
SPECIAL SECTION ON DATA MINING AND GRANULAR COMPUTING IN BIG
DATA AND KNOWLEDGE PROCESSING

Received September 19, 2018, accepted October 1, 2018, date of publication November 1, 2018,
date of current version December 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2879011

CPCA: A Feature Semantics Based Crowd
Dimension Reduction Framework
YUANYUAN ZHANG1,2, DAWEI GAO1, JIE LUO 1, AND KE XU1
1State Key Laboratory of Software Development Environment, School of Computer Science and Engineering, Beihang University, Beijing 100191, China
2China Academy of Telecommunication Technology, Beijing 100191, China

Corresponding authors: Jie Luo (luojie@nlsde.buaa.edu.cn) and Ke Xu (kexu@nlsde.buaa.edu.cn)

This work was supported by NSFC under Grant 61822201 and Grant 61502021.

ABSTRACT Dimension reduction plays an important role in practical big data analysis and data min-
ing applications. However, popular dimension reduction techniques, such as principal component analy-
sis (PCA), are known to be computation-intensive and are considered as a computation bottleneck for data
processing and mining. In this paper, we propose to reduce the computation of PCA via crowdsourcing,
a paradigm that accomplishes hard-to-compute problems leveraging collective intelligence. We design
CPCA, crowd principal component analysis, a novel crowd-based dimension reduction framework. The
CPCA designs tasks for crowd workers to obtain the relations among features based on their semantics
and formulates a weighted graph from the collected answers to derive the covariance matrix and the
principal components. We prove the correctness of CPCA and conduct extensive evaluations on real datasets.
Experimental results show that CPCA could achieve significantly reduction on the computational cost in
terms of both time and memory, which lowers the bar for learning.

INDEX TERMS Dimensionality reduction, crowdsourcing, principal component analysis, machine learning.

I. INTRODUCTION
Dimension reduction reduces the computation and storage for
data processing and can improve the performance of learn-
ing models by removing multi-collinearity [1]. It has been
widely adopted in big data mining and knowledge process-
ing applications [2]. Various dimension reduction techniques
have been developed [1], [3], such as Principal Component
Analysis (PCA), Linear Discriminant Analysis (LDA), Sin-
gular Value Decomposition (SVD), kernel-PCA [4], kernel
discriminant analysis, embedding [5], [6], clustering, low
rank approximation [7]–[9] and auto-encoders [10].

However, the process of dimension reduction itself can
be a computation bottleneck for big data applications. For
example, the calculations of the covariance matrix in PCA
takes O(n2m) time and O(nm) space, where n is the number
of dimension and m is the number of instances. Though in
the cloud-based situation, the data can be fit into the cloud
servers, it is too expensive for the individuals to rent cloud
servers.

In this paper, we ask the question: can we leverage humans
to perform dimension reduction to reduce its computation?
We make two observations: (i)Mainstream linear dimension
reduction techniques such as PCA operates by projecting
related or dependent features into a new feature space with

lower dimensions. (ii) Many real-world data are associated
with semantic meanings and it is easy for humans to identify
whether these semantics are correlated. For instance, it is
easy for an ordinary person to identify that the features of
’weather’ and ’temperature’ are correlated. Based on these
observations, it is viable to exploit human knowledge to iden-
tify related features according to their semantics and project
them into a low-dimensional space.

It is non-trivial to conduct dimension reduction utilizing
human knowledge. Humans make errors and it is common
to collect and aggregate answers from a group of people
to improve the accuracy, a paradigm called crowdsourcing.
Crowdsourcing has been successfully applied to accomplish
various works in database and data mining, such as rank-
ing [11], entity resolution [12] and data cleaning [13]. There
are two main challenges to design a crowdsourcing solution
to dimension reduction: (i) how to decompose the dimen-
sion reduction problem into multiple easy-to-answer tasks for
individual crowd workers? (ii) how to construct a covariance
matrix using answers to the crowd tasks and further project
high-dimensional features into a low-dimensional space?

We address the above challenges by proposing CPCA,
a crowd-based principal component analysis framework for
dimension reduction. CPCA designs tasks for crowd workers
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to obtain the relations among features based on their seman-
tics, collects the answers and formulates a weighted graph to
derive the covariance matrix and the principal components.
We evaluate the performance of CPCA on a real-world appli-
cation to reduce the feature space for taxi order prediction.
Experimental results show that CPCA saves up to 30% time
and storage for dimension reduction than the conventional
PCA approach.

The main contributions of this work are as follows.
• We design a novel crowd-based solution to dimension
reduction. To the best of our knowledge, it is the first
effort to conduct dimension reduction with collective
intelligence.

• We conduct extensive evaluations on real data. Experi-
ments show that compared with PCA, our solution can
accelerate dimension reduction by up to 30% while
achieving comparable accuracy.

In the rest of this paper, we introduce the basics of dimen-
sion reduction in Sec. II, present the CPCA framework in
Sec. III and evaluate its performance in Sec. IV. Finally we
review related work in Sec. V and conclude in Sec. VI.

II. PRELIMINARIES
This section provides a brief introduction of dimension reduc-
tion and the motivations to reduce the computation overhead
of dimension reduction.

In machine learning and statistics, dimension reduction
refers to the process to reduce the random variables under
some constraints to reduce noise and obtain a set of princi-
pal variables. Formally, the dimension reduction problem is
defined as follows.
Definition 1 (Dimension Reduction): Given an N -dimen-

sional dataset D with m instances, project D to a
K -dimensional space (usually K � N ) to reduce the noise in
D and the computational cost of learning models.
The N -dimensional dataset D refers to a table with N

features stored in the relational database, whichmay be joined
from several data tables. We assume the dataset have been
preprocessed e.g. missing value competition and anomaly
detection, using previous studies [14]. The parameter K is
defined by the specific applications and the available com-
putation resources.

Principal component analysis (PCA) is an effective and
widely adopted dimension reduction technique. Its main idea
is to linearly project some features into a new dimension.
In the transformation, the first principal component has the
largest possible variance, and accounts for the largest vari-
ability in the data. Each succeeding component in turn has
the highest variance possible under the constraint that it is
orthogonal to the preceding components. The common pro-
cess is first compute the covariance matrix of the original
data. Then it computes and returns the top-k eigenvalues and
their corresponding eigenvectors of the covariance matrix.
The major computation is the computation for covariances
and eigenvalues. Despite its effectiveness, PCA is still consid-
ered computation-intensive especially for high-dimensional

data, which are common in the big data era. We demonstrate
the need to further reduce the computation overhead of PCA
via the following example.
Example 1: Consider a task to predict the number of taxi

orders in a city using urban big data. Various data sources
can be used as candidate features, such as weather, point
of interest (POI), road network, etc. A recent study [15]
shows that more than 1,000 dimensions of initial features
can be collected and the training of the prediction model
is conducted on parameter servers. For developers with
limited computation resources, it can be difficult to train
a model with such high dimensional features and thus
dimension reduction is compulsory. Nevertheless, the com-
putation overhead to perform linear dimension reduction
techniques such as PCA can still be large. On a big data
with 1000 dimensions, the PCA method needs to compute
a 1000 × 1000 covariance matrix and its corresponding
eigenvalues.

This example is not uncommon in the big data era.
To reduce the computation of PCA and bring dimension
reduction to everyone, we propose to involve humans in
the loop and design a crowdsourced dimension reduction
framework.

III. CROWD PRINCIPAL COMPONENT ANALYSIS
This section presents CPCA, a crowdsourced dimension
reduction framework. We first give an overview of CPCA
(Sec. III-A). Then we explain how to design the crowd
tasks (Sec. III-B), construct the crowd covariance matrix
(Sec. III-C) and calculate the principal components
(Sec. III-D). Finally we analyze the correctness of CPCA and
its efficiency (Sec. III-E).

A. OVERVIEW
CPCA is a linear dimension reduction algorithm that exploits
the crowd to avoid unnecessary computation on convariance.
Fig. 1 shows the process of CPCA. In the first step, the col-
lected features are formalized as crowd tasks and distribute to
the crowd to collect the answers on the independence between
features. Then we gather the answers of the crowd and inte-
grate them into a weighted undirected graph to describe the
relations among the features. The vertices denote the fea-
tures and the weights on the edges represent the indepen-
dence between two features. Afterwards, we aggregate the
vertices into clusters according to their independence values.
The clusters tend to be independent with high probabilities.
Finally we use these clusters to build the crowd covariance
matrix and extract the principal components. We elaborate on
the details of CPCA in the following subsections.

B. CROWD TASK DESIGN
We now explain how to design the crowd tasks.

Let F = {f1, f2, · · · , fN } be the N dimensional features
of D. In a crowd task, we present a pair of features from
F and ask the crowd workers whether these features are
independent or not. For example, Fig. 2 shows an example
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FIGURE 1. An overview of CPCA.

FIGURE 2. An example of crowdsourced task.

of a crowdsourced task. We only ask whether two features
are independent in a task for the following reasons.
• It is easy for humans to determine whether a pair of
features are independent or not based on their seman-
tics using common sense. For instance, the correlation
between the features of ’time’ and ’traffic flow’. Note
that professional knowledge may be required for some
tasks. If necessary, we can filter workers and recruit
those with specific background knowledge using crowd-
sourcing platforms such as Amazon Mechanical Turk.

• It is in general difficult for the crowd to further distin-
guish linear and non-linear relations purely from seman-
tic meanings if two features are dependent. Note that in

principle we need answers about whether two features
are linearly dependent since CPCA is a linear dimension
reduction algorithm. We will show in Sec. III-C that
such information suffices to conduct linear dimension
reduction with high accuracy.

C. CROWD COVARIANCE MATRIX CONSTRUCTION
The core of CPCA is to construct a covariancematrix from the
collected answers about independence between features. In
this subsection, we first explain how to aggregate the answers
into a weighted graph, and then cluster the features and finally
derive the covariance matrix.

1) ANSWER AGGREGATION
Assume for a pair of features (fa, fb), we collect β answers
from the crowd. That is, we collect answers about the inde-
pendence between fa and fb) asFi(fa, fb), i = 1, · · · , β, where
the function Fi(fa, fb) equals 1 if the answer of (fa, fb) is
dependent, and zero otherwise. We apply weighted voting to
aggregate these answers.

Specifically, we use weighted voting to integrate the
answers as follows.

c(fa, fb) =

∑β

i=1 wiFi(fa, fb)∑β

i=1 wi
, (1)

where wi is the weight of the ith answer, which can be
obtained by analyzing the crowd worker’s abilities or the
accuracy of his/her past answers. When there are not enough
historical data to analyze the quality of each worker, we apply
‘‘golden tasks’’ to roughly estimate the quality of workers.
Golden tasks are a small portion of tasks with ground truth
labels to be used to test the quality of workers via qualification
tests or hidden tests [16]. Existing research has shown their
effectiveness to control the quality of crowd workers [16].

To obtain the aggregated answers c(fa, fb) for every pair of
features (fa, fb) in F , we need to distribute O(N 2) different
tasks, where each task needs to be performed multiple times.
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To reduce the number of different tasks needed to be per-
formed, we leverage the transitivity in the dependence among
features. Particularly, we make the following observation.
• Dependence among features are transitive if the depen-
dence is linear. Note that we do not differ linear and non-
linear dependence in the crowd tasks. However, we may
regard all the dependent features as transitive. This way,
the only impact would be to leave some independent
features in the principal component calculation
(Sec. III-D).

Based on the observation, we can reduce the number of differ-
ent tasks needed to be distributed to the crowd. For example,
there are three features {fa, fb, fc}, and we have already know
that the pair of (fa, fb) and (fb, fc) are dependent. Then we do
not need to distribute the task of pair (fa, fc) to the crowd since
these three features are dependent based on the transitive
property. When submitting the tasks, we could first submit
a part of them, collect the answers and decide whether to
release certain tasks. Using the aggregated answers c(fa, fb)
for every pair of features in F , we can construct a weighted
graph as in Fig. 1, where the weight between fa and fb is
c(fa, fb).

2) FEATURE CLUSTERING
After obtaining the results from the crowd by Eq.1 S,
we divide the features with high possibility of linear correla-
tion into the same clusters. To measure the linear correlation,
we use a threshold value θ ∈ [0, 1] to divide the features.
When θ is small, the features will be divided into more
clusters, and it will reduce more computation in the principal
component calculation. But a θ that is too small will ignore
weak linear correlation, which may affect the accuracy of the
features. We evaluate the impact of θ on the performance of
dimension reduction in Sec. IV.

Alg. 1 shows the process of feature clustering. First, we ini-
tialize C as an empty set (Line 1). For each feature f ∈ F ,
we find all the features with a weight larger than θ and put
them into a cluster C (Lines 3-11). Finally we obtain the
collection of feature sets C = {C1,C2, · · · ,C|C|} (Line 13).

3) COVARIANCE MATRIX CALCULATION
Finally we build a matrix M according to the collection
C = {C1,C2, · · · ,C|C|}, where Ci = {f i1, f

i
2, · · · , f

i
|Ci|
}.

M =


M1

M2
. . .

M|C|

, (2)

where Mi =
cov(δf i1, δf

i
1) cov(δf i1, δf

i
2) · · · cov(δf i1, δf

i
|Ci|

)
cov(δf i2, δf

i
1) cov(δf i2, δf

i
2) · · · cov(δf i2, δf

i
|Ci|

)
...

...
. . .

...

cov(δf i
|Ci|
, δf i1) cov(δf i

|Ci|
, δf i1) · · · cov(δf

i
|Ci|
, δf i
|Ci|

)

,
(3)

Algorithm 1: Divide Features Into Independent Clusters
Input: The feature set F , score matrix S and threshold θ .
Output: Cluster set C .

1 C ← ∅;
2 while F 6= ∅ do
3 sample a feature f c from F ;
4 C ′← {f c};
5 foreach f ∈ F − {f c} do
6 if S[f c][f ] ≥ θ then
7 C ′← f ;
8 F ← F − {f };

9 C ← C + C ′;

10 return C;

FIGURE 3. An example of clusters of features collected from answers
from the crowd.

where δf ij = f ij − f
i
j , f

j
i is the average of the feature f

i
j , and the

function cov(·, ·) is to compute the covariance of two specific
features.
M consists of many square matrices {M1,M2, · · · ,M|C|}.

Mi is the covariance matrix of the feature set Ci =
{f i1, f

i
2, · · · , f

i
|Ci|
}. Note that the order of the covariance matri-

ces inM does not affect the performance of CPCA.M can be
seen as a simplified covariance matrix of F . Since we know
features in different Ci are independent and their covariances
should be equal or close to zero, we can safely omit them
and only compute the covariance of the linearly dependent
features, i.e. covariances in M1, · · · ,M|C|.
Example 2: Back to the example of taxi order prediction.

We first distribute tasks about the independence of each pair
of features to crowd workers. Then we collect the answers
and compute the weights for these features and construct a
weighted graph. Finally the features are divided into different
clusters. Fig. 3 shows the answers from the crowd. The fea-
tures are divided into three primary clusters, which include
the weather condition (wind speed, precipitation and tem-
perature), the geographic information (POI and population
density) and promotion information (discount). It is natural
for the crowd to think that the POI is independent of the
temperature and promotion information. For wind speed and
the other two features in weather condition, the dependence
is weak such that they can be divided into different clusters
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FIGURE 4. The covariance matrix in the example.

through tuning the threshold. But we can still put them in
a cluster and verify their independence through principal
component calculation. For promotion information and the
geographic information, in general the crowd think they are
independent.

D. PRINCIPAL COMPONENT CALCULATION
After obtaining the matrix M , we can derive the principal
components for F and conduct dimension reduction similar
to the traditional PCA.

As shown in Fig. 1, we compute the eigenvalues of each
Mi as λi. Note that a large eigenvalue means that this pro-
jection has a greater variance and can be distinguished from
other classes more easily [17]. We sort all the eigenvalues
in the descending order, and extract the K largest eigenval-
ues {λ1, λ2, · · · , λK } and their corresponding eigenvectors
V = { Ev1, Ev2, · · · , EvK }. Then the final projection of the
dataset D is computed as follows.

P = DV ,D ∈ Rm×N . (4)

P is a vector in Rm×K and we project the original dataset D
into a new space with low dimension and large variance.

E. ALGORITHM ANALYSIS
In this subsection we prove the correctness of the principal
component calculation and analyze the complexity of CPCA.

1) CORRECTNESS
To prove the process of extracting principal features is cor-
rect, we first present and prove Lemma. 1, and then apply it
to our scenario.
Lemma 1: If a matrix M ∈ Rn×n is in the form of

M =
[
A 0
0 B

]
, (5)

where A ∈ Rn1×n1 , B ∈ Rn2×n2 and n1 + n2 = n, then the
eigenvalues of M equal the sum of the eigenvalues of A and B.

Proof: To compute the eigenvalues of matrix M in the
form of Eq.5, we have

(M − λI )X =
[
A− λI 0

0 B− λI

] [
X1
X2

]
=

[
(A− λI )X1
(B− λI )X2

]
= 0, (6)

where X = (XT
1 ,X

T
2 )

T, X1 ∈ Rn1 and X2 ∈ Rn2 . Let λA/B
and XA/B denote the eigenvalue and eigenvector of A and B.
Then we have (A − λAI )XA = 0 and (B − λBI )XB = 0.
Suppose λ = λA, X1 = XA and X2 = 0 in Eq.6. Then λA
and (XT

A , 0, · · · , 0)
T
∈ Rn are the eigenvalue and eigenvector

ofM . the same proof holds for the eigenvalue of B. Therefore,
the eigenvalues of M equal the sum of the eigenvalues of
A and B.
Now we can easily generalize Lemma. 1 and apply it to

the matrix in the form of Eq.2. Consequently, CPCA can
obtain the accurate principal features of the crowd covariance
matrix.

2) COMPLEXION ANALYSIS
The main computational challenge of CPCA is to compute
the covariances and eigenvalues. For the crowd covariance
matrix construction, we take the crowdsourcing process as
a crowd function like [11] and [12] that can obtain result
in 1 − 2 days. Otherwise, there are many works studied on
stimulation and latency control [18], which is not our focus.
In this paper we reduce the computational complexity for both
covariances and eigenvalues. First, the time complexity of the
original computation is O(mN 2). As for CPCA, assume that
there are |C| sets in collectionC and the best performance can
reach O(m( N

|C| )
2). Second, for the eigenvalues it takes O(n2)

for a n × n matrix, and CPCA reduce the complexity from
O(N 2) toO(N

2

|C| ). Note that the above analysis is under the best
condition, because the both the value and the distribution of
features in collection C depend on the distribution of dataset.
But we would conduct experiments on real dataset in Sec. IV
to prove the efficiency of CPCA.
Example 3: Back to our previous example in Fig. 3. Sup-

pose the features are divided into three clusters {Wind
speed, Precipitation, Temperature}, {POI, Population den-
sity}, {Discount, · · · }. Therefore, we can assume that the
features in different clusters are independent. Next we build
the covariance matrix like Fig. 4, where we use {f1, f2, · · · }
to represent the features. In this matrix, we only compute
the covariance for the dependent features, while the others
are treated as zero. For example, we compute the covariance
between the wind speed and precipitation rather than the
pair of temperature and POI. The answers of the crowd
may be uncertain, but we can decrease the threshold θ to
left the uncertain part for the computation of covariance
matrix.

IV. EVALUATION
This section presents the evaluations of CPCA.
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FIGURE 5. The missing rate of the dataset.

TABLE 1. The detail of the dataset.

A. EXPERIMENT SETUP
We first introduce the experimental settings.

1) DATASETS
We use a dataset for taxi order prediction collected by a taxi-
calling platform in China. The dataset contains taxi orders in
Beijing, China during the period of June 1st, 2016 to June 5th,
2016, as well as various urban data as initial features for taxi
order prediction. The initial features are obtained from differ-
ent data sources and can be roughly divided into three cate-
gories: weather conditions, POIs and historical order status.
• Features about weather conditions: temperature, humid-
ity, wind conditions, precipitation, air regime, et al. for
a specific time and the around 24 hours.

• Features about POIs: name, category, level, location
et al. of POIs. The category is also the name of the POIs,
e.g. hospital, university and park. The level is used to
describe the scale of POI.5

• Features about historical order status: origin/destination,
start/end time, normal driving distance, estimated price,
payment, discount et al.

Table 1 shows some example features. The semantics
of these features are easy to understand through the
schema. In total, the dataset has about 56 dimensions and
17,078,533 instances.

2) PREPROCESSING
Before performing dimension reduction on the dataset,
we first preprocess the dataset to fill missing values. As
shown in Fig. 5, there are many missing values in the dataset.
The missing rates of most features are around 24% and 70%.
Since we do not want to affect the distribution of these
features and Eq.3 only uses the bias of these features, we fill
these empty values with the mean of the other available
values. Note that filling missing values is a well studied
topic [19], [20] and is not the main focus of our paper.

3) IMPLEMENTATION
We submit 1,540 tasks on the AMT to collect answers about
the independence between features from the crowd. Consider-
ing that our task does not require any professional knowledge,
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FIGURE 6. Performance on the dataset. (a) Time of varying the number of instances. (b) Memory of varying the number of
instances. (b) Time of varying dimensions. (c) Memory of varying dimensions. (d) Time of varying θ . (e) Memory of varying θ .

we do not set constraints on the workers’ skills or knowledge.
The tasks are submitted for three days and in total about
1000 results are collected.

We implement the dimension reduction algorithms in
python and conduct all the experiments on a computer
with Intel(R) Core(TM) i7 3.4GHz CPU and 16GB main
memory.

4) BASELINES AND METRICS
We compare CPCA with the ordinary PCA as the baseline.
Wemainly evaluate the time and storage of the two dimension

reduction algorithms by projecting the original dataset into a
10-dimensional space.

B. PERFORMANCE
We first evaluate the impact of θ on the performance of
CPCA. Fig. 6(e) and Fig. 6(f) show the running time and
the memory cost by varying θ from 0.1 to 0.9. As is shown,
when θ increases, both the running time and the memory
cost of CPCA increase. This is because when θ increases,
the features are grouped into fewer clusters, and CPCA needs
more time andmemory to compute the covariances among the
features.When θ is so large that all features are grouped into a
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single cluster, CPCA takes nearly the same time and memory
as PCA. In the rest of the experiments, we set θ to 0.5.
We then compare the running time and the memory cost of

the two algorithms to process different number of instances.
Fig. 6(a) and Fig. 6(b) show the result of varying the num-
ber of instances from 1 million to 9 million. In Fig. 6(a),
the running time of both PCA and CPCA increases as the
number of instances increases. CPCA run nearly 30% faster
than PCA. In Fig. 6(b), the memory of both methods also
increases. For PCA, it requires nearly 15GB memory when
there are 9 million instances. It almost takes all the available
memory and cannot run for a larger dataset in the machine
with 16GB main memory. In contrast, CPCA takes about
10GBmemorywhen there are 9million instances and reduces
about 37.5% of the memory cost. When further increasing
the number of instances for CPCA, it could handle nearly
14 million instances.

Next we evaluate the running time and the memory cost of
the two algorithms to process dataset of different number of
dimensions. Fig. 6(c) and Fig. 6(d) show the result of varying
the dimension of the dataset from 10 to 50. The results are
obtained by processing twomillion instances. Fig. 6(c) shows
that the running time of CPCA is less than that of PCA by
28%. In addition, as shown in Fig. 6(d), PCA spends up
30.3% to more memory than CPCA.

Afterwards, a linear classification model is trained on the
processed datasets of both methods to predict the taxi orders.
The two datasets both have ten dimensions, and the loss
function of the linear model is the error of mean square.
We train the model for the same number of iterations and
use F1-measure to evaluate the effect of the dimensionality
reduction methods. The F1-measure of PCA is around 0.78,
and that of CPCA is about 0.69. Through the F1-measure of
CPCA is lower than PCA, it achieves a large reduction on the
computational cost.

SUMMARY OF RESULTS
From the experiments, we observe that CPCA outperforms
PCA in terms of both the running time and memory cost.
Although CPCA requires a few days to obtain the results from
the crowd, it reduces the computational cost and allows the
individual developers to run the dimension reductionmethods
on their own personal computers.

V. RELATED WORK
In this section, we review related work from two categories,
dimension reduction and crowdsourcing.

A. DIMENSION REDUCTION
Dimensionality reduction is an important topic in machine
learning and big data. Traditional linear dimensional reduc-
tion methods, such as PCA [17] and LDA [21], project the
high-dimensional data into a lower-dimensional space. The
following studies include the incremental and kernel-based
methods [22], [23]. In recent years, there are also proposals
utilizing various neural network for dimension reduction.

For example, Krizhevsky et al. [24] use convolutional neural
network (CNN) to extract feature sequences from the word
images. Wu et al. [25] propose a deep neural network (DNN)
for text recognition from the natural scene images. However,
these methods still have huge computational cost, especially
when computing the covariance matrices.

B. CROWDSOURCING
Crowdsourcing is a computing paradigm that aims to
solve the hard-to-compute problem with the crowd [26].
Crowdsourcing has been applied to various applications.
Yi et al. [11] mine users’ preferences through the crowd
tasks under the low-rank assumption. In [13], a data cleaning
system KATARA is designed to identify and improve the
data quality. Some other works apply crowdsourcing in appli-
cations such as annotating the training dataset for machine
learning [27], [28] and data integration [29]. To support
these applications, technical issues such as task allocation
[30], [31], quality control [16], [32] and incentive mechanism
design [33], [34] have also been extensively studied. To the
best of our knowledge, there is no prior work to apply crowd-
sourcing in dimension reduction.

VI. CONCLUSION
In this paper, we propose a crowd-based dimension reduc-
tion framework called Crowd Principal Component Analysis
(CPCA). The aim is to reduce the computation overhead of
traditional principle component analysis leveraging collective
intelligence so as to bring dimension reduction to individuals
who have limited computation resources. Specifically, CPCA
designs crowd tasks and asks crowd workers to estimate the
independence among the features based on their semantics.
After aggregating the answers from the crowd, CPCA elim-
inates the unnecessary computation to calculate the original
covariance matrix and eigenvalues. We prove the correctness
of CPCA and also analyze its complexity. Extensive exper-
iments on the real dataset validate the effectiveness of our
method.
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