputs which trigger faults earlier in a test than
FICTCP (since more information has been used inMICTCP).
This leads to the next research question:
RQ2: How well does MICTCP compare with FICTCP in
terms of fault detection rate?

Answers to RQ1 and RQ2 would establish whether
MICTCP or FICTCP is more effective. In addition, since
MICTCP makes use of more information than FICTCP, it is
likely to require more prioritization time. Therefore, it is
useful to check which technique is better able to balance
the tradeoff between testing effectiveness (measured rates
of interaction coverage and fault detection) and efficiency
(measured by the prioritization cost), leading to our third
research question:
RQ3: Which one is more cost-effective between MICTCP
and FICTCP?

Finally, we would like to know, when facing different test-
ing scenarios, for example limited testing resources, which
ICTCP to choose. Our main aim therefore, is to answer the
following question:
RQ4: Which approach should be chosen under different cir-
cumstances? MICTCP or FICTCP?

By answering these research questions, we aim to compare
MICTCP and FICTCP, from the perspective of testing effec-
tiveness and efficiency; and also present guidelines to method
selection when facing different testing environments.

III. EXPERIMENTAL SETUP
Figure 1 presents the experimental process of empirical stud-
ies. At the beginning, the set of model inputs is ordered
by ICTCP, to obtained the prioritized model inputs. First,
during the prioritization process, the prioritization time is
collected. Second, the ordered set of model inputs is cal-
culated, according to the interaction coverage rate. Finally,
by transferring the model inputs into real test cases for each
program, the resulting ordered test suite is evaluated on the
five versions (V1 to V5) using mutation testing, in terms of
the fault detection rate.
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TABLE 2. Studied programs.

FIGURE 1. Experimental process of empirical studies.

A. SUBJECT PROGRAMS
We used five open-source C programs (Flex, Grep, Gzip,
Make, and Sed) that were selected from the GNU FTP
server [25]. Flex is a lexical analysis generation, while Grep
and Sed are widely-used command-line tools for searching
and processing text matching regular expressions. Make is
a popular utility used to control the compile and build pro-
cess of programs, while Gzip is a compression utility. These
programs have been widely used in the field of test case
prioritization [1], [7], [10], [18], [22], [26], [27].

For each of the programs, Table 2 presents its version num-
ber and the year that it was released, its size in uncommented
lines of code measured by cloc [28], and the number of
seeded faults. The table also describes the input parameter
model for each program modeled by Petke et al. [18], [27],
and the size of test pool. These test pools are available from
the Software Infrastructure Repository (SIR) [29].

B. THE 63 ICTCP TECHNIQUES STUDIED
Previous investigations have shown that nearly all faults
are caused by the interaction among no more than six

parameters [30], [31], therefore, we chose the maximum
strength value, d , ranging from 1 to 6. Therefore, we con-
sider all possible cases of strength selection with a total
of (26 − 1 = 63) choices, i.e., 6 techniques with fixed-
strength (FICTCP); and 57 techniques with mixed-strength
(MICTCP).

According to previous investigations [18], [26], [27], when
adopting FICTCP, different strengths provide different levels
of performance. Therefore, in this study when comparing
FICTCP and MICTCP, we will use the same maximum
strength d . More specifically, when FICTCP uses the prior-
itization strength d , MICTCP adopts d and other strengths
less than d , which means that the number of strengths used in
MICTCP is limited to d , i.e., 1, 2, · · · , d .
To simplify the notation, we define the term Ld to represent

‘xdxd−1 · · · x1’ that is a d-digit binary number, i.e., xi ∈
{0, 1}. If xi = 1 (1 ≤ i ≤ d), the strength i is included;
and if xi = 0, the strength i is excluded. Obviously, when
xd is equal to 1 and other bits are equal to 0, it is FICTCP;
otherwise, it is MICTCP. For example, L3 = ‘100’ repre-
sents FICTCP with strength 3; while L4 = ‘1101’ represents
MICTCPwith strengths 1, 3, and 4. Table 3 gives an overview
of the 63 ICTCP techniques investigated, from which d , Ld ,
and strengths used, are presented.

Algorithm 1 shows the details of the ICTCP, which builds
on previous algorithms to prioritize model inputs using inter-
action coverage [17], [18], [21]–[23], i.e., it calculates the
fitness of each candidate that has not been chosen, and selects
one candidate such that it has the maximum fitness as the
next test case in the prioritized set. As for the fitness function
fitness(Ld , tc, S), it can be defined as following:

fitness(Ld , tc,T )=
d∑
i=1

∣∣{ξ |ξ ∈ (ψ(i, tc) \ ψ(i,T )), xi=1}∣∣
C i
k

(5)

When facing the tie case (i.e., there exists more than one
candidate achieving the maximum fitness), the algorithm
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TABLE 3. The 63 ICTCP techniques.

Algorithm 1 ICTCP Procedure
Input: T F An unordered set of model inputs

Ld F A d-digit (1 ≤ d ≤ k) binary number
Output: S F A prioritized set of model inputs
1: S ← []
2: while |T | > 0 do
3: if |T | > 1
4: Select tc ∈ T , where max

(
fitness(Ld , tc, S)

)
F take

the random one in case of equality
5: S.add(tc)
6: T ← T \ {tc}
7: else F T contains only one element
8: S.add(tc), where tc ∈ T
9: T ← ∅

10: end if
11: end while
12: return S

adopts random tie-breaking [32] to randomly choose one.
After that, the algorithm removes the selected test case from
the candidates. This process is repeated until all model inputs
are chosen.

Since ICTCP involves randomization (due to the ran-
dom tie-breaking technique [32]), we ran each experiment
100 times, and collected a set of different outcomes for
each prioritization technique: This could help us further ana-
lyze performance differences between different prioritization
techniques.

C. FAULT SEEDING
For each of the subject programs, the original version con-
tains no seeded-in faults. In this paper, we have used mutation
analysis [33]. As discussed in previous studies [34], [35],
mutation analysis can provide more realistic faults than hand-
seeding, and may be more appropriate for studying test case
prioritization.

For the five subject programs, we used the same mutation
faults as used by Henard et al. [10], i.e., we employed the
mutant operators set used by Andrews et al. [34], such as
statement deletion, constant replacement, unary insertion,
arithmetic operator replacement, logical operator replace-
ment, relational operator replacement, and bitwise logical
operator replacement. Among all mutants, we removed the
duplicated and equivalent mutants as possible, and also
removed all mutants that are not killed by any model input
by following previous practices [1], [34], [36]. In addi-
tion, all the subsuming mutants [37] (also called minimum
mutants [38] or disjoint mutants [39]) that are easily killed
from the original program were removed, because these
mutants may affect the value of the mutation score measure-
ment [34], [38]–[40]. A mutation fault is said to be detected
by a test case when execution outputs are different for the
original and fault-seeded versions. Table 2 shows the number
of faults adopted in this study.

D. EVALUATION METRICS
To evaluate different ICTCP strategies, in this study we
focused on the following three aspects: (a) rate of interaction
coverage, to measure how quickly each prioritized set of
model inputs covered value combinations; (b) rate of fault
detection, to measure howwell each prioritized test set identi-
fied faults; and (c) prioritization cost, to measure how quickly
each prioritized test set was obtained.

1) INTERACTION COVERAGE RATE
The average percentage of λ-wise combinations covered
(APCC) [41], also named average percentage of combinato-
rial coverage [42] or average percentage of covering-array
coverage [18], is used to measure the rate of interaction
coverage of strength λ achieved by a prioritized test set of
model inputs. Its definition is given as follows.
Definition 5: Suppose T = {t1, t2, · · · , tn} is a set of

model inputs with size n, the APCC definition of S at strength
λ (1 ≤ λ ≤ k) is:

APCC(λ, S) =

∑n
i=1

∣∣ψ(λ,⋃i
j=1{tj})

∣∣
n× |ψ(λ,T )|

−
1
2n

(6)

The APCC metric values range from 0.0 to 1.0, with
higher values meaning better rates of interaction coverage at
a specific strength λ. In this paper, we considered APCCwith
λ = 1, 2, 3, 4, 5, and 6, by following previous studies [18].

However, previous APCC calculations only evaluate a
given prioritized set of model inputs at a specific strength λ,
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FIGURE 2. AvgAPCC metric values for each program when d = 2. (a) Flex. (b) Grep. (c) Gzip. (d) Make. (e) Sed.

FIGURE 3. AvgAPCC metric values for each program when d = 3. (a) Flex. (b) Grep. (c) Gzip. (d) Make. (e) Sed.

resulting in the case that different strengths may draw differ-
ent conclusions. In this paper, therefore we adopt the average
APCC metric value based on the strengths 1, 2, 3, 4, 5,
and 6, i.e.,

AvgAPCC(S) =
1
6

6∑
λ=1

APCC(λ, S) (7)

2) FAULT DETECTION RATE
The average percentage of faults detected (APFD) was used
to assess different prioritization techniques [1]. Its definition
is given as follows (from [1]):
Definition 6: Suppose T is a test suite containing n test

cases, and F is a set of m faults revealed by T . Let SFi be
the number of test cases in the prioritized test set S of T that
are executed until detecting fault Fi ∈ F. The APFD for test
sequence S is given by the following equation:

APFD(S) = 1−
SF1 + SF2 + · · · + SFm

n× m
+

1
2n

(8)

3) PRIORITIZATION COST
The prioritization cost measures the prioritization time
required for each ICTCP technique, and represents the effi-
ciency of the technique. Lower prioritization costs mean
better performance.

E. STATISTICAL ANALYSIS
When assessing the statistical significance of the differ-
ences between the APCC or APFD values (used to evaluate
each ICTCP technique), it is reasonable to use an unpaired
test because there was no relationship between any of the
100 runs. Therefore, following previous studies dealing with
randomized algorithms [43], [44], we used the unpaired

two-tailed Wilcoxon-Mann-Whitney test of statistical signif-
icance (set at a 5% level of significance).

Because multiple statistical prioritization techniques were
employed, we report the p-values — as the number of
the executions increases, p becomes sufficiently small [10],
which means that there are differences between the two
algorithms. We used the non-parametric Vargha and Delaney
effect size measure [45], Â12, which presents the probability
that one technique is better than another — with a higher
effect size (value) indicating higher probability. For example,
Â12(x, y) = 1.0 indicates that, based on the sample, algorithm
x always performs better than algorithm y; and Â12(x, y) =
0.0 means that x always has worse performance.

IV. RESULTS
In this section, the results of empirical studies are presented
comparing MICTCP and FICTCP techniques. In the plots in
each figure in this section (Figures 2 to 11), theX-axis lists the
prioritization techniques compared, and the Y-axis shows the
AvgAPCC or APFD values for that technique. Each box plot
shows the mean (square in the box), median (line in the box),
upper and lower quartile, and min/max AvgAPCC or APFD
values for the prioritization technique. In addition,
Tables 4 and 6 give the statistical pairwise comparisons of
AvgAPCC and APFD between MICTCP and FICTCP, from
which each cell provides the p-value/Â12 measure.

A. RQ1: INTERACTION COVERAGE EXPERIMENTS
Figures 2 to 6 present the AvgAPCC results of different d
values, each of which contains five sub-figures for subject
program Flex, Grep, Gzip, Make, and Sed, respectively. Each
plot shows the distribution of the 100 AvgAPCC values
(i.e., 100 orderings). Table 4 records the statistical pairwise
AvgAPCC comparison between MICTCP and FICTCP.
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FIGURE 4. AvgAPCC metric values for each program when d = 4. (a) Flex. (b) Grep. (c) Gzip. (d) Make. (e) Sed.

FIGURE 5. AvgAPCC metric values for each program when d = 5. (a) Flex. (b) Grep. (c) Gzip. (d) Make. (e) Sed.

1) OBSERVATIONS
Based on the experimental data, we have the following obser-
vations:

1) When d = 2 or d = 3, i.e., the maximum
strength used in FICTCP and MICTCP is equal to 2 or 3,
FICTCP performs similarly to MICTCP. In nearly all cases,
MICTCP has slightly higher rates of interaction coverage
than FICTCP, both in terms of mean and median AvgAPCC
values. Nevertheless, sometimes FICTCP achieves slightly
better AvgAPCCs than MICTCP, for example, ‘110’ vs ‘100’
for program Grep. In other words, MICTCP does not always
perform better than FICTCP. The statistical analysis generally
confirms the box plot results, because all p-values are higher
than 0.05; and all effect size Â12 values are around 0.50. It can
be also observed that the Â12 values of MICTCP compared
to FICTCP are higher than or equal to 0.50 (except ‘110’ vs
‘100’ for program Grep, as its values is 0.44).

2) When d is high (i.e., d = 4, 5, and 6), the comparisons
between FICTCP and MICTCP have different levels of per-
formance for different subject programs. More specifically,
• For programs Flex and Grep, each MICTCP technique
constructs prioritized model inputs with much higher
AvgAPCC values than FICTCP, irrespective of d values.
Both in terms of mean and median AvgAPCC val-
ues, the minimum differences of AvgAPCC between
MICTCP and FICTCP are approximately 0.02, 0.03,

and 0.06 for program Flex with d equalling 4, 5,
and 6, respectively; while the maximum differences
reach about 0.03, 0.06, and 0.23. The case of program
Grep is similar to that of program Flex, i.e., the min-
imum AvgAPCC differences are close to 0.02, 0.06,
and 0.14 for d being 4, 5, and 6; while the maximum
differences approach 0.04, 0.12, and 0.29, respectively.
According to the statistical comparisons, all p-values are
much less than 0.05, which means that the differences
between FICTCP and MICTCP are highly significant;
while all effect size Â12 values are much higher than
0.50, ranging in [0.67, 1.00] for Flex and [0.76, 1.00]
for Grep, which indicates that MICTCP has better per-
formance than FICTCP at least 67% of the time.

• As for programs Gzip and Make, we observe the fol-
lowings: a) When d is equal to 4 or 5, FICTCP and
MICTCP have very similar AvgAPCCvalues, regardless
of both mean and median values. In some cases, how-
ever, FICTCP has slightly better performance than some
MICTCP techniques such as ‘1100’, ‘1101’, ‘1110’,
‘1111’, ‘11100’, ‘11101’, ‘11110’, and ‘11111’. The
statistical analysis generally validates the box plot obser-
vations: all p-values are higher than 0.05 (except the case
of ‘1101’ vs ‘1000’ with 7.0E-03), which means that
FICTCP and MICTCP do not have highly significant
differences; while the effect size Â12 values are less
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FIGURE 6. AvgAPCC metric values for each program when d = 6. (a) Flex. (b) Grep. (c) Gzip. (d) Make. (e) Sed.

than 0.50 in most cases, which indicates that MICTCP
performs better than FICTCP in less than 50% of the
cases. b) When d is equal to 6, the case seems opposite.
In detail, although there exist few MICTCP techniques
that have similar AvgAPCC values to FICTCP, in many
casesMICTCP achievesmuch higher rates of interaction
coverage. Considering program Make for example, all
MICTCP techniques have higher AvgAPCC values than
FICTCP with the maximum mean and median differ-
ences being approximately 0.04. Moreover, the majority
of p-values for comparing MICTCP and FICTCP are
much less than 0.05, which means that the AvgAPCC
differences between them are highly significant in the
majority of cases. Meanwhile, all effect size Â12 values
for comparing MICTCP against FICTCP are greater
than 0.50. Specifically, the Â12 values range from
0.52 to 0.65 for program Gzip, indicating that MICTCP

performs better than FICTCP from 52% to 65% of the
time; while ranging from 0.50 to 0.64 for programMake,
which means that MICTCP has better performance than
FICTCP in 50% to 60% of the cases.

• For Sed, different d values result in different observa-
tions: a) When d = 4, MICTCP has slightly better
performance than FICTCP, both in terms of median
and mean values. This observation can be confirmed
by the statistical analysis, i.e., the half of p-values are
less than 0.05, which means that the AvgAPCC differ-
ences between MICTCP and FICTCP are not highly
significant in half of the cases. However, all effect size
Â12 values are greater than 0.50, (0.53 0.61), which
indicates that MICTCP outperforms FICTCP 53% to
61% of the time. b) When d = 5, MICTCP techniques
are similar or better than FICTCP, except ‘11100’ and
‘11110’, both in terms of mean and median AvgAPCC
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TABLE 4. Statistical pairwise AvgAPCC comparison between MICTCP and FICTCP.

values. The maximum difference of the mean AvgAPCC
between FICTCP and MICTCP reaches more than 0.02.
As observed in the statistical results, apart from the
last four MICTCP techniques (i.e., ‘11100’, ‘11101’,
‘11110’, and ‘11111’), all others techniques have
highly significant differences compared to FICTCP,
because p-values are much less than 0.05. However, all
MICTCP techniques (except ‘11100’) have effect size

Â12 values which range from 0.51 to 0.82 compared
to FICTCP, which means that MICTCP outperforms
FICTCP in 51% to 82% of the cases. c) When d = 6, all
MICTCP techniques have much higher AvgAPCCs than
FICTCP, where the minimum difference is about 0.02;
and the maximum difference reaches 0.05, both in terms
of median and mean values. The p-values of MICTCP
compared to FICTCP are much lower than 0.05, which
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means that their differences are highly significant; while
the effect size Â12 values are much higher than 0.50,
ranging from 0.79 to 0.99, which means that MICTCP
outperforms in 79% to 99% of the cases.

To sum up, when d is high, in most cases MICTCP
has similar or better performance thanFICTCP, although
there are exceptions. Additionally, the statistical analysis
supports the box plot observations.

3) With the increase of d , in most cases MICTCP achieves
higher differences against FICTCP for all programs, although
there exist some fluctuations. In other words, when d
is higher, the differences between MICTCP and FICTCP
becomes higher. Consider the effect size values for compar-
ing MICTCP against FICTCP, the 5-tuple of Â12 intervals
for program Flex is ([0.56, 0.56], [0.54, 0.59], [0.64, 0.75],
[0.82, 0.99], [0.91, 1.00]) for five d values, respectively, i.e.,
d = 2, 3, 4, 5, and 6; ([0.52, 0.52], [0.44, 0.54], [0.63,
0.79], [0.88, 1.00], [0.99, 1.00]) for program Grep; ([0.53,
0.53], [0.47, 0.53], [0.46, 0.50], [0.44, 0.51], [0.52, 0.65])
for program Gzip; ([0.51, 0.51], [0.47, 0.55], [0.39, 0.53],
[0.43, 0.53], [0.52, 0.64]) for program Make; and ([0.59,
0.59], [0.51, 0.56], [0.53, 0.61], [0.44, 0.82], [0.39, 0.99]) for
program Sed. It can be seen that the percentage of the cases
where MICTCP outperforms FICTCP generally increases,
along with the increase of d .

To sum up, in terms of interaction coverage rates,
MICTCPgenerally performs better thanFICTCP inmost
cases, especially when d is high. However, the better per-
formance ofMICTCP compared to FICTCP is not always
observed, which means that sometimes FICTCP could
have better rates of interaction coverage.

2) ANALYSIS
In this section, we briefly analyze the above AvgAPCC and
APCC observations. For ease of description, let the strength
λ be used in the calculation of APCC.
On the one hand, FICTCP adopts a fixed strength d (1 ≤

d ≤ 6) to prioritize model inputs, which means that it
attempts to cover d-wise value combinations as quickly as
possible. On the other hand, MICTCP adopts more than one
strength, less than or equal to d (from which the prioritization
strength d is bound to be chosen), to guide the prioritiza-
tion, which means that there exists a balance among differ-
ent strengths. In other words, MICTCP may satisfy more
strengths to sacrifice the strength d .

Our results are consistent with three cases, listed as
follows:
• Case 1:When d (used in FICTCP andMICTCP) is equal
to λ used in APCC, FICTCPwith the strength d achieves
higher or similar d-wise APCCs to MICTCP, because
FICTCP uses the number of uncovered λ-wise value
combinations as the prioritization criterion (although
there are a few exceptions due to local optimization
being used instead of global optimization in FICTCP).

• Case 2: When d is higher than λ, MICTCP would
have prioritized model inputs with higher APCCs than

FICTCP, because MICTCP considers the strengths
lower than d during the prioritization process, which
may deliver better λ-wise APCC values.

• Case 3:When d is less than λ, it is difficult to distinguish
which one is better between FICTCP and MICTCP for
obtaining prioritized model inputs with higher APCCs,
but they could perform similarly. The main reason
for this is that: Considering a small d (for example,
d = 2 or 3), when all d-wise value combinations have
been covered by already selected model inputs (indi-
cating that all value combinations at the strengths less
than d have also been covered), the remaining candidate
model inputs could be prioritized randomly for both
MICTCP and FICTCP.

TABLE 5. Mean APCC at each λ for FICTCP and MICTCP.

Table 5 describes a λ-wise (1 ≤ λ ≤ 6) APCC com-
parison of FICTCP and d-strength MICTCP for each sub-
ject program, from which the above three cases could be
validated. As shown in Eq.(7), the AvgAPCC metric is the
average result of six APCC values at strengths from 1 to 6.
As a consequence, when d is small (such as d = 2, 3),
the AvgAPCC difference between FICTCP and MICTCP
could be small, due to Case 1, and Case 3. However, when d
is high (such as d = 4, 5, 6), the difference generally seems
highly significant, due to Case 1, and Case 2.

In a few cases of Gzip and Make, such as d = 4 and
d = 5, their AvgAPCC observations slightly conflict with
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FIGURE 7. APFD metric values for each program when d = 2. (a) Flex. (b) Grep. (c) Gzip. (d) Make. (e) Sed.

FIGURE 8. APFD metric values for each program when d = 3. (a) Flex. (b) Grep. (c) Gzip. (d) Make. (e) Sed.

FIGURE 9. APFD metric values for each program when d = 4. (a) Flex. (b) Grep. (c) Gzip. (d) Make. (e) Sed.

the above explanations. The main reason may be the special
input parameter model of each program. As shown in Table 2,
the model of program Gizp is Model(14, 21331, C), |C| = 69,
and the model of program Make is Model(10, 210, C),
|C| = 28. Both of them have nearly all parameters with binary
values, and many constraints among parameter values, result-
ing in the case that FICTCP with d = 4 or d = 5 could
achieves considerable (even better) λ-wise (1 ≤ λ < d)
APCCs compared to MICTCP. As shown in Table 5, for
program Gzip, FICTCP with d = 4 (i.e., ‘1000’) and d = 5
(i.e., ‘10000’) can have higher or equal λ-wise APCC values
compared to d-strengthsMICTCP (i.e., ‘1111’ for d = 4, and
‘11111’ for d = 5). Similarly, for program Make, the ‘1000’
is equal to or better than the ‘1111’ in terms of APCCs at
each λ value; and the ‘10000’ has lower APCCs at λ = 1, 2
than the ‘11111’, but it has higher APCCs at other λ values
(i.e., λ = 3, 4, 5).
To answer RQ1 therefore, MICTCP does not always

achieve better rates of interaction coverage compared with
FICTCP, even though it uses more information to support
the prioritization of model inputs. Nevertheless, MICTCP
performs better than FICTCP in many cases, especially when
d is high.

B. RQ2: FAULT DETECTION EXPERIMENTS
Figures 7 to 11 present the APFD results for different d
values, each of which contains five sub-figures for subject
programs Flex, Grep, Gzip, Make, and Sed. Each plot shows
the distribution of the 500 APFD values (i.e., 100 orderings×
5 versions). Table 6 records statistical pairwise APFD com-
parisons of MICTCP and FICTCP.

1) OBSERVATIONS
Based on the experimental data, we have made the following
observations:

1) For all five programs (Flex, Grep, Gzip, Make, and Sed)
with all d values, MICTCP has similar APFDs to FICTCP.
From the figures it can be seen that the maximum APFD
difference between FICTCP andMICTCP is around 1%, both
in terms of mean and median APFD values.

2) For some cases, MICTCP performs slightly better than
FICTCP, such as program Grep with d = 6. However,
FICTCP also achieves slightly higher APFDs in some cases,
such as programMake with d = 5 and d = 6. In other words,
there is no technique that is always the best.

3) The statistical analysis overall validates the box plot
observations. More specifically, the majority of p-values
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FIGURE 10. APFD metric values for each program when d = 5. (a) Flex. (b) Grep. (c) Gzip. (d) Make. (e) Sed.

(220 out of 285 cases being equal to 77%) are greater than
0.05, which means that only 23% of cases are less than 0.05.
In other words, in most cases the APFD differences between
MICTCP and FICTCP are not highly significant. As for the
effect size Â12 values, when d is high, i.e., d = 4, 5, and 6,
the most Â12 values are greater than 0.50 for all programs
except program Make. Additionally, the percentages of the
cases with Â12 values higher than, equaling to, and less
than 0.50 are equal to approximately 150/285 = 53%,
39/285 = 14%, and 96/285 = 33%, respectively. As a
consequence, MICTCP performs slightly better than FICTCP
in about 53% of the cases; while the opposite situation occurs
in 33% of the cases (i.e., FICTCP performs slightly better
than MICTCP).

To conclude, MICTCP has very similar rates of fault
detection compared with FICTCP, and there is no con-
sistently superior technique for prioritizing model inputs.
Nevertheless, MICTCP slightly performs better than
FICTCP in more than 50% of the cases.

2) ANALYSIS
In this section, we briefly present an analysis of above APFD
observations.

When FICTCP uses the prioritization strength d to pri-
oritize model inputs, MICTCP uses d and other prioritiza-
tion strengths lower than d . As discussed in Section IV-A,
MICTCP could achieve a balance between d and other
strengths during the prioritization process, which could result
in the following two cases: 1) MICTCP achieves the lower
rates of covering d-wise value combinations than FICTCP;
and 2) MICTCP achieves higher rates of covering value
combinations at strengths lower than d than FICTCP.
As we know, each program fault could be triggered by a

number of parameters, i.e., the failure-triggering fault inter-
action (FTFI) number [31], or the failure-causing parameter
interaction (FCPI) number [46]. For example, when the FTFI

number of a fault is equal to 2, i.e., this fault is caused by
two parameters and testing all pairwise value combinations
is bound to identify such a fault. Consider a fault F with
the FTFI number τ (1 ≤ τ ≤ k), where k is the number
of parameters of the input parameter model, there exist the
following three cases:

• Case 1: If d = τ , i.e., the fault F could be triggered by
d parameters; FICTCP may detect F more quickly than
MICTCP, because FICTCP could cover d-wise value
combinations sooner.

• Case 2: If d > τ , i.e., the fault F could be identified
by less than d parameters; MICTCP may perform more
effectively than FICTCP to detect F, because MICTCP
could cover τ -wise value combinations more quickly.

• Case 3: If d < τ , i.e., the fault F could be caused
by more than d parameters; it is difficult to distinguish
whether MICTCP or FICTCP is better, because they do
not aim to cover τ -wise value combinations as soon as
possible.

As shown in Table 7, the FTFI number of each τ is given
for each program. It can been seen that for subject programs
Flex, Grep, Gzip, and Sed, over 50% of faults are with FTFI
numbers being equal to less than 3; while for program Make,
most of faults are with the FTFI number higher than 6.
Therefore, it would be expected that MICTCP could have
better rates of fault detection than FICTCP, especially when
d is high. As investigated in Section IV-B, the observations
do not fully support such as assertion.

There are two possible reasons:
1) The above three cases are satisfied in many cases rather

than in all cases, because covering λ-wise value combinations
could also achieve a degree of covering value combinations
at a strength either higher or lower than λ. For example,
an element from candidates selected as the next model input
that covers the largest number of uncovered λ-wise value
combinations can also cover a number of uncovered λ′-wise
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FIGURE 11. APFD metric values for each program when d = 6. (a) Flex. (b) Grep. (c) Gzip. (d) Make. (e) Sed.

value combinations, where 1 ≤ λ < λ′ ≤ k . Similarly,
this model input may cover a certain number of uncovered
λ′′-wise value combinations, where 1 ≤ λ′′ < λ ≤ k .

2) As we know, two faults have the same FTFI number, yet
they may have different properties. For example, the FTFI
number of two faults F1 and F2 is equal to 2, i.e., these faults
are caused by two parameters p1 and p2. The parameters p1
and p2 have the values from the sets V1 and V2, respectively.
Suppose that the fault F1 could be triggered by the 2-wise
interaction (p1 = v1)&&(p2 = v2); and the fault F2 could be
identified by the 2-wise interaction (p1 6= v1)&&(p2 6= v2),
where v1 ∈ V1 and v2 ∈ V2. Therefore, the probability of
detectingF1 (also failure rate ofF1) is equal to θ1 = 1

|V1|×|V2|
;

while the probability of detecting F2 is θ2 =
(|V1|−1)×(|V2|−1)
|V1|×|V2|

.

With the increase of |V1| and |V2|, the failure rates of F1 and

F2 are significantly different, i.e., θ1 approaches 0.0; while θ2
is close to 1.0. In other words, the F1 becomes more difficult
to detect, and the F2 is easier to identify. As a consequence,
the fault with a low FTFI number may not be as easily
identified as another fault with high FTFI number, because
the former may have a lower failure rate. As discussed in
Section III-C, all subsuming faults were removed from the
experiments, which means that most of the seeding faults
have low failure rates.
To answer RQ2, the APFD differences between FICTCP

and MICTCP are approximately 1%, which means that
FICTCP and MICTCP have very similar rates of fault
detection. In addition, there is no best prioritization tech-
nique, which means that MICTCP does not always outper-
form FICTCP, because in some cases FICTCP can achieve
better performance.
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TABLE 6. Statistical pairwise APFD comparison between MICTCP and FICTCP.

C. RQ3: PRIORITIZATION COST EXPERIMENTS
In this section, we present the prioritization cost of each
ICTCP technique for each program. Table 8 shows the pri-
oritization time of each prioritization technique for each pro-
gram, from which the prioritization time is represented by the
mean and standard deviation (µ/σ ) over the 100 runs. In this
table, we also show the prioritization cost sum of all programs
for each prioritization technique.

From the table, it can be observed that (as expected),
MICTCP requires more prioritization time than FICTCP,
because it adopts more strength information to guide the
prioritization of model inputs. Additionally, MICTCP with
lower strengths (such as 1 and 2) could have comparative
prioritization costs to FICTCP.

As we know, when using AvgAPCC as the evalua-
tion metric, we believe that MICTCP with lower strengths
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TABLE 7. The FTFI number of each program.

TABLE 8. Prioritization time (µ/σ ) in seconds for MICTCP and FICTCP.

(such as 1 and 2) may be more cost-effective than FICTCP,
becauseMICTCP has better rates of interaction coverage than
FICTCP, but requires considerable prioritization time. How-
ever, when using APFD as the evaluation metric, we believe
that FICTCP would be more preferable than MICTCP,
because it has very similar rates of fault detection, but needs
less prioritization cost. It can be seen that using different
evaluation metrics, the results seem contradictory. However,
AvgAPCC and APFD have the same mechanism, but they
have been used as the metric for different testing scenarios.

More specifically, APCC measures the rate of interac-
tion coverage at a given strength λ, i.e., the speed covering
λ-wise value combinations. In effect, APCC guarantees that
all λ-wise value combinations have the same probability to
be failure-causing, because they provide the same contribu-
tion during the APCC calculation. Therefore, APCC has two
assumptions, described as following: 1) the FTFI number is

equal to λ; and 2) each λ-wise value combination is failure-
causing with the same probability. In addition, the AvgAPCC
measures the average APCCs based on the strengths ranged
from 1 to 6, which means that it considers value combina-
tions coverage at different strengths. In other words, higher
speed to cover value combinations at each strength, higher
AvgAPCC values. Similar to APCC, AvgAPCC also has the
following two assumptions: 1) the FTFI numbers range from
1 to 6; and 2) each value combination at a fixed strength
has the same probability to be failure-causing. From this
perspective, therefore AvgAPCC has the same mechanism as
APFD.

On the one hand, when using AvgAPCC as the evaluation
metric, i.e., considering each value combination is failure-
causing, there exist many faults with low and high failure
rates. Therefore, the AvgAPCC experiments (as shown in
Section IV-A) represent an initial stage of software testing.
This is because, during the life span of the software, many
types of faults (such as low and high failure rates) exist.
On the other hand, as discussed in Section IV-B, most of the
faults have low failure rates, which means that these faults
are difficult to detect. In other words, the APFD experiments
represent a later stage of software testing. This is because,
usually more and more faults will be detected and removed
from the code, i.e., the software is being tested or maintained.
To answer RQ3, we need to discuss this research question

according to different metrics of testing effectiveness, i.e.,
MICTCP with low strengths (such as 1 and 2) will be more
cost-effective than FICTCP at an initial stage of software
testing; while it will be more cost-effective to use FICTCP
instead of MICTCP at a later stage of software testing.

D. RQ4: SELECTION OF FICTCP AND MICTCP
In this section, we attempt to present some guidelines for
testers about the best choice of prioritization technique
(FICTCP or MICTCP).

Figure 12 shows the AvgAPCC values of FICTCP with
six d values, from which we can observe that FICTCP with
d = 1 is worst, followed by that with d = 2 and d = 3.
However, 4-wise, 5-wise, and 6-wise FICTCP perform simi-
larly. However, FICTCP with d = 5 overall performs best.
As shown in Table 9, the statistical analysis validates the
above observations. However, Figure 13 shows the APFD
results of FICTCP with different d values, from which it
can be observed that in terms of mean and median APFD
values, the maximum APFD difference between them is
approximately 5%. However, FICTCP with the high strength
generally achieves better rates of fault detection than FICTCP
with low strength. The statistical results for the compari-
son between these 6 approaches are presented in Table 10,
which overall confirms the box-plot observations. In addition,
as shown in Table 8, FICTCP requires more prioritization
time, with the increase of d .

Similarly, as discussed in Section IV-A, MICTCP with
more strengths could obtain better AvgAPCC values, and
MICTCPwith high d could have better performance than that
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FIGURE 12. AvgAPCC metric values for FICTCP with different d values. (a) Flex. (b) Grep. (c) Gzip. (d) Make. (e) Sed.

FIGURE 13. APFD metric values for FICTCP with different d values. (a) Flex. (b) Grep. (c) Gzip. (d) Make. (e) Sed.

TABLE 9. Statistical pairwise AvgAPCC comparison between FICTCP
techniques (A and B).

TABLE 10. Statistical pairwise APFD comparison between FICTCP
techniques (A and B).

with low d . However, as discussed in Section IV-B, MICTCP
has similar fault detection rates to FICTCP when using the
same d value; while FICTCP with high d overall performs
better than MICTCP with low d . Therefore, MICTCP with
high d overall outperforms that with low d . Additionally,
as shown in Table 8, MICTCP with higher d and more
strengths generally needs more prioritization time.

During the selection of FICTCP and MICTCP, we mainly
considered the following two impact factors: testing

resources, and testing stage. As discussed in Section IV-C,
MICTCP is preferable at an initial stage of software testing;
and FICTCP is superior at a later stage of software testing.
Therefore, we discuss another impact factor, i.e., how to
choose the detailed MICTCP or FICTCP technique from
many possible choices (for example, there are 6 FICTCP
techniques, and 57 MICTCP techniques), under different
testing scenarios. To answer RQ4, Table 11 describes the
selection guide for different testing scenarios and testing
resources. More specifically, when testing resources are suf-
ficient at an initial stage of software testing, we recommend
that MICTCP with ‘111111’ be applied to the prioritization
of model inputs; otherwise, MICTCP with a low d is rec-
ommended. Similarly, when testing resources are sufficient
at a later stage of software testing, we recommend the use
of FICTCP with d = 6 (i.e., ‘100000’) to prioritize model
inputs; otherwise, FICTCP with low d is suggested.

TABLE 11. Guidelines for choosing FICTCP and MICTCP.

E. LIMITATIONS OF THIS WORK
It is possible that the results of this work may not be valid
when applied to the general population of software. The
major threats to external validity are the programs and their
faults. We used five programs in our experiments, therefore,
it may be difficult to generalize the results for all other
programs. However, we believe that each program with six
versions is sufficient to draw comparative conclusions, and
these programs have been widely used in the prioritization
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field [1], [7], [10], [18], [22], [26], [27]. The faults in each
version of each program were based on mutation testing,
however these faults were obtained from previous test case
prioritization results [10]. Considering this, additional studies
including more programs and more sets of faults are required
to minimize these threats. Additionally, as discussed before,
the input parameter model and candidate model input set may
influence the generalization of the conclusions, so we would
like to conduct more empirical studies to further investigate
our method, especially in larger and more complex systems,
and with different sets of model inputs.

In terms of the internal validity, choice of the maximum
strength (i.e., d) was set as 6, according to previous inves-
tigations [30], [31]. However, no studies attempt to adopt
strength higher than 6 to guide the prioritization of model
inputs. Additional studies with higher d values may reduce
this threat.

V. RELATED WORK
In this section, we present some related work about combina-
torial interaction testing, and test case prioritization.

A. COMBINATORIAL INTERACTION TESTING
Combinatorial interaction testing (CIT) [15] is a black-box
testing method taht aims to generate an effective test suite
(a covering array [47]) to identify faults that are caused by
the parameter interactions. As discussed in Wu and Nie [48],
the research field of CIT can be divided into six areas:Model,
Generation,Optimization, Evaluation,Diagnosis, and Appli-
cation. Here, we briefly introduce themost important work on
CIT, since the year 2010 (see the survey reference for details
about earlier CIT work [15], [49]).

1) MODEL
As discussed in Section I-A, the model for CIT is intended to
identify parameters, values, and constraints. Segall et al. [50]
proposed two methods to construct parameters and values of
the model, which considerably reduces the complexity of the
modeling task. Satish et al. [51], [52] adopted UML activity
and sequence diagrams to extract the parameters and values
for the model, respectively. Arcaini et al. [53] attempted to
validate the models by checking that the constraints were
consistent; that there was no constraint implied by the other
constraints; and that the parameters and their values were
really necessary. Gargantini et al. [54] used search-based
CIT to validate constraints among configuration parameters.
Tzoref-Brill et al. [55] applied three different forms of
visualization (matrices, graphs, and treemaps) to visual-
ize the relationships between the different elements of the
model. Satish et al. [56] proposed a method to build
combinatorial test input model from use case artifacts.
Tzoref-Brill and Maoz [57] proposed a syntactic and seman-
tic differencing technique for combinatorial models of test
designs that defines a concise and canonical representation
for differences between two models.

2) GENERATION
This area of research aims to generate as small test suites
as possible. It is the most active area of CIT, and there
are many popular algorithms or tools, such as Automatic
Efficient Test Generator (AETG) [58], Pairwise Independent
Combinatorial Testing (PICT) [ [59], Advanced Combinato-
rial Testing System (ACTS) [60], [61], and Covering Arrays
by Simulated Annealing (CASA) [62]. Recently, there are
many algorithms for CIT test suite generation using differ-
ent search-based techniques, such as Swarm Optimization
[63]–[65], Harmony Search [66], Genetic Algorithm
[67], [68], andHyperheuristic Search [69], [70]. Additionally,
there are other construction tools using different informa-
tion, such as coverage inheritance [71], Two-Mode Meta-
Heuristic Algorithm [72], unsatisfiable cores [73], interaction
trees [74], combinatorial optimization [75], balance between
frequencies and fault detection [76], and similarity or dis-
tance [20], [77]. More algorithms and tools have been listed
in an orchestrated survey [78].

3) OPTIMIZATION
This area of research focusses on prioritizing or minimizing
the number of test cases in the CIT test suite. Different infor-
mation can be used to guide the prioritization or minimization
of test cases, such as similarity [19], [20], [79], interaction
coverage [17], [80]–[83], test case cost [42], [84], switching
cost [85], and model mutation [10]. For more details about
optimization of CIT, please see our earlier work [86].

4) EVALUATION
This area of research includes the assessment of CIT and
metrics to evaluate test suites constructed by different CIT
tools. Felbinger et al. [87] presented a quality assessment of
CIT test suites, according to mutation score, coverage, and
model inference. Some work [88]–[91] compared CIT with
random testing [92], and adaptive random testing [93], from
the perspective of fault detection, code coverage, and inter-
action coverage. Petke et al. [18], [27] conducted empirical
studies to investigate three CIT test suite constructors, and
compared different prioritization strengths for prioritizing
CIT test suites, based on testing effectiveness and efficiency.
Choi et al. [94] evaluated the testing effectiveness of priori-
tized CIT through a case study; while Medeiros et al. com-
pared 10 sampling algorithms (including 5 CIT algorithms)
for configurable systems. Kuhn et al. [95] presented many
combinatorial coverage metrics for evaluating CIT test suites,
Chen and Zhang [96] proposed a metric called tuple den-
sity, which measures CIT test suites by considering higher-
strength interaction coverage.Wang et al. [42] proposed some
metrics to evaluate prioritized CIT test suites by considering
test case cost and weight; while Huang et al. [41] proposed
a series of metrics for prioritized CIT test suites by taking
account of different levels of interaction coverage.
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5) DIAGNOSIS
This area of research centres on locating concrete failure-
causing interactions. Zhang and Zhang [46] proposed a
fault characterization method, called faulty interaction char-
acterization. Many kinds of information have been used
to guide the diagnosis, such as failure-inducing combina-
tions [97], [98], test augmentation and classification [99],
constraint solving and optimization [100], tuple rela-
tion tree [101], partial covering array [102], and logistic
regression [103].

6) APPLICATION
This approach is to apply CIT to different testing environ-
ments and system applications. On the one hand, there are
many testing environments that adopt the principles of CIT,
for example, even sequence testing [104]–[106], grammar-
based testing [107], security testing [108]–[110], scenario-
based testing [111], solution testing [112], and certificate
testing [113]. On the other hand, many system applica-
tions have been tested by CIT, including MP3 applications
[114], [115], concurrent programs [116], [117], cloud envi-
ronments [118], mobile applications [119]–[121], software
products lines [19], [20], big data applications [122], indus-
trial settings [123], web applications [124]–[126], and cyber-
physical systems [127].

It should be noted that we only present some representative
examples of CIT research rather than all CIT work (for more
details and studies, please see the CIT repository [48]).

B. TEST CASE PRIORITIZATION
Test case prioritization (TCP) aims at ordering a set of test
cases to achieve an early optimization based on preferred
properties [1]. It gives an approach the ability to execute
highly important test cases earlier, according to some criteria.
Here, we present the main TCP approaches, based on differ-
ent knowledge to guide the prioritization process.

1) COVERAGE-BASED TCP
This approach uses the code information to support the pri-
oritization process, such as function coverage, branch cov-
erage, and statement coverage [128]. There are two main
coverage-based prioritization approaches [2]: total coverage-
based TCP and additional coverage-based TCP. The former
selects each element from the candidates as the next test case
such that it achieves the highest coverage; while the latter
chooses the next test case such that it has the highest coverage
of uncovered code or statement by already executed tests.

2) SEARCH-BASED TCP
This approach has quite a number of different implemen-
tation algorithms such as Greedy [4], [129], Genetic Algo-
rithms (GA) [4], [130], Ant-Colony [131], Adaptive Random
Sequences [6]–[9], and others [132], [133]. Experiments by
Li [4] showed that GA is worse than a greedy algorithm
on computer-generated data. However, the application of

a search-based TCP technique may differ based on different
factors, such as the selected test suite, fitness function, and
the like. The current results showed the major benefit of GA
in TCP, but there are some drawbacks, such as the time-
consuming nature of the process.

3) REQUIREMENTS-BASED TCP
This approach uses system requirements information to pri-
oritize test cases. Srikanth et al. [134] proposed a new
approach to prioritize system test cases based on four fac-
tors: requirements volatility, customer priority, implemen-
tation complexity, and fault-proneness of the requirements.
Recently work by Srikanth [135], showed that the combina-
tion of two or more factors may provide better testing effec-
tiveness than a single factor.Muthusamy et al. [136] proposed
a requirement-based TCP approach, based on traceability,
completeness, the impact of a fault in requirements, changes
in requirements, customer priority, and developers views.

4) RISK-BASED TCP
This approach concerns on the potential risks existed the
software to be developed. Srikanth et al. [135], proposed two
risk-based TCP techniques, based on the risk information
of the system. Some researchers used the information of
requirement risks to prioritize test cases that were expected to
distinguish the faults related to the risks of the system [137].
Hettiarachchi et al. [138] proposed five steps to use require-
ment risk values for prioritizing test cases.

5) FAULT-BASED TCP
This approach attempts to prioritize test cases to identify
certain targeted faults that can be detected when executing
particular statements. Yu and Lau [139] proposed a fault-
based TCP approach, by adopting a new effectiveness metric,
the Fault Adequate Test Size (FATS), which is used to deter-
mine the size of the minimal fault adequate subset. Higher
FATS values mean lower chances of detecting all targeted
faults.

6) HISTORY-BASED TCP
This approach uses history data for prioritizing test cases.
Kim and Porter [140] proposed a history-based TCP tech-
nique by assigning the weight for each test case based on
history data such as the count of executions which detected
a fault. Khalilian et al. [141] proposed an extension of Kim
and Porter’s history-based TCP approach [140], aiming to
improve fault detection rates.

Other TCP approaches using different information, such as
Bayesian-Network-based TCP [142], and cost-aware-based
TCP [143], also exist [144], [145].

VI. CONCLUSION AND FUTURE WORK
Model input prioritization aims to schedule the model inputs
so that the more important elements will be selected to be
run earlier. Interaction coverage has been widely used in
the prioritization of model inputs, and is called interaction
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coverage-based test case prioritization (ICTCP). Previous
studies have focused on fixed-strength interaction coverage
for supporting the ICTCP (fixed-strength ICTCP, FICTCP).
When mixed-strength is used for ICTCP (mixed-strength
ICTCP, MICTCP), does it have better performance than
fixed-strength? To answer this question, we conducted empir-
ical studies to compare the testing effectiveness and effi-
ciency ofMICTCP and FICTCP.We have also provided some
practical guidelines for testers choosing between MICTCP
and FICTCP, when prioritizing model inputs under different
testing scenarios. The results of the empirical studies have the
following findings:

1) In terms of the rates of interaction coverage, when the
maximum prioritization strength d is small, such as d = 2, 3,
both FICTCP and MICTCP have similar performance; how-
ever, when d is high, such as d = 4, 5, 6, MICTCP performs
much better than FICTCP inmany cases, and their differences
are highly significant. Nevertheless, sometimes FICTCP has
better rates of interaction coverage than MICTCP.

2) In terms of the rates of fault detection, MICTCP has
very similar performance compared with FICTCP in many
cases. However, overall MICTCP performs slightly better
than FICTCP, although the differences are not highly sig-
nificant. Nevertheless, sometimes FICTCP has slightly better
fault detection rates than MICTCP.

3) MICTCP with low strengths (such as 1 and 2) is more
cost-effective than FICTCP at the initial testing stage; while
this is reversed at the later stages of testing.

4) When testing resources are not sufficient, MICTCP
and FICTCP with low d are recommended at the initial and
later stages of software testing, respectively. However, when
testing resources are sufficient, MICTCP with ‘111111’ and
FICTCP with ‘100000’ are suggested for the initial and later
stages of testing.

We would also like to use other algorithms to implement
the ICTCP, such as search-based prioritization [4], to make
our conclusions more generally applicable. In addition, since
we have only considered interaction coverage as the prior-
itization criterion in this paper, we would like to consider
additional information such as the switching cost and weight
of model inputs, to guide the prioritization in future.
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