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ABSTRACT Aggregation function is an important component in an information aggregation or information
fusion system. Interrelationships usually exist between the input arguments (e.g., the criteria in the multi-
criteria decision making) of an aggregation function. In this paper, we make a comprehensive survey on
the aggregation operators (AOs) that consider the argument interrelationships in crisp and fuzzy settings.
In particular, we discuss the mechanisms of modeling the argument interrelationships of the Choquet integral
(CI), the power average (PA), the Bonferroni mean (BM), the Heronian mean (HM), and the Maclaurin
symmetric mean (MSM) operators, and introduce their extended (e.g., generalized or weighted) forms and
their applications in different fuzzy sets. In addition, we compare these five types of operators and summarize
their advantages and disadvantages. Furthermore, we discuss the applications of these operators. Finally,
we identify some future research directions in the AOs considering the argument interrelationships. The
reviewed papers are mainly about the development of the CI, the PA, the BM, the HM, and the MSM in
(fuzzy) MCDMs, most of which fall in the period of 2009–2018.

INDEX TERMS Aggregation function, criteria interrelationship, Bonferroni mean, Choquet integral,
Heronian mean, power average, Maclaurin symmetric mean.

I. INTRODUCTION
Information aggregation is a basic concern in an information
processing system like pattern recognition, decision mak-
ing, and image processing [38]. A mathematical aggregation
operator (AO) is generally used to simultaneously estimate
several information pieces (e.g. numerical values) from dif-
ferent sources to make a decision, answer questions or prove
hypotheses [65]. In this paper, we focus on the discussion of
the mathematical AOs in a context of multi-criteria decision
making (MCDM). However, the properties and the functions
of the discussed operators can be applied to the other contexts
of the information aggregation. In this paper, we use the word
‘variable’ to represent the value of a criterion (or an attribute,
an input argument). In addition, all the values we discuss in
this paper are nonnegative real values.

The MCDM devotes to the development of the decision
support tools to solve the complex problems that involve
multiple conflicting objectives or goals [61]. Aggregation

functions for reducing the dimensions of the criteria play
a fundamental role in MCDMs [38], e.g. t-norm [51],
t-conorm [51], arithmetic mean (AM) [111], and geomet-
ric mean (GeoM) [111]. Traditional aggregation functions
assume the criteria are independent, and the effects of the
criteria are additive [189], e.g. the weighted averaging [242].
However, practical applications always contain different
types of interrelationships between the decision criteria or the
input attributes, so the independent assumption usually can-
not be satisfied [189]. Hence, a group of aggregation func-
tions modelling the criteria interrelationships appear, e.g. the
Choquet integral (CI) [152].

The imprecision and uncertainty are another two critical
problems in the MCDM [123], which usually emerge along
with the incomplete, ambiguous, subjective, or conflicting
information [190]. To model such imprecision and uncertain-
ties, Zadeh [263] established the fuzzy set theory, which has
been generalized and applied in different decision making
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scenarios. Since then, a series of fuzzy sets (FSs) have been
proposed for different purposes. For example, Zadeh [264]
introduced the type-2 fuzzy set to model the ‘attribution of
membership degrees to the elements’. The intuitionistic fuzzy
set (IFS) [6] is characterized by the membership and non-
membership values which are assigned to the factors in a uni-
verse of discourse. The Pythagorean fuzzy set [271] (PyFS)
improves the IFS by extending the range of the situations to
be modelled. As another extension of the IFS, the hesitant
fuzzy set [202] (HFS) allows the membership degree of an
element to be a set of values rather than a specific value or a
value interval.

The fuzzy MCDM (FMCDM) is a decision making tech-
nique having the capability of using the fuzzy number (FN) to
measure the imprecision and the uncertainties [123]. TheAOs
having the capability of aggregating different types of the FNs
play a key role in the FMCDM. Researchers have extended
the classical aggregation functions to adapt to different types
of FSs, and proposed a series of fuzzy aggregation functions
for each FS [2], [47], [233]. In particular, several fuzzy multi-
criteria AOs were proposed to measure and integrate the
effects of the criteria interrelationships on the results of the
FMCDM, among which the most basic and popular AOs are:
the fuzzy integral (Choquet and Sugeno integral) [152], the
power average (PA) [243], the Bonferroni mean (BM) [246],
the Heronian mean (HM) [259] and theMaclaurin symmetric
mean (MSM) [135]. In particular, the Sugeno integral is an
ordinal version of the CI. However, its properties associated
with the MCDM have not been well studied [60]. Therefore,
in the category of the fuzzy integral, we will focus on review-
ing the work related to the CI.

Marichal [134] identified three types of criteria inter-
relationships: the criteria correlation, the substitutivity of
the criteria, and the preferential dependence of the criteria,
which can be modelled using the five operators mentioned
above by properly defining the interaction types and set-
ting the interaction values. In addition, Chen et al. [28]
introduced two forms of interrelationships: the homoge-
neous (homo) and the heterogeneous (hete). The hete
interrelationship considers both the dependent and the
independent criteria, whereas, the homo interrelationship
assumes that all the criteria considered are dependent to each
other.

The CI [146] is an efficient method to support the decision
making problems having the interactive criteria. In addition,
Yager [243] introduced the PA that enables the criteria to rein-
force each other based on the degree of Support between two
criteria. In 2009, Yager [246] further introduced the BM to
model the homo interrelationships. Chen et al. [28] improved
the BM and proposed an extended BM (EBM) to deal with the
hete interrelationships. Furthermore, Yu et al. [259] proposed
using theHM tomodel the interrelationships, which improves
the BM by additionally considering the interrelationships
between a criterion and itself, and by reducing the redundant
consideration of the interrelationships between two criteria by
the BM. Compared to the BM, one of the main advantages of

theMSM is to allow themodelling of the relationships among
a set of more than two criteria.

In this paper, we make a comprehensive survey on the
AOs that consider the criteria interrelationships in theMCDM
and the FMCDM. In particular, we briefly introduce the
definitions of some important FSs and their development.
We also introduce the types of the criteria interrelationships.
In the main section, we discuss the mechanisms of the CI,
the PA, the BM, the HM, and the MSM for modelling the cri-
teria interrelationships, and introduce their basic extensions
in terms of their concepts, where the basic extension is co-
occurred with the fuzzy extension. For example, we state
that the geometric BM (GeoBM) [229] and the extended
BM (EBM) [28] are the basic extensions of the BM; on
the other hand, the extensions of the BM, the GeoBM and
the EBM to different FSs are the fuzzy extensions. For
each operator and its basic extensions, we summarize their
mechanisms of modelling the interrelationships, their input
parameters, the interrelationships they can model, and their
fuzzy extensions. Furthermore, we review the application
areas of these AOs. As the PA-, BM-, HM- and MSM-based
AOs are mostly applied to the MCDMs, we only focus on
the applications of the CI-based operators, which have been
applied to improve the performance of some traditional ariti-
ficial intelligence technologies, such as the fuzzy rule-based
classification system (FRBCS) [9], the classification [97],
the clustering [13], the evolutionary algorithms [19], and
the TOPSIS-based MCDMs [252]. We also summarize and
categorize the applications of the CI-based operators in terms
of seven practical application scenarios. Finally, we identify
six future research directions of these AOs.

The motivation of this work is to find methods to identify
and model the interrelationships that may exist among the
criteria in the MCDMs, as Marichal [134] pointed out: the
decision criteria have some interactions in many practical
situations. However it is still very difficult to model such
interaction. In addition to reviewing the popular AOs that
model the interrelationships, our work also aims to show the
gaps of these AOs in solving theMCDMproblems, which can
be a reference for the future research in the areas of the AOs
and the MCDMs. The main contributions of this paper are as
follows:
• we summarize the types of the interrelationships that
may exist among the criteria;

• we review the popular AOs that model the criteria inter-
action, analyze their properties and behavioral patterns,
and summarize their basic and fuzzy extensions;

• we review the technical and practical applications of the
CI-based operators, and summarize the main purposes
and functions of applying the CI in the area;

• we summarize the possible future research directions
based on this literature review.

The structure of this paper is as follows: Section II intro-
duces the related work; Section III introduces the types of
the interrelationships; Section IV reviews the five AOs mod-
elling the criteria interrelationships; Section V presents the
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applications of these operators; Section VI summarizes the
identified research gaps and the future research directions;
and Section VII concludes this paper.

II. RELATED WORK
A. MULTI-CRITERIA DECISION MAKING AND
AGGREGATION FUNCTIONS
A multi-criteria decision making (MCDM) problem [246]
is to select one alternative from a set of alternatives O =
{o1, . . . , om} based on the satisfaction degree of a decision
maker to an alternative in terms of a set of criteria X =
{x1, . . . , xn}. We use xj(i) ∈ [0, 1] to represent the satisfac-
tion degree to the alternative oi in terms of the criterion xj.
An MCDM problem can then be represented by a decision
matrix M :

M =

x1(1) · · · xn(1)
· · · · · · · · ·

x1(m) · · · xn(m)


An MCDM method uses a pointwise valuation function

to valuate oi with respect to (w.r.t.) the n criteria, which
is defined as D(oi) = f (x1, . . . , xj, . . . , xm). The selection
result is oi having the largest valuation D. Function f is
an aggregation function that has three significant properties:
(1) indifference:D(oi) only depends on the satisfaction degree
of the decision maker to oi in terms of xj,∀j ∈ [1, n], but
does not depend on the satisfaction degrees of the decision
maker to the other alternatives; (2) monotonicity: if oi and
ok are two alternatives and xj(i) ≥ xj(k) for all xj ∈ X , then
D(oi) ≥ D(ok ); (3) grounding: if xj(i) = 0,∀xj ∈ X , then
D(oi) = 0; and if xj(i) = 1,∀xj ∈ X , then D(oi) = 1.
An aggregation function is formally defined in Def. 1 [12].
Definition 1: Let I = [0, 1], then an aggregation function

f is a mapping f : In → I , where f (0, . . . , 0) = 0,
f (1, . . . , 1) = 1, and f (g1, . . . , gn) ≥ f (h1, . . . , hn) if gi ≥
hi, for ∀i.
Aggregation functions are divided into three categories by

the boundedness of their outputs: ifmin(x) ≤ f (x) ≤ max(x),
f is averaging or idempotent, i.e. f (x, x, · · · , x) = x; if
f (x) ≤ min(x), f is conjunctive; and if f (x) ≥ max(x),
f is disjunctive. One necessary condition of an aggregation
function is that the criteria considered should be mutually
independent.

B. OVERVIEW OF FUZZY SETS
In this section, we summarize the concepts and relations of
the popular fuzzy sets to which the AOs of modelling the
criteria interrelationships have been applied, which is based
on the work of Bustince et al. [20]. We also reference other
important survey work as the complementary material [123],
[193], [258].

Based on our literature review, the AOs of modelling the
criteria interrelationships have been applied to the following
fuzzy sets and their extensions: type-1 FS (T1FS), type-2 FS
(T2FS), interval-valued type-2 FS (IVT2FS), intuitionistic
FS (IFS), hesitant FS (HFS), Pythagorean FS (PyFS), qth

rung orthopair FS (qROF), fuzzymultiset (FM), neutrosophic
set (NS), and linguistic term set (LTS).

The concept of the fuzzy set (FS) was first proposed
by Zadeh [263] to process the imperfect information
which is imprecise, uncertain, vague, incomplete, partially
true or partially possible in certain aspects [20]. A fuzzy set
maps a crisp element in a universe to a membership degree
of a fuzzy element through a membership function, which is
now normally called the T1FS. One of the most important
problems of T1FS is how to define the membership function
so as to determine the membership degree of each element.
However, it is usually very non-evident and difficult to define
the membership functions.

To better capture the fuzzy information, a series of gener-
alizations of the FS were proposed. A T2FS has the mem-
bership functions that induce the membership degrees as the
FSs in [0, 1]. By extending this concept, type-n FS can be
defined. For example, a type-3 FS is a FS whose membership
degrees are T2FSs. The T2FS has been utilized by many
applications [137]. However, compared to the T1FS, T2FS
has much higher computional complexity.

Grattan-Guinness [62] defined the set valued FS (SVFS)
whose membership degrees are the subsets of [0, 1].
Torra [202] defined the HFS that has similar definition as the
SVFS. Then Torra [202] further defined the union and the
intersection operators for the HFS to extend those operations
proposed by Zadeh. The typical HFS (THFS) [10] is a HFS
whosemembership degree of each element is represented by a
finite and non-empty subset of [0, 1]. Most of the applications
employed the THFS [172].

The concept of the IVFS was proposed in 1975 [177] to
define the membership degree of an element as an inter-
val rather than a precise value or a set of values. In 1976,
Grattan-Guinness [62] defined that an IVFS is a FS where
the membership degree of an element is a closed subintervals
of [0, 1]. The IVFS is a particular case of the L-FS, the SVFS,
the HFS, and the T2FS. The grey set (GS) and the shadowed
set (SS) are a particular case of the IVFS. A variety of appli-
cations have adopted the IVFS to improve the performance
of processing the imperfect information by using the T1FS.
In addition, compared to the T2FS, working with the IVFS
has lower computaional complexity, which is just slightly
higher than that of working with the T1FS. The interval-
valued type-2 FS (IVT2FS) is defined in 2006 [82]. Given an
IVFS, if all the membership degrees of the FS always equal
to 1, this IVFS is an IVT2FS. The concept of the IVT2FS is
not the same as that of the IVFS, but it is a generalization of
the IVFS [184].

Atanassov [7] proposed the concept of the IFS in 1983.
An IFS is defined by two functions: the membership and
nonmembership, which respectively represent the degrees of
an element belonging to and not belonging to an IFS. In addi-
tion, the IFS uses a definition of the intuitionistic or hesitant
index to measure the hesitation of the experts to determine
the membership and nonmembership values. The FS is a
particular case of the IFS.
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To relax the restriction given to the IFS, Smaradache [183]
proposed the Neutrosophic set (NS) in 2002, and Yager
proposed the Pythagorean fuzzy set (PyFS) in 2013 [247].
An IFS is a particular case of a PyFS, a bipolar-valued fuzzy
set [85], an HFS and a SVFS. The IFS and the IVFS are
conceptually different as the IVFS does not consider the
nonmembership degree of an element, and the hesitance of an
expert to assign the membership and nonmembership values.
Ye [251] used an example to analyze the efficiency of the
IFS and the IVFS, which shows that the results based on the
IFS are closer to the true values than those based on Zadeh’s
FS [263], and the interval representation does not make much
sense in practical applications. The IFS has been proved very
useful in the area of decision making [258], psychology [64],
medicine [198], and image processing [275].

Anther two major extensions of the FS are the interval-
valued IFS (IVIFS) [5] and the fuzzy multiset (FMS) [241].
The IVIFS extends the IFS by assigning the interval values
to both of the membership and nonmembership degrees. The
FMS assigns several membership degrees to an element.
Based on their definitions, the IVIFS and the FMS are special
cases of the HFS and the SVFS respectively. Although a
number of scholars have applied the IVIFS to a series of
applications, none of them proved a better performance of the
IVIFS than that of the FS and the other extensions of the FS.

We have analyzed the main extensions of the FS. There
have been a variety of the FS extensions based on these
existing extensions. For example, Yager [248] further gen-
eralized the PyFS to the qth rung orthopair FS (qROF).
To allow the membership and nonmembership degrees of a
Pythagorean FS (PyFS) to have the form of interval values,
Peng and Yang [160] proposed the interval-valued PyFS
(IVPyFS). To consider the hesitant situation in the PyFS,
Liang and Xu [93] combined the HFS and the PyFS to define
the hesitant PyFS (HPyFS), in which the membership and
nonmembership degrees of a PyFS are evaluated by the HFSs.
Zhu et al. [282] proposed the intuitionistic hesitant fuzzy
set (IHFS) that integrates the concepts of the membership
and nonmembership into the HFS, which enables the HFS to
manifest a precise gradual composite entity or to process an
epistemic construction of an ill-known object by using a set of
possible values. The probabilistic hesitant fuzzy set (PHFS)
[269] improves the HFS by solving three main problems to
avoid the information loss: (1) the sum of the occurrence
probability of different memberships of an element may be
less than 1; (2) the occurrence probability of an element mem-
bership may be an irrational number; and (3) it is difficult to
use the complex expression of the fuzzy multiset.

Based on our review of literature, the AOs with critera
interrelationships are also used to operate the linguistic vari-
able (LV). We introduce the definition of the LV that is used
in this paper as follows.

A linguistic variable (LV) is defined in Def. 2 [136].
Definition 2: A linguistic variable (LV) is characterized by

a quintuple (x,T ,X ,L,M ), where x is the variable, T is the
set of linguistic terms of x, X is an universe of discourse, L is

a syntactic rule for generating the terms, andM is a semantic
rule to associate each term with its meaning.

The T = {ti|i = −k, · · · ,−1, 0, 1, · · · , k}(k ∈ N+) of an
LV should satisfy the following conditions: (1) ti ≺ tj iff i < j;
(2) neg(ti) = t−i and neg(t0) = t0; (3) if i ≥ j, max(ti, tj) = ti;
and (4) if i ≥ j, min(ti, tj) = tj.

Scholars have integrated different concepts of the FS into
the LV. For example, Liu and Jin [101] proposed the trape-
zoidal fuzzy LV (TraFLV) which represents the value of the
linguistic term as the trapezoidal FNs. Herrera and Herrera-
Viedma [70] defined the 2-tuple linguistic term (2TLT) to rep-
resent the linguistic information using a 2-tuple (ti, ai), where
ti is a linguistic label in an LTS T and ai ∈ [−0.5, 0.5) repre-
sents the symbolic translation of ti. Ye [252] defined the sin-
gle valued neutrosophic linguistic set (SVNLS), and then Liu
[115] proposed the single valued neutrosophic uncertain lin-
guistic set (SVNULS) by considering the uncertain LV in the
SVNLS. In addition, researchers have defined the intuition-
istic uncertain linguistic set (IULS) [106], the Pythagorean
uncertain linguistic set (PyULS) [128], the hesitant fuzzy
linguistic set (HFLS) [262] and the hesitant linguistic intu-
itionistic fuzzy set [217] based on the concept of the LV.

III. TYPES OF INTERRELATIONSHIPS BETWEEN CRITERIA
We interpret an interrelationship between criteria from two
perspectives: their meanings [134] and their interaction
forms [41].

A. TYPES OF INTERRELATIONSHIPS IN TERMS OF
MEANINGS
There are three types of interrelationships distinguished
by their definitions [134]: the correlation between criteria,
the substitutivity/complementary of two criteria, and the pref-
erential dependence between criteria.

The correlation between two criteria usually reflects a
linear relationship between them, which has the positive,
the negative, and the independent forms. Given two criteria
xi and xj, suppose fi ∈ [0, 1] and fj ∈ [0, 1] are their partial
utilities (or satisfaction degrees) respectively, and fij is their
combined utility (or satisfaction degree). If fij < fi + fj, then
xi and xj are positively correlated or negatively synergistic
(negatively correlated); if fij > fi+ fj, then they are negatively
correlated or positively synergistic (positively interacted);
and if fij = fi + fj, then they are independent. For example,
if we evaluate the academic ability of a group of students
on three subjects: statistics, probability, and literature. The
criteria statistics and probability are redundant (i.e. positively
correlated or negatively synergistic) in some degree, as we
believe a student who is good at statistics is usually good at
probability [134]. The correlation is usually determined based
on the sample data or the objective knowledge.

If we say two criteria are substitutive with each other,
we mean each of them has similar contribution with the
contribution of their combination, i.e. fij ≈ fi ≈ fj. In this
case, we only need to consider one criterion xi or xj rather
than considering both of them to evaluate a decision. If we
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say two criteria are complementary with each other, we mean
one of them alone cannot make an evident contribution to
the utility of an alternative. However, considering both of
them simultaneously will have a significant contribution, i.e.
fT ≈ fT ⋃ i ≈ fT ⋃ j < fT ⋃ ij, where T represents a subset of
criteria T ⊆ X/ij. In this case, we would like to evaluate an
alternative by taking into account xi and xj simultaneously.

The preferential independence is defined as: let S ⊂ X be
a subset of criteria, X/S be the subset of criteria excluding S,
and a and b be two alternatives, if a is prefered to b w.r.t.
the values of S, represented by a(Sa) � b(Sb), we have
a(Sa

⋃
Ta) � b(Sb

⋃
Tb) for all T ⊆ X/S and Ta = Tb,

then we say S is preferentially independent with T .

B. TYPES OF INTERRELATIONSHIPS IN TERMS OF
INTERACTION FORMS
The interrelationships between criteria are categorized into
two groups in terms of their interaction forms: the homo and
hete. We explain these two types of interrelationships based
on Fig. 1 and Fig. 2 respectively [41]. Given a set of criteria
X , if each Xi ∈ X has relations with ∀Xj ⊆ X/Xi, where
X/Xi represents the criteria in X except xi, then the criteria in
X have homo interrelationships (Fig. 1). If X is separated into
two groups: B andD (Fig. 2), where B contains a subset of cri-
teria xb1, . . . , xbr in which each criterion xbi,∀i ∈ [1, . . . , r]
has interrelationships with the criteria in Bi (Bi ⊆ B/xbi); and
D contains a subset of criteria where for all xdi ∈ D, xdi is
independent with xj for ∀xj ∈ X/xdi, the criteria in X have
hete interrelationships.

FIGURE 1. Homo interrelationships among criteria, where a solid line
from the node in an upper level to the node in a lower level represents an
inclusion relation [41].

FIGURE 2. Hete interrelationships among criteria, where a solid line from
the node in an upper level to the node in a lower level represents an
inclusion relation [41].

IV. AGGREGATION OPERATORS PROCESSING CRITERIA
INTERRELATIONSHIPS
The AOs are an important tool in the information fusion.
Many researchers explored ways to process the interaction
between attributes (e.g. criteria in MCDM or the fuzzy rules
in fuzzy reasoning) using AOs. Typical examples include the
CI [152], the PA [243], the BM [11], the HM [259] and the
MSM [135]. In this section, we investigate their definitions,
mechanisms of processing the criteria interactions, and appli-
cations.

A. CHOQUET INTEGRAL
A CI is a kind of utility AO that is capable of measuring
the influence of the importance of the individual criteria
and the importance of the interrelationships among crite-
ria [204]. A set of importance values needs to be determined
by users or learning algorithms before using the CI, which
is called a fuzzy measure (FM). One of the critical steps
of using the CI is to precisely define a FM. In this section,
we introduce the CI-related work of the criteria aggregation
with the consideration of their interrelationships.

1) BASIC DEFINITIONS REGARDING THE CI
Let X = x1, · · · , xn be a set of variables (∀i ∈ [1, n], xi ∈
[0, 1]), and 0 = pow(X ) be the set of all subsets of X , the FM
is defined in Def. 3.
Definition 3: A discrete FM on X is defined as a set func-

tion φ : 0→ [0, 1] which satisfies the following conditions:
(1) φ(∅) = 0 and φ(X ) = 1, and (2) if S ⊆ T ⊆ X , then
φ(S) ≤ φ(T ).
The CI is defined in Def. 4.
Definition 4: Let φ be a FM on X , the discrete CI of X

w.r.t. φ is

Cφ(x1, · · · , xn)

=

n∑
i=1

x(i)[φ(x(i), · · · , x(n))− φ(x(i+1), · · · , x(n))] (1)

where (.) represents a permutation of X : x(1) ≤ · · · ≤ x(n).
Though the fuzzy integral shows more rationality and rich-

ness by comparing with the linear additive measures (e.g.,
weighted averaging (WA) [219]), it has not been widely
applied due to the complexity of determining the FM [59].
For example, suppose X is a set of n elements (|X | = n),
the number of subsets ofX is |pow(X )| = 2n. That is, defining
a FM on X requires identifying 2n coefficients for pow(X ),
which would become very complexwhen n is large. However,
WA only requires n coefficients. Grabisch [59] introduced
the k-additive FM to reduce the complexity. In practical
applications, it is very difficult for users to determine the
importance degree of three or more interrelated criteria, and
knowing the weight of a single criterion and the weight of
a pair of interrelated criteria is usually enough to derive
an efficient fuzzy integral. A 2-additive FM can model this
situation, which only requires the determination of n(n +
1)/2 parameters [59]. Therefore, most applications assume
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their problems can be modelled by the 2-additive FM. The
k-additive FM (see Def. 5 [59]) is defined based on the
Möbius representation of a FM.
Definition 5: A Möbius representation of a FM φ is

defined as a function m: 0 → R, for each C ⊆ X , m(C) =∑
T⊆C (−1)

|C−T |φ(T ). If ∃k ∈ R, m(T ) = 0 for all |T | > k ,
then the FM is called k-additive.

Based on the definition of Möbius representation, for a
single attribute, e.g., {xi}, φ({xi}) = m({xi}). In this paper,
we use φ(xi) to represent φ({xi}). For a couple of crite-
ria (non-ordered), e.g., {xi, xj}, then φ(xi, xj) = φ(xi) +
φ(xj) + m(xi, xj). For a subset C ⊆ X with any number
of elements, its 2-additive FM is φ(T ) =

∑
xi∈T m(xi) +∑

{xi,xj}⊂T m(xi, xj),T ⊂ C .
The Möbius representation of the CI of {x1, · · · , xn} w.r.t.

a 2-additive FM φ′ is Cφ′ (x1, · · · , xn) =
∑

xi∈T a(xi)xi +∑
{xi,xj}⊂T a(xi, xj) ∗ min{xi, xj}.
Shapley [181] proposed the definition of an importance

coefficient, namely Shapley index, which has been extended
to the CI to evaluate the overall importance of an attribute.
Given a FM φ of X , the Shapley importance of an attribute xj
w.r.t. φ is defined by Formula 2.

Iφ(xj) =
∑

T⊆X/xj

(n− |T | − 1)!|T |!
n!

(φ(T ∪ xj)− φ(T )) (2)

where n and |T | are the number of criteria in X and T
respectively.

The Shapley interaction index between criteria measures
the interaction degree between two criteria in any subset of
criteria [134]. Given a FM φ of X , the interaction index
between xj and xl w.r.t. φ is defined by Formula 3.

Iφ(xj, xl) =
∑

T⊂X/{xj,xl }

(n− |T | − 2)!|T |!
(n− 1)!

×
(
φ(T ∪ {xj, xl})− φ(T ∪ xj)

− φ(T ∪ xl)+ φ(T )) (3)

Assumeφ′ is a 2-additive FM, the Shapley index of a subset
S ⊆ X (|S| ≥ 2) w.r.t. φ′ is defined by Formula 4 [146].

Iφ′ (S) =
∑

∀{xi,xj}⊆S

φ′(xi, xj)

+
1
2

∑
∀xi∈S,∀xk∈X/S

(φ′(xi, xk )− |S|φ′(xk ))

−
|X | + |S| − 4

2

∑
i∈S

φ′(xi) (4)

The Shapley importance of a variable xi ∈ X w.r.t. φ′ is
defined by Formula 5 [146].

Iφ′ (xi) =
3− |X |

2
φ′(xi)+

1
2

∑
xj∈X/xi

(φ(xi, xj)− φ(xi)) (5)

The Shapley importance of a criterion ai ∈ X can also be
derived by Formula 6 [146].

I (xi) = I (S
⋃

xi)− I (S) (6)

where ∀S ⊆ X , |S| ≥ 2, and xi /∈ S.

Given the Shapley importance (Ii) and the interaction index
(Iij) for all xi, xj ∈ X , the 2-additive FM φ′ of a subset S ⊆ X
is determined by Formula 7.

φ′(S) =
∑
xi∈S

(Ii −
1
2

∑
xj∈S/xi

Iij)+
∑
xi,xj∈S

Iij (7)

Then the CI of X w.r.t. φ′ can be calculated using
Formula 1.

An important extension of the discrete CI is the Choquet
ordered aggregation (COA) [244], in which the aggregation
weights of the variables are formed based on the order of the
variables. Yager [244] then proposed a more general form of
the COA: the induced Choquet ordered averaging (ICOA).
The ICOA assumes that each of the aggregated variables is
represented by a tuple xi = 〈vi, ai〉, where vi is the order
inducing variable (OIV) and ai is the argument variable. The
ICOA is defined in Def. 6.
Definition 6: Given a set of induced variables X =

{〈v1, a1〉, . . . , 〈vn, an〉}, let vidx(i) be the ith largest of the vi,
bi = avidx(i) be the vidx(i)th argument variable of ai, Hi =
{Xvidx(k)|k = 1, . . . , k}, and mi = µ(Hi)− µ(Hi−1), then

ICOA(〈v1, a1〉, . . . , 〈vn, an〉) = MT
v Bv =

n∑
i=1

mibi (8)

From the definition, the OIVs are used to induce the order
of the argument variables, and the induced order is used to
generate the weights of the argument variables. If the OIVs
are the same as the argument variables, i.e. xi = 〈ai, ai〉,
the ICOA becomes the COA.

The ICOA is monotonically increasing w.r.t. the argument
variables, and has the properties of boundedness, idempo-
tency, permutative, and ratio-scale invariant. In addition, its
behavioral pattern depends on the pattern of the FM of the
argument variables.

If φ is an additive FM, the ICOA becomes the induced
OWA. If φi = 1/n, the ICOA becomes the arithmetic average
operator (see Table 2).

The generalized CI (GCI) was proposed by Yager [245]
which uses a parameter to control the raising power of the
arguments, which is defined in Def.7.
Definition 7: Given a set of variablesX = {x1, . . . , xn}, let

idx(i) be the ith largest of the xi, Hi = {xidx(k)|k = 1, . . . , k},
wi = µ(Hi)−µ(Hi−1), and β ∈ [−∞,+∞] then the GCI of
X is defined as:

GCI (x1, . . . , xn) =

(
n∑
i=1

wix
β

idx(i)

) 1
β

(9)

The FM φ and the value of the β control the behavioral
pattern of the GCI. Especially, when β = 1, the GCI becomes
the CI.

The induced generalized Choquet ordered averaging
(IGCOA) [188] combines the definitions of the ICOA and
the GCI, which applies the parameter β to the ICOA. Dif-
ferent values of the β can determine different patterns of the
IGCOA. For example, if β = 1, the IGCOA becomes the
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ICOA; if β = 2, the IGCOA behaves like the order weighted
square mean; and if β = −1, it behaves like the ordered
Harmonic average (see Table 2). Based on the IGCOA, Tan
and Chen [188] further developed two operators to process
the importance of the experts and the fuzzy preference rela-
tions of the criteria in MCGDMs, which are the importance
IGCOA (IIGCOA) and the preference IGCOA (PIGCOA)
respectively. The IIGCOA uses the importance values associ-
ated with each expert as the OIV; and the PIGCOA uses the
relative preference values as the OIV.

Xu [234] combined the concepts of the CI and the GeoM
to define the geometric CI (GeoCI) for the IFS and the
IVIFS, and discussed the special cases of the GeoCI. If all the
variables are independent, the GeoCI becomes the weighted
GeoM (WGeoM) having variable weights φ(xi) for ∀i ∈
{1, . . . , n}; and if φ(xi) = 1

n , this WGeoM becomes the
GeoM. If wi = φ(A(i)) − φ(A(i−1)) satisfies wi ≥ 0 and∑n

i=1 wi = 1, then the GeoCI becomes the ordered weighted
GeoM (OWGeoM); and if φ(A) = |A|

n for ∀A ⊆ X , this
OWGeoM becomes the GeoM. If wi = Q(

∑
j≤i
φ(x(i))) −

Q(
∑
j<i
φ(x(i−1))) where Q is a basic unit-interval monotonic

function (BUM), then the GeoBI becomes the weighted
OWGeoM (WOWGeoM); and if φ(xi) = 1

n , then the WOW-
GeoM becomes the OWGeoM (see Table 2).

The λ-FM [220] and the Shapley index are two efficient
tools to reduce the calculation complexity of the usual CI.
Meng et al. [148] defined the generalized Shapley index
based on the λ-FM. By using the generalized Shapley index as
the FM, they defined the arithmetic generalized λ-Shapley CI
(GλSCI) and the geometric GλSCI (GeoGλSCI). They then
extended the GeoGλSCI to the IVIFS.

2) EXTENSIONS OF CI-BASED OPERATORS
TO DIFFERENT FSS
The basic extensions of the CI have been extended to different
fuzzy sets. We call these fuzzy CI-based operators as their
fuzzy extensions.

The usual CI has been extended to different fuzzy sets
for fuzzy information aggregation, including the interval
2-tuple linguistic set (I2TLS) [212], the dual hesitant fuzzy
set (DHFS) [80], the interval neutrosophic uncertain lin-
guistic set (INULS) [116], the PyFS [161], the HFS [223],
the multiset hesitant fuzzy element (MHFE) [159], the inter-
val neutrosophic uncertain linguistic variable (INULV) [116],
the interval grey number (IVGN) [216]. Yu [256] proposed
the CI operators of the IFS based on the Einstein operation
laws.

Much effort has been made for the application of the CI
and the COA in the IFS. Tan and Chen [189] proposed an
intuitionistic fuzzy CI (IFCI) to aggregate the intuitionistic
fuzzy numbers (IFNs) to consider the interrelations among
decision criteria. Xu [234] generalized the IFCI and pro-
posed the correlated averaging and geometric operators for
the IFS and the IVIFS. Tan and Chen [190] then extended

the IFCI based on the induced ordered weighted averaging
(IOWA) [249], and proposed an induced intuitionistic fuzzy
CI (IIFCI). The IIFCI allows the weights and the order of the
criteria to be induced by multiple features of alternatives, and
enables the measure of criteria interactions based on the CI.
Similar to the ICOA, in IIFCI, the reordering of a1, · · · , an
is induced by the reordering of v1, · · · , vn. Wu et al. [225]
further discussed the properties of the IFCI and the intuition-
istic fuzzy conjugate CI. Wei [221] extended the IFCI to the
interval-valued intuitionistic hesitant fuzzy set (IVIHFS).

There are some fuzzy extensions of the COA, the ICOA
and the GCI. Bustince et al. [21] discussed the comparison
procedure between two interval values and extended the COA
to the IVFS. Lin et al. [95] extended the COA to the tri-
angular fuzzy linguistic variable (TriFLV). Qu et al. [168]
developed the COA for the dual hesitant fuzzy set (DHFS).
Li and Zhang [87] defined the COA for the single-valued
neutrosophic hesitant fuzzy set (SVNHFS). Xu and Xia [238]
combined the definitions of the ICOA and the GCI, and
proposed the induced generalized CI operators for the IFS.
Wei et al. [222] proposed a number of the ICOA operators for
the IFS. Ning et al. [155] extended the IGCOA to the 2-tuple
linguistic variable (2TLV). Tan et al. [191] extended the GCI
to the HFS.

The extensions of the GeoCI are as follows. Zhang and
Yu [270] generalized the GeoCI based on the Einstein opera-
tion rules and extended the Einstein CGeo to the IVIFS. Tan
et al. [192] combined the concepts of the Quasi OWA and the
CI to define the Quasi Choquet Geometric (QCGeo) operator,
and extended the QCGeo to the IFS. Sajjad et al. [176] pro-
posed the GeoCI for the interval-valued Pythagorean fuzzy
set (IVPyFS).

Researchers has extended the GλSCI to various fuzzy sets,
including the 2-additive IVIFS (2AIVIFS) [149], the uncer-
tain environment [143], the HFS [140], the IVHFS [145],
the interval-valued intuitionistic uncertain linguistic variable
(IVIULV) [141], the interval-valued hesitant fuzzy linguis-
tic variable (IVHFLV) [139], the interval-valued intuitionis-
tic uncertain linguistic variable (IVIULV) [141], the DHFS
[168]–[170], the triangular intuitionistic fuzzy set (TriIFS)
[125], [163], the interval-valued dual hesitant fuzzy set (IVD-
HFS) [171], the IVIFS [144], [149], the uncertain linguistic
variable (ULV) [145], the 2TLV [79]. Furthermore, Meng
et al. proposed the generalized Shapley hybrid (SH) aggre-
gation for the IFS [147], and the induced generalized SHs
for the IFS [138] and the HFS [142]. Cheng and Tang [29]
proposed the Shapley geometric CI for the IVIFS.

3) SUMMARY OF CI-BASED OPERATORS
We introduced the basic extensions of the CI in this section,
which include the COA, the ICOA, the GCI, the IGCOA,
the GeoCI, and the GλSCI. The COA formalizes the FM
of the aggregated variables based on the ordered argument
values. The ICOA generalizes the COA by introducing an
OIV. The main difference between the COA and the ICOA
is that the reordering step in COA is only based on the
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TABLE 1. Summary of CI-based operators.

TABLE 2. Behavioral patterns of CI-based operators w.r.t. different parameter values.

argument variables, but the ICOA generalizes the COA by
inducing an order based on the OIV. When an OIV equals
to its corresponding argument variable, the ICOA becomes
the COA. The GCI adopts an additional parameter β to
control the raising power of the arguments. When β = 1,
the GCI becomes the CI. The IGCOA generalizes both the
GCI and the ICOA. The GeoCI introduces the function of
the GeoM to the CI. The GλSCI adopts the Shapley index
to represent the FM in a simpler way compared to the
original CI.

We summarize some basic CIs in Table 1. The inputs of the
usual CI and the GeoCI are the FM φ and the set of aggregated
variables X . The IGCOA requires the OIVs and the power
controlling parameter β. The GλSCI requires a λ-FM to
generate the Shaley index. The CI-based operators can model
both the homo and hete interrelationships among variables.
Because by using the FM, the CI can simultaneously consider
the weight of a single variable and the weight of any subset
of X . These operators have been extended to different fuzzy
sets.

The CI is one of the most representative nonadditive aggre-
gation operators. It is a generalized form of the weighted
AM, the OWA, and the weighted minimum and maxmum
operators [58]. We have mentioned that when the value of
an OIV of a variable equals to the value of the argument
variable, the COA becomes the CI. Table 2 shows the special
behavioral patterns of the ICOA, the IGCOA, and the GeoCI
when their parameters take special values.We can see that the
COA is a special case of the ICOA. The IGCOA is a general
form of the CI, the COA, and the GCI. When β = 1 and
the FM φ is additive, the IGCOA becomes the COA. The
GeoCI is the generalization of the GeoM operators. The fuzzy
extensions of a CI-based operator can be applied to the special
cases of this operator.

B. PA-BASED AGGREGATION OPERATORS
To take into account the interrelationship between the input
arguments in an information fusion, Yager [243] introduced
the concept of the PA (see Def. 9) to enable the arguments to
support and reinforce each other. In the PA, the contribution
of a variable to the aggregating result depends on the values
of the other variables.

1) BASIC EXTENSIONS OF PA-BASED OPERATORS
To define the PA, we first give the definition of support . The
support between two criteria is defined in Def. 8 [243].
Definition 8: Let X = {x1, · · · , xn} be a set of n criteria,

where for all i ∈ [1, n], xi ∈ [0, 1], Supp(xi, xj) is the support
for xi from xj, which satisfies the following properties: (1)

1) Supp(xi, xj) ∈ [0, 1].
2) Supp(xi, xj) = Supp(xj, xi).
3) If d(xi, xj) < d(xk , xr ), then Supp(xi, xj) ≥

Supp(xk , xr ), where d(xi, xj) is the distance between xi
and xj such that 0 ≤ d(xi, xj) ≤ 1, d(xi, xj) = 0 iff
xi = xj, and d(xi, xj) = d(xj, xi).

The support is like a similarity index such that the more
similar xi and xj are, the more they support each other.
Definition 9: Given a set of variables X = {x1, · · · , xn},

the PA of X is defined as:

PA(x1, · · · , xn) =

∑n
i=1(1+ T (xi))xi∑n
i=1(1+ T (xi))

(10)

where T (xi) =
∑n

j=1;j 6=i Supp(xi, xj).
Let Vi = 1+T (xi) and w̃i = Vi/

∑n
i=1 Vi, then

∑n
i=1 w̃i =

1 and PA(x1, · · · , xn) =
∑n

i=1 w̃ixi. We can see that the PA is
a nonlinear weighted average of X , where the w̃i represents
the contribution of the ith variable to the aggregating result,
and the value of w̃i depends on the interrelationships of the
variables.
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The interrelationship between a variable and the other
variables is demonstrated by the support value between this
variable and the others, that is, the more similar two vari-
ables are, the more they support each other. For example,
if Supp(ai, aj) = k for ∀i, j ∈ {1, . . . , n} and k ≥ 0, then
T (ai) = k(n − 1) and so PA(a1, . . . , an) = 1

n

∑
i ai, which

means if there is no support between variables or all the
supports are the same, the PA becomes the arithmetic average.

The determination of the Supp function is usually con-
text dependent. Yager [243] discussd a useful form of the
Supp function: Supp(a, b) = Ke−α(a−b)

2
, which can provide

a continuous transition between different attribute clusters.
A support mountain-based algorithm is proposed to learn the
parameters (e.g. Vi and wi) by using this Supp.

Furthermore, Yager [243] combined the ordered weighted
average (OWA) operator and the PA, and proposed a power
ordered weighted average operator (POWA), where the OWA
supports the determination of the argument weights based on
an order of the arguments.

PA is an arithmetic AO. One disadvantage of PA is that it
cannot deal with the unduly high or low values in aggregating
multiple variables. On the other hand, the geometric AO,
e.g. the geometric mean (GeoM), can balance and coordinate
multiple values effectively [72], so Xu and Yager [239] pro-
posed the power geometric (PGeo, see Def. 10) to aggregate
the input arguments. The PGeo is a nonlinear weighted-
geometric AO. Similar to the PA, the contribution of xi (rep-
resented by 1+T (xi)∑n

j=1(1+T (xj))
) is determined by all the attributes

in X .
Definition 10: Given a set of variables X = {x1, · · · , xn},

the power geometric (PGeo) operator is defined as [239]:

PGeo(x1, · · · , xn) =
n∏
i=1

x

1+T (xi)∑n
j=1(1+T (xj))

i (11)

where T (xi) =
∑n

j=1;j 6=i Supp(xi, xj).
Compared to the PA, the PGeo reduces the influence of

the unduly high and low attribute values on the aggregating
results, so it satisfies PGeo(x1, . . . , xn) ≤ PA(x1, . . . , xn),
where the equation is hold if and only if x1 = .... = xn.
Similar to the PA, the form of the Supp function depends on
the application contexts and can determine the aggregating
pattern of the PGeo. If the supports between any two variables
are the same, the PGeo becomes the GeoM. The PGeo has the
properties of commutativity, idempotency and boundedness.

Xu et al. [239] further considered the preference weight of
each variable in the PGeo by proposing the weighted PGeo
(WPGeo) where the weights are determined by the decision
maker, and proposed the power ordered weighted geometric
mean (POWGeo) where the weights are determined by the
orders and values of the aggregated variables. The WPGeo
has the properties of idempotency and boundedness, but not
the commutativity. In addition, it cannot become the GeoM
when we set the same support value between variables. The
POWGeo can be applied when the weights of the variables
are unavailable. In addition, Xu and Yager [239] developed a

decision making approach by taking into account the mul-
tiplicative preference relations. Examples show that using
the proposed PGeo operators is more efficient than using
the arithmetic multiplicative preference-based approach pro-
posed by Saaty [175].

To further generalize the PA operators, Zhou et al. [279]
proposed a generalized PA (GPA, see Def. 11), which inherits
the generalization capability of the generalized mean [45] so
that the GPA can be used to generalize the PA, the PGeo,
the power harmonic average (PHA) [91], and the power
quadratic average (PQA) [26]. They further defined the
weighted GPA and the generalized power ordered weighted
average (GPOWA).
Definition 11: A generalized PA (GPA) of n real variables

X = {x1, · · · , xn} is a mapping function GPA : Rn→ R such
that:

GPA(x1, · · · , xn) =

(∑n
i=1(1+ T (xi))x

λ
i∑n

i=1(1+ T (xi))

) 1
λ

(12)

where T (xi) =
∑n

j=1;j 6=i Supp(xi, xj), and λ is a real-value
parameter satisfying λ 6= 0.

The value of λ can influence the behavioral pattern of the
GPA (see Table 4). When λ = 1, the GPA collapses to the
PA; when λ = −1, the GPA becomes the PHA; when λ = 2,
the GPA becomes the PQA; and when λ → 0, the GPA
behaves like the PGeo. Similar to the GPA, the behavioral
patterns of the GPOWA are also determined by the λ (see
Table 4). In particular, when λ = −1, GPOWA becomes the
power ordered weighted harmonic averaging (POWHA), and
when λ = 2, GPOWA becomes the power ordered weighted
quadratic averaging (POWQA) [279].

2) EXTENSIONS OF PA-BASED OPERATORS
TO DIFFERENT FSS
Researchers have proposed a series of PA-related AOs in
different fuzzy environments (see Table 3).

There are various extensions of the PA-based operators in
the IFS. Xu [236] extended the PA to the IFS, and developed
a number of PA-based IFS operators. Xu and Wang [232]
extended the PA, the weighted PA (WPA) and the POWA
to process the 2-tuple linguistic terms (2TLTs). Zhang [273]
extended the GPA and the GPOWA to the IFS, and proposed
some generalized PGeo operators for the IFS. Wan [207]
extended the PA to operate the trapezoidal intuitionistic
fuzzy numbers (TraIFNs), and proposed the PA, the WPA,
the POWA, and the power hybrid average (PHA) operators
of TraIFNs. Wan and Dong [208] then further extended the
PGeo-related operators to the TraIFNs. Wan and Yi [209]
extended four PA operators to the normalized TraIFN (Nor-
TraIFN) based on the strict t-norms and t-conorms, which
include the PA, theWPA, the POWA and the PHA. These nor-
malized PA operators can be generalized by using different
types of operational laws. Zhao et al. [277] extended theGPA,
the WGPA, and the GPOWA to the intuitionistic trapezoidal
fuzzy set (ITraFS). He et al. [69] proposed some interactive
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TABLE 3. Summary of PA-based operators.

PA operators for the IFS, including the GPA, the WGPA, and
the GPOWA of the IFNs.

The main extensions of the PA-based operators in the
HFS are as follows. Wang et al. [214] investigated the appli-
cation of the PA to the hesitant multiplicative fuzzy set
(HMFS), and proposed the PA, PGeo, POWA, and POW-
Geo operators for the HMFS. Xiong et al. [230] applied
the PGeo to the interval-valued hesitant fuzzy set (IVHFS).
Wang et al. [215] proposed a variety of PA operators for
the dual HFS (DHFS) based on the Archimedean t-norm
and t-conorm. Keikha et al. [83] proposed the PA, the WPA,
the ordered WPA (OWPA), and the hybrid WPA (HWPA) for
the HFS.

The PA-based operators have also been extended to oper-
ate the interval values in the uncertain environment. Xu
and Yager [239] applied the PGeo and the POWGeo to
the MCGDMs in a crisp environment and to the uncertain
MCGDMs having the interval values. They proposed an
uncertain PGeo operator and an uncertain POWA operator
to operate the interval values. Zhou et al. [279] developed
the uncertain GPA (UGPA), the uncertain generalized WPA
(GWPA), and the uncertain GPOWA (UGPOWA). They also
developed the generalized intuitionistic fuzzy PA (GIFPA)
and the generalized intuitionistic fuzzy POWA (GIFPOWA)
to operate the IFNs.

Researchers also extended the PA-based operators to the
linguistic environment. Zhou et al. [278] applied the GPA
and the GPOWA to the LTS. Ruan et al. [173] extended
the PA, the WPA and the POWA to the linguistic interval
2-tuple (LI2T) environment. Liu and Wang [118] applied
the PA to deal with the intuitionistic linguistic terms (ILTs),
and proposed the intuitionistic linguistic GWPA and the
intuitionistic linguistic GPOWA. Liu and Yu [119] proposed
two PA-based AOs to operate the 2-dimension uncertain lin-
guistic terms (2DULTs), which are the 2-dimension uncer-
tain linguistic GPA and the 2-dimension uncertain linguistic
GWPA. In addition, Peng et al. [159] proposed amulti-valued
neutrosophic WPG. Jiang et al. [76] extended the PA to
the unbalanced linguistic term set (ULTS). Wu et al. [226]
extended the GPA and the GPOWA to the 2TLV and the
interval 2TLV. Liu and Shi [102] explored the combination

of the PA and the Einstein operators. They extended such a
combination to the intuitionistic uncertain linguistic variable
(IULV), and proposed the Einstein PA and the Einstein PGeo
for the IULV. Qi et al. [162] applied the GPA, the GPOWA
and the generalized power ordered weighted geometric mean
(GPOWGeo) to the interval-valued dual hesitant fuzzy lin-
guistic set (IVDHFLS). Zhu et al. [284] extended a series
of PA operators (i.e. PA, PGeo, POWA, and POWGeo) to
the linguistic hesitant fuzzy set (LHFS). Li et al. [89] devel-
oped the GPA and the weighted GPA (WGPA) operators
for the trapezoidal fuzzy two-dimension linguistic variable
(TraF2DLV). Liu and Qin [114] extended the PA, the PGeo,
theGPA, and theGWPA to the LIFS. Liu et al. [127] proposed
the PA and the PGeo operators for the interval-valued hesitant
uncertain linguistic variable (IVHULV). In addition, Liu and
Tang [117] extended the PA, the GPA, the WGPA, and the
GPOWA to the interval neutrosophic set (INS).

3) SUMMARY OF PA-BASED OPERATORS
The PA enables the support and the reinforcement between
the attributes based on a mechanism of the support, where the
contribution of a variable to the aggregation result depends
on the values of the other variables. Researchers developed
a variety of the PA-based AOs. We summarize some typical
examples in Table 3. The PGeo is proposed to incorporate
the GeoM to the PA to process the unduly high and low
criteria values. The value of the PGeo(x1, . . . , xn) is not
greater than that of the PA(x1, . . . , xn). The PA and the PGeo
become the GeoM if the supports between any variables
are the same. The GPA deals with the more general forms
based on the power λ ∈ R and λ 6= 0. It can become the
PA, the PGeo, the PHA, and the PQA. The POWA and the
POWGeo combine the ordered weighted average with the PA
and the PGeo, which allows a decision maker to determine
the criteria weights based on a predefined priority order of
the criteria. The GPOWA generalizes the POWA and the
POWGeo. In addition, the PA-based operators can only deal
with the homo interrelationships among the variables.
The common inputs of the operators in Table 3 are the

variables X and the support function Supp. The GPA requires
a new parameter λ 6= 0 to control its behavioral pattern
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(see Table 4). TheWGPA requires a set of preference weights
W of the variables X ; on the other hand, the GPOWA does
not require these weights, but it requires a basic unit-interval
monotonic (BUM) function g : [0, 1] → [0, 1] to help
to form the ordered weights of the variables. The relations
between the PA, the PGeo, the POWA, the GPA, and the
GPOWA are summarized in Table 4, in which we can see that
the PA and the PG are the special cases of the GPA, and the
POWA and the POWG are the special cases of the GPOWA.

TABLE 4. Behavioral patterns of PA-based operators w.r.t. different
parameter values.

The PA-based operators have been extended to different
FSs, which is summarized in the column ‘Types of argu-
ments’ of Table 3, where the extensions of the GPA and the
GPOWA can also be applied to their special cases (e.g. PA,
PG, POWA and POWG).

C. BM-BASED AGGREGATION OPERATORS
1) BASIC EXTENSIONS OF BM-BASED OPERATORS
The BM (see Def. 12 [17]) was first proposed by Bonferroni
in 1950. It is an averaging aggregation function that is capable
ofmodelling the homo interrelationships among the criteria in
a decision-making problem, which is based on an assumption
that each criterion is related to all the other criteria [240].
Definition 12: Let X = {x1, . . . , xn} be a collection of

values of criteria, where xi ∈ [0, 1] for ∀i ∈ [1, n], and
p, q ≥ 0. Then the BM of X w.r.t. p, q is represented by
Formula 13:

Bp,q(x1, . . . , xn) = (
1
n

1
n− 1

n∑
i,j=1;i 6=j

xpi x
q
j )

1
p+q (13)

The meanings of the BM depend on the values of p, q and
n. For example, given specific values to p and q, the BM
can be seen as a general extension of the PA and the GeoM.
In addition, if n > 2 and p = q, the BM is soft partial
conjunctive [28].

In 2016, Chen et al. [28] interpreted the BM by transform-
ing Formula 13 to Formula 14, which indicates that the BM
is like the PA of the satisfaction degree of an intersection
{xi
⋃

the power mean of ∀xj,i 6=j|∀i ∈ [1, n]}.

Bp,q(x1, · · · , xn)

=


1
n

n∑
i=1

xpi



power mean with power q︷ ︸︸ ︷ 1
n− 1

n∑
j=1,j 6=i

xqj

 1
q



q

︸ ︷︷ ︸
xpyq



1
p+q

(14)

The BM satisfies the properties of the boundedness and
the monotonicity [40]: Bp,q(0, . . . , 0) = 0, Bp,q(1, . . . , 1) =
1 and ∀i ∈ [1, n], if gi ≥ hi, Bp,q(g1, . . . , gn) ≥
Bp,q(h1, . . . , hn). It is a mean type AO [246].
Yager [246] proposed the concept of the generalized BM

(GBM) and based on which he discussed two extensions of
the BM: the Bonferroni ordered weighted averaging (BON-
OWA) and the Bonferroni CI (BON-CHO), by combining the
BM with another two popular AOs: the OWA and the CI.
Furthermore, Yager [246] assigned the individual importance
to each criterion in BON-OWA and proposed the weighted
BON-OWA (WBON-OWA), which associates two types of
weight to each xi: the ti and the wi. The ti refers to the
individual importance of xi. The wi are the ordering weights
used in the OWA, which represents the social relationships
between xi and the other criteria and indicates the way of
aggregating all of the criteria in X except xi. On the other
side, the BON-CHO uses the CI to aggregate the vector vi.

Beliakov et al. [14] then defined the GBM (see Def. 13) in
formal.
Definition 13: Let M = 〈M1,M2,C〉, where M1 :

[0, 1]n → [0, 1], M2 : [0, 1]n−1 → [0, 1] and C : [0, 1]2 →
[0, 1] are aggregation functions, the GBM is defined as:

GBM (X )

= d−1C (M1(C(x1,M2(Xj 6=1)), · · · ,C(xn,M2(Xj 6=n)))) (15)

where d−1C is the inverse of the diagonal dC (t) = C(t, t).

The BM is a special case of the GBM: letM1 =
1
n

n∑
i=1

xi be

an AM, M2 =
1

n−1

n∑
j=1,j 6=i

xqj be a PA, and C = xpyq so that

dC (x) = xp+q and d−1C (x) = x
1

p+q .
Different M1,M2 and C assign different properties and

meanings to the GBM. If M1 and M2 are averaging func-
tions or are symmetric, then no matter what C is, the GBM
is an averaging function or is symmetric. The symmetric
property means that if an aggregation function f is sym-
metric, then for any permutation Xα of X = {x1, · · · , xn},
f (X ) = f (Xα).
Beliakov et al. [14] summarized the primary properties

of the GBM: (1) the GBM satisfies the property of the
partial conjunction; (2) it can model the k-tolerance and
k-intolerance, and model the averages in cases having the
nonzero inputs; and (3) the GBM becomes a quasi-arithmetic
mean if M1, M2 and C are all generated from the same
generator. Furthermore, based on the definition of GBM,
Beliakov et al. [14] extended the BM to the BM

−→
k (|k| ≥ 2),

e.g. the BM of triples represented by BMp,q,r [228].
Some scholars used the BM of triples to represent the
GBM [28], [228], [280].

Formula 13 demonstrates that the BM captures the homo
interrelationships among the criteria but not the hete inter-
relationships. However, two criteria may not interrelate with
each other all the time, so it is necessary to consider the hete
interrelationships. Dutta et al. [44] proposed a partitioned
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BM (ParBM) to aggregate the criteria having hete interrela-
tionships. Given a set of variables X = {x1, · · · , xn}, they
partitioned the variable set X into d disjoint classes P =
{P1, · · · ,Pd } based on the hete interrelationships among the
variables, where for ∀xi, xj ∈ Pk , xi and xj are interrelated
with each other; and for ∀xi ∈ Pk , ∀xj ∈ Pr , ∀Pk ,Pr ∈ P and
Pk 6= Pr , xi and xj are independent with each other.
To further formalize the ParBM to process both the homo

and hete interrelationships, Dutta et al. [41] defined an
extended BM (EBM, see Def. 14), which is a combination
of the averaging and the conjunctive functions.
Definition 14: Let D ⊂ X be a subset of variables such

that each variable inD is independent with the other variables
in X , B = X/D, and for all xi ∈ B, Bi represents the set of
variables in B except xi: Bi = B/xi. The extended BM (EBM)
is defined as:

EBMp,q(x1, . . . , xn)

=

 |B|
n

 1
|B|

∑
xi∈B

xpi

 1
|Bi|

∑
xj∈Bi

xqj


p

p+q

+
|D|
n

 1
|D|

∑
xk∈D

xpk

 1
p

(16)

where by convention the empty sum is 0 and 0
0 = 0.

The EBM can be decomposed into a set of components:

EBMp,q
= WPAp(d−1C (AM (C |B|(xi∈B,PAq(

−→xi |xim ∈ Bi)))),

PAp(−→xD|xDk ∈ D)) (17)

whereWPAp represents the weighted power mean with power
p, AM is the arithmetic mean, C(x, y) = xpyq, PAq and PAp

refer to the power mean with power q and p respectively.
In 2016, Chen et al. [28] proposed a generalized form of

the EBM, called the generalized EBM (GEBM, see Def. 15),
which uses the general conjunctive and disjunctive operators
to replace the average and power operations in the original
EBM.
Definition 15: Given a set of variables X = {x1, · · · , xn},

letB andD are two disjoint subsets ofX such thatB
⋃
D = X ,

where ∀xi(∈ B) is dependent to a nonempty subset Bi(⊆
B/xi), and ∀xj(∈ D) is independent with any variables in
X/xj. Let M be a quintuple of the aggregation functions:
M = 〈M1,M2,M3,M4,C〉, where M1 : [0, 1]|B| → [0, 1],
M2 : [0, 1]|B|−1 → [0, 1], M3 : [0, 1]|D| → [0, 1],
M4 : [0, 1]2 → [0, 1], C : [0, 1]2 → [0, 1], and the
diagonal of C is defined as dC (t) = C(t, t) and d−1C (t) is the
inverse diagonal ofC , the generalized extended BM (GEBM)
is defined as:

GEBM (x1, · · · , xn)

= M4

(
d−1C

(
M1

(
C |B| (xi ∈ B,M2(Bi))

))
,M3(D)

)
(18)

where C |B| represents a |B|-ary tuple: 〈C(xi ∈ B,M2(Bi))〉
The M1,M2,M3,M4 and C of GEBM generalize the AM,

PAq, PAp, WPAp, and C in Formula 17 respectively.

The interrelationships among the inputs determine the
aggregation forms of the GEBM. Table 6 summarizes its
behavioral forms, where theM3 is an AO replacement defined
in Def. 15. When all variables are dependent, and each
variable depends on some of the other variable but not
always all of the others, the GEBM becomes the DGEBM =
d−1C (M1 (C (x1, M2 (x ∈ B1)), . . . , C(xn, M2 (x ∈ Bn))))),
where DGEBM refers to the dependent GEBM.

Xia et al. [229] proposed the geometric BM (GeoBM) (see
Def. 16). Furthermore, they extended the GeoBM to the IFS
environment, and proposed the weighted IFS geometric BM
(WIFGeoBM) and applied it to the MCDM problems. They
also proved that the GeoBM has four main properties: idem-
potency, monotonicity, boundedness, and commutativity. The
commutativity means the GeoBM of a set of variables X
equals to the GeoBMof any permutation of the variables inX .
Definition 16: Given p, q > 0, and a set of variables X =
{x1, . . . , xn},∀xi(∈ X ) ≥ 0, the GeoBM of X w.r.t. p, q is
defined by formula 19.

GeoBMp,q(x1, . . . , xn) =
1

p+ q

n∏
i,j=1;i 6=j

(
pxi + qxj

) 1
n(n−1)

(19)
Based on the work of Xia et al. [229], Dutta et al. [42]

proposed an extended GeoBM (EGeoBM, see Def. 17) to
enable the GeoBM to model the hete interrelationship among
criteria.
Definition 17: Let D ⊆ X be a subset of variables such

that each variable inD is independent with the other variables
in B, where B is the set of variables in X but not in D: B =
X/D, and for all xi ∈ B, Bi = B/xi. The extended geometric
BM (EGeoBM) is defined as:

EGeoBMp,q(x1, · · · , xn)

=
|B|
n

 1
p+ q

∏
i∈B

∏
j∈Bi

(pxi + qxj)
1
|Bi|

 1
|B|


+
|D|
n

(∏
i∈D

x
1
|D|
i

)
(20)

Dutta et al. [42] interpreted the EGeoBM from the per-
spective of aggregating the opinions (or the satisfaction
degrees) of a group of users. They interpreted the compo-

nent

(
1

p+q

∏
i∈B

(∏
j∈Bi (pxi + qxj)

1
|Bi|

) 1
|B|
)
as an averaging

satisfaction degree of a subgroup of interrelated individuals,

the component
(∏

i∈D x
1
|D|
i

)
as an averaging opinion of a

subgroup of independent individuals, and the EGeoBM is the
weighted average of the averaging opinions of the interrelated
individuals and the independent individuals.

Comparing to the BM and the EBM, the efficiency of
the EGeoBM is proved by a location selection example
with mandatory requirements [42]. The example shows that
the EGeoBM can provide a more compound decision as it
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considers both the hete and homo attribute relations, and also
processes the mandatory requirements.

The EGeoBM has the properties of idempotency, commu-
tativity, nondecreasing, boundedness, and ratio-scale invari-
ant [42], where the nondecreasing is a more specific property
of the monotonicity and means that the EGeoBM of a set
A = {a1, · · · , an} is equal to or greater than the EGeoBM
of a set C = {c1, · · · , cn} if ai ≥ ci for ∀i ∈ {1, · · · , n}
and variables in A and C have the same hete interrelation-
ships; and the ratio-scale invariant means that for ∀r > 0,
EGeoBM (ra1, · · · , ran) = rEGeoBM (a1, · · · , an).
When the interrelationships among the inputs are fixed,

the aggregation forms of the EGeoBM depend on the values
of p and q [42]: when p = q, the result of EGeoBM is
independent with p and q; when q = 0, the result is neither
relevant to q nor to the interrelationships among the variables,
but it can be seen as the weighted average of the GeoM of
the dependent variables and the GeoM of the independent
variables; when p = 0, the result is irrelevant to the value
of q; and the results under the conditions of p → ∞ and
q → ∞ equal to the results under the conditions of q = 0
and p = 0 respectively.

In addition, Dutta et al. [42] pointed out that most of the
work focusing on the BM-based decision making problem
assumes that the hete interrelationship between the criteria
are known in advance. However, this is not always true in
practical applications, so it is necessary to design a mech-
anism to establish an accurate hete interrelationship. They
proposed an algorithm based on the similarity feature of the
criteria to learn their interrelationships.

He et al. [67] pointed out that when decision makers
fuse the interrelationships between the criteria, the unduly
high or low attribute values may badly affect the aggregation
results. Therefore, He et al. [67] proposed the power BM
(PBM, see Def. 18 [67]) and extended the PBM to the hesitant
fuzzy environment (i.e. HFPBM). The HFPBM operator can-
not only deal with the fusion of the attribute interrelationships
provided by different decision makers, but also can deal with
the interrelaionships between the criteria provided by one
decision maker. Furthermore, they defined the hesitant fuzzy
power geometric BM (HFPGeoBM). By assigning different
values to p, q and S = n(T (xj) + 1)/(

∑n
t=1(T (xt ) + 1)) for

∀j ∈ {1, 2, . . . , n}, the HFPBM can be converted to different
operators. For example, if q → 0 and S = 1/n, then the
HFPBM becomes the generalized hesitant fuzzy mean.
Definition 18: Let X = {x1, · · · , xn} be a set of hesitant

fuzzy numbers, and p, q ≥ 0, then the power BM of X w.r.t.
p, q is defined as:

PBMp,q(X )

=

(
1

n(n− 1)

n∑
i=1,j=1,i 6=j

((
n(T (xi)+ 1)∑n
t=1(T (xt )+ 1)

xi

)p

×

(
n(T (xj)+ 1)∑n
t=1(T (xt )+ 1)

xj

)q)) 1
p+q

(21)

where T (xi) =
∑n

j=1,j 6=i Supp(xi, xj).

2) EXTENSIONS OF BM-BASED OPERATORS
TO DIFFERENT FSS
Xu and Yager [240] extended the BM to the IFS environment
and proposed the intuitionistic fuzzy BM (IFBM) and the
intuitionistic fuzzy weighted BM (IFWBM). However, Zhou
and He [281] pointed out that the IFWBM does not has the
reducibility, that is, the IFWBM cannot become the IFBM
when wi = 1/n for all i ∈ [1, n]. Therefore, Zhou and
He [281] proposed a normalized weighted BM (NWBM),
which is represented by Formula 22 [281].

NWBMp,q(x1, · · · , xn) =

 n∑
i=1

wix
p
i

n∑
j=1,j 6=i

wj
1− wi

xqj

 1
p+q

(22)

We can see from Formula 22 that
∑n

j=1,j 6=i
wj

1−wi
xqj rep-

resents the WPA satisfaction degree of the X except xi.
Therefore, this NWBM can overall reflect the interrelation-
ships between the individual variable and the other variables.
Zhou and He [281] proved that the NWBM has the prop-
erty of reducibility, idempotency, monotonicity, and bound-
edness, where the reducibility means if the weight vector of
X is W = (1/n, · · · , 1/n), then NWBMp,q(x1, · · · , xn) =
BMp,q(x1, · · · , xn). They then applied the NWBM to the IFS.

To consider the interrelationship between the member-
ship function and the nonmembership function of an IFN,
He et al. [66] proposed the intuitionistic fuzzy interaction BM
(IFIBM). He et al. [66] proved that the IFIBM has properties
of idempotency and commutativity; and presented the effi-
ciencies of the IFIBM by comparing it to the other important
AOs of the IFS, e.g. the intuitionistic fuzzy average (IFA),
the intuitionistic fuzzy geometric (IFG), and the generalized
intuitionistic fuzzy geometric interaction average (GIFGIA).

In 2017, Liu et al. [104] proposed the intuitionistic
fuzzy interaction partitioned BM ( IFIParBM), which com-
bines the ParBM and the IFIBM. They [104] then defined
the intuitionistic fuzzy interaction partitioned geometric
BM (IFIParGeoBM ). In addition, Liu et al. [104] dis-
cussed the properties of the IFIParBM and defined the
weighted and geometric extensions of the IFIParBM. In 2018,
Liu et al. [109] extended the BM to the qROF, and extended
the qROFBM to the q-rung orthopair fuzzy weighted BM
(qROFWBM), the q-rung orthopair fuzzy geometric BM
(qROFGBM) and the q-rung orthopair fuzzy weighted geo-
metric BM (qROFWGBM). In 2018, Ji et al. [75] extended
the PA and the NWBM to the SVNS. The proposed BM oper-
ator obeys the Frank operational law [48] that provides more
flexibility and robustness than the algebraic operational law.
Ji et al. [75] also extended the frank operations to operate the
SVNNs. They then proposed the single-valued neutrosophic
Frank BM (SVNFBM), and extended the SVNFBM to the
SVNFN PBM based on the definitions of PA and NWBM.

The work of extending the EBM, GBM,GeoBM, PBM and
NWBM is as follows. Sun and Sun [187] combined the BM
with the HM, and proposed the fuzzy Bonferroni harmonic
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mean (FBHM). Su et al. [185] extended the FBHM to the
trapezoidal intuitionistic fuzzy set (TraIFS), and proposed
a trapezoidal intuitionistic fuzzy BHM (TraIFBHM). Dutta
and Guha [43] proposed the trapezoidal intuitionistic fuzzy
BM (TraIFBM). Liu et al. [124] generalized the BM to the
interval-valued 2-tuple linguistic terms (IV2TLTs). Yu [257]
proposed the BM-based AOs for the triangular IFNs (Tri-
IFNs). Gou et al. [56] introduced two BM-based AOs for the
hesitant fuzzy linguistic term (HFLT). Garg and Arora [52]
extended the BM and the weighted BM to the intuitionistic
fuzzy soft set (IFSS). Liang et al. [92] extended the EBM to
the interval-valued Pythagorean FS (IVPyFS). Yu et al. [260]
extended the GBM to the HFS, and proposed the general-
ized hesitant fuzzy BM (GHFBM). Beliakov and James [11]
extended the GBM to operate the lattices. Zhang et al. [268]
extended the GBM to the PyFS. Jiang and Wei [77] extended
the GeoBM to the 2-tuple linguistic set (2TLS). Gong et al.
[55] proposed some AOs based on the GeoBM to operate the
trapezoidal interval type-2 fuzzy set (TraIT2FS). Li et al. [86]
introduced the concept of the generalized GeoBM based on
the definitions of the GBM and the GeoBM. Zhang [274]
extended the GeoBM to the IVIFS, and proposed the interval-
valued intuitionistic fuzzy GeoBM (IVIFGeoBM) and the
weighted IVIFGeoBM (WIVIFGeoBM). Liu et al. [107]
extended the PBM to operate the IVIFS. They defined four
AOs for the IVIFS: the power BM (IVIFPBM), the weighted
PBM (IVIFWPBM), the power GeoBM (IVIFPGeoBM),
and the weighted PGeoBM (IVIFWPGeoBM). Zhou [280]
extended the RWBM to the HFS, and proposed the hesitant
fuzzy reducible weighted BM (HFRWBM) and the gener-
alized HFRWBM (GHFRWBM). Xia et al. [228] improved
the BM of triples and the NWBM, and proposed a reducible
generalized weighted BM (RGWBM). However, Zhou [280]
stated that one problem of the RGWBM is that it does not
evitably indicate the interrelationship between an individual
variable and the other variables. Zhou then [280] proposed a
reducible weighted BM (RWBM).

Some researchers extended the BM-based operators to
the neutrosophic environment. Liu et al. [121] extended the
BM to the multi-valued neutrosophic set (MVNS). Liu and
Liu [126] introduced the BM-based operators for the normal
intuitionistic fuzzy set (NIFS). Liu and Li [108] defined the
normal neutrosophic number (NorNN) and proposed four
BM-based operators for NorNNs.

In addition, the BM-based operators were applied to dif-
ferent linguistic variables (LVs). Tian et al. [199] extended
the BM to the grey LV (GLV). Liu and Jin [101] proposed
four BM-based operators to operate the trapezoidal fuzzy LVs
(TraFLVs). Zhu et al. [286] developed the triangular fuzzy
BM and the triangular fuzzy WBM for operating the TriFNs.
Tian et al. [200] proposed a method to apply the NWBM
to the neutrosophic linguistic set (NLS). Liu et al. [128]
extended the BM to the PULS. As the classical BM
only deals with the homo interrelationships among criteria,
Liu et al. [128] proposed a partitioned BM to process the
hete interrelationships. They then applied the EBM to the

linguistic 2-tuple fuzzy set (L2TFS) [41]. Xu [235] extended
the BON-OWA and the BON-CHO to the uncertain environ-
ment. Liu et al. [106] applied the BON-OWA to IULS.

3) SUMMARY OF BM-BASED OPERATORS
Based on the above discussion, there are a number of basic
extensions of the BM, amongwhich themost popular ones are
the GBM, the EBM, the GEBM, the GeoBM, and the PBM
(see Table 5). We can see that the BM, the GBM, the GeoBM
and the PBM only consider the homo interrelationship, and
the EBM extends the BM by integrating the capability of
modelling the hete interrelationship, so the inputs of the EBM
include the common parameters p, q,X and the interrelation-
ships among the input variables (Rl). The GBM generalizes
the BM by allowing the other operation rules to replace the
arithmatic summation, multiplication and exponential laws
in the BM. The operators (M1,M2,C) combining with the
values of p, q determine the meanings and properties of the
GBM. The GeoBM extends the BM by using the GeoM to
replace the AM, where the AM emphasizes the overall impact
and the complement of the aggregated data. On the other
side, the GeoM stresses the balance and the coordination
between the data [111]. The PBM integrates the capability of
the PA to the BM to reduce the negative effects of the unduly
high or low values. The WBMmodels the weighted relations
among criteria by assigning a preference weight to each
criterion. In particular, this weighted form can be extended
to all the other extensions of the BM, e.g. the weighted
GeoBM [109] and the weighted power GeoBM [107].

The BM-based operators have been applied to various
fuzzy sets (see column ‘Types of Variables’ in Table 5).
We only summarized the work that proposes the direct appli-
cations of one BM-based operator. However, if an operator is
applied to a FS, then all of its special behavioral patterns (see
Table 6) can also be extended to this FS. Table 6 summarizes
the behavioral patterns of the EBM, GEBM, and EGeoBM in
terms of different types of interrelationships among variables,
where |D| = n indicates each of the variables is independent
with the others, and |D| = 0 means there is no independent
variable in X . From this Table, we can see that the PA and the
BM are special patterns of the EBM; the GBM is a special
pattern of the GEBM; the GeoM and the GeoBM are special
patterns of the EGeoBM; and when |D| = n, the value of the
GEBM is only determined by the operator M3.
We summarize some typical examples of the aggrega-

tion patterns and the capability of satisfying mandatory
requirements of the BM, the GBM, the EBM, and the
GEBM after setting the specific inputs (e.g. p, q, Rl, and
(M1,M2,M3,M4,C)). For the BM, assigning different val-
ues to p and q allows it to model different degrees of con-
junction and disjunction [14]. Therefore, the BM can be
seen as a generalization of some other AOs. For example,
when p = q and |X | = 2, the BM behaves like the
GeoBM; when p 6= q, q = 0, the BM behaves like the
PA; and when lim p

q → ∞ or 0, the BM behaves like
the MAX operator. The BM is a special case of the GBM
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TABLE 5. Summary of BM-based operators.

TABLE 6. Behavioral patterns of the EBM given different types of variable interrelationships.

when M1 and M2 are the AMs, and C is the production
operator.

For the GBM, M1, M2 and C (see Def. 13) influence its
aggregation behavior. The M1 and M2 can be both symmet-
ric and weighted functions. The weights defined in the M1
and M2 can be used to indicate the satisfaction degrees of
the decision makers for the criteria. For example, the sat-
isfaction of the final decision of the GBMp,q requires the
satisfaction of at least two mandatory requirements. When
we increase the dimension of the parameters, e.g. the BMp,q

becomes the BMp,q,r , the BM can model the cases that
need to satisfy at least three mandatory requirements. Cor-
respondingly, the iterative GBM (IGBM) is defined to aggre-
gate the increasing number of the hard partial conjunctions.
In addition, there are a number of important properties of
the GBMp,q, which can be extended to its high dimensional
extensions GBM

−→
k
= GBMp1,p2,...,pk , |

−→
k | > 2 [14].

For the EBM and the GEBM, the interrelationships among
the input variables can determine their aggregation behavior.
Table 6 summarizes the behavioral patterns of the EBM
given different types of variable interrelationships. The EBM
generalizes the BM by modelling different types of criteria
interrelationships. When there is no independent variables
and each variable is dependent on all the other variables,
the EBM becomes the BM. The GEBM generalizes the EBM
by generalizing its AM, PA, WPA, and production opera-
tions. The capability of the GEBM to model the mandatory
requirements depends on the variable relationships and the
aggregation parameters (e.g.M1,M2,M3,M4,C). If there are
at least two nonzero dependent variables, the positive value of
the GEBM is determined byM4 (see Def. 15); and if there is
at least one nonzero independent variables, the positive value
of the GEBM is determined by M3 and M4. The DGEBM
(see Table 6) behaves like the GBM in terms of modelling

the mandatory requirements. However, it is different from the
GBM in terms of the aggregation behavior of the interrela-
tionships among dependent variables.

Overall speaking, the GBM
−→
k can model the mandatory

requirements (through their hard partial conjunction) w.r.t.
the |k| nonzero variables and model the average contributions
of all the other variables. The GEBM has similar capabilities
of modelling the mandatory requirements to the EBM. Fur-
thermore, it can also model the hete interrelationships among
variables.

D. HM-BASED AGGREGATION OPERATORS
1) BASIC EXTENSIONS OF HM-BASED OPERATORS
The BM-based operators consider the interrelationships
between different variables in MCDM problems.
Yu et al. [259] identified two drawbacks of the BM-based
operators: it cannot deal with the interrelationship between
a variable and itself; and it does not distinguish the interre-
lationship between variables xi and xj from the interrelation-
ship between xj and xi. Yu et al. [259] believed that these
two relations are similar, so BMs redundantly consider the
interrelationship between xi and xj. They proposed to replace
the BM using the HM [15] to solve these problems. HM (see
Def. 19 [259]) is a mean type AO.
Definition 19: The HM of a set of nonnegative values X =
{x1, · · · , xn} is:

HM (x1, · · · , xn) =
2

n(n+ 1)

n∑
i=1

n∑
j=i

√
xixj (23)

Yu et al. [259] defined the generalized HM (GHM, see Def.
20). When p = q = 1

2 , the GHM becomes the HM.
Definition 20: Given p, q ≥ 0 and a set of nonnega-

tive values X = {x1, · · · , xn}, the generalized HM of X
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w.r.t. p and q is:

GHMp,q(x1, · · · , xn) =

 2
n(n+ 1)

n∑
i=1

n∑
j=i

xpi x
q
j

 1
p+q

(24)

Chu and Liu [32] proposed a reducible weighted GHM
(WGHM, see Def. 21) and a reducible weighted generalized
geometric HM (WGGeoHM, see Def. 22).
Definition 21: Given p, q ≥ 0, a set of nonnegative values

X = {x1, · · · , xn}, and a set of weights W = {w1, . . . ,wn}

such that wi > 0 for ∀i ∈ {1, . . . , n} and
n∑
i=1

wi = 1, then the

WGHM is defined as:

WGHMp,q(x1, . . . , xn) =

(
n∑
i=1

n∑
j=i

(wixi)p(wjxj)q
) 1

p+q

(
n∑
i=1

n∑
j=i
wpi w

q
j

) (25)

Definition 22: Given p, q ≥ 0, a set of nonnegative values
X = {x1, · · · , xn}, and a set of weights W = {w1, . . . ,wn}

such that wi > 0 for ∀i ∈ {1, . . . , n} and
n∑
i=1

wi = 1, then the

WGGeoHM is defined as:

WGGeoHMp,q(x1, . . . , xn)

=
1

p+ q

n∏
i=1

n∏
j=i

(pxi + qxj)
2(n+1−i)wj

n(n+1)
∑n
k=1 wk (26)

The WGHM and WGGeoHM has the properties of
reducibility, idempotency, monotonicity and boundedness.

The Archimedean t-norm and t-conorm can generalize
most of the exsiting aggregation functions and provide the
general operational rules for the IFNs. The general t-norm
and t-conorm are defined in Def. 23 and Def. 24 respec-
tively [100]. If the general t-norm and t-conorm satisfy the
following two conditions, they are Archimedean t-norm and
t-conorm respectively [100]: (1) S and T are continous;
(2) S(x, x) > x and T (x, x) < x.
Definition 23: A t-norm is a binary function T: [0, 1] ×

[0, 1] → [0, 1] that satisfies the following axioms:
(1) T (x, 0) = 0 and T (x, 1) = x; (2) T (x, y) = T (y, x);
(3) T (x,T (y, z)) = T (T (x, y), z); and (4) if x1 ≤ x2 and
y1 ≤ y2, then T (x1, y1) ≤ T (x2, y2).
Definition 24: A t-conorm is a binary function S: [0, 1]×

[0, 1] → [0, 1] that satisfies the following axioms:
(1) S(x, 0) = x and S(x, 1) = 1; (2) S(x, y) = S(y, x);
(3) S(x, S(y, z)) = S(S(x, y), z); and (4) if x1 ≤ x2 and
y1 ≤ y2, then S(x1, y1) ≤ S(x2, y2).
Liu et al. [100] generalized the HM based on the gen-

eral Archimedean t-norm and t-conorm, and proposed the
intuitionistic fuzzy Archimedean HM aggregation (IFAHA,
see Def. 25). Furthermore, they defined the intuitionistic
fuzzy weighted AHA (IFWAHA) to consider the variable
weights. Liu et al. [100] emphasized the significance of their
work: (1) the AOs are very suitable for solving MAGDMs;
(2) the Archimedean t-norm and t-conorm can generalize

the operational rules of the IFNs and the AOs of the IFNs.
However, most of the AOs cannot deal with the variable
interrelationships; and (3) the HM is capable of modelling
the variable interrelationships. However, the existing HM-
based AOs are the Algebraic operations, so they do not have
generalities.
Definition 25: Given a set of intuitionistic fuzzy variables

X = {x1, · · · , xn}, and p, q ≥ 0, the IFAHA operator is
defined as:

IFAHAp,q(x1, · · · , xn) =

 2
n(n+ 1)

n∑
i=1

n∑
j=i

xpi ⊗ x
q
j

 1
p+q

(27)

where ⊗ represents the multiplication operations of the IFS.
As the PA can relieve the influence of the biased values

(e.g. the unduly low or high) given by different decision
makers and the HM is capable of modelling the variable
interrelationships, Liu [103] combined the PA and the HM
for the IVIFN, and proposed the interval-valued intuitionistic
fuzzy power HM aggregation (IVIFPHA, see Def. 26) and
the weighted IVIFPHA. Chen and Liu [27] combined the HM
with the OWA, and proposed the Heronian OWA (H-OWA).
Definition 26: Given a set of IVIFNs X = x1, · · · , xn

where Xi = ([ai, bi], [ci, di]), and p, q ≥ 0, IVIFPHA of X is
a mapping �n

→ � such that
IVIFPHAp,q(x1, · · · , xn)

=

 2
n(n+ 1)

n∑
i=1

n∑
j=i

(
n

1+ T (xi)∑n
k=1(1+ T (xk ))

xi

)p

⊗

(
n

1+ T (xj)∑n
k=1(1+ T (xk ))

xj

)q) 1
p+q

(28)

where � is the space of IVIFN, and ⊗ is the multiplication
law of IVIFNs. Let ti = n 1+T (xi)∑n

k=1(1+T (xk ))
xi, then

∑n
i=1 ti = 1.

2) EXTENSIONS OF HM-BASED OPERATORS
TO THE OTHER FSS
Some work extend the HM to the TraFS. Chen and Liu [27]
extended the H-OWA to the TraIFS. Das and Guha [35]
extended the power HM (PHM) to the TraIFS. Das and
Guha [34] extended the HM to the TraIFS.

The applications of the HM-based AOs to the neutrosophic
set are as follows. Li et al. [88] introduced the improved
HM operators to improve the traditional HM by enabling the
idempotency of the HM. They proposed the improved gener-
alized weighted HM and the improved generalized weighted
geometric HM. They then extended these operators to the
SVNS. Liu et al. [112] extended the PA and the HM to the
linguistic neutrosophic set (LNS). Liu and Shi [115] extended
the HM to the neutrosophic uncertain linguistic set (NULS).
Liu and Zhang [120] extended the HM to the neutrosophic
HFS (NHFS).

In addition, Chu and Liu [32] applied the WGHM and the
WGGeoHM to operate the two dimensional uncertain linguis-
tic variables (2DULV), and proposed the two dimensional
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TABLE 7. Summary of HM-based operators.

uncertain linguistic weighted GHM and the two dimensional
uncertain linguistic weighted GGeoHM.

3) SUMMARY OF HM-BASED OPERATORS
The HM is different to the BM by considering the interre-
lationship between a variable and itself, and by making the
interrelationship from i to j to be same as the interrelationship
from j to i. A number of the extensions of the HM have been
proposed (see Table 7), among which the most basic ones
are the GHM, the GGeoHM, the AHM, and the PHM. The
GHM extends the HM by using the general exponents p and q
(p, q ≥ 0) rather than setting p = q = 1. The GGeoHM takes
advantage of theGeoM in theGHM to valuate the balance and
the coordination of the aggregated criteria. The AHM extends
the Archimedean t-norm and t-conorm to the HM to make the
operational laws in the HM of the fuzzy numbers easy to be
generalized. The PHM integrates the capability of the power
mean to the HM to deal with the unduly high and low values
of the criteria. In addition, the H-OWA takes advantage of the
OWA to determine the criteria weights based on a predefined
priority order of the criteria.

The HM is a special case of the GHM and the AHM.
If p = q = 1

2 , the GHM collapses to the HM. If the additive
generator of the AHM is the algebraic operations, the AHM
collapses to the HM. In addition, assigning different p, q
values of the GHMcan result in different aggregation patterns
of the GHM; assigning different p, q values of the AHM can
transform the AHM to different heavy weighted averaging
patterns; and setting different additive generators can convert
the AHM to the corresponding types of HM operators.

Table 7 (column ‘Application environment’) shows the
FSs where these HM-based operators have been applied to.
We only summarized the work that proposes the direct appli-
cations of one HM-based operator. However, if an operator is
applied to a FS, then all of its special behavioral patterns can
also be extended to this FS.

E. MSM-BASED AGGREGATION OPERATORS
The MSM [135] is another mean type operator that has been
applied to model the interrelationships among multiple cri-
teria. Compared to the BM and the HM, the MSM has two
advantages [262]: (1) the BM and the HM only consider the
interrelationships between two variables. However, the MSM
can model the interrelationships of more than two; and (2)
the BM and the HM require the determination of at least two
parameters (p and q) from an infinite set. However, the MSM
only requires one parameter from a finite integer set. Thus,

the MSM is more flexible and robust than the BM and the
HM [166].

1) BASIC EXTENSIONS OF MSM-BASED OPERATORS
The MSM is defined in Def. 27 [135]. It has the properties
of idempotency, monotonicity, and boundedness, and strictly
satisfies the schur convexity [166]. In particular, assigning
different values to m leads to different forms of MSM [167]
(see Table 9).
Definition 27: Let X = {x1, · · · , xn} be a set of n nonneg-

ative real numbers and m ∈ {1, 2, · · · , n}, the mth MSM of X
is a mapping MSM : (R+)n→ R+ such that:

MSMm(x1, · · · , xn) =


∑

1≤i1≤···≤im≤n

∏m
j=1 xij

Cm
n


1
m

(29)

where (i1, · · · , im) represents all the m-tuple combination of
(1, 2, · · · , n) and Cm

n is the binomial coefficient.
Qin et al. [166] defined the dual MSM (DMSM, see Def.

28) that satisfies the idempotency, monotonicity, and bound-
edness; and strictly satisfies the schur convexity. Identical
to the MSM, different values of m convert the DMSM to
different AOs (see Table 9).
Definition 28: Let X = {x1, · · · , xn} be a set of nonnega-

tive real numbers, and m ∈ {1, 2, · · · , n}, the mth DMSM of
X is defined as:

DMSMm(x1, · · · , xn) =
1
m

 ∏
i1≤···≤im

 m∑
j=1

xij

 1
cmn

 (30)

Wang et al. [213] extended the MSM to the generalized
arithmetic MSM (GMSM, see Def. 29) and the generalized
geometric MSM (GGeoMSM, see Def. 30).
Definition 29: Let X = {x1, · · · , xn} be a set of nonneg-

ative real numbers, m ∈ {1, 2, · · · , n}, p1, · · · , pn ≥ 0, the
mth GMSM of X is defined as a mapping GMSMm,p1,··· ,pm :

(R+)n→ R+ such that:

GMSMm,p1,··· ,pm (x1, · · · , xn)

=


∑

1≤i1≤···≤im≤n

∏m
j=1 x

pj
ij

Cm
n


1

p1+···+pm

(31)

Definition 30: Let X = {x1, · · · , xn} be a set of nonneg-
ative real numbers, m ∈ {1, 2, · · · , n}, p1, · · · , pn ≥ 0,
the mth GGeoMSM of X is defined as a mapping
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GGeoMSMm,p1,··· ,pm : (R+)n→ R+ such that:

GGeoMSMm,p1,··· ,pm (x1, · · · , xn)

=
1

p1+· · ·+pm
×

 ∏
1≤i1≤···≤in≤n

(p1xi1 + · · · + pmxim )

 1
Cmn

(32)
Liu et al. [105] combined the PA and the MSM to reduce

the influence of the extreme values on the information fusion
results of the MSM. They defined the power MSM (PMSM)
for the q-ROFS, which is shown in Def. 31.
Definition 31: Let A = {a1, · · · , an} be a q-ROF, for ∀i ∈
{1, . . . , n}, ai = (ui, vi) is a q-ROF number (qROFN), where
ui and vi are the membership and nonmembership functions,
0 ≤ uqi + vqi ≤ 1, and q ≥ 1. The mth qROF power MSM
(qROFPMSM) is defined as:

PMSMm,q(a1, · · · , an)

=


∑

1≤i1≤···≤in≤n

m∏
j=1

m(1+T (aij ))
n∑
i=1

(1+T (aij ))
aij

Cm
n



1
m

(33)

where T (ai) =
n∑

j=1,j 6=i
Sup(ai, aj).

2) EXTENSIONS OF MSM-BASED OPERATORS
TO DIFFERENT FSS
The MSM has been extended to the IFS [165], IVFS [186],
PyFS [250], HFS [167], qROF [105] and LVs [98]. In par-
ticular, Qin and Liu [165] extended the MSM to the IFS,
and proposed the MSM for the IFS (IFSMSM). Liu and
Liu [110] further improved the work of [165] to explore
the influence of the interactions between the membership
function and the non-membership function on the IFSMSM.
Sun and Xia [186] then extended the MSM to the IVIFS.
Yang and Pang [250] proposed some MSM-based operators
for the PyFS, which integrates the interactions between the
membership and nonmembership functions into the original
MSM. Wang et al. [210] extended the MSM to the trape-
zoidal interval type-2 fuzzy set (TraIT2FS). Wang [218]
extended the MSM to process the 2-tuple linguistic variables
(2TLVs), and proposed the dependent 2-tuple linguisticMSM
(D2TLMSM). Liu et al. [98] proposed the MSM opera-
tors to process the uncertain or unknown information repre-
sented by the Pythagorean fuzzy uncertain LVs (PyFULVs).
Geng et al. [54] applied theMSM to the interval neutrosophic
linguistic variables (INLVs). Ju et al. [78] proposed the con-
cept of the single-valued neutrosophic interval 2-tuple lin-
guistic set (SVN-ITLS), and then applied theMSM to process
the SVN-ITL numbers (SVN-ITLNs). Liu [122] extended
the MSM to the single-valued trapezoidal neutrosophic set
(SVTNS). Wang et al. [211] proposed a number of MSM
operators for the simplified neutrosophic linguistic variables

(NLVs). Yu et al. [262] extended the MSM to operate the
hesitant fuzzy linguistic variables (HFLVs).

Some researchers explored the applications of the
DMSM [196], GMSM [164], GGeoMSM [213], and
PMSM [197]. In particular, Qin et al. [166] applied the
DMSM to operate the uncertain linguistic variables (ULVs).
Liu and Qin [113] applied the MSM and DMSM to the
linguistic intuitionistic fuzzy set (LIFS). Teng et al. [196]
extended the MSM and DMSM to the unbalanced linguis-
tic variables and proposed a series of unbalanced linguis-
tic MSM operators. Wang et al. [213] applied the MSM,
GMSM and GGeoMSM to the single-valued neutrosophic
linguistic set (SVNLS). In addition, they proved that the
weighted MSM operators for the SVNLS are all reducible.
Qin [164] extended the GMSM to the PyFS. They also
applied the proposed operators to solve the classical superi-
ority and inferiority ranking group decision problems [231].
Liu et al. [129] applied the MSM and the PA to the IVIFS,
and proposed the interval-valued intuitionistic fuzzy PMSM
(IVIFPMSM). Teng et al. [197] extended the PMSM to
process the Pythagorean fuzzy linguistic variables (PyFLVs).

3) SUMMARY OF MSM-BASED OPERATORS
We summarize the inputs, variable relations and application
environments of the MSM-based operators in Table 8. The
common inputs of MSM operators are the m and X , where X
is a set of variables that need to be aggregated, and m is the
parameter that controls the behaviors of the MSM operator.
The GMSM and the GGeoMSM additionally require the m
inputs {p1, · · · , pm}, where pj > 0(j ∈ {1, . . . ,m}) general-
izes the power 1 of xij (i ∈ {1, . . . , n}) in the original MSM.
The relation that can be modelled by the MSM-based oper-
ators is the homo interrelationship between variables. The
MSMs have been extended to various fuzzy sets. However,
the PMSM has not been defined for the crisp values. The
operators MSM, DMSM, GMSM, GGeoMSM and PMSM
all have the properties of idempotency, monotonicity, and
boundedness [105], [167], [213].

When assigning different values to the parameters, these
MSM-based operators have different behavioral patterns (see
Table 9). In this table, N/A represents not available, and
each operator is operated on n values: X = {x1, . . . , xn}.
We note that based on the definitions of MSM (Def. 27),
DMSM (Def. 28), GMSM (Def. 29) and GGeoMSM (Def.
30), it is definitely that the GMSMand the GGeoMSMare the
generalized forms of the MSM and the DMSM respectively:
Proposition 1: GMSMm,1,...,1

= GMSMm and
GGeoMSMm,1,...,1

= DMSMm.
Proposition 2: When m = 1, GMSM is the PA.

GMSMm=1,p1,...,pm (x1, . . . , xn) =

(
1
n

n∑
i=1

xpi

) 1
p

(34)

The work of [105], [167], [213] have proved all the other
behavioral patterns in Table 9 given different values of
m, p1, ..., pn.
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TABLE 8. Summary of MSM-based operators.

Proposition 3: The BM and GeoBM are special cases of
the GMSM and GGeoMSM respectively.

F. COMPARISON OF CI, PA, BM, HM AND MSM
We have reviewed five AOs (CI, PA, BM, HM, and MSM)
and their extensions which consider the variable interrela-
tionships. We compare them from the following perspectives:
(1) their basic extensions in terms of their concepts; (2) can
the operator model the hete or the homo interrelationship;
(3) What the inputs an operator requires and how the input
parameters of the operator influence the decision making
results; and (4) can the operators model the self-relation,
the symmetric relation and the relation among more than two
variables.

1) EXTENSIONS OF CI, PA, BM, HM, AND MSM IN TERMS OF
BASIC CONCEPTS
In Section II-A, we have summarized some of the basic
extensions (see Tables 1, 3, 5, 7 and 8) and their relations (see
Tables 2, 4, 6, and 9) of the CI, the PA, the BM, the HM, and
the MSM . We can see that the extensions of these operators
mainly include their generalized forms, their combinations
with the GeoM and the PA, and the consideration of the
weights or the induced ordered weights of the variables. The
development of the CI and the BM are relatively mature
compared to the other three operators, where the CI is one
of the most representative nonadditive aggregation operators;
and the BM has been extended to the EBM to model both the
homo and hete interrelationships.

2) MODELLING HOMO AND HETE INTERRELATIONSHIPS
The CI-based operators can process both homo and hete
interrelationships, because the CI-based aggregation can
simutanously consider any subset of X by using a FM,
including the importance of a single criterion (φxi ), the inter-
active importance of two criteria (φ({xi, xj}), i 6= j),
and the coalition importance of a subset of the criteria
(φ({xi, xi+1, · · · , xj})). The EBM and its extensions can pro-
cess both the homo and hete interrelationships. The exist-
ing research work have not introduced the mechanism of
modelling the hete interrelationship into the PA-, HM-, and
MSM-based operators.

3) PARAMETERS OF OPERATORS
The types of the input parameters of these operators depend
on their definitions. One common input is the aggregated
variables X . In addition, the CI operators require the FM. The
PA operators need the determination of a support function
in advance. If an operator has the function of inducing the
variable weights, it requires the input of an order inducing
procedure. For example, the IGCOA adopts the OIV, and the
GPOWAuses a BUM function g to generate theweights of the
variables. If an extension of the CI, the BM, the HM, or the
MSM has the capability of power averaging, this extension
requires the input of a support function. The CI can use the
pre-defined FM values to determine the types of the interrela-
tionships. Compared to the CI, the EBM takes less time com-
plexity to aggregate different types of the interrelationships,
because the determination of a FM in the CI requires the
determination of 2n values for a set of n variables. However,
the EBM only requires the pre-determination of the interre-
lationships between variables. Especially, Chen et al. [28]
used an example to compare the performance of the CI
and the GEBM for solving an MCDM problem. The result
demonstrates that the GEBM performs as well as the CI.
On the other hand, the GEBM is superior to the CI because
the CI requires that a decision maker knows the weights of
the interrelationships among the criteria in advance, while
the GEBM only requires that a decision maker knows which
criteria are independent or dependent to the others in advance.

The BM and the HM operators require the inputs of the p, q
values. A series of examples [100], [103] have shown that the
p, q values of the BM- and the HM-based operators influence
the interaction degrees of the variables so as to influence the
ranking results of the alternatives, where the increase of the
values of p and q enhances the interaction degrees between
the variables. The values of p, q reflect the risk attitude of
the decision maker. If the values of p, q are relatively bigger,
then the decision maker is risk averse; otherwise, the decision
maker is risk seeking [44]. If the p, q are not given in advance,
setting p = q = 1 or p = q = 2 can effectively
support the MCDM with criteria interactions [199]. When
the values of p and q are less than 1, the ranking is similar
to the ranking of the case without considering the criteria
interrelationships [100].

One import parameter of the MSM operators is the m,
which determines the number of a set of interactive variables
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TABLE 9. Behavioral patterns of MSMs w.r.t. different parameter values.

considered simutaneously, and influences the evaluation
scores of the alternatives in the MCDMs. We summarize the
influence of them as follows: (1) the value ofm can represent
the risk attibude of the decision maker in the MCDMs [105].
When m increases, the evaluation score of an alternative
decreases. That is, if m becomes larger (e.g. m > b n2c),
the decision maker becomes more risk-preferred; and if m =
b
n
2c, the decisionmaker has the neutral risk attitude. (2)When
m increases, the alternative that has the smaller difference
between different evaluation scores is better than the other
alternatives. And (3) the default m is usually set as 2 if m is
not given by the decision maker [262].

4) SELF-RELATION, SYMMETRIC RELATION AND RELATION
AMONG MORE THAN TWO VARIABLES
The CI-based operator does not require the FM of the self-
relation of a variable (e.g. φ({xi, xi})). Similarly, the PA-,
BM- and MSM-based operators do not consider the inter-
active value between a criterion and itself. The HM-based
operators are the only type of operators to process the
self-relation.

A symmetric relation between i and j means that the rela-
tion from i to j is the same as the relation from j to i. Both
CI- and HM-based operators treat the relation between two
criteria as a symmetric relation, and do not repeatedly aggre-
gate the relations from i to j and from j to i simultaneously.
In contrast, the PA- and the BM-based operators redundantly
calculate the interrelationship values from i to j and from j to
i, which requires more computational complexity. Based on
the definition of the MSM, when m = 2, the MSM considers
the interactions between any two variables once and only
once. Therefore, the MSM-based operators do not repeatedly
consider the symmetric relations.

The PA, the BM, and the HM focus on investigating the
interrelationships between two variables. However, the CI
and the MSM take into accout the relations among more than
two variables. The CI uses the FM to represent the contribu-
tion of a variable coalition to the final aggregating result. The
special cases of the CI include the weighted means, the OWA,
the minimum and maximum and the order statistics [15].
The MSM is a generalization of the BM (see Table 9, row
‘m = 2’). It extends the BM by allowing the consideration
of the relation among the subsets of X , where one subset
includes more than two variables.

V. APPLICATIONS OF CI-, PA, BM-, HM- AND
MSM-BASED OPERATORS
Based on a comprehensive survey, we find that most of the
applications of the PA-, BM-, HM- andMSM-based operators
are in the area of MCDMs [14], [237], [259]. However, the CI
has been widely applied to different area, among which the
most popular one is the fuzzy rule-based classification system
(FRBCS). In addition, the CI has been combined with the
techniques of the classification, the clustering, the evolution-
ary algorithm, and the TOPSIS-based MCDMs to improve
the performance of these traditional techniques.

A. APPLICATIONS OF THE CI IN THE FRBCS
A fuzzy rule-based model [71] is defined as: if −→x is Ai then
fi(
−→x ), i ∈ [1, c], where c is the number of rules, −→x is an n-

ary variable, Ai is an n-ary information granules (formed by
the fuzzy sets) in the n-dimensional input space, and fi(

−→x )
is a member of the output space. The reasoning scheme of
a model [71] is to determine the activation levels of the
rules and aggregate their outputs, which is represented by
y = ⊕ci=1Ai(

−→x )fi(
−→x ), where ⊕ represents an aggregation

law, such as the summation.
A FRBCS can deal with the classification problems effec-

tively [131] because of its two features: (1) the nonlinear-
ity of a fuzzy classifier helps to reduce the classification
error, and (2) the interpretability of a fuzzy classifier makes
the classification models understandable to the users. The
fuzzy reasoning method (FRM) in an FRBCS is the main
component to form the fuzzy reasoning rules of the object
classification, which is based on the aggregation of differ-
ent information sources using the aggregation [63] or the
preaggregation [133] operators. A classical FRBCS is shown
in Fig. 3 [72], which is a mapping from an n dimensional
vector −→x = {x1, · · · , xn} to a classification space {0, 1},
where 0 and 1 refer to two classes of negative and positive
patterns respectively. We interpret a classification fuzzy rule
in terms of a TP-topology based on Fig. 3 [72]: if the value
of −→x is Ai then the probability of the object −→x belonging
to class 1 is fi(

−→x ) ∈ [0, 1]. A fuzzy rule contains two parts:
the condition part and the conclusion part [72]. Ai(i ∈ [1, c])
are the condition part and are identified by clustering algo-
rithms (e.g. fuzzy c means [16]) based on the n-ary feature
space. The number of clusters determines the number of rules.
Each rule (e.g. rule i) determines the membership degree of
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FIGURE 3. Classical fuzzy rule-based classification system [72].

xk (k ∈ [1, n]) belonging to the ith cluster. The result of
the clustering is a mapping −→x → [A1, · · · ,Ac] ∈ {0, 1}c,
which reduces the dimensionality of −→x from n to c. The
consequence of a fuzzy rule fi is determined by fi = n1/(n0+
n1), where n0 and n1 counts the number of the objects in
the ith cluster that are classfied as class 0 and 1 respectively.
The y in Fig. 3 is an aggregation of the conditions and the
consequences of c fuzzy rules: y =

∑c
i=1 Ai(

−→x )fi(
−→x ). λ is a

threshold that determines the class of−→x based on the value y.
Traditional fuzzy rule-based models treat each rule as an

individual entity. However, Hu et al. [71] pointed out that
considering the interaction between rules yields to a more
efficient structure of the model, which is a promising research
area. They referred the realization of the rule interaction to
a mechanism of measuring and incorporating the rule inter-
action to the model to improve the quality of the reasoning
results. The fuzzy rule-based model with the rule interaction
is defined as: Bk = g(WA), k ∈ [1, p], where p represents the
number of outputs (fuzzy sets), g is a non-linear mapping,
A = (A1, · · · ,Ac) is a vector of the activation levels infer-
enced by the input−→x , andW = (wij) is a c× cmatrix where
each value wij represents the interaction between rules i and j
for all i, j ∈ [1, c].
Barrenechea et al. [9] proposed to use the CI to aggre-

gate the information associated with each fuzzy rule by con-
sidering the interaction between rules. Lucca et al. [133]
introduced the pre-aggregation function which replaces the
product operator used in the classical CI by the t-norms.
In [132], they further generalized the pre-aggregation oper-
ator using the copula, and proposed a CC-integral operator.
Based on the CC-integral, Lucca et al. [131] proposed a
CF-integral operator to investigate the classification perfor-
mance of an FRBCS based on the non-averaging charac-
teristics. We introduce the concepts of the pre-aggregation,
the CC-integral, and the CF-integral operators as follows.

Lucca et al. [133] discussed the restriction of the mono-
tonicity in an aggregation function, and proposed the con-
cept of a pre-aggregation function that requires directional
monotonicity, i.e. the monotonicity along some certain direc-
tions but not all directions, which relaxes the monotonic-
ity of the aggregation function. They defined a CI-based
pre-aggregation function, which uses the minimum or the
Hamacher product t-norm operation to replace the product

operation in the classical CI. Furthermore, they applied the
proposed CI-based pre-aggregation function in a FRBCS.
The experiment results show a better performance of using
the pre-aggregation function in an FRM compared to the use
of the classical CI and the winning rule.

On the basis of the work of [133], Lucca et al. [132]
proposed a Choquet-like copula-based aggregation func-
tion, called the CC-integral, which replaces the product
operator in the classical CI by a copula, and produces an
aggregation function rather than a pre-aggregation function.
Lucca et al. [132] applied the CC-integral to the FRBCS,
which outperforms the performance of the best Choquet-like
based pre-aggregation function.

Lucca et al. [131] proposed a CF-integral operator that
improves the CC-integral by generalizing the copula in
CC-integral to a left 0-absorbent bivariate function F . This F
satisfies a minimal set of properties of guaranteeing the CF-
integral be a pre-aggregation function. They then applied the
CF-integral to the FRM of a FRBCS. They also proved that
the CF-integral has the non-averaging characteristic, which
can yield to a better classification result comparing with the
averaging AOs.

Hu et al. [72] proposed an enhanced generic topology to
introduce the interaction between the fuzzy rules and the
membership functions into the FRBCS. They generalized the
rule aggregation in the classical FRBCS by replacing the sum
and the product operators using the t-norm and the t-conorm,
e.g. y = T ci=1(AiT

′fi) and y = T ci=1((1 − Ai)T ′fi), where T
and T ′ are a certain t-norm or t-conorm operator, and T 6= T ′.
To incorporate the interactions into the FRBCS,Hu et al. [72]
enhanced the aggregation of the information granule by intro-
ducing an interaction matrix V = [vij](∀i, j ∈ [1, c]) of the
fuzzy rules, which is shown in Fig. 4. The new information
granule is defined as: Ai = T cj=1(AjT

′vij), vij ∈ [0, 1].

FIGURE 4. Fuzzy rule-based classification system with the consideration
of information interaction [72].

Summary of the applications of the CI in the FRBCS:
The CI has been applied to the FRBCS, which integrates
the interaction of the fuzzy inference rules to yield a more
efficient classification model by comparing with the tra-
ditional FRBCS. The CI requires that each variable in a
rule should have the property of the monotonicity. To relax
this restriction, a CI preaggregation function is proposed
which requires the monotonicity of a subset of the variables.
To futher improve the performance of the preaggregation
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function in the CI, a Choquet-like copula-based aggregation
function (CC-integral) is developed which replaces the prod-
uct operator using a copula. Furthermore, a more general CI
operator, called the CF-integral, is proposed which uses a left
0-absorbent bivariate function to replace the copula in the
CC-integral. Overall, the existing literature has proved the
better performance of these CI-based FRBCSs compared to
the traditional FRBCSs.

B. APPLICATIONS OF THE CI IN CLASSIFICATION
Tehrani et al. [195] applied the discrete CI to the multipartite
ranking, which depends on the identification of an appropri-
ate FM φ to calculate the CI of an alternative. The learning
of the multipartite ranking is to learn a ranking model which
is used to determine the order of a subset of the alternatives.
This work formalizes the problem of identifying the φ as a
margin maximization problem and solves it using a cutting
plane algorithm. Let O = {o1, · · · , or } be a set of objects
(or alternatives) , X = {x1, · · · , xn} be a set of criteria that
is used to describe these objects, and φ be a FM on X , then
each object o ∈ O can be represented by a feature vector:
fo = {fo(x1), · · · , fo(xr )}, and the CI utility of o is represented
by U (o) = Cφ(fo).
Torra and Narukawa [203] discussed the problem of inte-

grating the CI to the distance calculation for forming the prob-
ability density distribution of a sample set. They reviewed
the Mahalanobis distance in the Gaussian distribution, which
calculates the distance between the samples by taking into
account their correlations. In addition, they defined a CI-
based distance and discussed the probability density dis-
tributions based on this distance calculation. Finally, they
combined the Mahalanobis distance with the CI, and pro-
posed a Choquet Mahalanobis integral operator, a Choquet
Mahalanobis distance, and a generalized probability density
function. The combination of the Mahalanobis distance and
the CI takes advantage of both the covariance matrix and the
FM for modelling the attribute interactions, and enables us
to learn classification models based on more general density
distribution functions comparing with the Gaussian-based
models.

Tehrani et al. [194] proposed a generalized logistic regres-
sion, called the choquistic regression, which uses the CI to
represent the predictor variables. The choquistic regression
is capable of capturing the non-linear dependencies and the
interactions among variables, and keeps the comprehensibil-
ity and the monotonicity of the individual predictors.

Pacheco and Krohling [158] proposed a CI-based method
for the aggregation of neural classifiers. They focused on
solving the core issue of deriving the FM of the set of the
neural classifier ensemble based on the calculation of the
Shannon’s entropy.

C. APPLICATIONS OF THE CI IN CLUSTERING
Tseng et al. [205] applied the CI to the metric learning
in the semisupervised clustering. The discrete CI is capa-
ble of modelling the importance of the single attribute,

the coalitions of the criteria, and the interactions between
criteria, so a CI-based metric provides a great flexibility
to model the attribute-level constraints in a clustering pro-
cess. The proposed CI-based semisupervised learningmethod
takes into account new forms of partial information: the
interaction-order preference, the attribute-order preference,
and the unlabeled data with the instance-level constraints,
where the interaction-order preferences indicate the corre-
lations between criteria and are measured by an interaction
index. Ng et al. [154] introduced a subspace clustering tech-
nique that considers the feature interactions based on the CI
to improve the clustering-based pattern recognition without
considering the feature interactions.

D. APPLICATIONS OF THE CI IN EVOLUTIONARY
ALGORITHMS
Branke et al. [19] introduced an interactive multiobjective
evolutionary algorithm to find the most preferred objects in a
Pareto-optimal set, which uses the CI to model users’ prefer-
ences by considering the attribute interactions. To achieve a
trade-off between the flexibility of representing a user’s pref-
erences and the complexity of learning the model, this work
designs a dynamic procedure to switch between a simple
linear model and the CI model according to the complexity
of users’ preferences.

E. APPLICATIONS OF THE CI IN TOPSIS-BASED
DECISION MAKING
Lourenzutti et al. [130] proposed the CI based fuzzy TOP-
SIS (Technique for Order Preference by Similarity to Ideal
Solution) and the TODIM (an acronym in Portuguese for
Interactive andMulti-Criteria DecisionMaking)methods that
take into account the criteria interrelations through the FM
and the CI. The authors identified one drawback of using the
FM, which is the difficulty and the complexity of determining
a FM, either based on the expert opinions or a large amount of
data. They focused on investigating the ways of determining
the FM of an MCDM problem based on the expert opinions
when only a small supporting dataset available. In a group
decision making environment, different decision makers may
provide different FMs for the criteria.

Lourenzutti et al. [130] allowed each decision maker giv-
ing different FMs in terms of different states. They then
defined an objective function to select an optimal FM from
the FM set given by decision makers. The selected FM is
capable of descriminating the alternatives that have contro-
versial ranking orders. Their method adopts a module separa-
tion procedure, where each module includes a set of variables
in a similar type (e.g. crisp numbers, T1FNs, T2FNs, and
random variables), to aggregate different types of variables.

Based on the above discussion, we can see that the CI plays
an important role in clustering, classification, evolutionary
learning, and TOPSIS. The capacity of the CI to model the
weight of a single criterion and the weight of a subset of
the criteria improves the performance of the other artificial
intelligence technologies.
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F. APPLICATIONS OF THE CI IN PRACTICAL SCENARIOS
In the previous section, we introduced the capabilities of the
CI for improving the other artificial intelligence techniques.
In this section, we summarize the applications of the CI to a
number of practical scenarios, including the brain computer
interface [24], [227], [254], [265], image processing [30],
[53], [179], [227], encryption and security [57], [99], [272],
sustainable city developement [22], [157], [266], [276], sup-
ply chain [4], [261], [285], risk assessment [1], [49], [90],
[151] and other problems in economics [50], [73], and [180].

1) BRAIN COMPUTER INTERFACE
Some researchers applied the CI to the area of the brain
computer interface (BCI) mainly to aggregate multiple clas-
sifiers or criteria for the pattern recognition of the electroen-
cephalography (EEG) signals, or for the control of robot
behaviors. In particular, based on the FM and the CI, Yoo and
Kim conducted a series of researches about the gaze control
to improve the performance of the BCI [253]–[255]. Yoo and
Kim [255] developed a gaze control architecture based on the
CI to implement the field-based navigation for the humanoid
robots. This work [255] defines four criteria (i.e. local map
confidence, self-localization, obstacles and waypoint) and
their partial utility functions to calculate the score of each
direction and determine the optimal gaze direction. The CI-
based gaze control architecture is shown in Fig. 5, where
the partial values of the four criteria are assigned to a gaze
direction (represented by Xgd in Fig. 5). The ‘visibility check’
component checks whether a gaze direction is located in the
gaze area or not. Then the global evaluation is taken for the
gaze directions located in the gaze area. The user-defined
preference is defined by a FM and the hierarchy diagram is
used to transform the FM to a hierarchy-based FM. Finally,
the CI calculates the global evaluation of a gaze direction
based on the partial evaluation criteria scores of the direction
and the hierarchy-based FM. Yoo and Kim [253] extended
the work of [255] by defining seven criteria to evaluate a
gaze direction. Then Yoo and Kim [254] further extended the
work of [253] by developing an evolutionary fuzzy integral-
based gaze control algorithm, which derives the individual
preference and controls the human-like gaze based on the
individual preference.

FIGURE 5. The fuzzy-integral-based gaze control architecture [255].

In addition, Cavrini et al. [24] proposed a CI-based method
to combine the outputs of a set of classifiers for the pat-
tern recognition of the EEG in the BCI. Wu et al. [227]
applied the fuzzy fusion approch to improve the performance
of the BCI by monitoring and analysing the EEG signals.
Zhang et al. [265] used the fuzzy integral to analyze the EEG
signals to implement the human intention recognition. They
proposed a deep learning framework based on the 3D convo-
lutional neural network (3D-CNN) and the recurrent neural
network (RNN) to extract the local spatio-temporal features
and the global temporal features, and then used the fuzzy
integral to integrate these two types of information based on
the optimized FM, where the optimized FM is derived based
on the deep Q-network (DQN). Wu et al. [227] explored the
applications of the CI to the fusion of the Motor imagery sig-
nals. They used an ensemble of LDA classifiers to classify a
user’s mental signals, and used the fuzzy integrals to integrate
the information in this classifier ensemble process.

2) IMAGE PROCESSING
The CI operator was applied in the area of image processing
typically for the edge detection and the object extraction.
Sesma-Sara et al. [179] proposed an image edge detection
algorithm based on the ordered directionally monotone func-
tions to consider the direction of the edges at each pixel
in the edge detection. The ordered directionally monotone
is defined by Def. 32. A CI is an ordered-directionally −→r -
increasing function if and only if it satisfies the following
condition: let −→r = (r1, · · · , rn) be a nonnull real vector,
µ be a FM and for ∀σ ∈ Sn, if

∑n
i=1 riµσ (i) ≥ 0, where

µσ (1) = µ({σ (n)}) and µσ (i) = µ({σ (n− i+1), · · · , σ (n)})
for ∀i ∈ {2, · · · , n}. Based on the ordered-directionally
monotone CI function, Sesma-Sara et al. [179] assigned a
magnitude value of the gradient vector to each pixel of an
image to extract features of the image. The FMof the ordered-
directionallymonotone CI is constructed based on the overlap
indices.
Definition 32: Assume a function F : [0, 1]n → [0, 1],
−→r ∈ Rn with −→r 6=

−→
0 , Sn is the set of all permutation

operators of {1, · · · , n}, if F satisfies the following condi-
tions: for ∀−→x ∈ [0, 1]n, ∀σ ∈ Sn that xσ (1) ≥ · · · ≥ xσ (n),
and any constant value c > 0 such that 1 ≥ xσ (1) + cr1 ≥
· · · ≥ xσ (n) + crn ≥ 0, if F(−→x + c−→r σ−1 ) ≥ F(−→x ),
where −→r σ−1 = (rσ−1(1), · · · , rσ−1(n)), then F is ordered
directionally−→r -increasing; ifF(−→x +c−→r σ−1 ) ≤ F(

−→x ), then
F is ordered-directionally −→r -decreasing.

Chiranjeevi and Sengupta [31] investigated the problem
of object detection in a video that has heavy dynamic back-
ground. They used the fuzzy integral to compute the fuzzy
similarities between the feature vectors of images, and update
and classify the image models. Then, Chiranjeevi and Sen-
gupta [30] further extended the CI of the real numbers to the
interval-valued environment, which is capable of modelling
the ‘adaptive uncertain values at the pixel level’, and is used
to calculate the interval-valued similarity among the feature
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models of each pixel, where a feature model is a vector
containing four feature elements.

Furthermore, Du [39] investigated the application of the
CI in the imagery fusion to improve the locating accu-
racy in the images with different resolution levels. The
author pointed out that it is difficult to precisely label the
image training data pixel by pixel, and the locating of
an image cannot be accurate at the level of single pixel.
In addition, different types of images with different resolu-
tions may be fused and processed in an application. There-
fore, the author proposed a Multiple Instance CI frame-
work (MICI) to fuse the images of the multi-resolutions
from multiple sensors. Karczmarek et al. [81] applied the
CI-based preaggregation function to solve the recognition
problems by aggregating the classifiers using the t-norm
operators. Martínez et al. [153] made a comparison of the
applications of the Choquet and Sugeno integrals in the area
of pattern recognition. The Choquet and Sugeno integrals
were used to integrate different sources of information in
an uncertain environment. The authors then used the pro-
posed methods to aggregate the outputs of a neural net-
work for face recognition. Karczmarek et al. [81] applied the
pre-aggregation functions of CI to aggregate classifiers for
face recognition. Taştimur et al. [201] used the CI to aggre-
gate the outputs of multiple traffic sign recognition sys-
tems, and the output of the CI is the final sign recognition
results. Wei et al. [224] proposed an image fusion approach
for object detection based on a FM agreement analysis and
the CI-based fusion method. They extended the CI to aggre-
gate the two-dimensional interval-valued information, based
on which an Axis-Aligned Bounding Box Fuzzy Integral
(AABBFI)-based fusion method was developed to improve
the accuracy of the object detection.

3) ENCRYPTION AND SECURITY
The CI was also applied to improve the image encryp-
tion [99], [272] and the system security [57].
Seyedzadeh et al. [180] proposed a CI-based keystream
generator for the encryption of the RGB color image, where
the generation of the pseudo-random keystreams is based on
the generation of the λ-FM [150]. The output of the CI shifts
the bits of the three gray level images randomly, and then the
generated keystreams combined with the RGB color values
are used to encrypt the shifted gray level images.

Furthermore, Zhang et al. [272] cryptanalyzed the
CI-based color image cryptosystem proposed by
Seyedzadeh et al. [180]. Liu et al. [99] proposed a color
image encryption scheme based on the chaos theory and the
CI. Goztepe [57] developed a decision model based on the
analitic network process and the CI integration for selecting
the operating systems to avoid the cyber threats.

4) SUSTAINABLE CITY DEVELOPMENT
Büyüközkan et al. [22] applied the IFCI to aggregate the
interactive sustainability related criteria in public trans-
portation systems. In addition, the authors proposed a

pair-wise comparison method to identify the FM of the IFCI.
Bottero et al. [18] presented another work of using the CI to
solve a sustainability problem: selecting the optimal location
for a waste incinerator plant. Zhao et al. [276] used the CI
operator and the Shapely entropy to evaluate the sustainable
development level of cities. Zhang et al. [266] formulated
the problem of the city sustainability evaluation as a MCDM
problem and developed an optimization approach to deter-
mine the FM of the interactive criteria. The CI was then
used to aggregate the scores of the criteria based on the
derived FM. Zhang et al. [267] used the λ-FM and the CI to
process the mutual interaction among the criteria of selecting
the sustainable energy plan of Nanjing City. Ozdemir and
Ozdemir [157] explored the application of the CI in solving
the energy saving issues. They used the GCI to aggregate
the evaluation criteria with nonlinear relationships to rank the
residential heating systems.

5) SUPPLY CHAIN
The applications of the CI in the supply chain mainly include
the supplier selection [4], [261], [285] and the warehouse
selection [37]. The supplier selection is a complex deci-
sion making problem and the CI operator has been proved
to be a useful tool for processing the complexities [4].
Ashayeri et al. [4] introduced an IFCI to select the partners
and the configurations of the supply chains. Hwang and
Shen [74] employed the fuzzy integral approach to model
the criteria dependence, the information vagueness and the
fuzziness of the human expression in the supplier selection.
Tuzkaya [206] proposed a decision making method based
on the intuitionistic fuzzy CI for supplier selection. Zhu and
Li [285] proposed an integrated framework in the hesitant
fuzzy environment for green supplier selection, which uses
the CI operator to rank the green suppliers. Yu et al. [261]
developed a fuzzy CI model to measure the correlations
among the criteria of selecting the supply chain partners.
Demirel et al. [37] applied the multi-criteria CI to select the
warehouse locations for a Turkish logistic firm.

6) RISK ASSESSMENT
Many researchers studied the applications of the CI to the
risk assessment. Smith et al. [182] investigated the compo-
sition of multiple CIs. They associated the CI with a genetic
program, proposed a genetic program CI (named GpCI) and
used a genetic optimization algorithm to learn the parameters
of the GpCI. The GpCI is applied to fuse the values from
multi-sensors of the electromagnetic induction (EMI) and
the ground penetrating radar (GPR) to detect the explosive
hazards. Li et al. [90] studied the application of the CI in the
area of risk assessment. They proposed a CI-based method
to calculate the risk value by considering the correlation of
multiple risks. Namvar and Naderpour [151] used the CI to
fuse the base classifiers to predict the credit risk in the peer-to-
peer (P2P) lending system. The CI fuses the prediction results
of a set of base classifiers to enhance the credit worthiness,
which effectively reduces the risk of financial losses in a P2P
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TABLE 10. Summary of the applications of the CI in practical scenarios.

lending transaction. Furman et al. [49] used the signed CI
to represent the Gini functional for the risk management in
finance.

7) OTHER PROBLEMS IN ECONOMICS
We have introduced the applications of the CI in some cross-
cutting area of economics, e.g. the sustainable city devel-
opment, the supply chain and the risk assessment. We then
review some economic problems that did not appear in the
above cross-cutting area, for example, the searching of the
equilibria of an economic model [178], and the making of
the investment decisions in cloud computing [84].

In the exchange economies, the space of agents is assumed
to be non-atomic measure space [3]. Sambucini [178]
explored the way of searching the equilibria of the exchange
economies in the finite dimensional commodity space with
a more general structure of the agent set S. In Sambucini’s
work [178], S is modelled by a FM µ to represent the weight
of the agent coalitions in the economic market. S can be
decomposed into a number of coalitions, where the agents
in one coalition have the same initial endowment and criteria
preference. Candeloro et al. [23] studied one central problem
of theMathematical Economics which searches the equilibria
of an Economic model. They decomposed the agent sapce
into several sections which correspond to a set of autonomous
economic models. In addition, coalitions are defined to rep-
resent the interactions among sections.

The CI has also been applied to help a decision maker
make the investment decision. For example, Sun et al. [84]
applied the CI operator in the cloud service selection to rank
cloud services by considering the service criteria interactions.
Ozdemir and Basligil [156] explored the application of the
CI to the investment decision in the airway transportation by
modelling the nonlinear relationships among themain criteria
and the subcriteria. Ferreira et al. [46] used the CI to evaluate
the ethical determinants in the banking activities. Cebi [25]
developed a quality evalution method of websites based on
two multi-criteria decision making methods: the decision-
making trial and the generalized CI, where the CI is used
to aggregate the degrees of the importance of the website
quality evaluation criteria. Coletti et al. [33] represented the
partial preference relation of a set of generalized lotteries as
a strictly increasing Choquet expected utility function. Lin
and Jerusalem [96] used the diamond pairwise comparison
method and the CI to induce the criteria weights and the
evaluation utilities to select the optimal fashion design.

8) SUMMARY OF APPLICATIONS OF THE CI IN
PRACTICAL SCENARIOS
Based on our literature review, we summarize the main func-
tions and purposes of the CI in the seven practical scenarios
in Table 10. We can see that in the area of BCI, the CI is
mainly used in the classifier integration to improve the clas-
sification accuracy for EEG pattern recognition, and in the
criteria integration tomake informed decisions for controlling
the robot behaviors. In image processing, the CI is mainly
used to integrate the feature vectors of the images or integrate
the classifiers for image classification, and the main purposes
are to detect edges of objects and to extract objects from the
dynamic environment. In the area of encryption and security,
the CI is mainly used to integrate the randomly generated
keystreams for image encryption or integrate the system
evaluation criteria for secure system selection. In the area
of sustainable city development and supply chain, the CI is
mainly used to integrate the decision making criteria to select
the energy saving elements, the suppliers or the warehouse
locations. As to the risk assessment, the CI fuses the data from
different sensors, or integrates the correlated risks or clas-
sifiers to reduce or predict the risks. Furthermore, the CI is
used to integrate the preference of agents in the exchange
economics to achieve the economic equilibria, or integrate the
decision criteria to make investment decisions.

VI. FUTURE RESEARCH DIRECTIONS FOR THE
AGGREGATION OPERATORS CONSIDERING
CRITERIA INTERRELATIONSHIPS
We summarize the future research directions of the AOs
considering the criteria interrelationships.

• Design mechanisms to establish the interrelationships
among criteria.Most of the work investigating the crite-
ria interrelationships assumes that the interrelationships
among criteria are known in advance [42]. However,
this is not always true in practical applications, so it is
necessary to design a mechanism to establish accurate
interrelationships.

• Enable the wide application of the AOs. Based on our
survey, the CI-based operators have been applied to dif-
ferent areas. However, the PA-, BM-, HM-, and MSM-
based operators are only developed for solving the
MCDMs. In particular, many research works developed
the extended and the generalized forms of the BM.Based
on our analysis, the BM-based operators are superior
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to the CI-based operators in terms of certain aspects
(e.g. the BM-based operators do not require the deci-
sion makers determining the FM in advance). Therefore,
exploring the application or the integration of the BM-
based operators (and the PA-, HM- and MSM-based
operators) to the other area (e.g. pattern recognition,
deep learning, and crowdsourcing) may enhance the
capabilities of both the AOs and the other technologies.

• Develop the basic extended forms of the PA-, HM- and
MSM-based operators to enable them to process the hete
interrelationships. From Tables 3, 7 and 8, there has
not been any basic extension of the PA, HM and MSM,
which is capable of processing the hete interrelationship.
Though they have certain advantages compared to the
BM-based operators, the capability of modelling the
hete interrelationship can make their aggregating results
have more comprehensive meaning.

• Reduce the computational complexity of the AOs. None
of the work of the PA-, BM-, HM- and MSM-based
operators discusses the computational complexity of
the information aggregation by using their proposed
operators. Assume a problem has n input arguments,
the computational complexity of the aggregation using
the basic BM (see Def. 12) or the 2-additive CI (see
Def. 4 and Def. 7) is O(n2), which is a very high in the
applications requiring real time responses. The compu-
tational complexity would be higher than O(n2) if the
AOs are applied to a more complex fuzzy environment
(e.g. the IVIFS, the qROF, or the INULS). Therefore,
it may have a wider application if we develop a CI-, PA-
, BM-, HM- or MSM-based AO by taking into account
its computational complexity.

• Design measurement indices to validate the perfor-
mance of the AOs considering criteria interrelation-
ships. It is not intuitive to understand the evaluation
results of the alternatives using the AO considering cri-
teria interrelationships. The evaluation results require an
in-depth analysis [60] for the decision makers. On the
other hand, the measurement indices that can accurately
and dynamically measure the performance of the AOs
would dramatically improve the application and reduce
the analysis complexity of using these operators.

• Explore more fuzzy extensions of the CI-, PA-, BM-,
HM- or MSM-based operators. We summarized the
fuzzy extensions of these operators in Tables 1, 3,
5, 7 and 8. We can see that each operator has been
widely extended to different FSs. However, there are
still some gaps. For example, the GEBM and EGeoBM
can only be applied to crisp dataset. Their extensions
to the fuzzy environment would greatly improve the
efficiency of the fuzzy MCDM. In addition, the CI-
and HM-based operators have not been extended to the
hesitant fuzzy linguistic term set [94]; and all of the
CI-, PA-, BM-, HM- or MSM-based operators have not
been extended to the probability fuzzy linguistic term
set [8].

VII. CONCLUSION
In this paper, we explored the definitions, properties and
development of five aggregation operators (i.e. CI, PA, BM,
HM and MSM) which consider different types of interre-
lationships among criteria. We first reviewed the concepts
of different fuzzy sets, and introduced the definitions of the
homo and hete interrelationships. Then we made a compre-
hensive survey on the basic extensions and the fuzzy exten-
sions of the CI, PA, BM, HM and MSM. We summarized
these operators in terms of their parameters, the types of the
interrelationship they can model, the capability of dealing
with the self-relation of a criterion and the symmetric relation
between criteria, and the fuzzy sets they have been extended
to. We discussed the special behavioral patterns of the five
operators and their basic extensions given special values of
their parameters, based on which we analyzed the relations
between an operator and its basic extensions, and between
different types of operators. As the PA-, BM-, HM- and
MSM- based operators are mostly applied to the MCDM,
we only reviewed the applications of the CI-based opera-
tors, which have been applied to improve the performance
of the other traditional artificial intelligence technologies,
e.g. the FRBCS, classification, clustering, evolutionary algo-
rithm and TOPSIS-based MCDM. We further analyzed their
applications in seven practical scenarios: the brain computer
interface, image processing, encryption and security, sustain-
able city development, supply chain, risk assessment and
other problems in economics. Finally, we pointed out six
future research directions of the AOs considering the criteria
interaction.
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