
Received October 10, 2018, accepted October 23, 2018, date of publication November 2, 2018, date of current version December 3, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2879386

A Simplified DOA Estimation Method Based on
Correntropy in the Presence of Impulsive Noise
QUAN TIAN 1, TIANSHUANG QIU 1, JITONG MA 1, JINGCHUN LI2, AND RONG LI2
1Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
2State Radio Monitoring Center, Beijing 100037, China

Corresponding author: Tianshuang Qiu (qiutsh@dlut.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61671105, Grant 61139001, Grant 61172108,
and Grant 81241059.

ABSTRACT Many approaches have been studied in the field of array signal processingwhen impulsive noise
is modeled with an alpha-stable distribution. By introducing the correntropy, which exhibits a robust statistics
property, this paper defines a correntropy-based (COB) operator that provides a powerful mechanism to
eliminate the detrimental effect of outliers in alpha-stable distributed noise environments. To improve
computational efficiency, we apply the unitary transformation to the COB upper triangular Toeplitz matrix
and construct a novel real-valued approximate estimation matrix with a MUSIC-like algorithm. On the basis
of guaranteeing the accuracy of the direction of arrival estimation, the proposed algorithm also significantly
reduces the computational complexity of the calculations. Comprehensive Monte Carlo simulation results
demonstrate that the proposed algorithm is more robust than the existing algorithms in terms of the
probability of resolution and root-mean-square-error, especially in the presence of highly impulsive noise or
low generalized signal-to-noise ratio.

INDEX TERMS Alpha-stable distribution, correntropy, Toeplitz matrix, unitary transformation, MUSIC,
DOA estimation.

I. INTRODUCTION
The problem of DOA estimation has been the focus of
research for decades [1]–[5], and numerous effective meth-
ods have been proposed, for example, subspace-based
high-resolution parameter estimation methods such as
ESPRIT [6]–[8] and MUSIC [9]–[11], maximum-likelihood
[12], [13] and conjugate augmented MUSIC [14] techniques
including wireless communications, radar [15], sonar and
microphone array systems. In the past, DOA estimation has
been extensively investigated in the presence of additive noise
that is assumed to be modeled by the Gaussian distribu-
tion, and a variety of algorithms has been proposed. How-
ever, many signals and noises encountered in practice are
decidedly non-Gaussian, for example, low-frequency atmo-
spheric noise, underwater acoustic signals and many types of
human-made noises. Therefore, it is inappropriate to model
the noise under Gaussian conditions. Recent studies also
show that due to the influence of sea waves and moun-
tains, the array outputs exhibit sharp spikes [16]. In [17],
these classes of noises often result in significant perfor-
mance degradation for systems optimized under the Gaussian
assumption; that is, if the noise statistics deviate from the

Gaussian distribution, a severe deterioration in performance
may occur. As a consequence of heavy tails of probability
density function (pdf), the alpha-stable distribution provides
a more useful theoretical tool than the Gaussian distribution
to describe the signal and noise sources mentioned above.
As a variable parameter α controls the heaviness of tails,
the alpha-stable distribution is a very flexible modeling tool.
Unfortunately, no closed-form expression exists for the pdf
of the alpha-stable distribution except for the Gaussian and
Cauchy distributions. The alpha-stable distribution is gener-
ally defined by its characteristic function as

ϕ(t) = exp
{
jµt − γ |t|α

[
1+ jβsgn(t)ω(t, α)

]}
(1)

where

ω(t, α) =

tan
(πα

2

)
α 6= 1

2
π
log |t| α = 1

(2)

and

sgn(t) =


1 t > 0
0 t = 0
−1 t < 0

(3)
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for some real α, β, γ, µ with

0 < α ≤ 2, −1 ≤ β ≤ 1, γ > 0, −∞ < µ < +∞

(4)

α is the characteristic exponent, whichmeasures the thickness
of the tails of the distribution and is uniquely determined. β is
a symmetry parameter and determines the sign and degree of
asymmetry. β = 0 implies a distribution symmetric about µ.
In this case, the distribution is called symmetric alpha-stable
(SαS). γ is a scale parameter, also called the dispersion. It is
similar to the variance of the Gaussian distribution and can
measure the degree of discretization of the data samples. µ is
a location parameter. Furthermore, for the SαS distribution,
µ represents the mean when 1 < α ≤ 2 or the median when
0 < α < 1. An SαS distribution is said to be standard if
γ = 1, µ = 0.
Note that SαS degenerates into the Gaussian distribution

when α = 2. Due to the infinite covariance of the SαS dis-
tribution, the conventional DOA estimation algorithms based
on the second-order statistics degrade dramatically in their
performance under impulsive noise environments [18]. For
details about the SαS distribution, see [19] and the references
therein.

One idea for improving the performance of the conven-
tional MUSIC algorithms based on second-order statistics
is to adopt the fractional lower-order statistics instead of
the second-order covariance, e.g., FLOM-MUSIC [20]. Frac-
tional lower-order statistics-based methods are robust against
outliers, but large sample sizes are required to achieve a sat-
isfactory performance [22]. The fractional lower-order cyclic
statistics can effectively restrain both the impulsive noise and
the co-channel interference [21].

In addition, there is a class of impulsive noise robust
algorithms introduced within different applications based
on the `p-norm as the fidelity criterion. For example, the
`p-norm is used viaADMMfor robustmatrix completion [23].
To overcome the drawbacks of the two-step method of time
delay estimation (TDE), such as error accumulation, esti-
mation bias and nonrobust impulsive noise or outliers, [24]
proposed the `p-norm minimization algorithm. Moreover,
an `p-`1 minimization approach named Lp-ADM was pro-
posed in [25], in which `p-norm was used for error penal-
ization and `1-norm was employed for sparsity. In [26],
a new channel estimation and an equalizer design crite-
rion based on the minimization of the absolute error func-
tion with an `1-norm regularization term were proposed,
which involved the `1-regularized least-absolutes (`1-LA)
and the linear least-absolutes (LLA) algorithms. By using the
`1-modulus of complex numbers instead of the standard
modulus, the channel estimation and equalization problem is
recast into linear programming that can be efficiently solved.

The zero-memory non-linearity (ZMNL) [27] based
MUSIC methods were proposed for limiting the influence
of impulsive noise by clipping the amplitude of the received
signals. ZMNL may provide more accurate DOA estimation

than the fractional lower-order based methods. However, its
performance might degrade with an increase in the rank of
the signal subspace.

The unitary transformation method [28] was presented
to transform the complex covariance matrix of an equally
spaced linear array into a real symmetric matrix. Since the
computations of performing the unitary transformation are
much less than those of performing the eigenvalue decom-
position and spectral peak search, this method saves a sig-
nificant number of calculations. The unitary transformation
was also applied to spherical arrays in [29] to achieve a lower
computational cost and better performance.

In [30], the correntropy was proposed as a new statistic
that can quantify both the statistical distribution and the
time structure of two random processes. The correntropy,
which contains higher-order statistics, can extract more infor-
mation than the correlation function and provide a robust
method to suppress the influence of outliers. By virtue
of correntropy, [37] defined a robust correlation criterion,
the correntropy-based correlation (CRCO), to estimate DOA
by MUSIC. It introduced correntropy as an adaptive factor
into the covariance matrix to reduce the effect of impulsive
noise.

In this paper, we focus on passive radio monitoring and
signal source target location and address the DOA estimation
problems of robust subspace under impulsive noise envi-
ronments including the scenarios where the bursts or spikes
generally exhibit in the array signals from the perspective of
correntropy. The main contributions of this work are summa-
rized as follows:
• An effective estimation operator is derived, and a novel
correntropy-basedMUSIC algorithm is proposed to esti-
mate DOAs in the presence of impulsive noise. The
proposed algorithm can significantly improve the esti-
mation performance in terms of resolution and accuracy.
We also prove the boundedness of this operator.

• To reduce the computational complexity of the
MUSIC-like algorithm, we construct a Toeplitz matrix
and define a new real-valued estimation matrix, which
maintains a low level of computational complexity but
provides reasonable DOA estimation performance.

Consider CRCO-MUSIC and ZMNL-MUSIC algorithms;
although CRCO applies correntropy to suppress impulsive
noise, we rederive a new estimation matrix that is more robust
than the estimation matrix used by CRCO. ZMNL handles
heavy-tailed noise by passing it through a zero-memory non-
linearity; however, although the algorithm is more immune
to impulsive noise than the fractional lower-order statistics
such as FLOM and phased fractional lower-order moment
(PFLOM) [15], it has lower noise suppression ability than
correntropy. The proposed algorithm not only achieves better
DOA estimation performance but also has lower computa-
tional complexity.

The remainder of this paper is organized as follows.
After a brief introduction of the signal model of the sensor
array outputs, Section II describes the definition and some
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essential properties of the correntropy of independent and
identical distribution (i.i.d.) complex SαS random variables.
To suppress the impulsive noise and simplify the solution,
Section III defines the correntropy-based (COB) operator
and derives several properties of the COB. Furthermore,
we present the difference between MSE and COB and dis-
cuss the advantage of correntropy. On this basis, we con-
struct the COB Toeplitz matrix. Considering the unitary
transformation, we define an approximate estimation matrix
that is employed to substitute the covariance matrix of the
conventional MUSIC-like algorithm for DOA estimation in
Section IV. Finally, we demonstrate simulation results in
Section V, and Section VI summarizes the conclusions and
future works.

The following notations are used throughout this paper.
The superscripts ′∗′, ′T ′ and ′H ′ denote the conjugate, trans-
pose and conjugate transpose, respectively.E[·],<(·) and=(·)
represent the mathematical expectation and real and imagi-
nary part operators, respectively.

II. PROBLEM FORMULATION
A. SIGNAL MODEL
Consider L narrow-band independent, complex isotropic
incoherent sources with a known center frequency ω and
locations {θ1, θ2, · · · , θL} impinging on a uniform linear
array (ULA) with M sensors. In the following, we assume
that the underlying noises are i.i.d. complex SαS random
processes with the same characteristic exponent α and that
the real and imaginary parts of these noises are statistically
independent of one another [31] both along the array sensors
and over time. In the subspace-based algorithms, the number
of signal sources needs to be less than the number of sensors,
that is, L < M . As the propagation delay across the array
is much smaller than the reciprocal of the signal bandwidth,
the complex envelope of the array output at the ith sensor
can be employed to estimate the parameters in the following
model:

xi(t) =
L∑
k=1

ai(θk )sk (t)+ ni(t), i = 1, 2, · · · ,M (5)

where ai(θk ) = e−j
2π
λ
(i−1)d sin(θk ) is the steering coefficient

of the ith sensor toward direction θk , the distance between
adjacent sensors is d , λ is thewavelength of the carrier, sk (t) is
the kth signal received at the ith sensor and ni(t) is the additive
noise at the ith sensor.
Equation (5) can be rewritten in a compact form as

x(t) = A(θ )s(t)+ n(t) (6)

where we have the following:
• x(t) = [x1(t), x2(t), · · · , xM (t)]T is theM × 1 vector of
the signals received by the sensor array.

• s(t) = [s1(t), s2(t), · · · , sL(t)]T is the L × 1 vector of
the complex signal amplitudes for the sources.

• A(θ ) = [a(θ1), a(θ2), · · · , a(θL)] is the M × L
matrix of the array steering vector, and each vector

a(θk ) has the following special structure: a(θk ) =
[1, e−j

2π
λ
d sin(θk ), · · · , e−j

2π
λ
(M−1)d sin(θk )]T .

• n(t) = [n1(t), n2(t), · · · , nM (t)]T is theM × 1 vector of
additive measurement noise.

x(t) and n(t) are multivariate independent and zero-
mean; n(t) is assumed to be spatially uncorrelated. The
problem addressed in this paper is estimating the DOAs
{θ1, θ2, · · · , θL} of the sources from the N snapshots of the
array outputs. The number of sources L is assumed to be
known.

B. CORRENTROPY AND ITS PROPERTIES
Inspired by information theoretic learning, based on the view-
point of kernel methods, the correntropy has been proposed
as a novel robust statistic. Ref. [30] shows that correntropy is
directly related to the probability of how similar two random
variables are in a neighborhood of the joint space controlled
by the kernel size. Furthermore, the correntropy also provides
a powerful mechanism to eliminate the detrimental effect of
outliers.

By extending the fundamental definition of the correlation
function for random processes with a generalized correlation
function and containing higher-order moments of the pdf,
the correntropy has been employed in problems [34]–[36],
including the DOA estimation problems [37]–[40].

Refs. [30] and [32] define the correntropy between two
arbitrary random variables X and Y as follows

Vσ (X ,Y ) = E [κσ (X − Y )] =
∫
κσ (x − y)dFv(x, y) (7)

where κσ (·) is a shift-invariant kernel that satisfies Mercer’s
theorem and Fv(·, ·) denotes the joint distribution function
of (X ,Y ) in [33].

However, for some cases of practical interest, since we
do not know the joint pdf and only use a finite amount of
data{(xi, yi)}Ni=1, the sample estimator of correntropy [30] can
be obtained through

V̂σ (X ,Y ) =
1
N

N∑
i=1

κσ (xi − yi) (8)

The Gaussian kernel is generally chosen as the kernel
function that can be expressed as

κσ (xi − yi)=
1

√
2πσ

exp

(
−
(xi−yi)2

2σ 2

)
, i = 1, 2, · · · ,N

(9)

where σ > 0 denotes the kernel size, and N is the number of
the data points. The kernel size can be determined by using
Silverman’s rule or maximum-likelihood concepts.

It is worth noting that by utilizing a Taylor series expansion
with the Gaussian kernel, the correntropy can be formed as

Vσ (X ,Y ) =
1

√
2πσ

∞∑
n=0

(−1)n

2nn!
E

[
(X − Y )2n

σ 2n

]
(10)
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which involves all the even-order moments of the random
variableX−Y . Consequently, it is beneficial for nonlinear and
non-Gaussian signal processing. Equation (10) also indicates
that the correntropy contains the conventional covariance
function, and kernel size controls the weights of higher-order
moments. However, from (8), it is easy to see that the corren-
tropy is much simpler to estimate directly from data samples
than the conventional moments.

In 2D sample space, correntropy induces a metric named
the correntropy induced metric (CIM). Considering two vec-
tors X = [x1, x2, · · · , xn]T and Y = [y1, y2, · · · , yn]T ,
the CIM function is defined by

CIM(X ,Y ) =
√
κσ (0)− Vσ (X ,Y ) (11)

the contours of CIM that measure the distance from the origin
to a point (xi, yi), i = 1, 2, · · · , n, are shown in Fig. 1.

FIGURE 1. Contours of CIM in 2D sample space with different kernel
size: (a) σ = 1; (b) σ = 1.8.

CIM is translation invariant and not homogeneous, so it
does not induce a single norm. We can also observe some
interesting facts from Fig. 1: when the point is close to the
origin, CIM behaves similarly to an L2 norm called the

Euclidean zone; when the point is apart from the origin, CIM
behaves similarly to an L1 norm; and if the point is farther
from the origin, CIM behaves similarly to an L0 norm. These
findings demonstrate that the correntropy is a local similarity
measure and more robust to outliers and the scale of CIM can
be controlled by the kernel size.

Additionally, we list four main properties of CIM with
complex joint SαS random variables X and Y :
• CIM is nonnegative: CIM(X ,Y ) ≥ 0.
• CIM is symmetric: CIM(X ,Y ) = CIM(Y ,X ).
• CIM reaches its minimum if and only if X = Y , then
CIM(X ,Y ) = 0.

• CIM satisfies the triangle inequality: CIM(X ,Z ) ≤
CIM(X ,Y ) + CIM(Y ,Z ) if the random variable Z has
the same distribution as X or Y .

III. PROPOSED SOLUTION
We define a novel operator based on the correntropy to effi-
ciently suppress outliers in the presence of impulsive noise.

A. CORRENTROPY-BASED OPERATOR
1.Definition

Considering two i.i.d. SαS random variables X and Y ,
the COB operator VT is defined by

VT = E
[
κσ (X − Y )(X − Y )2

]
(12)

2.Properties
Some important properties of the COB operator are pre-

sented next. The first three are obtained after straightforward
derivations and will therefore not be proved here. The proof
of the forth property is shown in APPENDIX A.

1) COB operator is symmetric: VT (X ,Y ) = VT (Y ,X ).
2) COB operator is centrosymmetric: VT (X ,Y ) =

VT (−X ,−Y ).
3) COB operator is nonnegative for real signals: VT ≥ 0.

It is easy to see that κσ (X − Y ) > 0 and (X − Y )2 ≥ 0,
so the COB operator reaches its minimum if and only
if X = Y .

4) COB operator is bounded.

B. COMPARISON BETWEEN MEAN SQUARE
ERROR (MSE) AND COB
Considering two random variables X and Y , the residual error
is defined by ε = X − Y . The MSE can be expressed as

MSE (X ,Y ) = E[(X − Y )2]

=

∫∫
(x − y)2fXY (x − y)dxdy

=

∫
ε2f (ε) dε (13)

and

VT (X ,Y ) = E[κσ (X − Y )(X − Y )2]

=

∫∫
κσ (x − y)(x − y)2fXY (x − y)dxdy

=

∫
κσ (ε)ε2f (ε)dε (14)
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From (13), we can observe that the MSE is a second-order
statistic in the joint space with a valley along the line y = x.
Since theMSE quantifies the differences between x and y and
is quadratically increased for values away from this line, it can
be employed as a similarity measure in the joint space.

However, the MSE reflects the influence of global error
and can provide optimality for the Gaussian noise. If the
underlying noise is modeledwith the alpha-stable distribution
that has outliers, the impulsive residuals will be accumulated
in the MSE. This is why other distributions will make the
MSE nonoptimal, especially if the measurement noise con-
tains impulsive components; then, the noise has a nonzero
mean or is nonsymmetric.

In (14), we employ the exponential kernel function that can
be expressed as

κσ (ε) = exp
(
−
|ε|

2σ 2

)
(15)

Assume ε contains impulsive components; as ε increases,
the κσ (ε) decay quickly, and if ε tends to +∞, the κσ (ε)
tends to zero. Consequently, the outliers will not tend to
dominate, and the COB can obtain better performance than
the MSE.

Now, we can summarize that the COB operator introduces
an adaptive weight factor into the second-order statistics.
By using the kernel size as a zoom adjuster of the data
samples and decreasing the influence of impulsive noises
exponentially, the COB operator improves the performance
of the parameter estimation on the basis of the boundedness
of the second-order statistics.

C. COB TOEPLITZ MATRIX
In them×m square case, the Toeplitz matrix has the following
structure:

T =


b1,1 b1,2 · · · b1,m

b2,1 b1,1
. . .

...
...

. . .
. . . b1,2

bm,1 · · · b2,1 b1,1


m×m

(16)

Accordingly, the corresponding COB Toeplitz matrix Q of
the sensor array outputs can be constructed, and the (i, j)th
entry Qi,j can be expressed as

Qi,j = E
[
κσ (xi(t)− x

∗
j (t))(xi(t)− x

∗
j (t))

2
]

(17)

where xi(t) and xj(t) are the ith and jth components, respec-
tively, of the vector x(t).
Furthermore, consider the characteristics of the received

signal. If the array outputs {xi(t)}Mi=1 are real-valued, the Qi,j
will be zero for i = j; that is, the singular value decom-
position (SVD) of Q does not exist. To solve this problem,
we introduce a weight factor ξ and further generalize the
definition of (17) as

Q′i,j = E
[
κσ (xi(t)− x

∗
j (t))(xi(t)− ξx

∗
j (t))

2
]

(18)

where ξ is a given positive constant. Here, we apply the
parameter ξ to ensure that the estimation matrix Q′ satisfies
the semipositive definite conditions. It is easy to determine
that when the array outputs are complex-valued, (18) is equiv-
alent to (17) in the case of ξ = 1. When the array outputs are
real-valued, the condition ξ 6= 1 can guarantee the estimation
matrix to avoid a nonpositive definite case. Therefore, (18) is
more robust than (17).

To simplify the derivation of the expression given in the fol-
lowing equations, we define κ (i, j)σ := κσ (xi, xj∗); moreover,
to reduce the high computational cost, theM ×M estimation
matrix Q′ is triangulated, and the upper triangular Toeplitz
matrix can be defined in (19), which appears at the top of the
next page.

IV. MUSIC-LIKE SUBSPACE ALGORITHM
A. REAL-VALUED TRANSFORMATION METHOD
In this section, we propose a novel method based on the
MUSIC-like algorithm according to the fact that it is formu-
lated regarding real-valued computations within.

The p× p exchange matrix is defined as follows

J =


0 0 · · · 1

0 0 1
...

...
. . .

. . . 0
1 0 · · · 0


p×p

(20)

We define the following sparse matrices for an even or odd
number sensor array outputs.

If M is an even value, we define

U =
1
√
2

[
I jI
−J jJ

]
(21)

where J and I are the M/2 × M/2 exchange and identity
matrices, respectively. It can easily be shown that U satisfies
UHU = UUH

= I . However, we can also set M to be odd;
in this case, the transformation matrix can be defined by

U =
1
√
2

 I 0 jI
0T

√
2 0T

−J 0 jJ

 (22)

where 0 = (0, 0, · · · , 0)T is the (M−1)/2×1 vector, J and I
are of size (M − 1)/2 × (M − 1)/2. Moreover, without loss
of generality, let us assume that M is even.
In this section, we will briefly review the unitary MUSIC

algorithm: firstly, a unitary matrix U0 is defined, e.g., U0 =

(1/
√
2)[I, J; jJ,−jI] [28], and it satisfies U0

−1
= U0

H

and U0
∗J = U0. Secondly, for any M × M Hermitian

persymmetric matrixG,U0GU0
H is real and symmetric, i.e.,(

U0GU0
H
)∗
= U0

*G*U0
T

= U0
*JJG*JJU0

T

= U0GU0
H (23)
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RT =



E
[
κ
(1,1)
σ

(
x1 − ξx∗1

)2] E
[
κ
(1,2)
σ

(
x1 − ξx∗2

)2]
· · · E

[
κ
(1,M )
σ

(
x1 − ξx∗M

)2]
0 E

[
κ
(1,1)
σ

(
x1 − ξx∗1

)2] . . .
...

...
. . .

. . . E
[
κ
(1,2)
σ

(
x1 − ξx∗2

)2]
0 · · · 0 E

[
κ
(1,1)
σ

(
x1 − ξx∗1

)2]


(19)

Furthermore, U0GU0
H is Hermitian since G is Hermitian.

With this theorem, we can form a real symmetric trans-
formed covariance matrixU0RU0

H . It is well known that the
eigenvalues and eigenvectors of a real-valued matrix are real,
so calculating the eigencomponents of U0GU0

H requires
real compilations only. We can derivate that if we define
the real-valued eigenvectors and eigenvalues as η′i and λ

′
i of

U0GU0
H , the following relations can be obtained as

η′i = U0ηi (24)

and

λ′i = λi (25)

where ηi and λi i = 1, 2, · · · ,M are the eigenvectors and
eigenvalues ofR, respectively. Therefore, the signal and noise
subspaces can be constructed from both (24) and (25). Finally,
after performing the SVD and searching for the spectral peak,
the DOAs of the signal sources can be obtained.

To reduce the computational complexity, the solution we
adopted is converting the complex-valued estimation matrix
to a real-valued matrix. Due to the unitary matrix U defined
by (21), there is U∗J 6= U ; it can be seen that U does not
satisfy (23). That is, URTUH is a complex-valued matrix.
Therefore, we define the real part of UHRTU as a new
approximate estimation matrix

CT := <

(
UHRTU

)
(26)

which can be obtained via the forward COB Toeplitz
matrix RT . This new estimation matrix reduces the compu-
tational cost by at least a factor of four without sacrificing
accuracy, and our previous works proved that the matrix U
performs better than the unitary matrix involved in [28].

AsRT is an upper triangular Toeplitz matrix, we can divide
it into four M/2 × M/2 submatrices: A, B, C and 0, which
are shown as follows:

RT =
[
A C
0 B

]
(27)

in which A and B are also upper triangular matrices.
By replacing the expression of U with (21), it follows that

UHRTU =
1
2

[
I jI
−J jJ

]H [A C
0 B

] [
I jI
−J jJ

]
=

1
2

[
A C − JB
−jA −jC − jJB

] [
I jI
−J jJ

]

=
1
2

[
A− CJ + JBJ jA+ jCJ − jJBJ
−jA+ jCJ + jJBJ A+ CJ + JBJ

]
(28)

The matrix RT has an upper triangular Toeplitz structure;
thus, it is easy to determine that the submatrices satisfy
the condition: A = B. Therefore, we can simplify RT by
replacing B with A; then, (28) can be rewritten as follows:

UHRTU

=
1
2

[
A− CJ + JAJ jA+ jCJ − jJAJ
−jA+ jCJ + jJAJ A+ CJ + JAJ

]
(29)

CT =
1
2

[
<(A+ AT − CJ) <(jA+ jCJ − jAT )
<(−jA+ jCJ + jAT ) <(A+ AT + CJ)

]
=

1
2

[
<(A)+<(AT )−<(CJ) −=(A)−=(CJ)+=(AT )
=(A)−=(CJ)−=(AT ) <(A)+<(AT )+<(CJ)

]
(30)

whose real parts can be expressed by (30).
To build the estimation matrix under the assumption of the

signal model in (6), we have to compute an M × M matrix.
However, if we want to achieve the proposed estimation
matrix CT in (30), we only need to calculate twoM/2×M/2
matrices A and C, which involve merely computingM/2 and
M − 1 entries, respectively.
Comparing the computations of performing the SVD and

searching for the spectral peak, as multiplication occupies
most of the computational load and a complex-valued mul-
tiplication requires four real multiplications and three real
additions, whatever the construction of covariance matrix,
SVD or spectral peak search, the proposed algorithm will
save a considerable number of computations.

B. THE IMPLEMENTATION OF THE TOEPLITZ
REAL-VALUED MUSIC
As analyzed in Sections III and IV, the COB-based unitary
MUSIC algorithm for finding a source’s direction, referred
to as the COBU-MUSIC algorithm, can be implemented by
the following six steps.

1) Compute the M × M upper triangular Toeplitz esti-
mation matrix Q′, and its nonzero (i, j)th entry can be
written as

Q′i,j =
1
N

N∑
t=1

[
exp

(
−
|xi(t)− x∗j (t)|

2σ 2

)
(
xi(t)− ξx∗j (t)

)2 ]
(31)
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2) Compute theM/2×M/2 matrices<(A), =(A),<(AT ),
=(AT ), < (CJ) and = (CJ), which constitute the esti-
mation matrix CT ;

3) Execute SVD on CT and obtain the M × (M − L)
singular matrix D, which associates with the smallest
M − L singular values of the estimation matrix CT .

4) Compute the spatial spectrum of COBU-MUSIC

PCOBU (θ ) =
1

aH (θ )D
(
DHD

)−1
DHa(θ )

(32)

where a(θ ) is the ULA steering vector;
5) Find L local peaks of PCOBU (θ );
6) Estimate the DOAs {θ1, θ2, . . . , θL} of the multiple

sources from the L peaks.

C. COMPLEXITY ANALYSIS
In practical applications, not only the DOA estimation
performance of the methods but also their computational
complexity is important. Therefore, we compare the compu-
tational complexity of theMUSIC, FLOM-MUSIC, PFLOM-
MUSIC, ZMNL-MUSIC and CRCO-MUSIC algorithms
with that of the proposed algorithm in this section. It is
well known that the MUSIC-like DOA estimation algorithms
involve constructing a covariance matrix, eigenvalue decom-
position and spectral peak search. In general, the computa-
tional complexity of the MUSIC algorithm is concentrated
in the eigenvalue decomposition and spectral peak search
stages.

For the spectral peak search, (π/$ )+1 steps are required,
in which $ is the step length. The calculation for each
step is 2M (M − L) + M real multiplications. Therefore,
the total number of operation in the spectral peak search is
O([2 M (M − L)+M ](π/$ + 1)).

Considering the eigenvalue decomposition of the
M × M complex matrix, O(20M3) real multiplications
are required [41]; therefore, the complexity of MUSIC,
FLOM-MUSIC, PFLOM-MUSIC, ZMNL-MUSIC and
CRCO-MUSIC is O(20M3) real multiplications, and the
complexity of COBU-MUSIC is O(17/3M3

+ 2NM2) real
multiplications [42].

For constructing the covariance matrix, MUSIC needs
O(4NM2) real multiplications, and the complexity of FLOM-
MUSIC, PFLOM-MUSIC and ZMNL-MUSIC isO(6NM2

+

11NM ),O(4NM2
+ 14NM ) andO(4NM2

+ 15NM ), respec-
tively. In terms of real multiplications, the total computational
complexity required by the CRCO-MUSIC can be approxi-
mately expressed as O(13NM2), and the complexity of the
proposed algorithm is O(11NM ). It can readily be seen that
the computational complexity of the proposed algorithm is
dominated by the requirements of estimating the DOAs and
among all the algorithms, the proposed algorithm has the best
execution efficiency.

D. CRAMÉR-RAO BOUND
Consider that the complex-valued noise components ω (t) =
ω̄ (t)+ jω̃ (t) are i.i.d. in time and space, and assume that the

pdf is symmetric; therefore, we can represent the pdf as

fpd (ω̄, ω̃) = fpd (±ω̄,±ω̃)

= f (
√
ω̄2 + ω̃2) = f (ρ) (33)

where ρ = |ω| =
√
ω̄2 + ω̃2, and f (·) is defined on

[0,+∞). Assume that fpd (ω̄, ω̃) satisfies the regularity condi-
tions (some details of the regularity conditions can be found
in APPENDIX B), which are necessary for the existence
of Cramér-Rao bound (CRB), the CRB on the accuracy of
estimating the DOA parameter vector θ = [θ1, θ2, . . . , θL]T

for non-Gaussian noise has been derived in [12] and [43].
In [12], the variance of any unbiased estimation is given to
obtain bounded below by the following

CRB−1 (θ) = Ic
T∑
t=1

<

[
SH (t)ZH (θ )(I − A(θ )

×(AH (θ )A(θ ))−1AH (θ ))Z(θ )S(t)
]

(34)

where S(t) = diag {s1(t), s2(t), · · · , sL(t)} is a diagonal
matrix, Z(θ ) = [∂a(θ1)/∂θ1, ∂a(θ2)/∂θ2, · · · , ∂a(θL)/∂θL]
and Ic can be written as

Ic = π

∞∫
0

[
f ′(ρ)

]2
f (ρ)

ρdρ (35)

where f (·) is the noise pdf. Equation (34) illustrates that CRB
is affected only by the scalar factor 1/Ic.
Unfortunately, no closed-form expressions exist for the

alpha-stable distributions, except for the Cauchy (α = 1)
and Gaussian (α = 2) distributions. However, power series
expansions of stable density functions are available and
shown in APPENDIX C.

Let us consider the complex Gaussian distributed noise
with variance 2γ

f (ρ) =
1

2πγ
exp

(
−
ρ2

2γ

)
(36)

and the complex Cauchy distributed noise

f (ρ) =
v

2π
(
v2 + ρ2

)3/2 (37)

where v is the dispersion. Evaluation of (36) and (37) yields
Ic(γ ) = 1/γ and Ic(v) = 3/5v2 for the Gaussian and Cauchy
distributions, respectively. As suggested by [44], if 1 ≤
α ≤ 2, the CRB scalar factor Ic can be well-described
as a quadratic monotonically increasing function with the
characteristic exponent α.

V. SIMULATION RESULTS
A. SIMULATION SETUP
In these simulations, we assume that two statistically inde-
pendent narrow-band quadrature phase-shift keying (QPSK)
signals with unit power are received by a ULA with M = 8
sensors and d = λ/2, where d is the distance between
adjacent sensors and λ is the wavelength of both signals.
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The underlying noises are additive complex isotropic SαS
distribution with the characteristic exponent 0 < α ≤ 2
and the location parameter µ = 0. However, due to the
infinite variance of the alpha-stable family for 0 < α < 2,
we define an effective alternative signal-to-noise ratio (SNR),
namely, the generalized signal-to-noise ratio (GSNR), which
is utilized to evaluate the rate of the signal power over noise
dispersion by

GSNR = 10 log
1
γ
E
[
|s(t)|2

]
(38)

where γ is the dispersion parameter of the SαS distribution.
We evaluate the estimation capability of the proposed

algorithm through two statistical measures: the probability
of resolution and the root mean square error (RMSE). The
two signals are considered to be resolvable if the following
resolution criterion can be satisfied

δ(θI, θII) = g(θm)−
1
2
[g(θI)+ g(θII)] > 0 (39)

where θI and θII are two signal arrival angles, θm is the
mean of θI and θII, and g(θ ) is the reciprocal of the spatial
spectrum P(θ ). The probability of resolution is the ratio of the
successful runs to the total Monte Carlo runs, and the RMSE
of those successful runs is defined by

RMSE=
1
2


√√√√1
K

K∑
i=1

(
x̂1(i)−x1

)2
+

√√√√1
K

K∑
i=1

(x̂2(i)−x2)
2


(40)

where K is the number of the successful runs and x̂1 and x̂2
are the successful estimates of x1 and x2, respectively.
In each simulation, we perform three hundredMonte Carlo

runs and compute the probability of resolution and RMSE of
the DOA estimation. The performance of several algorithms
is reviewed as the functions of seven parameters, namely,
the weight factor, kernel size, GSNR, characteristic exponent,
number of snapshots, angular separation and SNR.

We compare the FLOM-MUSIC, PFLOM-MUSIC,
ZMNL-MUSIC, CRCO-MUSIC and conventional MUSIC
algorithms.

The directions of the two impinging sources are θ1 = 5◦

and θ2 = 15◦ except in Section V-G.

B. THE SELECTION OF THE WEIGHT FACTOR
In (18), we introduce a weight factor ξ to ensure that the esti-
mation matrix satisfies the semipositive definite conditions.
When the weight factor equals 1, the data samples used to
build the estimation matrix are original array outputs without
any adjustment. Therefore, DOA estimation can achieve high
precision. However, when ξ 6= 1, the amplitude of the data
samples is changed by the multiple of the weight factor. The
direct effects are that the original information will be lost
and that the accuracy of the DOA estimation will decrease.
Therefore, if the array outputs are real-valued, we choose
ξ 6= 1, the solution for the direction finding is at the expense
of loss accuracy.

FIGURE 2. Performance of different weight factors: (a) Probability of
resolution; (b) Root mean square error.

In Fig. 2, we see that when the weight factor ξ = 1, both
the RMSE and the probability of resolution are optimal. The
performance degrades with the increase or decrease in the
weight factor. Furthermore, increasing the impulsive com-
ponents in the noise or decreasing the GSNR will lead to a
reduction in the performance of DOA estimation. Therefore,
to obtain the optimal performance of the proposed algorithm,
setting the weight factor to 1 is the most reasonable under the
complex-valued array output conditions. Fig. 2 also indicates
that, in practice, the effective interval of the weight factor can
be limited to (0, 1].

C. THE SELECTION OF THE KERNEL SIZE
Fig. 3 illustrates the performance of the proposed algorithm
versus kernel size σ varied from 0.2 to 4.0 and the char-
acteristic exponent α varied from 1.0 to 1.6. As recom-
mended in [30], the correntropy is directly related to the
probability of how similar two random variables are in a
neighborhood of the joint space controlled by the kernel size.
Furthermore, the kernel size can also affect the performance
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FIGURE 3. Performance of different kernel sizes: (a) Probability of
resolution; (b) Root mean square error.

of the COBU-MUSIC. Fig. 3(a) shows that as σ increases
from 0.2 to 0.4, the probability of resolution monotonically
increases from 0.05 to 1 and has almost no difference with
different α values. When σ is in [0.5, 2.2], the probability
of resolution equals 1; that is to say, the resolution of signal
sources is 100%.

However, if σ > 2.2, the probability of resolution
presents a downward trend. The RMSEs are minimum in
σ ∈ [0.7, 1.5] as shown in Fig. 3(b). Fig. 3 also illus-
trates that if the kernel size is fixed, the performance of
the COBU-MUSIC will decrease with decreasing the char-
acteristic exponent α. From what has been discussed above,
the kernel size is chosen as σ = 1.0 in our simulations.

D. THE EFFECT OF THE GSNR
Fig. 4 and Fig. 5 display the performance of the COBU-
MUSIC compared with the other algorithms versus GSNRs
over a wide range from −5 dB to 10 dB. The number
of snapshots available for these algorithms is set to 300.

FIGURE 4. Performance of different methods versus GSNR at α = 1.5:
(a) Probability of resolution; (b) Root mean square error.

In Fig. 4, the underlying noise is set to be modulated impul-
sive noise with the characteristic exponent α = 1.5; the per-
formance of all algorithms improved with the increasing of
GSNR is demonstrated. However, the conventional MUSIC,
FLOM-MUSIC and PFLOM-MUSIC algorithms are infe-
rior to the other algorithms. For low GSNR, the CRCO-
MUSIC, ZMNL-MUSIC and COBU-MUSIC have a higher
success probability than the other algorithms, and the RMSE
of COBU-MUSIC is lower than the RMSEs of the other
algorithms.

A fairly strong impulsive noise environment with
α = 1.0 (Cauchy noise) is employed, and the DOA estima-
tions are presented in Fig. 5. As expected, due to the increase
of the impulsive components in the noise, the performance
of all algorithms degrades; however, the performance of the
COBU-MUSIC is still the best and very close to the CRB.

E. THE EFFECT OF THE CHARACTERISTIC EXPONENT
Fig. 6 shows the probability of resolution and RMSE curves
as functions of the characteristic exponent α, which varies
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FIGURE 5. Performance of different methods versus GSNR at α = 1.0:
(a) Probability of resolution; (b) Root mean square error.

from highly impulsive conditions with α = 1.0 to moderately
impulsive conditions with α = 1.6. To allow a direct com-
parison of the estimation performance of various algorithms,
the GSNR is assumed as 0 dB in these simulations, and the
number of snapshots available to the algorithms is N = 300.

In general, all of the algorithms perform very well for
α = 1.6 and poorly for α = 1.0. In Fig. 6(a), it is evident
that the change in α has a slight impact on the probability of
resolution of the proposed algorithm. In α ∈ [1.0, 1.6], the
probability of resolution is close to or equal to 1. In Fig. 6(b),
the COBU-MUSIC based on the SαS noise assumption has
the lowest RMSE and is very close to the CRB; in other
words, the performance of the COBU-MUSIC is closer to
optimal than the other algorithms. The results indicate that it
is beneficial to apply the COBU-MUSIC instead of the other
algorithms if quite impulsive noise is involved.

F. THE EFFECT OF THE NUMBER OF SNAPSHOTS
In this experiment, we study the influence of the number
of snapshots N on the performance of these algorithms.

FIGURE 6. Performance of different methods versus the characteristic
exponent α: (a) Probability of resolution; (b) Root mean square error.

The GSNR is kept almost constant at 5 dB. We choose
the characteristic exponent α = 1.2 corresponding to a
highly impulsive noise condition. From Fig. 7(a), we can
observe that although the CRCO-MUSIC, PFLOM-MUSIC
and ZMNL-MUSIC are superior to the FLOM-MUSIC and
conventional MUSIC algorithms, they are inferior to the
COBU-MUSIC regarding the probability of resolution.

Fig. 7(b) shows the resulting RMSE of the estimated DOA
as a function of the number of snapshots N . The CRB is also
plotted. As expected, when N increases from 100 to 1000,
the RMSE decreases. The reason is that when the number
of snapshots is small, the difference between the estimated
value and the true value is large. It is noted that the proposed
algorithm can obtain the best accurate DOA estimation.

G. THE EFFECT OF THE ANGULAR SEPARATION
The importance of this experiment rests in its study of the
performance of the proposed algorithm and other contrast
algorithms concerning the angular separation of the two
incoming signals. In this experiment, a fairly strong impulsive
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FIGURE 7. Performance of different methods versus the number of
snapshots N : (a) Probability of resolution; (b) Root mean square error.

noise with α = 1.2 is applied, and the GSNR is kept at 5 dB.
The number of snapshots N available to these algorithms
is 300.

Fig. 8 contains the simulation results. As we can see,
by comparing with the other algorithms, the COBU-MUSIC
exhibits robustness to the angular separation; that is, for a
given angular separation in Fig. 8(b), the COBU-MUSIC
always obtains a much lower angular separation threshold
than the other contrast algorithms. For a given probability
of resolution in Fig. 8(a), the COBU-MUSIC still obtains a
much smaller angular separation threshold than the others.
We can also clearly observe that for the angular separation in
[2◦, 10◦], the probability of resolution of the COBU-MUSIC
is higher than 0.58; however, when the angular separation
equals 2◦ or 3◦, the other algorithms are not able to separate
the two incident sources.

H. OTHER IMPULSIVE NOISE MODEL
In this section, we consider other two typical impulsive noise
models, i.e., the generalized Gaussian distribution (GGD) and

FIGURE 8. Performance of different methods versus the angular
separation: (a) Probability of resolution; (b) Root mean square error.

the Gaussian mixture model (GMM). In addition, we utilize
the SNR to evaluate the rate of the signal power over noise
power. The SNR can be expressed as

SNR = 10 log
σ 2
s

σ 2
n

(41)

where σ 2
s and σ 2

n are the variances of the signal and noise,
respectively.

1) GGD
The pdf of a zero-mean GGD is given by

pg (υ) =
ςΓ (4/ς)

2πσ 2
υΓ

2 (2/ς)
exp

(
−
|υ|ς

ησ
ς
υ

)
(42)

where σ 2
υ is the variance, ς > 0 is the shape parameter,Γ (·) is

the usual Gamma function defined by Γ (x) =
∫
∞

0 tx−1e−tdt
and η = (Γ (2/ς)/Γ (4/ς))ς/2. The case of ς < 2 models a
heavy-tailed distribution. Specifically, ς = 1 corresponds to
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FIGURE 9. Performance as a function of the SNR in GGD: (a) Probability
of resolution; (b) Root mean square error.

the Laplacian distribution, and when ς = 2, the GGD reduces
to the Gaussian distribution [47]–[50].

Note that the smaller the value of ς is, the more impulsive
the noise. We take ς = 0.3 to simulate the impulsive noise.

2) GMM
The pdf of the two-term GMM [51], [52] noise υ can be
expressed as

pm (υ) =
2∑
i=1

%i
√
2πσi

exp

(
−
υ2

2σ 2
i

)
(43)

where σ 2
i is the variance of the ith term and 0 ≤ %i ≤ 1 is

the probability of the ith term with %1 + %2 = 1. The total
variance of the GMM is σ 2

=
∑2

i=1 %iσ
2
i .

If we choose %1 < %2 and σ 2
1 � σ 2

2 , we can view
that large noise samples of variance σ 2

1 with a small prob-
ability %1 as sparse impulsive noises embed in Gaussian
background noises with small noise samples of variance σ 2

2

FIGURE 10. Performance as a function of the SNR in GMM: (a) Probability
of resolution; (b) Root mean square error.

and a large probability %2. Thus, the GMM can well model
the phenomenon in both impulsive noise and Gaussian noise
environments.

In this simulation, we set %1 = 0.1, %2 = 0.9 and
σ 2
1 = 100σ 2

2 , which satisfies that 10% of the impulsive
noises are contained in the noises and 20 dB stronger than
the Gaussian background noises [51], [52].

In Fig. 9 and Fig. 10, we consider GGD and GMM
as impulsive noises and compare the performance of
COBU-MUSIC with the different algorithms versus SNRs
over a wide range from −5 dB to 10 dB. In Fig. 9(a), when
SNR = −5 dB, the probability of resolution of the proposed
algorithm is 0.62, whereas the possibility of resolution of the
other algorithms does not exceed 0.2. When SNR > 6 dB,
all algorithms can completely separate the incident signals.
Fig. 9(b) illustrates that as the SNR increases from −5 dB
to 10 dB, the RMSEs of all algorithms show a tendency to
decay; however, among the algorithms assessed, the proposed
algorithm has the lowest RMSE.

VOLUME 6, 2018 67021



Q. Tian et al.: Simplified DOA Estimation Method Based on Correntropy in the Presence of Impulsive Noise

Fig. 10 shows the performance analysis of the compari-
son algorithms in the presence of GMM impulsive noise.
It is worth nothing that when the SNR increases gradually,
the proposed and several related algorithms have an approxi-
mate trend with GGD impulsive noise. Moreover, the COBU-
MUSIC still has the best performance. However, when fixing
the SNR, the suppression of GMM impulsive noise of the
proposed algorithm is better than that of GGD impulsive
noise.

Overall, these results indicate that the proposed algorithm
can achieve better performance and higher robustness than
others under the three typical impulsive noise (SαS, GGD and
GMM) conditions.

VI. CONCLUSIONS
We present a novel approach to the DOA estimation problem
for array signal processing in the impulsive noise that is
i.i.d. in time and space and modeled with complex isotropic
SαS, GGD and GMM, respectively. An estimation matrix
is constructed based on the correntropy and Toeplitz trans-
formation. To improve computational efficiency, we employ
the unitary transformation and define a new approximate
estimation matrix, which is used to build the COBU-MUSIC
algorithm.

The comprehensive simulations are carried out to evalu-
ate the performance of different MUSIC-like algorithms and
analyze the effect of parameter changes on the estimation
results. The results indicate that the COBU-MUSIC outper-
forms other algorithms and its RMSE is closer to the CRB
than the RMSEs of other algorithms over wide ranges of
operating conditions and the impulsive noise environments.
Nevertheless, the COBU-MUSIC is also particularly power-
ful for direction finding in the presence of highly impulsive
noise when reducing computational cost is a crucial design
requirement. Furthermore, future research includes that we
will extend our present work to the fields of time delay
estimation and detection of the number of signal sources.

APPENDIX
A. THE PROOF OF THE BOUNDEDNESS OF COB
The translation invariance Gaussian kernel is commonly used
to construct the correntropy. However, similar to the Parzen
estimation of the pdf, other symmetric kernels can be applied.
According to theoretical analysis and numerical experiments
of our previous research, we have found that the performance
of the exponential kernel is better than that of the Gaus-
sian kernel. Therefore, the proof is based on the exponential
kernel.
Proof:Based on the definitions as mentioned above of both

X and Y , the COB operator can be rewritten as:

VT = E
[
(X − Y )2exp

(
−
|X − Y |
2σ 2

)]
(44)

According to the discussion in Section III-A, we construct
a new random variable z = X − Y , which obeys the SαS

distribution, then VT can be written in the form of integral

VT = E
[
z2 exp

(
−
|z|
2σ 2

)]
=

∫
+∞

−∞

e−
|z|
2σ2 z2f (z) dz (45)

where f (z) is the pdf of the random variable z.
The characteristic function of SαS can also be expressed as

ϕ (ω) = exp
(
jµω − γ |ω|α

)
(46)

Without loss of generality, we assume that all SαS distribu-
tions are centered at the origin so that µ = 0. In this case,
an SαS distribution is only determined by the parameters
0 < α ≤ 2 and γ > 0, through its characteristic function

ϕ (ω) = exp
(
−γ |ω|α

)
(47)

Substituting (47) into (45), we acquire

VT =
1
2π

∫
+∞

−∞

∫
+∞

−∞

e−
|z|
2σ2 z2e−γ |ω|

α
−jωzdωdz

≤
1
2π

∫
+∞

−∞

(∫
+∞

−∞

e−
|z|
2σ2 z2dz

)
e−γ |ω|

α

dω (48)

Denoting g1 =
∫
+∞

0 e−z
/
2σ 2z2dz = 1

2

∫
+∞

−∞
e−|z|

/
2σ 2z2dz

and u = z
2σ 2

for short, we find that

g1 = 8σ 6

∞∫
0

e−uu2du

= 8σ 6
[
−e−u

(
u2 + 2u+ 2

)]∣∣∣∞
0

= 8σ 6
(
2− lim

u→∞
e−uu2 − 2 lim

u→∞
e−uu

)
= 16σ 6 (49)

then, we only need to consider the integral as follows
+∞∫
−∞

+∞∫
−∞

e−
|z|
2σ2 z2dze−γ |ω|

α

dω = 32σ 6

+∞∫
−∞

e−γ |ω|
α

dω (50)

By defining g2 =
∫
+∞

0 e−γω
α
dω = 1

2

∫
+∞

−∞
e−γ |ω|

α
dω,

through some derivation, we can obtain a simplified form
as (51) that appears at the top of the next page, where WM
is the Whittaker M function that can be expressed as

WM (µ, ν, z) = e−
z
2 z

1
2+ν

∞∑
n=0

(
1
2 + ν − µ

)(n)
zn

(1+ 2ν)(n)n!
(52)

and keep in mind that

a(0) = 1

a(n) = a(a+ 1) · · · (a+ n− 2)(a+ n− 1) (53)

To simplify the derivation of the expression given
in (51), we define two partial derivative functions d1 =

∂
∂α

(
γ−

1
α Γ

(
1
α

)
α

)
and d2 = ∂

∂γ

(
γ−

1
α Γ

(
1
α

)
α

)
.
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∞∫
0

e−γω
α

dω =

αω−α+1γ−1 (αγωα + α + 1) (γωα)−
α+1
2α e−

γωα

2 WM
(
1
α
−

α+1
2α ,

α+1
2α +

1
2 , γω

α
)

(α + 1) (2α + 1)

+

ω−α+1γ−1 (α + 1) (γωα)−
α+1
2α e−

γωα

2 WM
(
1
α
−

α+1
2α + 1, α+12α +

1
2 , γω

α
)

2α + 1


∣∣∣∣∣∣∣
∞

0

=

γ−
1
α Γ

(
1
α

)
α

(51)

Therefore

d1 =
∂

∂α

γ− 1
α Γ

(
1
α

)
α


=

∂
∂α

(
γ−

1
α Γ

(
1
α

))
α − γ−

1
α Γ

(
1
α

)
α2

=

[
∂
∂α

(
γ−

1
α

)
Γ
(
1
α

)
−
γ−

1
α Ψ

(
1
α

)
Γ
(
1
α

)
α2

]
α−γ−

1
α Γ

(
1
α

)
α2

=

[
e−

ln(γ )
α ln(γ )Γ

(
1
α

)
α2

−
γ−

1
α Ψ

(
1
α

)
Γ
(
1
α

)
α2

]
α−γ−

1
α Γ

(
1
α

)
α2

= −

γ−
1
α

(
α + Ψ

(
1
α

)
− ln(γ )

)
Γ
(
1
α

)
α3

(54)

and

d2 =
∂

∂γ

γ− 1
α Γ

(
1
α

)
α

 = −γ− 1
α Γ

(
1
α

)
γα2

(55)

where Ψ (·) is the digamma function defined by Ψ (x) =(
∂
∂xΓ (x)

)
/Γ (x). Under the definition of the SαS distribu-

tion, we know γ > 0 and 0 < α ≤ 2. Then, d1 < 0 and
d2 < 0. We can also obtain the following expression

lim
α→0
γ→0

∞∫
0

e−γω
α

dω = +∞ (56)

from this, it is straightforward to see that

g2 =

∞∫
0

e−γω
α

dω < +∞ (57)

which means that the COB operator VT is bounded. This is
the end of the proof. �

B. THE REGULAR CONDITIONS
The following are the regularity conditions that are gener-
ally needed in statistics and developed to support the Fisher
maximum-likelihood algorithms.

Consider a parametric model in which the joint distribu-
tion of X ={x1, x2, · · · , xn} has a density function fX (X; θ),

where θ ∈ 2. If the observations on X are i.i.d.with density
function f (xi; θ) for each observation.
• The parameter space 2 is compact.
• The unknown parameter value θc is identified by

θc = argmax
θ∈2

E[log f (Xi; θ)] (58)

• The likelihood function can be expressed as

L(θ ) =
n∑
i=1

logf (xi; θ) (59)

wihch is continuous in θ . In (58), the expression
E[log f (X; θ)] exists.

• L(θ ) is twice continuously differentiable in a neigh-
borhood of θc. The information matrix I(θc) =

E[−∂2 log f (X; θc)/∂θ∂θ ′] exists and is nonsingular.

C. THE PDF OF sαs distribution
Consider the complex-valued SαS distributed noise compo-
nents ω (t) = ω̄ (t) + jω̃ (t) are i.i.d. in time and space with
pdf defined in (33); by using the polar coordinate ρ = |ω| =√
ω̄2 + ω̃2, we can further express this pdf as fpd (ω̄, ω̃) =

χ (ρ). When α 6= 1 or α 6= 2, no closed-form expressions
exist for the pdf; fortunately, we can express χ (ρ) as a power
series expression form in (60), which appears at the top of the
next page, where

ϑ(k) = Γ
(
αk
2
+ 1

)
(61)

and

ψ(k) = Γ
(
2k + 2
α

)
(62)

Furthermore, the SαS distribution has two important prop-
erties that play a crucial role in the modeling of uncertainty.
• Stability property: Assuming that the random variables
X1, X2 are i.i.d. with the same distribution as X , for
arbitrary constants c1, c2, there are constants a, b such
that

c1X1 + c2X2 := aX + b (63)

means that c1X1 + c2X2 and aX + b obey the same
distribution as X1 or X2, then the random variable X
has a stable distribution. A general statement can be
deduced by using the characteristic function in (1): if
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χ (ρ) =



1
π2γ 2/α

∞∑
k=1

(−1)k−1

k!
ϑ2(k) sin

(
παk
2

)
2αk

(
ρ

γ 1/α

)−αk−2
0 < α < 1

γ

2π
(
ρ2 + γ 2

)3/2 α = 1

1
απγ 2/α

∞∑
k=0

(−1)k

22k+1(k!)2
ψ(k)

(
ρ

γ 1/α

)2k

1 < α < 2

1
4πγ

e−ρ
2/4γ α = 2

(60)

X1,X2, · · · ,Xn are i.i.d. with the same characteristic
exponent α and symmetry parameter β, all linear com-
binations of the form

∑n
i=1 ciXi are stable, which have

the same parameters α and β.
• Generalized central limit theorem: Assume the ran-
dom variables X1,X2, · · · ,Xn are i.i.d. under the con-
dition n → ∞, X is the limit in the distribution of
normalized sums of the form

Sα =
1
an

(X1 + X2 + · · · + Xn)− bn (64)

if and only if the distribution of X satisfies stable dis-
tribution. In particular, the limit distribution is Gaussian
when {Xi}ni=1 are i.i.d. and have finite variance.

Evenmore remarkably, for a complex SαS randomvariable
Y , if 0 < α < 2, there exist

E|Y |p = ∞, p ≥ α (65)

and

E|Y |p <∞, 0 ≤ p < α (66)

if α = 2, then

E|Y |p <∞, p ≥ 0 (67)
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