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ABSTRACT The pollution of river water as a result of an accident can cause different types of serious
damages to people, aquatic life, agricultural land, plants, and animal ecosystems. Apart from tragic events
such as deaths or injuries, the accidental water pollution causes important economic losses. One effective
measure is to reduce the concentration of the pollutant in the river water by adding clean water released from
reservoirs placed on tributaries of the river. In this paper, we focus on finding an optimal operation of the
water reservoirs (such as opening/closing time of the gates) with the goal of minimizing the total cost of the
economic damages. Two components of the total cost are defined and quantified: the cost of the water used
to achieve dilution and the losses caused by the existence of the pollutant in a certain concentration in the
water. This problem is formalized as a non-linear multi-objective simulation–optimization model, subject
to constraints. The solution is evaluated for a real use case (Jijia River, respectively, Drăcşani and Hălceni
reservoirs in North–East Romania). The results are presented for two experiments. They show that by using
the proposed optimization solution, the total cost of economic losses may be reduced by almost six times as
compared with an empirical operation of the reservoirs and by almost 10× if no dilution takes place.

INDEX TERMS Economic losses, optimization, simulation, water pollution control, water resources
management.

I. INTRODUCTION
Accidental water pollution mitigation is a very difficult prob-
lem to solve from a cost and efficiency perspective. Depend-
ing on the pollutant types, in some cases it is possible to do
a partial control of the pollution event, by releasing water
from the reservoirs located on the tributaries of the main
river. In other cases, it is not possible to take actions. In the
literature, when discussing reservoir operation in the context
of water quality, the authors are generally more concerned
about the in-reservoir water quality and less about the quality
of water outside the reservoir as a result of an accidental
pollution.

Amirkhani et al. [1] discuss multi-objective operation of
reservoirs from the perspective of water quality optimization.
During floods, highly condensed total dissolved solids (TDS)
can go into reservoirs. Later, these inorganic salts can be
released with the water from the reservoir and create water

quality issues such as salty taste, corrosiveness or elevated
hardness. The optimal operation of the reservoir is studied
with respect to two objectives: minimization of TDS and
minimization of the difference of the temperature of input
and output water in the reservoir. As a case study, the authors
have implemented the method on Karaj two outlets reservoir
in Iran. To implement the proposed simulation-optimization
method, two models have been implemented: the Water
quality and 2-D hydrodynamic models. These models are
developed by combining the CE-QUAL-W2 model with the
non-dominated sorting genetic algorithm-II (NSGA-II). Four
scenarios corresponding to the annual seasons were defined.
The results have shown that better operation is achieved when
using the two outlets compared with one outlet utilization.

Shirangi et al. [2] discuss the optimal reservoir operation
considering two objectives: a) the allocated water quantity
and b) the quality of water. The problem is decomposed
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for long term and annual models. For the long term model,
the objective is to provide water supplies, whereas the annual
model has two sub-objectives: the allocated quantity and the
quality.

The work of Chaves and Kojiri [3] is placed in the same
area of research. Here, the main concern is to improve the
quality of in-reservoir water by applying optimal operational
reservoir strategies. To achieve this goal, the authors use a
fuzzy neural network trained by a genetic algorithm.

Regarding the management of reservoirs for downstream
water quality, Jaworski et al. [4] proposed a general math-
ematical model for an optimal release sequence in a multi-
reservoir system which targets either the best quality of
water or the minimum storage costs. Dhar and Datta [5]
considered the operation of a single reservoir, having a sin-
gle objective function subject to optimization. The solution
is verified on a hypothetical reservoir, using for simulation
the CE-QUAL-W2 model, and for optimization a Genetic
Algorithm is applied.

Wang et al. [6] study the impact of inter basin water
diversion projects and cascade reservoirs on the quality and
quantity of water. The study area for validation of their model
is the middle-lower Hanjiang River in China. The basin is
divided into 18 connected land units consisting of tributaries
and reservoirs. A 1-D hydrodynamic model coupled with a
water quality model is proposed. This model is compared
with the historical time series data spread over on 42 years
recording (1956-1998). The relative errors of simulated val-
ues related to observed values are less than 5% for water
quantity and less than 20% for water quality. Next step was
to asses the impact of the water projects (SNWD-South To
North Water Diversion and YHWD-Yangtze-Hanjiang Water
Diversion) on the water quality and quantity. The results show
that SNWD leads to a decrease of water level (decrease rate
0.48%-2.68%) and to a decrease of water quality below the
target. The solution yielded by YHWD project must partially
compensate by increasing the flow. However, this solution
introduces water quality degradation.

Cervellera et al. [7] introduce a numerical solution for an
optimization problem of a water reservoir network consisting
of 10 basins. Stochastic dynamic programming is used to
release a certain amount of water from each reservoir to
minimize a nonlinear cost. Voudouris et al. [8] developed
a Decision Support System that assesses the groundwater
pollution risks due to agricultural land use. The tool provides
an optimal land use to prevent groundwater contamination.

In [9], a solution to reduce the concentration of pollutant
on a river following an accidental pollution was proposed.
Dilution of the pollutant is achieved by operating (open and
close) the bottom gates of the reservoirs. The gates of the
reservoirs located on the tributaries are left open for a certain
amount of time, to release a significant volume of clean
water in the river and to control the pollution level. This
approach is applicable to any river having m reservoirs on
the tributaries downstream the place where the accidental
pollution occurs (Fig. 1).

FIGURE 1. Accidental pollution control using dilution.

FIGURE 2. Drăcşani dam and artificial lake 
 http://www.
visitbotosani.ro/.

The proposed solution has been tested on a 205 km stretch
of the Jijia River in Romania (Fig. 4). The dilution on Jijia
River is realized using the water released from two reser-
voirs, Drăcşani (Fig. 2) and Hălceni, that are placed on the
Sitna respectively Miletin tributaries. It implies identifying
an operation strategy for the bottom gates of the two dams.
Drăcşani reservoir (Fig. 2) is made of an earth dam with a
height of 5.85 m, while Hălceni reservoir has a dam with a
height of 10.5 m.

The heuristic solution to operate the gates of the reservoirs
from [9] has the disadvantage that it may not be optimal,
as it may allow the release of more water from the reservoirs
than necessary. The surplus of water means an extra cost,
considering that the raw water from the reservoirs has a
specific cost per cubic meter (it may be further transformed in
energy or may be used for water supply). Since the accidental
pollution is an extremely harmful phenomenon, even a non-
optimal solution is preferred to ‘‘taking no action’’ scenario.
By using dilution we are able to reduce the concentration
of pollutant below the threshold that put people at risk and,
generally, to reduce the concentration up to 90%.
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This paper further elaborates on finding an optimal solu-
tion for the dilution method. While real-time data collection
for the transport of the pollutant in the river water is not
always accessible, a hydraulic model of the river stretch
including Advection-Dispersion module is needed a priori.
This model is created for this paper using a numerical mod-
eling and simulation tool, MIKE11 [10].

The paper is organized as follows. Section II positions this
work within the scope of the water pollution control with
dilution, identifies the major components of the pollution
scenarios to be evaluated, and describes the problem in terms
of a a non-linear multi-objective simulation - optimization
model subject to constraints. Several available methods for
solving optimization problems are evaluated. Arguments for
the selection of a derivative-free optimization method, specif-
ically here the Nelder-Mead optimization with penalties, are
presented. Appendix presents the algorithmic form of the
Nelder-Mead algorithm and the corresponding updates of the
penalties for the specific optimization problem for Jijia river
described in Section III.

In Section III, the problem of evaluating the cost of dam-
ages of the river water for a number of reservoirs is mathe-
matically formalized in terms of amulti-objective constrained
optimization problem. The goal of the optimization process
is to minimize the total cost (in EUR monetary units) of the
damages produced by the accidental pollution and the cost of
water used for dilution. Formulas for computing both costs
are provided. Themulti-objective function is transformed into
a single-objective function by means of scalarization. It is
described how this problem can be solved using a derivative-
free method (such as Nelder-Mead algorithm) adapted to
allow parameter constraints and bounds.

Section IV describes the application of the general multi-
objective optimization method introduced in Section III for
the specific study case of Jijia River that was detailed in [9].
The results obtained in two experiments performed on Jijia
River are described in Section V. These results indicate the
superiority of the optimal solution providing a six times
lower total cost than the heuristic solution. These positive
results are achieved by choosing the starting points as close as
possible to the heuristic solution computed according to the
Eqs. (1) and (2).

Section VI concludes the paper with a detailed discussion
on the obtained results. Specific limitations of the proposed
method and a description of possible further improvements
and research directions are also addressed.

II. BACKGROUND AND RELATED WORK
As stated before, to apply the dilution method described
in [9], it is critical to decide when to open/close the reservoirs.
In our initial solution, the timestamps for opening/closing
the gates of the j-th reservoir (topen[j], tclose[j]) are com-
puted in an empiric fashion, observing τ1[j] (the moment
when the pollutant concentration exceeds a predefined thresh-
old value c∗) and τ2[j] (the moment when concentration
decreases below this threshold). A timemargin1t is added to

these timestamps, making sure that the measure is effective.
The time Tj needed for the water to travel from reservoir j
placed on the tributary to the main river is also important,
such as:

topen[j] = τ1[j]− Tj −1t; 1 ≤ j ≤ m (1)

tclose[j] = τ2[j]− Tj +1t; 1 ≤ j ≤ m (2)

The actual values for c∗ are chosen according to environ-
mental regulations whereas the values for 1t are determined
through expertise. The decision makers receive a recommen-
dation regarding the moment to open/close the bottom gates
of the two reservoirs, an estimation of the disposed water
volume, and a graph depicting a comparison of the pollutant
concentration in a dilution scenario vs. no action scenario.
By performing the recommended actions, the discharge on
Jijia River is increased and dilution takes place. The imme-
diate effect is the decrease of pollutant concentration below
the critical threshold that represents a danger for popula-
tion or the environment.

For the heuristic approach, we proposed the simpli-
fying assumption on the bottom gates being completely
opened or totally closed. For this work, for the optimization
process we will consider that the gates have a degree of
opening (level) that ranges from 0% (totally closed) to 100%
(completely opened).

Each pollution scenario is defined by a set of pollution
variables supplied by the end user (such as accident loca-
tion, volume of pollutant accidentally released, concentration
of pollutant). For each pollution scenario, the transport of
pollutant along the river is simulated using a specialized
software, MIKE11 [10], a professional, license based, mod-
eling software package for rivers and channels developed
by DHI (Danish Hydraulic Institute). It is used extensively
in environmental sciences [11]–[13]. MIKE11 allows the
simulation of different water related scenarios, such as water
level (flood forecasting), pollutant and sediment transport in
rivers, irrigation canals or estuaries. The model of the river
is 1-D.

MIKE11 is composed of a number of modules: the Hydro-
dynamic (HD) module, the Advection Dispersion (AD) mod-
ule, the Non-cohesive Sediment Transport (NST) module,
and the Rainfall-Runoff (RR) module. The core HD module
is based on the 1-D Saint Venant equations. It is typically
used for floods forecast, operation of drainage systems, and
irrigation. The AD module is based on the equation of con-
servation of mass of the dissolved substance. It is used to
model spreading of pollutants. The NST module is used for
sediments that are not associated with contaminants, such as
sands that creates dunes or ripples. The RRmodule computes
the conversion of rainfall into runoff.

The input for MIKE11 simulation tool consists of
the description of the physical structure of the system
(cross-sections, roughness coefficients), boundary condi-
tions (hydrographs and rating curve), and the pollutograph
representing the variation of the pollutant concentration.
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As output it generates TAB delimited text files representing
a matrix of pollutant concentrations/discharges, each con-
centration/discharge being estimated for a specific simulated
timestamp at a given location on the river. In this paper,
we consider MIKE11 as a computational procedure repeat-
edly called.

Instead of using Equations (1) and (2), in this article we
focus on finding an optimal solution for the triple topen[j],
tclose[j] and level[j] (the level of gates opening) for each of
the m reservoirs involved in dilution. The volume of water
released from reservoir j depends directly on the above men-
tioned triple.

In Mathematics, Optimization refers to finding a solution
that minimize/maximize an objective function. If the objec-
tive function is a cost function (for example cost of accidental
pollution expressed in EUR currency) then the goal is to
find the specific values of the function variables (also called
‘‘design parameters’’) that minimize the objective function.

In this specific case referring to the pollution control using
dilution, the cost function has two components:
• the economic loss caused by the river being polluted
(such as fisheries damage, domestic water consump-
tion), and

• the cost of the reservoir water released for dilution.
The first component of the cost depends directly on the

values of the pollutant concentration along the river. These
values, as well as the volumes of released water from the
reservoirs into the river, are obtained here using the specific
site model created in MIKE11 [9].

Therefore, the values of the objective function are obtained
by numerical computation, without the evaluation of the
derivatives. This type of optimization is called ‘‘derivative-
free optimization’’. Usually equality and/or inequality con-
straints are imposed on the input variables, the problem being
named ‘‘constrained optimization’’. In this category enroll
a large number of scientific applications lacking knowledge
on the internal implementation of a given executable, such
as chemical reactions or numerical code that involves inte-
grals or partial derivative equations (PDE’s).

Formally the problem can be described as follows:
Given a non-linear multi-variable function

f : Rn→ R (3)

analytically unknown, but the values of f(x) can be individu-
ally computed, find

min
x
f (x) (4)

considering the l inequality constraints,

gj(x) ≤ 0; j = 1..l (5)

the m equality constraints,

hk(x) = 0; k = 1..m (6)

and n individual bounds constraints,

xi ∈ [li, ui] ⊆ (−∞,∞); i = 1..n (7)

where li and respectively ui are the corresponding lower and
upper bounds. The functions gj and hk can be linear or non-
linear functions.

The function f is said to be ‘‘cheap’’ if a large number of
evaluations (for example, 1000) may be suitably fulfilled in
terms of computational resources or running time. The func-
tion is said to be ‘‘costly’’ if using the same computational
resources, for the same amount of time, the function can be
evaluated only for a smaller number of times (for example,
less than 200).

The optimization methods can be classified as direct or
model based [14], [15]. In the first case the function is
evaluated whereas in the second case a surrogate function
that mimics the original function is used considering that the
surrogate has the advantage of being a cheaper function. If the
objective function f and the constraints functions are convex
functions, then there is only one global optimal solution. For
non-convex optimization problems, multiple locally optimal
points can exist. The non-convex optimization problems are
much harder to solve than the convex ones, because of the
‘‘local optimum trap’’.

In their survey of derivative-free optimization algorithms,
Rios and Sahinidis [16] provide a historical overview and
a state-of-the-art, comparing performance of 22 algorithms
given identical initial conditions (same starting point, con-
straints, and bounds). The criteria used in the comparison
refers to several aspects, such as: a) the precision of the
determined solution, given a predefined maximum number
of function evaluations; b) the ability of the algorithm to
find a near-global solution for the non-convex problems; and
c) the behavior for various starting points (non-favorable
chosen or near-optimal chosen).

The authors classify the methods as local search methods
(searching in the proximity of the starting point with the
potential risk to be trapped in a local optimum) and global
searchmethods (search realized in the entire solution space).
Further, each category can be sub-divided into direct search
andmodel based search. Examples of direct local search algo-
rithms are the Nelder-Mead simplex [17] and the generalized
pattern search (GPS) [18]–[20]. GPS uses a set of vectors
(pattern) at each iteration that indicates which points to be
searched for on the current iteration.

The local search model based methods make the assump-
tion that a surrogate model of the objective function [21], [22]
or of its gradient [23] can be developed and used further to
conduct the search in an intelligent way.

Global search algorithms are categorized into determinis-
tic methods (branch-and-bound [24], multilevel coordinate
search [25]), model based (kriging [26], radial basis func-
tions [27], [28]) and stochastic (such as Hit-and-run, Genetic
algorithms and Particle swarm algorithms). The stochastic
global search algorithms have non-deterministic steps.

The Hit-and-Run algorithms [29]–[31] compare the solu-
tion found at current iteration with a random candidate. This
algorithm updates the solution only if the candidate is an
improved point.
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Genetic algorithms were used to represent points in
the search space as individuals that are assigned a fit-
ness function, as described in the works of Genlin [32] or
Deb et al. [33]. The disadvantage of these methods is rep-
resented by the fact that they can require a large number of
generations to obtain an acceptable solution.
Particle swarm algorithms are a type of bio-inspired

methods that use principles of swarm intelligence in Com-
puter Science [34]–[36]. A set of particles (representing the
points in the search space) are maintained at each iteration
and have a position and a velocity vector. Recently hybrid
algorithms took the advantage of the global search scope
offered by swarm optimization with the fast local conver-
gence of Nelder-Mead method [37] or Generating Set Search
Algorithm [38].

Mladenović et al. [39] proposed to use variable neighbor-
hood search to solve (unconstrained and constrained) contin-
uous optimization problems. The neighborhoods are changed
within the search both for descent to local minima and for
escaping from the local traps. In the same area of global min-
imization of functions depending on continuous variables,
Chelouah and Siarry [40] discussed an adaptation of Tabu
Search (TS) metaheuristic. The authors enhanced the basic
TS described in [41] by introducing diversification (detection
of promising areas) and intensifiation (search inside the most
promising area). They pointed out that the method yields
good performance on functions having more than 10 vari-
ables.

Tenne [42] addresses the problem of optimizing expensive
black-box functions by means of machine learning algo-
rithms. Specifically, the optimization process integrates clas-
sifiers to predict whether an input vector leads to a simulation
tool failure. In these cases, the search will favor inputs for
which the simulation succeeds.

Within the scope of this work, we chose the Nelder-Mead
algorithm [17], adapted by introducing penalties to imple-
ment constraints. The algorithm is used here to solve our opti-
mization problem, described in Section III. The advantage of
this algorithm is that it requires only a few function evalua-
tions in each iteration (as opposed to previous optimization
algorithms). This is extremely important for costly functions
(such as our proposed objective function whose evaluation
depends on running the MIKE11 model simulation). This
objective function is introduced in Section III, Equation (17).
The method rapidly produces accurate results.

The algorithmic form of the Nelder-Mead algorithm and
the corresponding updates of the penalties for the specific
optimization problem for Jijia river that is addressed in
Section III are presented in Appendix.

III. DILUTION-BASED OPTIMIZATION OF WATER
RESERVOIRS OPERATION FOR WATER
POLLUTION CONTROL
This section elaborates on a specific case study, considering
as a starting point the generic river with m water reservoirs
that is presented in Fig. 1.

The optimization problem associated to this generic repre-
sentation is defined as follows: determine an optimal oper-
ation of these reservoirs that minimizes both the cost of
released water used for dilution (denoted by C1) and the cost
induced by the accidental pollution (C2). Hence, we define a
multi-objective optimization problem:

min
x
{C1(x),C2(x)} (8)

where C1 and C2 are two objective functions.
In general, there is not a single solution x that minimize all

the objective functions. Instead, the so called ‘‘Pareto optimal
solutions’’ are preferred. They represent a trade-off that is
globally optimum, meaning that the Pareto solution can’t
be improved with respect to one objective function without
increasing the other objective function(s).

A typical way of converting a multi-objective optimiza-
tion problem to a single-objective optimization problem is
through scalarizing (weighted-sum method):

f (x) = w1 × C1 + w2 × C2; w1,w2 > 0 (9)

where w1,w2 > 0 are called weights.
Mathematically, it can be proved that any solution x of the

new single-objective optimization problem

min
x
f (x)

is a strict Pareto optimum of the original multi-objective
problem from Eq. (8), as pointed out by Caramia and
Dell’Olmo [43]. In other words, no other possible candidate
solution x from the objective space can lead to smaller values
of all objective functions (with at least one strict inequality).

For our specific reservoir optimization, we use MIKE11,
the simulation numerical tool [10] to determine the hydro-
graph (i.e Q(t) - discharge as a function of time) and the
pollutograph (i.e c(t) - concentration of pollutant as a function
of time) at a specified location on the river, assuming a
given pollution scenario. As already mentioned in Section II,
this simulation software is considered further as a Black
Box component, as there is no knowledge on its internal
implementation.

With MIKE11, a pollution scenario is defined by a set
of values for each of the pollution characteristics (such as
accident location, pollutant volume, pollutant concentration).
The volume of water that is released by each reservoir j
depends on three parameters: topen[j], tclose[j], and level of
gate opening, level[j] (j = 1. . . m). The first two parameters
represent the moments when the reservoir gates are open
and, respectively, closed. It is assumed that the gates are
completely closed initially, then they are opened partially
as indicated by the level[j] value. For each gate, level l0[j]
corresponds to gates completely closed, and l1[j] corresponds
to gates completely open.

Thus, the optimization problem have n = 3xm design
parameters. In this particular case, the x vector is defined as:

x = [topen[1], tclose[1], level[1], . . . , topen[m], tclose[m],

level[m]].
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The function f defined in Eq. (3) becomes:

f (topen[1], tclose[1], level[1], . . . , topen[m], tclose[m],

level[m])

and it represents the cost of both the economical damages
produced by the accidental pollution event and the cost of
water that was used for dilution. The challenge further is to
find a method to quantify these costs (in monetary units).

The constraints corresponding to Eq. (5) and Eq. (7) are the
following:

tclose[j] ≥ topen[j]

level[j] ∈ [l0[j]; l1[j]]

A good practice for representation of the results is to
normalize all the 3×m design parameters and bring them to
belong to the same interval (0,1). Normalization of the time in
(0,1) can be achieved considering the start of the simulation
of the hydrodynamic process as being 0 and the stop simu-
lation time as being 1. Then, topen[j] and tclose[j] are scaled
accordingly to fit the (0,1) interval.

A similar approach can be used for the gates level, consid-
ering l0[j] = 0 and l1[j] = 1. As stated before the total cost
can be expressed as:

C = f (x) = w1 × C1 + w2 × C2 (10)

where C1 is the cost of the raw water and C2 is the cost
of the damages produced by the pollutant on the river. The
scalarization weights are w1 and w2.
Regarding the cost of the raw water, this is computed

considering the volumes of water released from each of the
m reservoirs:

C1 = Up ×
m∑
i=1

Vi (11)

where Up represents the unit price (for example, price of a
cubic meter of raw water) and Vi is the volume of water
released by Reservoir i.

The first step is to determine for each reservoir the dis-
charge for the diluted/undiluted scenarios, Qdilutedi (t) and
Qundilutedi (t), immediately downstream the Reservoir i. The
‘‘diluted scenario’’ refers to the case when raw water is
released from the reservoirs to decrease the pollutant concen-
tration, whereas in the ‘‘undiluted scenario’’ no action is taken
to mitigate the accidental pollution.

Then the volume Vi can be computed as:

Vi =
∫ t1

t0
Qdilutedi (t)dt −

∫ t1

t0
Qundilutedi (t)dt (12)

Introducing Eq. (12) into Eq. (11) yields:

C1=Up×
m∑
i=1

(
∫ t1

t0
Qdilutedi (t)dt−

∫ t1

t0
Qundilutedi (t)dt) (13)

where t0 and t1 represents the start and end timestamps of the
simulation time.

The size of the economical loss depends on the concentra-
tion of the pollutant on the studied stretch of the river. Let us
assume there are p points downstreamReservoir 1 (see Fig. 1)
for which we can compute the maximum concentration of
pollutant at these points, respectively cmax1 , cmax2 , . . . , cmaxp .
In these locations, dilution positive effects in diminishing the
pollutant concentration can be measured. Let’s consider c̃
being the maximum of these p values,

c̃ = max{cmax1 , cmax2 , . . . , cmaxp } (14)

This measure gives an indication of the degree of pollution
in the part of the river where dilution takes place. The max-
imum values can be obtained from the pollutographs (max
c(t)) given by the numerical simulation tool execution.

When analyzing the impact of pollution on the economy,
we must take into account that damages are produced in a
variety of sectors such as agricultural irrigation, fisheries,
environment, drinking water, tourism. As previously estab-
lished in the works of Zhang [44] or Faqing et al. [45],
the economical loss function, S(c), depends on concentration
of pollutant and it is best modeled by a sigmoid function.

As the concentration of pollutant c increases, the losses
function S increases too, till it reaches a maximum value Smax
that corresponds to a concentration cM . For concentrations
higher than cM there is no more significant increase in the
losses, as displayed in Fig. 3.

FIGURE 3. Economic losses curve.

Considering the fact that zero damages would correspond
to no pollution (c= 0), we propose the following form of the
loss function:

S(c) =
Smax

1+ e−α×(2×
c
cM
−1)

(15)

where Smax is the maximum value of the damages that are
producedwhen the pollutant concentration is cM ;α is a tuning
parameter that is chosen depending on the desired precision
of the formula.

To calculate the cost C2, we introduce Eq. (14) into
Eq. (15):

C2 = S(c̃) =
Smax

1+ e−α×(2×
c̃
cM
−1)

(16)
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From Eq. (13), Eq. (16), and Eq. (9) the cost function
formula is obtained:

C = f (x) = w1 × Up ×
m∑
i=1

(
∫ t1

t0
Qdilutedi (t)dt

−

∫ t1

t0
Qundilutedi (t)dt)+ w2 ×

Smax

1+e−α×(2×
c̃
cM
−1)

(17)

where

• w1,w2 > 0 are the scalarizing weights;
• Up is the unit price for raw water;
• m is the number of water reservoirs
• [t0, t1] is the simulated time;
• Smax is themaximumvalue of the economical losses pro-
duced by pollution (expressed in the same unit as Up);

• α is a precision parameter;
• cM is the pollutant concentration to which the maximum
damages Smax are registered;

• c̃ is the maximum concentration along the river. This
value is computed based on the numerical simulation
tool (MIKE11);

• Qdilutedi (t),Qundilutedi (t) are the discharges in various
points on the river downstream Reservoir 1. The val-
ues are obtained from the numerical simulation tool
(MIKE11).

Eq. (17) represents in a unified form a single cost function
that integrates both types of costs. As well, it can be used
directly in the optimization process. This working procedure
is presented in the following case study.

IV. OPTIMIZATION OF OPERATION OF DRĂCŞANI AND
HĂLCENI RESERVOIRS TO MINIMIZE THE ECONOMIC
LOSSES OF ACCIDENTAL WATER POLLUTION
ON JIJIA RIVER
In this section we apply the general multi-objective optimiza-
tion method that we proposed in Section III to the specific
study case of Jijia River described in details in [9]. In this
case, there arem=2 reservoirs, namely Drăcşani and Hălceni.
They must be operated in an optimal way to minimize both
the economic losses produced by pollution on Jijia and the
cost of water released to realize the dilution process.

Drăcşani reservoir (Fig. 2) was built in 1976 on Sitna
River. Its water surface at the Normal Retention Level is
574 ha. It is the second largest reservoir in Jijia River basin
and has a total volume of 26.73 millionsm3 of water. Hălceni
artificial lake, located on the Miletin River, has an area
of 385 ha and a total volume of 49.5 millions m3 of water.
We consider further the notations introduced in Section III.

In this specific case, the optimization problem depends on the
following set of variables:

topen[1], tclose[1], level[1], topen[2], tclose[2], level[2] (18)

representing the times for opening/closing the Drăcşani/
Hălceni bottom gates, and the opening level of the gates.

• For Drăcşani reservoir, the margins of the levels are:
l0[1] = 75.6 (completely closed) and l1[1] = 76.52
(completely open).

• For Hălceni reservoir, the margins of the levels are:
l0[2] = 47.4 (completely closed) and l1[2] = 49.15
(completely open).

The simulation of the pollutant transport is implemented
in MIKE11. The t0 and t1 margins of the simulated time are
‘‘2100 1 8 8 0 0’’ respectively ‘‘2100 1 18 8 0 0’’ (considering
the ‘‘YYYY MM DD HH MM SS’’ format).

There are 4 optimization constraints to be considered:

tclose[1] ≥ topen[1]

level[1] ∈ [75.6; 76.52]

tclose[2] ≥ topen[2]

level[2] ∈ [47.4; 49.15]

The ranges mentioned above, [75.6;76.52] and
[47.4;49.15], refer to the position of the two dam’s gates,
expressed in MAMSL (meters above mean sea level), consid-
ering the Black Sea as zero reference point. To have all the
variables belonging to the range [0,1], the following formula
was used for normalization:

x ′ =
x − xmin

xmax − xmin

where x ′ denotes the normalized value and xmin/xmax the
minimum/maximum values that the non-normalized variable
can take. For date/time normalization, the timestamp can be
first converted to seconds and then treated further as a long
integer value.

The optimization problem is defined in the context of a
specified pollution scenario, as described in more details
in [9]. We consider further the pollution scenario described
by the following four values: Discharge at S.G Vlădeni =
5 [m3/s], Accident location = 140 [km], Pollutant volume =
20 [m3] and Pollutant concentration = 800 [mg/l].
To run a MIKE11 simulation, the parameters of the pol-

lution scenario like the ones mentioned above are required.
In Eq. (9) we choose the weights equal to 1, w1 = w2 = 1.
Eq. (11) becomes:

C1 = Up × (V1 + V2) (19)

where V1 represents the volume of water (expressed in m3)
that is released from Drăcşani reservoir and V2 the volume
released from Hălceni reservoirs. The price of 1 cubic meter
of raw water,Up, is approx. 0.19 EUR1 in Romania. The cost
function proposed in Eq. (17) is expressed in EUR currency.
The goal of the optimization process is to minimize the total

cost in EUR that represents the damages produced by the
accidental pollution plus the cost of water used for dilution.

For the function that evaluates the economic losses of the
pollution (Eq. (16)), we consider for Jijia: cM = 0.15 [mg/l],
α = 20, Smax = 1500000 [EUR]. The value α = 20 is chosen

1http://www.apanovabucuresti.ro/
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FIGURE 4. Simplified topological model of Jijia River, from [9].

to assure the desired precision, because in this case 1
1+e20

∼=

0.0000000020 and 1
1+e−20

∼= 0.9999999979, where:

C2 = S(c̃) =
1500000

1+ e−20×(2×
c̃

0.15−1)
[EUR] (20)

The concentration c̃ is computed as the maximum of
the 5 concentrations at the following locations downstream
Jijia confluence with Sitna (Fig. 4): Jijia D/S Sitna, S.G
Andrieseni, S.G Vladeni, Jijia D/S Miletin, S.G Victoria. The
concentrations in the above mentioned locations are obtained
as a result of MIKE11 simulation: the input consists of the
4 known values defining the pollution scenario and the 6 deci-
sion variables that define the operation of the two reservoirs
(Eq. (18)). To evaluate the costs C1 and C2 it is necessary
to run at each step one MIKE11 simulation, as described
in Section II.

V. CASE STUDY
The general workflow of the application that was imple-
mented for the operation optimization of Drăcşani and
Hălceni reservoirs is presented in Fig. 5. The loop contains
two main software components:
• a Java application that is responsible for evaluating the
objective function and running the derivative-free opti-
mization algorithm (Nelder-Mead in our case), and

• MIKE11modeling and simulation tool, that executes the
Hydrodynamic (HD) and Advection/Dispersion (AD)

modules for Jijia, Sitna and Miletin in order to simu-
late the pollutant transport. The executable MIKE11 is
launched as a process from the Java application.

The loop ends when the solution x found at the current
iteration meets the termination criteria. The two programs
communicate through a set of text files that represents the
input/output for MIKE11 tool. The input is represented by a
vector x consisting of 6 variables (Eq.(18)). At the beginning
of the execution, an initial estimation x0 for the input must be
provided.

It is worth mentioning here that the MIKE11 model for
Jijia pollution is a complex one (composed of three separate
models Jijia D/S, Sitna and Miletin). It is computationally
intensive. The server where MIKE11 runs is an Intel Xeon
with 2 CPU’s at 2.1GHz and 16GB RAM, 885GB HDD, run-
ning Windows 8. One simulation of MIKE11 (i.e one objec-
tive function evaluation) takes approximately 10 minutes to
complete on the above mentioned server. The output of
MIKE11 tool is a set of text files containing data correspond-
ing to the dischargeQ(t) and concentration of pollutant c(t) at
locations of interest along the river. Discharge values are used
to calculate the water volumes V1 and V2 that are part of the
Eq. (19). Using the concentration data, c̃ is computed and then
theC2 cost is evaluated according to Eq. (20). The actual opti-
mization using the Nelder-Mead simplex Algorithm adapted
with penalties is described in Appendix. The corresponding
experiments are described below. The obtained results are
also discussed.

A. EXPERIMENT 1
In this experiment, the starting point x0 in the Nelder-Mead
simplex algorithm is considered as being the heuristic solu-
tion for the pollution scenario described above. The heuristic
solution has been derived in [9] and it is in agreement with
Eq. (1) and Eq. (2) in Section II. The values for the input
vector, normalized to (0,1) range, in the format described in
Eq. (18), are the following:

x0 = [0.224, 0.304, 1, 0.354, 0.491, 1] (21)

De-normalized, the vector presented in Eq. (18) becomes:
topen[1] = ‘‘2100 01 10 13 45 36’’; tclose[1] =

‘‘2100 01 11 08 57 36’’; level[1] = 76.52; topen[2] =
‘‘2100 01 11 20 57 36’’; tclose[2] = ‘‘2100 01 13 05 50 24’’;
level[2] = 49.15.

This input corresponds to a total volume of released water
of 4632009 m3 and a concentration c̃ = 0.051 mg/l. In this
case, the total cost computed according to Eqs. (19) and (20)
is Cost(x0) = 882569.9 EUR.
In case no action will be taken (no operation of reser-

voirs), the concentration c̃ = 0.258 corresponds to a total
cost Cost(no-action) = 1500000 EUR. The steps vector
for the calculation of the initial simplex was taken h =
[0.1,0.1,0.1,0.1,0.1,0.1].

The evolution of the total cost during the optimization
process, at each iteration, is presented in Fig. 6.
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FIGURE 5. Workflow of the optimization application.

FIGURE 6. Total cost optimization in Experiment 1.

It can be observed that after 70 iterations the cost stabilizes.
The algorithm is executed for a maximum number of 150 iter-
ations. The minimum is obtained starting with iteration 74
for

xmin = [0.216, 0.275, 0.995, 0.500, 0.501, 0.994] (22)

and it corresponds to a minimum cost Cost(xmin) =
158871.9 EUR (released volume of water of 813871 m3 and
a concentration c̃ = 0.053 mg/l).
Denormalized, the vector presented in Eq. (22) becomes:
topen[1]= ‘‘2100 01 10 11 50 24’’; tclose[1]= ‘‘2100 01 11

02 00 00’’; level[1] = 76.51; topen[2] = ‘‘2100 01 13 08 00
00’’; tclose[2] = ‘‘2100 01 13 08 14 24’’; level[2] = 49.13

The optimization process strongly reduced the operation
time of Hălceni reservoir, from 33 hours to only 14 minutes.
For Drăcşani reservoir, it was reduced to 14 hours from
19 hours.

The cost was diminished by decreasing the volume ofwater
to be released for dilution, but maintaining approximately the
same final effect of dilution upon concentration of pollutant
(0.053 compared to 0.051). The gates were left almost com-
pletely open on the operation period. The same conclusions
can be drawn from Fig. 7, where the operation time (in hours)
of both reservoirs is presented.

The optimization process highly decreases the operation
time of Hălceni reservoir whereas for Drăcşani the reduction
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FIGURE 7. Reservoir operation time in Experiment 1.

FIGURE 8. Cost components in Experiment 1.

is not so steep (it is only about 25%). This is consistent with
the fact that Hălceni reservoir has a higher discharge than
Drăcşani and the volume evacuated in the same time period
is much higher.

Fig. 8 shows the separate graphs for the two components of
the total cost, the water cost and the pollution cost. The best
result is obtained when we get zero pollution costs with the
minimum released water. Thus, the dilution cost is reduced
with 75%.

Finally, Fig. 9 shows a comparative graph of costs when
no action is taken, for non-optimized dilution and for opti-
mized dilution. The savings introduced by optimization are
723698 EUR (5.86 times smaller cost).
Compared with the non-action cost, the cost of pollution is

10 times smaller when the operation of reservoirs is optimized
(and the maximum concentration of pollutant is reduced from
0.258mg/l to 0.053mg/l).

B. EXPERIMENT 2
In this experiment the starting point x0 is chosen such that
halves the operation times of both reservoirs in comparison
with x0 from Experiment 1 (Eq. (21)) and it opens the gates
only to half of their maximum capacity. In normalized form:

x0 = [0.224, 0.264, 0.5, 0.354, 0.422, 0.5] (23)

which de-normalized means topen[1] = ‘‘2100 01 10 13 45
36’’; tclose[1] = ‘‘2100 01 10 23 21 36’’; level[1] = 76.06;
topen[2] = ‘‘2100 01 11 20 57 36’’; tclose[2] = ‘‘2100 01 12
13 16 48’’; level[2]= 48.27. Running theMIKE11 simulation
with the input parameters as above leads to a water volume
of 1369375 m3 and a concentration c̃ = 0.091mg/l.
The total cost Cost(x0) = 1739429 EUR is almost double

than the total cost for Cost(xExperiment1
0 ) = 882569 EUR

and is even higher than the cost when no action is taken
(1500000 EUR).
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FIGURE 9. Pollution costs for various scenarios in Experiment 1.

FIGURE 10. Total cost optimization in Experiment 2.

To increase the search space of the initial simplex,
we choose h = [0.3, 0.3, 0.3, 0.3, 0.3, 0.3]. As expected,
the optimization algorithm requires more iterations to
converge than previously (160 iterations compared with
70 iterations). The graphic presented in Fig. 10, describing
the evolution of the total cost at each iteration, displays
more oscillations compared with the analogous previous
graph from Fig. 6. However, the minimum cost that is found
(109599) outperforms the value in Experiment 1 (158871).
The minimum found in Experiment 2 at iteration 193 is

with 31% lower than the minimum found in Experiment 1.
Even the starting point x0 did not seem initially so promis-
ing, the optimization algorithm found a better solution
eventually (Fig. 11).
The minimum is found for

xmin = [0.237, 0.276, 0.758, 0.356, 0.362, 0.414] (24)

and corresponds to a minimum cost Cost(xmin) =
109599.47 EUR (released volume of water of 512398m3 and
a concentration c̃ = 0.057 mg/l).

De-normalized, the vector presented in Eq. (24) becomes:
topen[1]= ‘‘2100 01 10 16 52 48’’; tclose[1]= ‘‘2100 01 11

02 14 24’’; level[1]= 76.29736; topen[2]= ‘‘2100 01 11 21 26
24’’; tclose[2]= ‘‘2100 01 11 22 52 48’’; level[2] = 48.1245.

As Fig. 12 shows, the savings are realized by reducing
the pollution costs to negligible values by decreasing the
concentration c̃ on one hand, and on the other hand by reduc-
ing the cost of water used for dilution by minimizing the
volume of water needed to achieve the concentration to a level
of 0.057mg/l.

This is realized, as depicted in Fig. 13, by shortening the
operation time of both reservoirs (for Hălceni from 16 hours
to 1.5 hours, and for Drăcşani from 10 hours to 9 hours).
In this experiment, the optimization process reduced the

costs in the dilution scenario by 15,8 times.
The experimental results are summarized in Table 1,

including the values of the six decision variables obtained for
the optimal solution, the steps vector h used in the Nelder-
Mead algorithm, the total cost, the cost components, and the
maximum concentration of the pollutant in the river water.
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FIGURE 11. Pollution costs for various scenarios in Experiment 2.

FIGURE 12. Cost components in Experiment 2.

The values of the decision variables in the heuristic in the
optimization algorithm for Experiment 1. Half of these values
represent the starting point used in Experiment 2.

VI. DISCUSSIONS, CONCLUSIONS, AND
FURTHER DEVELOPMENTS
Water pollution control [46], [47] and water resources
management based on digital services and information-
based intelligence [48] have received important concerns
both on research and practical endeavors related to public
safety [49], [50]. In [48] tools and statistics algorithms that
may be used for analyzing pollution-related information and
its correlation to real events are presented. Based on this,
specific process activities, services, and resources were iden-
tified to support the development of data processing compo-
nents in information sub-systems of Enterprise Information
Systems supporting the design of improved environmental
monitoring smart services.

In this respect, this paper extends the research topic intro-
duced in [9] concerning the water pollution control real-
ized using pollutant dilution, defined as an optimization
problem. In the previous work, it has been shown how the
opening/closing times of the bottom gates with an empirical
method may be computed. The gates may be open com-
pletely or partially. Even though using the above mentioned
heuristic solution is definitely better than taking no action,
the procedure is not optimal in terms of cost. Better results
may be achieved with less released water.

The optimization problem that is proposed in this paper
refers to the optimal operation of water reservoirs to mini-
mize the cost produced by accidental pollution. Two com-
ponents of the cost are identified, namely: a) the cost of the
water that is released from reservoirs to achieve dilution,
and b) the cost of river water pollution with a pollutant at a
certain concentration. The target is the minimization of both
costs.
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FIGURE 13. Reservoir operation time in Experiment 2.

TABLE 1. Experimental results: Summary of Experiment 1 and Experiment 2.

A non-linear multi-objective simulation - optimization
model subject to constraints it defined, where the parameters
that the two costs depend on (i.e the volume of released water
and the pollutant concentration after dilution) are computed
through a numerical simulation tool for pollutant transport,
MIKE11 (i.e. the Black Box component of the software archi-
tecture). The decision variables are subject to various con-
straints (for example, the closing time should be greater than
the opening time; the gates level should be in the given oper-
ation range where the lower bound correspond to completely
closed, and the upper bound corresponds to completely open).

The survey of the currently available methods for solving
optimization problems that we performed within the scope
of this work indicated the fact that to solve this problem we
need to focus on the derivative-free optimizationmethods and
specifically on the Nelder-Mead optimization. The further
challenge has been to find an analytical formula to describe
the cost of pollution. For the economical losses, the sigmoid

function was customized to express the fact that when con-
centration of pollutant is approximately zero then there are no
losses. As well, when the concentration reaches a threshold
value cM then the losses become maximal.
The two experiments presented in Section V strengthened

the idea that the result of Nelder-Mead algorithm is influ-
enced by the starting point and the steps used for computing
the initial simplex. When the initial solution x0 is chosen ran-
domly and far from the global optimum, the optimal solution
can be worse than in the ‘‘no dilution’’ scenario. In such a
case, the operation of the reservoirs is not correlated with
the pollutant propagation timing and the dilution of pollutant
does not happen. The concentration of pollutant remains at
the same value as in the no-action scenario, despite the fact
that water was released from reservoirs. This leads to an extra
cost of released water besides the maximal cost induced by
the accidental pollution. In this case the optimization algo-
rithmwill be attracted in a ‘‘local trap’’ trying to minimize the
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FIGURE 14. Influence of starting point on total cost. (a) Optimization cost for
unfavorable chosen x0. (b) Influence of starting point on cost.

volume of water released (basically equivalent with the no-
action scenario). The total cost converges (after a sufficient
number of iterations) to the total cost when no dilution takes
place (i.e. 1500000 EUR).

In Fig. 14-A) the optimization process when x0 was cho-
sen randomly is depicted. Note that even with a large step
of 0.8 the algorithm could not find a better estimation of the
cost than the no-action case. In Fig. 14-B) the total cost of
pollution in four different cases is represented: with no action,
with random starting point, with the starting point being the
heuristic solution, and respectively half of the heuristic solu-
tion. It can be observed that in the case of random selection
there is no gain. In the last two cases there is a reduction of
costs of about 10 to 13 times.

As a natural future development, we consider necessary to
evaluate closely the impact of initial solution x0 and steps
vector h on the quality of optimal solution found by the
Nelder-Mead algorithm. As it is shown in this paper, for
the reservoirs optimal operation, randomly generated starting
points do not represent a suitable solution. The starting point
must be chosen close to the heuristic solution presented in [9].

The most important, innovative results presented in this
paper can be summarized as follows. The proposed method

gives the possibility to quantify in monetary units (EUR)
the economic damages produced by the accidental water
pollution on Jijia River, defining a cost function that relies on
MIKE11 simulation of pollutant transport. Further, the cost
function is minimized by finding an optimal operation of the
two reservoirs (Hălceni and Drăcşani) and releasing clean
water used for dilution of the pollutant. Finally, it is pos-
sible to evaluate the cost in EUR of taking no action to
mitigate pollution. As well, it is possible to evaluate the cost
of dilution according to a heuristic, respectively the cost of
making optimized dilution. By mitigating pollution with the
optimized dilution, a total savings of about 1342000 EUR is
obtained.

Because the problem of accidental water pollution is
addressed in this paper, we could not have a real pollution
case study. Therefore, the transport of pollutant on the river
could not be experimented in reality, and within the scope
of this work the pollutant propagation along the river is
simulated using MIKE11 software. In this way, the graphic
of the concentration of the pollutant (i.e. the pollutograph)
in a given point on the river, ci(t), was estimated. Based on
this, the maximum value of this function was determined.
However, for future validations, measuring real data when
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Algorithm 1 Nelder Mead Simplex Algorithm
1: function SIMPLEXNELDERMEAD(x0 ∈ Rn, h, l, u) F input: initial vertex x0, steps vector h, lower/upper bounds constraints

vectors.
F compute the remaining n simplex vertexes

2: for j← 1; j ≤n; j← j+ 1 do
3: xj← x0 + hj∗ej F ej is the unit vector
4: if VIOLATESCONSTRAINTS(xj, l, u) then
5: f (xj)← APPLYPENALTIES(xj) F apply penalties
6: end if
7: end for
8: while TERMINATIONTEST( )=False do

F determine the indices of the worst, second worst and best vertex in the current simplex (w,s,b)
9: w← indexOf (max{fj = f (xj)})

10: if VIOLATESCONSTRAINTS(xw, l, u) then
11: f (xw)← APPLYPENALTIES(xw)
12: end if
13: s← indexOf (max{fj = f (xj)|j 6= w})
14: if VIOLATESCONSTRAINTS(xs, l, u) then
15: f (xs)← APPLYPENALTIES(xs)
16: end if
17: b← indexOf (min{fj = f (xj)})
18: if VIOLATESCONSTRAINTS(xb, l, u) then
19: f (xb)← APPLYPENALTIES(xb)
20: end if
21: fw = f (xw)
22: fs = f (xs)
23: fb = f (xb)
24: c← 1

n ×
∑

j6=w xj F compute the centroid of the best side
25: xr ← REFLECT(α, c, xw) F Apply the reflection transformation
26: if fb ≤ f (xr ) < fs then
27: Replace xw with xr in the simplex and go to 8)
28: end if
29: xe← EXPAND(γ, c, xr ) F Apply the expansion transformation
30: if fe < f (xr ) then
31: Replace xw with xe in the simplex and go to 8)
32: else
33: Replace xw with xr in the simplex and go to 8)
34: end if
35: if fs ≤ f (xr ) then
36: xc← CONTRACT(β, c, xr , xw) F Apply the contraction transformation
37: if f (xc) ≤ f (xr ) ∨ f (xc) < fw then
38: Replace xw with xc in the simplex and go to 8)
39: else F Apply the shrink transformation
40: Keep only the best vertex xb and compute n new vertexes by shrink(δ, xb)
41: go to 8)
42: end if
43: end if
44: end while
45: return xb and f (xb) F output: the minimum value and its x
46: end function
47: function REFLECT(α, c, xw)
48: return c+ α × (c− xw)
49: end function
50: function EXPAND(γ, c, xr )
51: return c+ γ × (xr − c)
52: end function
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Algorithm 2 (Continued.) Nelder Mead Simplex Algorithm
53: function CONTRACT(β, c, xr , xw)
54: if fs ≤ f (xr ) < fw then
55: return c+ β × (xr − c)
56: else
57: return c+ β × (xw − c)
58: end if
59: end function
60: function SHRINK(δ, xb)
61: for j = 0; j ≤ n ∧ j 6= b; j← j+ 1 do
62: xj← xb + δ(xj − xb)
63: end for
64: return the vector composed of xj values
65: end function
66: function APPLYPENALTIES(xj)
67: return f (xj)+ p× [

∑n1
i=0(attemptedi − ui)

2
+

∑n2
i=0(li − attemptedi)

2]
68: end function
69: function VIOLATESCONSTRAINTS(xj, l, u)
70: for k ← 1; k ≤n; k ← k + 1 do
71: if xj[k] 6∈ [l[k]; u[k]] then
72: return true;
73: end if
74: end for
75: return false;
76: end function

a future accident will happen, to be eventually compared with
the simulated data, must be considered.

Based on the application of the proposed working method-
ology, some metrics related to the algorithm execution time
may be evaluated. The Nelder-Mead algorithm execution
time is negligible compared with the simulation time. There-
fore one iteration for the optimization process which is com-
posed of one MIKE11 simulation and the processing steps
specific to Nelder-Mead takes about 10 minutes. Because
of the necessary time to run a MIKE11 simulation, while
completing the optimization algorithm requires in average
175 iterations, a total of about 30 hours time is needed just for
experimenting for only one initial condition x0. Thus, to test
10 different x0 starting points, it will require about 13 days
of continuously running MIKE11 simulation tool. Therefore,
for future developments, we intend to study how to parallelize
this process, if possible, on a cluster of high computing nodes.

The future research refers to meta-optimization, i.e. using
other optimization methods to determine x0 and the vector
h to tune the Nelder-Mead optimization. In this respect,
Burmen et al. [51] propose to use a high performance par-
allel computing cluster composed of 100 CPU’s to solve
the computationally intensive problem of optimizing the
parameters of Nelder-Mead simplex algorithm. The above
mentioned research can be extended and applied in the meta-
optimization problem of reservoir operation.

Another topic of further investigation is to study the impact
of choosing different scalarization weights wi in Eq. (10),

regarding the Pareto solutions of the multi-objective opti-
mization problem. Even if the Pareto solutions are ‘‘equally
good’’, some of them could be preferred over others accord-
ing to some user defined criteria. A possible goal of the
research is to analyze if such user preferences can be defined
in the context of the reservoir operation optimization and to
identify the weights wi according to these preferences.

APPENDIX
NELDER-MEAD SIMPLEX ALGORITHM
The Nelder-Mead algorithm [17] is one of the best algo-
rithms available today for optimization of multidimensional
unconstrained functions. The algorithm uses the notion of a
simplex in Rn which is a convex hull of (n+1) points in Rn

(for example, in 2-D space a triangle, in 3-D a tetrahedron).
The method starts with a simplex and for each vertex xi ∈ Rn

keeps the values f (xi). The algorithm executes a series of
geometrical transformation on the simplex to decrease the
f (xi) values. The transformations are: reflection, expansion,
contraction, shrink. Three possible termination criteria can be
used: domain convergence (when the vertexes of the simplex
are very close one to another, so the simplex becomes very
small), function value convergence (the values of the function
in the vertexes are close enough) or max evaluations (a pre-
defined limit of function f evaluation was reached).

The original algorithm is adapted to be suitable for con-
strained optimization by introducing a penalty for the case
when one computed vertex (let’s name it xnew) of the simplex
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violates a constraint:

f (xnew) = f (xold )+ p× [
n1∑
i=0

(attemptedi − ui)2

+

n2∑
i=0

(li − attemptedi)2] (25)

The new value is replaced with its old value plus addi-
tional penalty that is p times the sum of the squares of
differences between the attempted value and the bounds.
In Equation (25), n1 represents the number of parameters
violating upper bound constraints and n2 the number of
parameters violating lower bound constraints. This can be
applied to constraints involving only one parameter or to
multi-parameters constraints (in this later case, the attemptedi
is the sum of the parameters that is subject to a bound
constraint).

The algorithm requires at input an initial estimation x0 for
a vertex and a vector of steps that will be used in line 3
to compute the remaining n vertexes. Together with x0 they
define the initial simplex. The ej is the unit vector in Rn.

The main loop in lines 8-44 is executed until the termina-
tion condition is evaluated to true. Its goal is to replace the
worst vertex with a new vertex computed as a result of one
of the geometric transformations. Each vertex is verified if
violates the constraints (lines 4,10,14,18). If yes, penalties are
added to the current value of the objective function. At each
iteration a new simplex, smaller than the previous one is
obtained. Four main vertexes are used in the computations
(lines 11,13,17,24): the worst vertex (corresponding to the
highest value of function f), the second worst vertex and the
best vertex (corresponding to the lowest value), and the cen-
troid of the side that is opposed to the worst vertex. Only one
transformation from four attempts is applied (lines 25-43),
in the following order: reflection, expansion, contraction and
shrink. If one transformation can not be applied, then the
algorithm tries the next one. If none of the first three transfor-
mations can be applied, then shrink transformation computes
n new vertexes, keeping only the best vertex. After the main
loop exits, the best vertex is returned. The pseudo code for
computing the new vertex for each of the four transformations
is presented in lines 47-65.

The transformation are parametrized by the α, β, γ and δ
which obeys to following constraints:

α > 0; 0 < β < 1; γ > 1; γ > α; 0 < δ < 1

The values of these parameters that are often used in many
implementations are: α = 1, β = 0.5, γ = 2, δ = 0.5.
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