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ABSTRACT Blocking flow shop scheduling problem has been extensively studied because of its widespread
industrial applications. However, the existing research mostly aims at makespan or total flow time minimiza-
tion and ignores the criterion for energy saving. This paper investigates the blocking flow shop scheduling
problem with both makespan and energy consumption criteria. First, the multi-objective model of blocking
flow shop scheduling is formulated in consideration of machine energy consumed in blocking and idle time.
Then, a multi-objective parallel variable neighborhood search (MPVNS) algorithm is proposed to solve this
problem. An improved Nawaz–Enscore–Ham-based heuristic is developed to generate initial solutions, and
a variable neighborhood search is designed to explore these solutions in parallel. Furthermore, an insertion-
based pareto local searchmethod is embedded to enhance the exploitation of the algorithm. Finally, in order to
validate its effectiveness, the MPVNS is compare with other two effective multi-objective metaheuristics by
computational experiments based on well-known benchmark instances. The experimental results illustrate
that the proposed algorithm is superior to non-dominated sorting genetic algorithm (II) and bi-objective
multi-start simulated annealing algorithm in terms of set coverage and hypervolume measures.

INDEX TERMS Scheduling, energy consumption, heuristic algorithms, multi-objective, flow shop, variable
neighborhood search.

I. INTRODUCTION
The permutation flow shop scheduling problem (PFSP) is
an attractive research field in manufacturing. Owing to its
non-deterministic polynomial time (NP)-hard characteristic,
the PFSP is difficult to solve optimally even for a moder-
ate size problem. Consequently, efficient methods or meta-
heuristics for the PFSP have been a topic of interest for
researchers in the last few decades. The existing research on
PFSP includes two categories. One aims at the optimization
of a single objective, and the other takes simultaneously more
than one objective into consideration, which is called multi-
objective PFSP.

Because in many manufacturing situations, the decision
maker is concerned with more than one objective [1],
the multi-objective PFSP has wide applications in prac-
tice and attracts attention of many researchers in recent
years. Loukil et al. [2] adopted the concept of non-dominated

solutions and presented a bi-objective simulated anneal-
ing algorithm for the problem. Ishibuchi et al. [3] tackled
the problem with three objectives, makespan, total flow
time, and max tardiness. An enhanced bi-objective simu-
lated annealing algorithm with multi-starts was proposed by
Lin and Ying [4] to minimize makespan and total flow time.
Armentano and Arroyo [5] presented a tabu search method
with makespan and total flow time criteria. Minella et al. [6]
developed a restarted pareto iterated greedy algorithm, solv-
ing not only the case of makespan and total flow time criteria,
but also the case of makespan and total tardiness criteria.
Frosolini et al. [7] proposed amodified harmony search algo-
rithm for the multi-objective PFSP with due-dates. Besides,
the problem was also treated by some other intelligent
algorithms, such as genetic algorithm [8], multi-objective
ant colony system algorithm [9], particle swarm optimiza-
tion [10], hybrid differential evolution method [11], and
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hybrid multi-objective shuffled frog-leaping algorithm [12].
For further comprehensive surveys on the research and devel-
opment of the multi-objective PFSP, the reader is referred to
Minella et al. [13] and Yenisey and Yagmahan [14].

The classical PFSP assumes that there are infinite
intermediate buffers between two consecutive machines.
However, the buffers are limited in some real-world manu-
facturing environments such as steel-making industry [15].
If the buffers are zero, a job that finishes a prior operation
cannot always leave the incumbent machine immediately,
because it has to stay on the incumbent machine until the
posterior operation is ready to commence. In other words,
a job tends to block itself on amachine, and the next operation
is probably delayed. The problemwith this constraint is called
blocking flow shop scheduling problem (BFSP). The BFSP
differs much from the PFSP, and it can be found in numerous
industrial applications, such as batch plant, steal-making,
petrochemical, and plastics molding processes [16], [17]. The
BFSP has also attracted much attention in recently years.
It was proved that the problem is NP-hard for more than two
machines [18]. A branch and bound method was developed
by Companys and Mateo [19], and the problem with small
sizes was optimally solved. Bautista et al. [20] presented a
bounded dynamic programming method, which was effective
for small size instances but incapable of solving large size
instances. Although researchers developed several effective
heuristics for the problem [21]–[23], most of the prominent
studies are focused on metaheuristics. In an earlier research
report, Caraffa et al. [24] proposed a genetic algorithm for
the makespan minimization. A tabu search method was later
presented by Grabowski and Pempera [25]. The hybrid dis-
crete differential evolution [26], iterated greedy [27], hybrid
harmony search [28], and discrete artificial bee colony [29]
algorithms were also developed for the problem. In two side
papers, Han et al. [30] presented an improved artificial bee
colony algorithm and later a discrete artificial bee colony
incorporating differential evolution [31] for the BFSP with
makespan criterion. Besides, they also considered the prob-
lem with total flow time criterion and proposed several effec-
tive hybrid discrete artificial bee colony algorithms [32]. Very
recently, Han et al. [33] treated the blocking lot-streaming
flow shop scheduling problem with machine breakdowns,
and an effective evolutionary multi-objective algorithm was
developed.

With regard to the optimization objective, the BFSP is
usually treated with makespan or total flow time criterion
whereas the energy related criterion is seldom taken into
consideration. Nowadays, it is well-known that energy has
become one of the most important resources in manufactur-
ing, and the reduction of energy consumption has been a
popular issue confronting the industrial sector. Because an
optimized schedule can greatly reduce the energy consump-
tion but require no financial investment, the energy consump-
tion criterion in scheduling has drawn increasing attention.
Shrouf et al. [34] proposed a mathematical model of energy
consumption for a single machine scheduling problem.

Liu [35] developed a non-dominated sorting genetic algo-
rithm (NSGA-II) for batch scheduling with carbon emission
criterion. Zhang and Chiong [36] considered the minimiza-
tions of total weighted tardiness and total energy consumption
in a job shop scheduling problem and presented a multi-
objective genetic algorithm with local search. With regard to
the flow shop scheduling, Dai et al. [37] and Luo et al. [38]
considered the flexible flow shop problem for energy effi-
ciency. Ding et al. [39] investigated heuristics for the PFSP
with carbon emission criterion. Lu et al. [40] tackled energy-
efficient permutation flow shop scheduling problem, using
a hybrid multi-objective backtracking search algorithm. For
further reviews, the reader is referred to Gahm et al. [41].
Recently, Hansen et al. [42] developed an improved invasive
weed optimization algorithm for reducing energy consump-
tion in optimal chiller loading. Zheng and Li [43] consid-
ered setup energy consumption and presented an efficient
multi-objective optimization algorithm for hybrid flow shop
scheduling problem. However, to the best of our knowl-
edge, the research on energy efficiency for BFSP is still in
shortage. Furthermore, research on the multi-objective BFSP
remains insufficient, although the multi-objective PFSP has
been extensively studied by numerous researchers.

This study considers the energy consumption as well as
makespan criteria in BFSP and develops a multi-objective
variable neighborhood search algorithm for the multi-
objective model. The variable neighborhood search (VNS)
is a metaheuristic for solving combinatorial and global opti-
mization problems. Its basic idea consists in a system-
atic change of neighborhood combined with a local search.
Li et al. [44] provided a survey on VNS and pointed out
that the algorithm was effective in numerous applications.
Owing to its structural simplicity and easy implementation,
the VNS algorithm has been successfully applied to the
field of scheduling, including single machine [45], parallel
machine [46], flow shop [47] and job shop scheduling [48].

With respect to multi-objective optimization algorithms,
pareto-dominance-based method and decomposition-based
method are recognized as two major types of approaches
for approximating pareto front. The former type optimizes
two or more objectives based on the dominance relation of
solutions and maintains a non-dominated solution set dur-
ing the algorithm process. The latter type decomposes a
multi-objective optimization problem into a number of sub-
problems by linear or nonlinear aggregation functions and
solves them simultaneously. The pareto-dominance-based
method is easy to implement and usually employed for prob-
lems with no more than three objectives [13], [14], whereas
the decomposition-based method needs delicate design for
aggregation functions and performs well for many-objective
optimization problems in which number of objectives may
exceed three [49]–[51]. For this reason, this study is devoted
to presenting a pareto-dominance-based method for the con-
sidered BFSP with two objectives. The purpose of multi-
objective scheduling is usually to find a non-dominated
solution set rather than a single solution; therefore, it is
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significant that an algorithm for multi-objective schedul-
ing needs to keep diversity to escape from local optima.
In order to achieve diversification, the VNS is designed with
multi-starts, and a multi-objective parallel variable neighbor-
hood search algorithm (MPVNS) is proposed. In addition,
an insertion-based pareto local search method is hybridized
with the algorithm to enhance its exploitation.

The remainder of the paper is organized as follows.
Section 2 provides the formulation of multi-objective BFSP.
Section 3 discusses the details of the proposed MPVNS
algorithm. In section 4, the algorithm is calibrated, and the
comparison with other metaheuristics is discussed. Finally,
Section 5 summarizes the conclusions and directions of our
future work.

II. FORMULATION OF MULTI-OBJECTIVE BFSP
In a blocking flow shop scheduling problem (BFSP), there
are n jobs (job j, j = 1, 2, . . . , n) and m machines (machine
Mi, i = 1, 2, . . . ,m). Each job has to be processed firstly on
machineM1, then on machineM2, . . . , and lastly on machine
Mm. The processing time of job j on machineMi is known as
pji. The blocking constraint exists in the production process,
which means that there is no buffer between any two consec-
utive machines. To be specific, the following assumptions are
used: (1) at any time, a machine is able to process at most one
job, and a job is able to be processed on at most one machine;
(2) no job splitting is allowed; (3) all the jobs and machines
are available at time zero; (4) the set-up, release, and transfer
time is omitted.

A feasible solution for the multi-objective BFSP is rep-
resented as a job permutation π = (π (1), π(2), . . . , π (n)),
where πj denotes a job to be processed. Let dπ (j),i denote the
departure time of job π (j) from machine Mi, the departure
time is obtained as follows.

dπ (1),0 = 0 (1)

dπ (1),i = dπ (1),i−1 + pπ (1),i, i = 1, ...,m− 1 (2)

dπ (j),0 = dπ (j−1),1, j = 2, ..., n (3)

dπ (j),i = max{dπ (j),i−1 + pπ (j),i, dπ (j−1),i+1},

j = 2, ..., n, i = 1, ...,m− 1 (4)

dπ (j),m = dπ (j),m−1 + pπ (j),m, j = 1, ..., n (5)

where dπ (j),0 denotes the start time of π (j) on
machineM1.
Let f1(π ) and f2(π ) denote the makespan (Cmax) and

energy consumption for permutation π , respectively. Then
the makespan is directly obtained as

f1(π ) = Cmax(π ) = dπ (n),m (6)

Generally, the total energy consumption in a flow shop
consists of energy consumption for the setup stage, trans-
portation phase, machine idle stage, processing phase, and
public use [40]. In this study, the energy consumption for
setup stage, transportation phase, and public use is omitted
for simplicity. The energy consumption for processing phase

is proportional to the fixed processing time and unable to
be reduced by scheduling the sequence of jobs. Therefore,
the energy consumption for machine idle stage is considered.
Besides, blocking time exists for BFSP when a job is blocked
in a machine. Considering that the machine workload of
blocking time is probably different from that of idle time,
the energy consumption for blocking time is also taken into
consideration. The overall energy consumption is comprised
of energy consumption EI for idle time TI and energy con-
sumption EB for blocking time TB. A natural assumption is
that that energy consumption is proportional to time, so we
have EI = wT I , where w is the energy consumption for
each idle time unit. Let λ denote the ratio of blocking time
energy consumption to idle time energy consumption for
each time unit. Then we have EB = wλTB. Generally, each
blocking time unit causes no less energy consumption than
each idle time unit, so the ratio is not lower than one (λ ≥ 1).
Accordingly, the second objective is obtained as

f2(π ) = EI (π )+ EB(π ) = wTI (π )+ wλTB(π ) (7)

It should be noted that blocking time can be removed
by postponing some operations, which can be discussed in
three cases. Case A: for the blocking situation on the first
machine M1, the blocking time is removed by postponing
the corresponding operations on M1. In other words, we can
remove blocking time by adding no-wait constraint for two
consecutive operations on M1 and M2 of a job. In this case,
the increase in idle time is equal to the amount of removed
blocking time, and the makespan does not change. Case B:
for the blocking situation of the last job π(n) on machine Mi
(1 < i < m), the blocking time is removed by treating π(n) as
a job with no-wait constraint. In this case, the increase in idle
time is greater than the amount of removed blocking time,
and the makespan does not change. Case C : for the blocking
situation of job π (j) (1 < j < n) on machineMi (1 < i < m),
the blocking time is removed by treating π (j) as a job with
no-wait constraint. In this case, the increase in idle time is
greater than the amount of removed blocking time, and the
makespan is possible to increase.

When energy consumption is taken as a scheduling objec-
tive, it is necessary to consider the above three cases of
removing blocking time. For cases B and C , it is difficult
to determine in advance whether it is worthwhile to remove
blocking time, because it is unknown whether f2(π ) will
increase before it is calculated, and, particularly for case
C, it is unknown whether f1(π ) will increase before it is
calculated. For case A, the removal of blocking time on M1
can consistently achieve a relatively lower value of energy
consumption if λ is greater that one.
One way to handle the issue of removing blocking time is

to consider all the three cases and evaluate all the schedules.
The other way is to just consider case A and ignore cases B
and C . For simplicity, we calculate the objectives of π using
the latter way in this study. Accordingly, the blocking time
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and idle time are calculated as

TB(π ) =
n∑
j=2

m−1∑
i=2

max{dπ (j−1),i+1 − (dπ (j),i−1 + pπ (j),i), 0}

(8)

TI (π ) =
m∑
i=1

dπ (n),i −
n∑
j=1

m∑
i=1

pj,i − TB(π ) (9)

For a given job permutation π , the two objectives can be
computed in O(mn) time. Let 5 denote the set of all the job
permutations. Then the multi-objective BFSP is formulated
as

Minimize {f1(π ), f2(π )} for all π ∈ 5 (10)

The practical energy consumption is related to the energy
consumption for each idle time unit (w) and the ratio of block-
ing time energy consumption to idle time energy consumption
for each time unit (λ). Considering that w and λ are probably
different for different blocking flow shop environments in
manufacturing industry, this study assumes that we have w =
1 and λ = 2 for simplicity.

Take the following instance as an example to illustrate the
removal of blocking time and computation of the objectives.
There are four jobs and three machines. The processing times
are given as

(pj,i)4×3 =


1 4 2
2 1 3
3 1 3
1 2 1

,
and the permutation is π = (1, 2, 3, 4).
The departure time, blocking time, and idle time are com-

puted as follows.

dπ (1),0 = 0,

dπ (1),1 = pπ (1),1 = 1,

dπ (1),2 = dπ (1),1 + pπ (1),2 = 5,

dπ (1),3 = dπ (1),2 + pπ (1),3 = 7,

dπ (2),0 = dπ (1),1 = 1,

dπ (2),1 = max{dπ (2),0 + pπ (2),1, dπ (1),2} = 5,

dπ (2),2 = max{dπ (2),1 + pπ (2),2, dπ (1),3} = 7,

dπ (2),3 = dπ (2),2 + pπ (2),3 = 10,

dπ (3),0 = dπ (2),1 = 5,

dπ (3),1 = max{dπ (3),0 + pπ (3),1, dπ (2),2} = 8,

dπ (3),2 = max{dπ (3),1 + pπ (3),2, dπ (2),3} = 10,

dπ (3),3 = dπ (3),2 + pπ (3),3 = 13,

dπ (4),0 = dπ (3),1 = 8,

dπ (4),1 = max{dπ (4),0 + pπ (4),1, dπ (3),2} = 10,

dπ (4),2 = max{dπ (4),1 + pπ (4),2, dπ (3),3} = 13,

dπ (4),3 = dπ (4),2 + pπ (4),3 = 14,

TB(π ) = max{dπ (1),3 − (dπ (2),1 + pπ (2),2), 0}

+ max{dπ (2),3 − (dπ (3),1 + pπ (3),2), 0}

FIGURE 1. Gantt chart for π = (1,2,3,4).

FIGURE 2. Gantt chart with jobs scheduled as early as possible
(TB(π) = 6, TI (π) = 7, Cmax(π) = 14).

FIGURE 3. Gantt chart with blocking time on M1 and of π(4) removed
(TB(π) = 2, TI (π) = 12,Cmax(π) = 14).

+ max{dπ (3),3 − (dπ (4),1 + pπ (4),2), 0} = 3,

TI (π ) =
3∑
i=1

dπ (n),i −
4∑
j=1

3∑
i=1

pj,i − TB(π ) = 10.

The objective values are obtained as follows.

f1(π ) = dπ (4),3 = 14,

f2(π ) = TI (π )+ 2TB(π ) = 16.

The Gantt chart is shown in Fig. 1, where blocking time on
M1 is removed (case A). Figure 2 shows the schedule when all
jobs are processed as early as possible. When all the blocking
time on M1 and blocking time of π(4) are removed (cases A
and B), we have the schedule shown in Fig. 3. Figure 4 shows
the schedule with all the blocking time removed (cases A, B,
and C).

It is worth mentioning that there is a conflict between the
makespan and energy consumption criteria. Assuming that
a schedule πa has a lower makespan than another schedule
πb(f1(πa) < f1(πb)). It is possible that the blocking time in

VOLUME 6, 2018 68689



F. Wang et al.: MPVNS for Energy Consumption Scheduling in Blocking Flow Shops

FIGURE 4. Gantt chart with all blocking time removed (TB(π) = 0,
TI (π) = 14, Cmax(π) = 14).

FIGURE 5. Gantt chart for π ′ = (2,3,4,1).

schedule πa is more than that in schedule πb, and hence the
energy consumption for schedule πa is greater than that for
schedule πb, namely f2(πa) > f2(πb). An example can be
foundwhenπ ′ = (2, 3, 4, 1) for the aforementioned instance.
Using the same decoding method, we have f1(π ′) = 15,
TI (π ′) = 12, TB(π ′) = 1, and f2(π ′) = 14. The Gantt chart
is illustrated in Fig. 5.

III. MULTI-OBJECTIVE PARALLEL VARIABLE
NEIGHBORHOOD SEARCH ALGORITHM
The selection of neighborhood structures and design of local
search are crucial to the performance of variable neighbor-
hood search (VNS). Two well-known neighborhood struc-
tures, insert move and swap move, are used, and a multi-
objective variable neighborhood search process that system-
atically changes the neighborhood is designed. To maintain a
diverse evolution population, the VNS begins with ps multi-
starts and evolves in parallel. In addition, an insertion-based
pareto local search method is designed to enhance its search
ability for pareto front. The initialization, variable neigh-
borhood search process, and pareto local search method are
explained as follows.

A. INITIALIZATION
The individual is represented as a permutation π =

(π (1), π(2), . . . , π (n)). The well-known Nawaz-Enscore-
Ham (NEH) heuristic [52] is an effective heuristic designed
originally for the makespan criterion. It has basically three
steps. Firstly, all jobs are sorted in non-increasing order of
the total processing time, and a job priority order is obtained.
Secondly, the first two jobs in the order are scheduled to
achieve a minimum partial objective value, and a partial

sequence is obtained. Thirdly, the p-th job (p = 3, . . . , n)
in the order is inserted into the best position of the partial
sequence, and a partial sequence with p jobs is obtained. The
final permutation with all jobs scheduled is the NEH solution.
In order to generate an initial population with both diversity
and quality, the NEH heuristic is modified as follows. The
job priority order in the first step is obtained randomly, and
the objective value f3(π ) used in the second and third steps is
designed as a weighted sum of f1(π ) and f2(π ).

f3(π )=
k

ps−1
f1(π )+

ps−k−1
ps−1

f2(π ), k = 0, 1, ..., ps−1

(11)

The modified NEH heuristic is performed with different k
values as shown in (11), and ps initial solutions are obtained.
This initialization scheme distributes the solutions on the two-
dimensional plane of f1(π ) and f2(π ) so as to generate them
with advantages of good diversity as well as quality.

In order to facilitate the multi-objective search of the algo-
rithm, a non-dominated solution setNDS = {S1, S2, . . . , Snb}
(nb denotes the size of the incumbentNDS) is stored through-
out the algorithm process, and each solution in the NDS
is marked with a flag ‘‘searched’’ or ‘‘unsearched’’. After
initialization, all solutions are aggregated to generate the
initial NDS, and all solutions in the NDS are marked with
‘‘unsearched’’.

B. VARIABLE NEIGHBORHOOD SEARCH
Twowidely-used kinds of neighborhood structures, insert and
swap neighborhoods, are applied in the process of variable
neighborhood search (VNS). For a given job permutation,
the insert neighborhood consists of solutions obtained by
inserting a job into another position, while the swap neigh-
borhood is composed of solutions obtained by swapping any
two jobs. Clearly, the sizes of insert and swap neighborhoods
are (n− 1)2 and n(n− 1)/2, respectively.

Since there are two objectives in the considered multi-
objective problem, it is necessary to determine an objective
as descending direction of the VNS. Here, the descending
direction (denoted by function f (x)) is selected randomly as
f1(x) or f2(x). The VNS firstly makes d random insert moves
on the solution and then searches the insert neighborhood.
If a solution with a lower objective is found, then the incum-
bent solution is updated. The process goes on until a local
optimum is found. Thereafter, the VNS searches the swap
neighborhood in the same way. The VNS terminates when no
better solution is found with respect to both insert and swap
neighborhoods. The VNS procedure performed on solution x
is shown as follows.
Step 1: select randomly f1(x) or f2(x) to be the descending

direction f (x). Perform d random insert moves on x. Set
flag = 0.
Step 2: if flag = 2, stop the procedure; otherwise, go to

step 3.
Step 3: evaluate the insert neighborhood insertNb(x) and

update the NDS. If there exists x ′ ∈ insertNb(x) and
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f (x ′) < f (x), then x = x ′, flag = 0, and go to step 2;
otherwise, flag = flag+ 1, go to step 4.
Step 4: if flag = 2, stop the procedure; otherwise, go to

step 5.
Step 5: evaluate the swap neighborhood swapNb(x) and

update the NDS. If there exists x ′ ∈ swapNb(x) and f (x ′) <
f (x), then x = x ′, flag = 0, and go to step 4; otherwise,
flag = flag+ 1, go to step 2.

The time of executing the VNS is greatly affected by steps
3 and 5. Since there are randomized processes in theVNS, it is
difficult to determine exactly the number of times of execut-
ing steps 3 or 5. However, the best-case time complexity can
be analysed for the VNS. The best case happens when steps
3 and 5 are both run once, which means that x is not updated
in steps 3 and 5. According to the sizes of insert and swap
neighbourhoods and time complexity of evaluating a solution,
step 3 or 5 requires O(n2) ·O(mn) time in this case, resulting
in the best-case time complexity O(mn3) for the VNS.
It is worth noting that once a solution is added to the NDS,

it is markedwith ‘‘unsearched’’. TheVNS procedure searches
solutions with lower objective values. Meanwhile, the non-
dominated solution set is updated.

C. INSERTION-BASED PARETO LOCAL SEARCH
An insertion-based pareto local search (IPLS) is designed to
enhance the algorithm’s searching ability for pareto fronts.
The IPLS is based on the idea of pareto domination. For
a given solution x, the IPLS considers all the insert moves
of a job. If a solution dominating x is found, x is updated
and the insert moves of another job is considered. The IPLS
terminates when no domination solution is found for all jobs.
The IPLS procedure is shown as follows.
Step 1: randomly generate a job permutation πR =

(πR(1), πR(2), . . . , πR(n)). Let i = 0, j = 1.
Step 2: find the position of job πR(j) in x, insert πR(j)

into all other positions in x, and obtain n − 1 permutations.
Evaluate all the n − 1 permutations, aggregate them, and
obtain a local non-dominated solution set LNDS. If there
exists a solution x ′ ∈LNDS that satisfies x ′ ≺ x (x ′ dominates
x), then LNDS = LNDS\x ′, x = x ′, i = 1; otherwise,
i = i+ 1.
Step 3: update the NDS using the LNDS. If a solution is

added to the NDS, then it is marked with ‘‘unsearched’’.
Step 4: j = (j+1)% n. If i < n, then go to step 2; otherwise,

update the NDS using x. If x is added to the NDS, then it is
marked with ‘‘searched’’. Stop the procedure.

Similar to the VNS procedure, the above procedure
includes randomized processes, which make it difficult to
determine the number of times of executing step 2. When
the best case happens, step 2 is run for n times and the
procedure terminates thereafter. Therefore, the best-case time
complexity of the IPLS is also obtained as O(mn3).
The IPLS is performed on a solution that belongs to the

NDS in each iteration of the algorithm. Specifically, if there
exists a solution in the NDS that is ‘‘unsearched’’, the IPLS
is performed on this solution; otherwise, a perturbation

FIGURE 6. The process of applying the IPLS.

solution is firstly obtained by d random insert moves on a
randomly selected solution from the NDS, and then the IPLS
is performed on the perturbation solution. The procedure of
applying the IPLS is shown as follows.
Step 1: if there exists a solution Sk in the NDS that is

unsearched, then let x = Sk , and go to step 2; otherwise,
randomly select a solution Sh in the NDS, let x = Sh, and
go to step 3.
Step 2: perform the IPLS on x. If x returned by the IPLS

is not changed, then mark the corresponding Sk in the NDS
with ‘‘searched’’. Stop the procedure.
Step 3:make d random insert moves on x, and perform the

IPLS on x. Stop the procedure.
The process of applying the IPLS is illustrated in Fig. 6.

D. PROCEDURE OF THE MPVNS
Based on the initialization scheme, process of the VNS, and
strategy of applying the IPLS, the procedure of the MPVNS
is shown as Fig. 7. Firstly, the modified NEH heuristic is
applied to generate the initial multi-start solutions, and the
non-dominated solution set NDS is initialized by aggregating
the initial population. Then, the variable neighborhood search
is performed on each solution in the population. Furthermore,
the IPLS is performed on a solution selected from the NDS to
enhance the search ability for pareto front solutions. Only two
parameters, population size ps and perturbation size d , need
to be calibrated in the MPVNS.

IV. COMPUTATIONAL RESULTS
This section first introduces the performance measures
for evaluating the obtained non-dominated solutions. Then,
the parameters of the MPVNS is tuned. Finally, the algorithm
is compared with other effective metaheuristics for multi-
objective scheduling. In the computational experiments,
the well-known Taillard benchmark instances are used. The
instances treated by the proposed algorithm are the ones with
20 to 100 jobs and 5 to 20 machines, namely Ta01-Ta90. All
algorithms involved in this study are programmed in C++
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FIGURE 7. The flowchart of the MPVNS.

language, and the running environment is a PC with Intel
Core (TM) i7-6700 3.4-GHz processor.

A. PERFORMANCE MEASURES
For a single-objective optimization problem, the result
obtained by an algorithm is a single value. Therefore, it is rel-
atively easy to compare the results of different algorithms. For
a multi-objective optimization problem, the comparison of
different algorithms is, however, more complicated, because
the result of an algorithm is actually a non-dominated solution
set which contains plenty of solutions. There are various per-
formancemeasures applied inmulti-objective optimization to
compare the results of different algorithms. In this study, two
measures, the set coverage [53] and hypervolume [54], are
used. These measures are explained as follows.

(1) Set Coverage: let A and B be two non-dominated solu-
tion sets. The set coverage C(A, B) represents the percentage
of solutions in B that are dominated by at least one solution
in A, which is computed as

C(A,B) =
|{x ∈ B|∃y ∈ A : y ≺ x}|

|B|
(12)

IfC(A, B) is relatively great andC(B, A) is relatively small,
then A is superior to B to some extent.

(2) Hypervolume: suppose that A is a non-dominated solu-
tion set and Ref = (ref1, ref2, . . . , refr ) is a reference point.
The hypervolume of A is the volume of the hypercubes
defined by all solutions in A and the reference point, which is
computed as

Hv(A) = Leb( U
X∈A

[f1(X ), ref1]× ...× [fr (X ), refr ]) (13)

where the right side of the equation is Lebesgue measure of
the hypercubes.

FIGURE 8. Means and 95.0% LSD intervals for tested factors.

B. ALGORITHM CALIBRATION
Before comparing the MPVNS with other algorithms from
the literature, a calibration experiment was carried out. The
design of experiments (DOE) technique was employed to
tune the parameters of MPVNS. A full factorial experiment
was conducted based on the two factors: (1) population size
ps, tested at five levels: 4, 6, 8, 10, 12. (2) perturbation size d ,
tested at five levels: 2, 4, 6, 8 and 10. The stopping criterion of
the algorithm was the elapsed CPU time not less than 50mn
milliseconds. Three instances with different problem sizes,
the instances Ta21, Ta51, and Ta81, were selected for the cali-
bration experiment. TheMPVNSwas run for ten independent
replicates on each instance for each combination of tested fac-
tors, and all the solution sets of ten replicates were gathered
to form a non-dominated solution set. Thereafter, the hyper-
volume was calculated as a response variable. The reference
point used herein for an instance was formed by the maxi-
mum objective values in all the non-dominated solution sets.
The obtained hypervolume values were analyzed by multi-
factor analysis of variance (ANOVA) technique. The ANOVA
results demonstrate that the factors are statistically signifi-
cant. The mean plots, together with least significant differ-
ence (LSD) with 95% confidence intervals, are illustrated
in Fig. 8. Recall that if intervals for twomeans do not overlap,
then the difference between the two means is statistically
significant.

Figure 8 suggests that the population size and the pertur-
bator size are both statistically significant. For the population
size ps, values 6 and 8 are statistically better than the other
values. However, the difference is small between 6 and 8.
Similar results can be obtained for the parameter d . The value
6 is statistically better than the values 2, 8, and 10, but no sta-
tistical difference is found between the values 6, and 4. Based
on the ANOVA results, the parameters are chosen as ps = 6
and d = 6. It is worth noting that such parameter setting is not
necessarily the best choice, owing to the restricted instances
and performance measure we employed in the calibration
experiment.
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TABLE 1. Set coverage yielded by the algorithms for instance groups with
different sizes.

C. COMPARISON WITH OTHER METAHEURISTICS
To test the performance of the proposed MPVNS, two
other existing powerful meta-heuristics, non-dominated sort-
ing genetic algorithm (NSGA-II) [55] and bi-objective
multi-start simulated annealing algorithm (BMSA) [4], were
re-implemented for solving the proposed model of the multi-
objective blocking flow shop scheduling problem (BFSP).
The NSGA-II is a well-known multi-objective optimization
algorithm that has been applied to not only continuous func-
tion optimization but also various kinds of scheduling prob-
lems. The BMSA is an efficient algorithm recently developed
for multi-objective scheduling in permutation flow shops,
and its superiority has been validated by comparisons with
several existing benchmark algorithms. In the computational
experiments, all the algorithms were applied to solve each of
the 90 instances for ten replicates, and the stopping criterion
were all set as 50mn milliseconds. For the convenience of
calculating performance measures of a considered instance,
all the solution sets of ten replicates were gathered for each
algorithm, and three instance-related non-dominated solution
sets, A1, A2, and A3, were obtained for the three algorithms.
Thereafter, the set coverage and hypervolume values were
computed based on A1, A2, and A3. Note that a reference
point is needed to compute hypervolume. The reference point
used herein for an instance was formed by the maximum
objective values in A1, A2, and A3. The calculated set cov-
erage and hypervolume values are shown in Tables 1 and 2
respectively, where the results are averaged and grouped by
different instance sizes. Besides, the net non-dominated front
which is formed by gathering A1, A2, and A3 is listed in
Appendix. Since the actual pareto front is not known, the net
non-dominated front can possible serve as benchmark for
future research attempts.

Table 1 compares the MPVNS with the BMSA as well as
NSGA-II in terms of set coverage. It is observed that on one
hand, the MPVNS yielded better set coverage values than

TABLE 2. Hypervolume yielded by the algorithms for instance groups
with different sizes.

FIGURE 9. The non-dominated solutions obtained by the compared
algorithms for Ta81.

both the BMSA and NSGA-II algorithms for the instance
groups with 50 and 100 jobs. On the other hand, the dif-
ferences between the MPVNS and the BMSA (or NSGA-II)
is small for the instance groups with 20 jobs. Specifically,
when the MPVNS (A) is compared with the BMSA (B),
C(A, B) is equal to C(B, A) for the 20 × 5 and 20 × 10
instance groups, and C(A, B) is slightly lower than C(B, A)
for the 20 × 20 instance group. When the MPVNS (A) is
compared with the NSGA-II (C), C(A, C) is equal to C(C ,
A) for the 20× 10 and 20× 20 instance groups, and C(A, C)
is slightly greater than C(C , A) for the 20×5 instance group.
Overall, although the differences among them are small for
instances with 20 jobs, the MPVNS is superior to the other
two algorithms for instances with 50 and 100 jobs.

Table 2 compares the three algorithms in terms of hyper-
volume. It can be observed that on average the MPVNS
outperforms the BMSA, and the BMSA outperforms the
NSGA-II. In accordance with the results given in Table 1,
the MPVNS yields better values than the BMSA and
NSGA-II algorithms for the instance groups with 50 and
100 jobs. However, for the instance groups with 20 jobs,
the results are more interesting. For the 20 × 5 and 20 ×
10 instance groups, the hypervolume values of MPVNS
(10035.0, 31665.7) are equal to those of BMSA but greater
than those of NSGA-II (10034.8, 31664.5), which indicates
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TABLE 3. Net non-dominated fronts found by all the algorithms for
instance size 20× 5.

that theMPVNS is equivalent to the BMSAbut superior to the
NSGA-II. For the 20×20 instance group, theMPVNS obtains
a better hypervolume value than the BMSA as well as the
NSGA-II.

To show the differences among the algorithmsmore clearly
for the large size instances, we select instance Ta 81 and draw
the non-dominated solution set of each algorithm in Fig. 9.
Note that the non-dominated solution set of each algorithm is
the aggregation of the results in 10 replicates. It can be seen
from Fig. 9 that the non-dominated solutions obtained by the
MPVNS dominate a large number of solutions obtained by
the other algorithms. In other words, the MPVNS can find a
non-dominated solution set that is more approximate to actual
pareto front.

D. PERFORMANCE ANALYSIS
The results of computational experiments demonstrate that
on average, the proposed MPVNS is superior to the BMSA,

TABLE 4. Net non-dominated fronts found by all the algorithms for
instance size 20× 10.

and the BMSA is superior to the NSGA-II. For small-size
instances with 20 jobs, the advantages of the MPVNS are
not obvious. The reasons may lie in two aspects. One is that
the instances are less difficult to solve because of its small
sizes. The other is that the given CPU time (50mn millisec-
onds) is sufficient for the algorithms to find a non-dominated
solution set that is extremely approximate to the actual pareto
front.

For the other instance groups, the superiority of the pro-
posed algorithm is clearly evident. The efficiency of the
proposed algorithm is due to design of the VNS and IPLS,
as well as the collaborative paradigm of the algorithm. The
VNS utilizes both insert and swap neighborhoods and reaches
a local optimum with respect to these two neighborhoods.
Meanwhile, the searching direction is randomly chosen as
makespan or energy consumption. Based on the above pro-
cesses, the VNS can cover a large solution space for explo-
ration. Furthermore, the IPLS is designed to enhance the
algorithm’s searching ability for pareto fronts. Since it is per-
formed on a non-dominated solution, the IPLS consistently
searches the surroundings of the current non-dominated solu-
tion set, achieving a high pressure for exploitation. Last but
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TABLE 5. Net non-dominated fronts found by all the algorithms for
instance size 20× 20.

not least, the organic combination of the VNS and IPLS in the
paradigm of the MPVNS is also beneficial to the efficiency
of the proposed algorithm.

TABLE 6. Net non-dominated fronts found by all the algorithms for
instance size 50× 5.

V. CONCLUSION
This study considers the blocking flow shop scheduling prob-
lem (BFSP) for minimizing both the makespan and energy
consumption objectives. Most of the existing research on
the BFSP has focused on other criteria, but little has been
done for the energy consumption minimization. Therefore,
a multi-objective BFSP model is formulated in considera-
tion of both makespan and machine energy consumed in
blocking and idle time. In order to solve the proposed
multi-objective model, a multi-objective parallel variable
neighborhood search (MPVNS) algorithm is presented. The
Nawaz–Enscore–Ham-based heuristic is modified and used
to generate initial solutions with both diversity and qual-
ity. In each iteration of the proposed algorithm, the vari-
able neighborhood search with respect to both insert and
swap neighborhoods is designed for exploring the solutions
in the population. Furthermore, an insertion-based pareto
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TABLE 7. Net non-dominated fronts found by all the algorithms for
instance size 50× 10.

local search method is developed to enhance the exploita-
tion of the algorithm. A large computational campaign
is conducted based on well-known benchmark instances.
Firstly, the MPVNS is calibrated based on statistical analy-
sis. Thereafter, the non-dominated sorting genetic algorithm
(NSGA-II) and bi-objective multi-start simulated annealing
algorithm (BMSA) are employed for comparison with the
proposed algorithm. The set coverage and hypervolume are
adopted as two performance measures for the comparison of

TABLE 8. Net non-dominated fronts found by all the algorithms for
instance size 50× 20.
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TABLE 9. Net non-dominated fronts found by all the algorithms for
instance size 100× 5.

the considered multi-objective algorithms. The experimental
results show that although the advantage of the proposed
algorithm is not obvious for small size instances, the proposed
algorithm clearly outperforms the BMSA as well as NSGA-II
algorithms in terms of the set coverage and hypervolume
measures.

It is worthmentioning that themulti-objective BFSPmodel
is a preliminary attempt for energy consumption. When
applied to practical BFSP environments, it has to be adjusted
to meet the real situation. Owing to its structural simplicity
and good performance, the proposed MPVNS is promising
for other multi-objective flow shop scheduling problems.
In the future, we will focus on developing the multi-objective
model and adapting the MPVNS for other flow shop environ-
ments, such as the multi-objective BFSP with more than two
objectives, and themulti-objective scheduling in flexible flow
shops.

APPENDIX
The net non-dominated fronts found by all the algorithms for
all the instances are listed in Table 3–11.

TABLE 10. Net non-dominated fronts found by all the algorithms for
instance size 100× 10.
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TABLE 11. Net non-dominated fronts found by all the algorithms for
instance size 100× 20.
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